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We present a novel method to compute componentwise ultimate bounds and invariant regions for a class of switching
discrete-time linear systems with perturbation bounds that may depend nonlinearly on a delayed state. The method has the
important advantage that it allows each component of the perturbation vector to have an independent bound and that the
bounds and sets obtained are also given componentwise. This componentwise method does not employ a standard norm for
bounding either the perturbation or state vectors, and thus may avoid conservativeness due to different perturbation or state
vector components having substantially different bounds. We also establish the relationship between the class of switching
linear systems to which the proposed method can be applied and those that admit a common quadratic Lyapunov function.
We illustrate the application of our method via numerical examples, including the fault tolerance analysis of the feedback
control of a winding machine.
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Keywords: switching systems; ultimate bounds; invariant sets; componentwise methods; practical stability; fault tolerant
control
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1. Introduction

Switched systems are systems whose dynamics change be-

Q1

tween a finite number of individual dynamics according
to a switching rule. The stability of switched systems is a20
topic of current research interest (see, e.g. Liberzon, 2003;
Lin & Antsaklis, 2009; Margaliot, 2006). A particular type
of problem is that of stability under ‘arbitrary switching’,
which refers to problems where the stability properties of
interest hold for every possible switching signal. Switched25
systems undergoing arbitrary switching are referred to as
switching systems. In the present paper, we will focus on
a specific class of switching systems, and we consider the
‘practical stability’ problem of analysing the existence and
computation of invariant sets and ultimate bounds for the30
system-state trajectories. This type of stability is important
in every practical setting where non-vanishing perturba-
tions may act on the system (Khalil, 2002, Chapter 9). The
class of discrete-time switching systems considered is that
having a switching linear nominal (unperturbed) system for35
which a matrix constructed from the subsystems’ A matri-
ces is Schur stable, affected by perturbations that may be
non-vanishing and depend nonlinearly on a delayed state.

Standard methods for the computation of bounds and in-
variant sets make use of Lyapunov functions (Khalil, 2002).40
Lyapunov function-based methods are very powerful and
widely applicable, although finding a suitable Lyapunov
function is a difficult problem in general. When the nomi-
nal system is linear, however, a quadratic Lyapunov function

∗Corresponding author. Email: haimo@fceia.unr.edu.ar

can easily be computed as the solution to a Lyapunov 45
equation. Likewise, for switching systems with a switching
linear nominal system, a quadratic Lyapunov function com-
mon to all linear subsystems can be computed via linear
matrix inequalities (LMIs) in case one exists (see, e.g. Lin
& Antsaklis, 2009, and the references therein). State bounds 50
computed by means of a quadratic Lyapunov function are
given as a bound on the norm, typically the 2-norm, of the
state vector and usually require a bound on the norm of the
perturbation vector. Substantial conservativeness may thus Q2
be introduced since the information on the different bounds 55
for each component of the perturbation vector is lost when
taking its norm; in addition, the bounds corresponding to
different components of the state vector may be largely
dissimilar and hence its 2-norm will not yield tight bounds.

In this paper, we propose a methodology based on 60
componentwise analysis which differs from the one just
described in that the use of either a norm of the state or a
Lyapunov function can be avoided. Moreover, this com-
ponentwise methodology can be easily combined with
Lyapunov analysis, and/or other methods, such as those 65
based on set-theoretic tools (Ghaemi, Kolmanovsky, &
Sun, 2011; Olaru, De Doná, Seron, & Stoican, 2010), in
order to possibly improve on the results of either method
applied individually. The current paper builds upon and
extends to discrete-time switching systems with delayed 70
state-dependent perturbations previous results of Kofman,
Haimovich, and Seron (2007); Kofman, Seron, and
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Haimovich (2008); Haimovich and Seron (2009, 2010),
and it contains the discrete-time counterpart to Haimovich
and Seron (2013). In our initial work (Kofman et al., 2007),75
a method to compute componentwise ultimate bounds
for perturbed (non-switching) linear systems is given for
perturbation bounds that may depend nonlinearly on the
system state. The case of perturbation bounds that have
affine dependence on a delayed system state is treated in80
Section 3 of Kofman et al. (2008), where a sufficient con-
dition for practical stability is also provided. In Haimovich
and Seron (2009, 2010), a method to derive componentwise
transient and ultimate bounds was proposed for a class
of switching linear systems with constant perturbation85
bounds. It was shown in Haimovich and Seron (2009,
2010) that the proposed method can be applied when the
switching linear system is close to being simultaneously
triangularisable (see Definition 2.4 in Section 2.3 for the
definition of simultaneous triangularisation). In such a90
case, a common quadratic Lyapunov function (CQLF)
exists for the switching system. However, the precise
relationship between the class of switching linear systems
to which the proposed method can be applied and those
that admit a CQLF was left as an open question.95

The present paper derives results analogous to those of
Haimovich and Seron (2013) but for discrete-time systems,
and hence its main contribution is to extend the aforemen-
tioned previous results (Haimovich & Seron, 2009, 2010;
Kofman et al., 2007, 2008) by providing ultimate bounds100
and invariant regions based on componentwise analysis for
a class of discrete-time switching linear systems with per-
turbation bounds that may depend nonlinearly on a de-
layed state. This kind of setting can describe, for exam-
ple, switching linear systems with uncertainty in the state105
evolution matrix, switching linear systems with an uncer-
tain time delay and, more generally, switching nonlinear
systems expressed as their switching linear approximation
perturbed by an additive disturbance with a bound depend-
ing nonlinearly on the system state. A second contribution110
of the current paper is to show that the class of discrete-
time switching linear systems to which our componentwise
bound and invariant set method can be applied is strictly
contained in the class of switching linear systems that ad-
mit a CQLF, although the switching linear system need not115
be close to simultaneously triangularisable. This relation-
ship between the class of systems considered and those that
admit a CQLF was actually reported in Mori, Mori, and
Kuroe (2001) but the proof was not given. Moreover, our
method yields one admissible CQLF. In addition, both the120
componentwise method and the Lyapunov technique can be
combined to obtain tighter bounds than could be obtained
by either methodology applied individually. Some of the re-
sults in the current paper have been presented in Haimovich
and Seron (2011a, 2011b).125

The remainder of the paper proceeds as follows. We
conclude this introductory section with a notation summary.

Section 2 motivates and presents the problem formulation,
together with some preliminary definitions and properties.
Section 3 contains the main results of the paper, and is or- 130
ganised into three subsections presenting, respectively, the
new results for the case of nonlinear perturbation bounds,
the connection between the latter results and the existence
of a CQLF and the new results for the special case of affine
perturbation bounds, including the connection with CQLF 135
when no delay is present. Section 4 illustrates the results by
means of academic numerical examples. Application of our
results to the analysis of fault tolerance of a real winding
machine control system is provided in Section 5. Conclu-
sions and directions for future work are given in Section 6. 140
To ease readability, some of the proofs are provided in the
Appendix.

Notation. Z, R and C denote the sets of integer, real and
complex numbers, respectively, and 0 denotes the zero
scalar, vector or matrix, depending on the context. R+ and 145
R+0 denote the positive and non-negative real numbers, re-
spectively, and similarly for Z+ and Z+0. If M is a matrix,
then M′ denotes its transpose, M∗ its conjugate transpose
and |M| is the matrix whose entries are the magnitude of
the corresponding entries in M. If P is a square matrix, then 150
ρ(P ) denotes its spectral radius, and P > 0 (P < 0) means
that P is positive (negative) definite. If x(t) is a vector-valued
function, then lim supt→∞x(t) denotes the vector obtained
by taking lim supt→∞ of each component of x(t). Similarly,
‘lim’ and ‘max ’ denote componentwise operations on a 155
vector or a matrix. The expression x � y (x ≺ y) denotes the
set of componentwise inequalities xi ≤ yi (xi < yi) between
the elements of the real vectors x and y, and similarly for
x 
 y (x � y) and in the case when x and y are matrices. If
T : R

n
+0 → R

n
+0, then T k denotes the iteration of T, that is 160

the maps defined by T1(x) = T(x) and Tk + 1(x) = T(T k(x)).
The index set {1, 2, . . . , N} is denoted N and i denotes√−1. Employing this notation, note that P � 0 means that
every entry of P is positive and P > 0 that P is positive
definite. 165

2. Problem formulation

In this section, we formulate the problem to be addressed.
We begin by motivating the setting considered with an ex-
ample of a real system. The example also illustrates the
applicability of ultimate bounds and invariant sets in fault 170
detection and fault tolerant control; see also Stoican, Olaru,
Seron, and De Doná (2010), Olaru et al. (2010) and Seron
and De Doná (2010).

2.1 Motivating example

Consider the winding machine application presented 175
in Noura, Theilliol, Ponsart, and Chamseddine (2009,
Chapter 3), consisting of three reels driven by direct cur-
rent motors: the unwinding reel motor M1, the traction reel
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motor M2 and the rewinding reel motor M3. The state x �
(x1, x2, x3) = (T1, �2, T3) of the system consists of the180
strip tensions between the reels (T1 and T3) and the angular
velocity �2 of motor M2. The control input u = (I1, U2, I3)
consists of the current set points (I1 and I3) of local torque
controllers used for motors M1 and M3 and the input volt-
age U2 of motor M2. The nominal linearised (incremental)185
model around the operating point x0, u0, discretised with a
sampling period ts has the form (Noura et al., 2009)

x(t + 1) = A0x(t) + B0u(t), (1)

where x(t) ∈ R
3 and u(t) ∈ R

3. Suppose that a state-
feedback controller u(t) = K0x(t) has been designed for
the above system (e.g. to achieve some desired closed-loop190
performance specifications), but the states are measured via
sensors that can be prone to errors. Hence, the actual control
applied to the system has the form,

u(t) = K0(x(t) + w(t)), (2)

where w(t) ∈ R
3 models sensor measurement errors. In

addition to sensor measurement errors, we consider the195
possible occurrence, at arbitrary times, of outages of any
one of the actuators, so that the system models (1) and (2)
are modified as

x(t + 1) = A0x(t) + Bσ (t)u(t)

= (A0 + Bσ (t)K0)x(t) + Bσ (t)K0w(t) (3)

= Aσ (t)x(t) + Hσ (t)w(t), (4)

where σ (t) ∈ {1, 2, 3, 4}, B4 = B0 is the ‘fault-free’ input200
matrix, and each Bi, i = 1, 2, 3, models the outage of the ith
actuator and is obtained from B0 by setting to zero its ith
column. Considering, for example, that the measurement
of x1 is affected by drift, that of x2 by bounded noise and
that of x3 by an uncompensated sinusoidal nonlinearity, the205
sensor measurement error vector w(t) is assumed to have
the componentwise bound,

|w(t)| �
⎡
⎣ α|x1(t)|

ν

β| sin x3(t)|

⎤
⎦, (5)

where α, β and ν are some positive real numbers. Note that
Equations (4) and (5) constitute a discrete-time switching
linear system with a perturbation having a componentwise210
bound that depends nonlinearly on the system state. The
setting that we consider in the current paper corresponds to
a slight extension of that motivated by this example. This
example will be revisited in Section 5, where we will apply
the tools developed in the current paper to the analysis of215

the tolerance of the winding machine control to faults in
the actuators.

2.2 Problem statement

We consider switching discrete-time perturbed systems of
the form, 220

x(t + 1) = Aσ (t)x(t) + Hσ (t)wσ (t)(t), (6)

where x(t) ∈ R
n is the system state, σ (t) ∈ N �

{1, 2, . . . , N} is the switching function, Ai ∈ R
n×n, Hi ∈

R
n×ki for i ∈ N and the perturbation vectors wi(t) ∈ R

ki

satisfy the componentwise bound,

|wi(t)| � δi(θ (t)) for all t ≥ 0, for i ∈ N, (7)

with continuous bounding functions δi : R
n
+0 → R

ki

+0 and 225
θ (t) ∈ R

n
+0 defined as

θ (t) � max
t−τ̄≤τ≤t

|x(τ )|, (8)

where τ̄ ≥ 0 and the maximum is taken componentwise.
Note that for each i ∈ N , Equation (7) expresses a bound
for each one of the ki components of the perturbation vector
wi(t), and that the maximum in Equation (8) denotes a 230
componentwise operation.

The settings (6)–(8) extend the setting motivated by
Equations (4) and (5) in the following two directions: (1)
it allows the dimension of the perturbation vector to be
different for every switching mode of the system (hence 235
this vector is denoted wσ (t)(t) and not just w(t)) and (2) it
allows the perturbation bound to depend on previous values
of the state. These two extensions are included because they
require only minor variations in our derivations. In addition,
the settings (6)–(8) can describe, inter alia, the following 240
situations.

• Uncertainty in the system evolution matrix, where
x(t + 1) = (Aσ (t) + 
Aσ (t)(t))x(t), and |
Ai(t)| �

Ai , for all t ≥ 0 and i ∈ N ; in this case, we can take
Hi = I in Equation (6), δi(θ ) = 
Aθ in Equation (7), 245
and τ̄ = 0 in Equation (8).

• Uncertain time delays, where wi(t) = Fix(t − τ i), and
0 ≤ τ i ≤ τmax ; in this case, we can take δi(θ ) = |Fi|θ
in Equation (7), and τ̄ = τmax in Equation (8).

• Disturbances with constant bounds: δi(θ ) = wi in 250
Equation (7).

• Switching nonlinear systems where x(t + 1) =
fσ (t)(x(t)); in this case, we may take Ai = ∂fi

∂x
(x0),

Hi = I, τ̄ = 0, δi(θ ) = max x: |x| � θ | fi(x) − Aix|.

The problem of interest is to derive transient bounds, 255
ultimate bounds and invariant sets for switching systems of
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the form (6) with perturbations bounded as in Equations
(7) and (8). This will be addressed in Section 3. In the
next subsection, we give some definitions and preliminary
results.260

2.3 Definitions and properties

Definition 2.1: A non-negative vector function f : R
n
+0 →

R
m
+0 is said to be componentwise non-increasing (CNI) if,

whenever x1, x2 ∈ R
n
+0 and x1 � x2, then f(x1) � f(x2).

Remark 1: Every continuous function f̂ : R
n
+0 → R

m
+0265

can be overbounded by a continuous CNI function. In par-
ticular, the tightest continuous CNI overbound of f̂ is the
function f : R

n
+0 → R

m
+0 given by

f (x) = max
0�y�x

f̂ (y). (9)

The following two lemmas provide properties of CNI
functions that are required throughout the paper. These270
results and their proofs appear in Haimovich and Seron
(2013). For the sake of completeness, we include the corre-
sponding proofs in the Appendix at the end of the current
paper.

Lemma 2.2: Let f : R
n
+0 → R

n
+0 be a continuous CNI275

function and suppose that there exists β ∈ R
n
+0 satisfying

f(β) � β. Then,

(i) for every k ∈ Z+, f k + 1(β) � f k(β) and

lim
k→∞

f k(β) = b 
 0. (10)

(ii) For every ε ∈ R
n
+, there exist k = k(ε) ∈ Z+ and

γ = γ (ε) ∈ R
n
+, such that f k

γ (β) ≺ b + ε, where b280

is as in Equation (10) and fγ (x) � f(x) + γ , ∀x ∈
R

n
+0.

Lemma 2.3: Consider the affine function �(x) � Rx + r,
where r ∈ R

n
+0 and R ∈ R

n×n
+0 is such that ρ(R) < 1.

Then,285

(i) The function � : R
n
+0 → R

n
+0 is CNI.

(ii) For all β ∈ R
n
+0, limk→∞ �k(β) = b̃ = �(b̃), where

b̃ = (I − R)−1r. (11)

(iii) For every v ∈ R
n
+0, there exists β ∈ R

n
+ satisfying

�(β) + v ≺ β. (12)

(iv) Let f : R
n
+0 → R

n
+0 be a continuous CNI func-

tion satisfying f(x) � �(x) for all x ∈ R
n
+0. Let290

β ∈ R
n
+ be such that Equation (12) holds for some

v ∈ R
n
+0, and let b̃ be as in Equation (11). Then,

Equation (10) holds and, in addition,

b = lim
k→∞

f k(b̃) � b̃. (13)

For completeness, we include the following definition.

Definition 2.4: A set of square matrices {Ai ∈ C
n×n : i = 295

1, 2, . . . , N} is said to be simultaneously triangularisable
if an invertible V ∈ C

n×n exists such that V−1AiV is upper
triangular for all i = 1, 2, . . . , N.

3. Bounds and invariant sets

In this section, we present the main results of the paper. 300
We provide novel transient bounds, ultimate bounds and
invariant sets for a class of discrete-time switching linear
systems with perturbations bounded by a possibly nonlin-
ear function of a delayed state. We also establish the link
between the applicability of the proposed results and that 305
of the CQLF.

3.1 Delayed state-dependent perturbation bounds

In this section, we consider system (6) with perturbation
bound of the forms (7) and (8), where the bounding func-
tions δi are CNI satisfying some mild properties. Theo- 310
rem 3.1 below gives invariant sets, transient and ultimate
bounds. The proof is given in Section A.2 in the Appendix.

Theorem 3.1: Consider the system (6) with perturbation
bound given by Equations (7) and (8), where the bound-
ing functions δi are CNI. Let V ∈ C

n×n be invertible and 315
consider

� � max
i∈N

Mi, Mi � |�i |, �i � V −1AiV . (14)

Let ψ : R
n
+0 → R

n
+0 be defined by Equation (15), let

δ : R
n
+0 → R

n
+0 be continuous, CNI and satisfy Equa-

tion (16), and consider the transformation T : R
n
+0 → R

n
+0

given by Equation (17). 320

ψ(x) = max
i∈N

[
max

w:|w|�δi (|V |x)
|V −1Hiw|

]
, (15)

δ(x) 
 ψ(x), (16)

T (x) = �x + δ(x). (17)

Suppose that there exists β ∈ R
n
+0 such that T(β) � β.

Then,

(a) Tk + 1(β) � T k(β) for all k ≥ 0 and limk → ∞T k(β) 325
= b 
 0.
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(b) Invariance. For every k ≥ 0 and for all t ≥ −τ̄ , the
state is bounded as

|V −1x(t)| � T k(β), (18)

provided |V−1x(t)| � T k(β) for all −τ̄ ≤ t ≤ 0.
(c) Transient bounds. For every k ≥ 0,330

|V −1x(t)| � T k(β), for all t ≥ (k − 1)(τ̄ + 1) + 1.

provided |V−1x(t)| � β for all −τ̄ ≤ t ≤ 0.
(d) Ultimate bounds. The state is ultimately bounded

as

lim sup
t→∞

|V −1x(t)| � b, (19)

whenever |V −1x(t)| � β for all −τ̄ ≤ t ≤ 0.

Theorem 3.1 requires a non-negative vector β satisfying335
T(β) � β. It is thus sufficient to find β such that T(β) = β.
If such a vector exists, then it can be computed by iterating
T starting from 0, as shown in Theorem 5 of Kofman et al.
(2007). Alternatively, we may seek β satisfying T(β) ≺ β

by means of Algorithm 1 and Theorem 3 of Kofman et al.340
(2007). Also, note that a non-negative vector β satisfying
T(β) � β but so that T(β) �= β and T (β) �≺ β may also
exist.

Theorem 3.1(a) establishes that the iteration of the
map T on the vector β constitutes a componentwise345
non-increasing sequence and converges to a non-negative
vector b. Theorem 3.1(b) establishes that any iteration T
k(β), for k ≥ 0, defines a set with bounds given by Equation
(18) and having the invariance property that, if the state
has remained in the set for the previous τ̄ + 1 time steps,350
then it will remain in the set thereafter. Theorem 3.1(c)
gives state bounds that are valid at every time instant. In
addition, Theorem 3.1(d) provides local ultimate bounds,
i.e. ultimate bounds that are valid only when the state has
remained in a specific region during τ̄ + 1 steps.355

The current discrete-time results of Theorem 3.1,
though analogous to the continuous-time case addressed
in Theorem 4 of Haimovich and Seron (2013), have three
main differences with respect to it. In the continuous-time
case, the matrix � is also constructed from the transforma-360
tion V and the subsystems’ matrices Ai, but the elementwise
magnitude on �i in Equation (14) is replaced by another ele-
mentwise operation (cf. Equations (4) and (7) of Haimovich
and Seron (2013)). Then, the first main difference is that
in the continuous-time case the matrix � is required to be365
(Hurwitz) stable but in the current discrete-time case the
matrix � need not be (Schur) stable. The second differ-
ence is that the vector β required by Theorem 3.1 needs
only satisfy T(β) � β, whereas in Theorem 4 of Haimovich
and Seron (2013) such a vector needs to satisfy the more370

stringent condition T(β) ≺ β. The third main difference is
that for discrete time the ultimate bounds corresponding to
constant perturbation bounds can be derived as a special
case of application of Theorem 3.1, whereas in continuous
time the results for constant perturbation bounds are needed 375
in order to derive those for the more general perturbation
bounds.

The ultimate bounds corresponding to constant pertur-
bation bounds are derived in the following corollary. Note
that this corollary does require the matrix � to be (Schur) 380
stable and that the given ultimate bounds are global, i.e.
valid for every initial conditions.

Corollary 3.2: Consider the system (6) with component-
wise constant perturbation bounds

|wi(t)| � wi , (20)

and wi ∈ R
ki

+0. Let V ∈ C
n×n be invertible, and consider 385

the matrix � as in Equation (14). Suppose that ρ(�) < 1
and define

z � max
i∈N

[
max

w:|w|�wi

|V −1Hiw|
]

, (21)

b � (I − �)−1z. (22)

Then,

(i) Transient bounds. There exists η ∈ R
n
+0 satisfying 390

|V −1x(0)| � b + η and �η � η. For every such η

and for all t ≥ 0,

|V −1x(t)| � b + �tη. (23)

(ii) Global ultimate bounds.

lim sup
t→∞

|V −1x(t)| � b, (24)

Proof: Defining δi : R
n
+0 → R

n
+0 by δi(x) = wi for all x ∈

R
n
+0, then Equation (7) is satisfied and we may arbitrarily 395

select τ̄ = 0 in Equation (8). The function ψ as defined in
Equation (15) then satisfies ψ(x) = z for all x ∈ R

n
+0, with

z as in Equation (21). Consider δ(x) � ψ(x) and T(x) as
defined in Equation (17). Note that δ is CNI, Equation (16)
is satisfied, and T (x) = �x + z. 400

(i) We first show that η as required exists. Apply Lemma
2.3(iii) with � = T and v = |V −1x(0)|, to obtain β ∈ R

n
+

satisfying T(β) + v ≺ β, which implies that T(β) ≺ β

and |V −1x(0)| � β. By Theorem 3.1(a) and Lemma 2.3(ii),
we have b = limk→∞ T k(β) = (I − �)−1z � β. Write β = 405
b + η with η 
 0. We have |V −1x(0)| � β = b + η. Since
T(b) = b, it follows that T(β) = T(b + η) = b + �η ≺ β =
b + η. This implies that �η ≺ η. We have thus established
that η exists as required.
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Next, let η ∈ R
n
+0 satisfy |V −1x(0)| � b + η and �η �410

η. Let β = b + η and note that T(β) = b + �η � β. The
application of Theorem 3.1(c) yields |V −1x(t)| � T k(β) for
all t ≥ k, for every k ≥ 0. In particular, we have |V −1x(t)|
� T t(β) for all t ≥ 0. By direct computation, it follows that
T t(b + η) = b + �tη.415

(ii) This follows by taking lim supt→∞ on Equation (23)
and using ρ(�) < 1. �

Remark 2: The computation of the maximum be-
tween square brackets in Equation (21) requires, for
each i=1, . . . , N, solving the n optimisation problems420
maxw:|w|�wi

|V −1Hiw| (one optimisation problem per com-
ponent). The solution to these problems can be easily ob-
tained (see Haimovich and Seron (2009) and Haimovich,
Kofman, & Seron (2008) for details).

Remark 3: A region of the form {x ∈ R
n : |V −1x| � z̄},425

with z̄ 
 0 as given by Equation (18), (19), (23) or (24) has
polyhedral shape if the entries of V are real, and a com-
bined ellipsoidal/polyhedral shape if V has some complex
entries (see Haimovich et al., 2008, for more details). Every
(componentwise) bound |V −1x| � z̄ yields a correspond-430
ing componentwise bound |x| � |V |z̄, since

|x| = |V V −1x| � |V ||V −1x| � |V |z̄.

3.2 Relationship to CQLF

The following theorem uses properties of non-negative
Schur matrices to establish that the class of switching sys-435
tems for which Corollary 3.2 can be applied, that is those
for which the matrix V satisfying Equation (14) is such that
ρ(�) < 1, admit a common quadratic Lyapunov function.
This relationship was reported in Mori et al. (2001), but the
proof was not given. Here, we provide a proof and, in ad-440
dition, extend it so that it becomes useful for the obtention
of a CQLF for the case of affine perturbation bounds in the
next subsection.

Theorem 3.3: Let �̄,� ∈ R
n×n
+0 and suppose that �̄ 
 �

and ρ(�̄) < 1. Then,445

(a) There exists a diagonal and positive definite matrix
D > 0 satisfying

�̄′D�̄ − D < 0. (25)

(b) ρ(�) < 1.
(c) If � satisfies Equation (14) for some invertible V ∈

C
n×n and Ai ∈ R

n×n, then for each D as in (a)450
above, the corresponding symmetric and positive
definite matrix P = Re{(V −1)∗DV −1} satisfies

A′
iPAi − P < 0. (26)

Proof: (a) Since �̄ has non-negative entries and satisfies
ρ(�̄) < 1, then a diagonal (discrete-time) Lyapunov func-
tion exists. 455

(b) We have 0 � � � �̄. Therefore, ρ(�) ≤ ρ(�̄) < 1
(see, e.g. Theorem 8.1.18 of Horn and Johnson (1985)).

(c) By Equation (14) and the assumptions, we have

0 � Mi � � � �̄, (27)

for all i ∈ N . Consequently,

|z|′M ′
iDMi |z| ≤ |z|′�̄′D�̄|z|, (28)

for all z ∈ C
n and all i ∈ N . Moreover, 460

z∗�∗
i D�iz ≤ |z∗||�∗

i | D |�i ||z| = |z|′M ′
iDMi |z|, (29)

where the inequality in Equation (29) follows from the
application and properties of componentwise absolute value
and the equality follows from Equation (14). Combining
Equations (28) and (29), it follows that

z∗�∗
i D�iz ≤ |z|′�̄′D�̄|z|, (30)

for all z ∈ C
n and all i ∈ N . Since D is diagonal, then 465

z∗Dz = |z|′D|z| for all z ∈ C
n. Subtracting z∗Dz = |z|′D|z|

from each side of the inequality, Equation (30) yields

z∗(�∗
i D�i − D)z ≤ |z|′(�̄′D�̄ − D)|z|. (31)

Recalling Equation (25), then Equation (31) implies that
�∗

i D�i − D < 0. Using the definition for �i in Equation
(14), left multiplying by (V −1)∗ and right multiplying by 470
V −1, then

A′
i(V

−1)∗DV −1Ai − (V −1)∗DV −1 < 0, (32)

whence Equation (26) follows by taking real parts. �

3.3 Affine perturbation bounds

As in the continuous-time case (Haimovich & Seron, 2013),
global ultimate bounds can also be obtained under a simple 475
sufficient condition when the bounding function δ in Equa-
tion (16) is of affine form. Theorem 3.4 below derives such
bounds and associated invariant sets, and further relates the
results with the existence of a quadratic function so that
ultimate bounds can be obtained via standard Lyapunov 480
techniques in the case when no delay is present. The proof
is given in Section A.3 in the Appendix.

Theorem 3.4: Consider the system (6) with perturbation
bound given by Equations (7) and (8). Let V ∈ C

n×n be
invertible and consider the matrix � as defined in Equation 485
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(14). Let ψ : R
n
+0 → R

n
+0 be defined by Equation (15) and

suppose that there exists

δ̃(x) � F̄ x + w̄ (33)

for some F̄ ∈ R
n×n
+0 and w̄ ∈ R

n
+0, satisfying δ̃(x) 
 ψ(x)

for all x ∈ R
n
+0 and such that ρ(R) < 1, where

R � � + F̄ . (34)

Define490

b̃ � (I − R)−1w̄. (35)

Then,

(a) Invariance. If |V −1x(t)| � b̃ for −τ̄ ≤ t ≤ 0, then
|V −1x(t)| � b̃ for all t ≥ −τ̄ .

(b) Global ultimate bounds. lim supt→∞|V −1x(t)| �
b̃.495

(c) Tighter global ultimate bounds. Suppose that there
exists a continuous and CNI δ : R

n
+0 → R

n
+0 satis-

fying

ψ(x) � δ(x) � δ̃(x), for all x ∈ R
n
+0. (36)

Consider the map T : R
n
+0 → R

n
+0 given by

Equation (17). Then, lim supt→∞|V −1x(t)| �500
limk→∞ T k(b̃) � b̃.

(d) Existence of Lyapunov function. There exists D
diagonal and positive definite such that

(� + F̄ )′D(� + F̄ ) − D < 0. (37)

(e) Ultimate bounds via standard Lyapunov tech-
niques. If, in addition, τ̄ = 0 (no delay), then for505
each D as in (d) above, the increment 
L(t, x) of the
function L(x) � x′Px with P = Re{(V −1)∗DV −1}
along any trajectory of Equation (6) satisfies

L(t, x) < 0 for all t and all x such that ‖x‖ is
big enough.510

Theorem 3.4 gives an invariant region and global ulti-
mate bounds for the case when the perturbation bound δ̃

has affine form (see Equation (33)). The main additional
assumption required by this theorem is that the matrix R
constructed as the sum of the system matrix � and the515
perturbation bound matrix F̄ (see Equation (34) has spec-
tral radius less than 1. The advantages of the affine form
of the perturbation bound are analogous to those for the
continuous-time case, namely that the search for a vector β

satisfying a componentwise inequality is not required.520
Since 0 � |V −1AiV | � � for all i ∈ N , and F̄ 
 0,

then ρ(Ai) = ρ(V −1AiV ) ≤ ρ(�) ≤ ρ(� + F̄ ) = ρ(R)

(see, e.g. Theorem 8.1.18 of Horn & Johnson, 1985). There-
fore, the condition ρ(R) < 1 required by Theorem 3.4 im-
plies that ρ(�) < 1, and the latter condition implies that 525
ρ(Ai) < 1 for all i ∈ N . Consequently, a necessary condi-
tion for the hypotheses of Theorem 3.4 or Corollary 3.2 to
hold is that every subsystem matrix Ai be stable. By con-
trast, note that Theorem 3.1 does not require the matrix � to
satisfy ρ(�) < 1. However, the existence of a non-zero and 530
non-negative vector β such that T(β) � β implies that at
least one of the eigenvalues of � has magnitude not greater
than 1. We illustrate some of these facts in Section 4.

Remark 4: Note that in both Theorems 3.1 and 3.4, every
invertible matrix V ∈ C

n×n for which the hypotheses of the 535
corresponding theorem hold may be used. In particular, in
the affine perturbation bound case in Theorem 3.4, every
invertible V ∈ C

n×n for which ρ(� + F̄ ) < 1 can be used.
However, such a matrix does not always exist. Numerically,
we may seek the matrix V by means of the following opti- 540
misation problem:

minimise ρ(� + F̄ ) over V ∈ C
n×n invertible.

Note that it is not necessary to find the global optimum
of this possibly non-convex optimisation problem; it suf-
fices to find an invertible V for which ρ(� + F̄ ) < 1. We 545
illustrate this procedure by means of a numerical example
in Section 4.
4. Examples

In this section, we illustrate the results of the previous sec-
tions by means of numerical examples. The first example, 550
presented in Section 4.1, illustrates the fact that the matrix
� considered in Theorem 3.1 is not required to be (Schur)
stable, in contrast with the analogous results for continuous-
time switching systems. The second example, presented in
Section 4.2, illustrates the fact that the class of switching 555
systems for which Corollary 3.2 can be applied is strictly
contained in the class of switching linear systems that admit
a CQLF, although the switching linear system need not be
close to simultaneously triangularisable. To complete the
picture of the relationship with CQLF, Section 4.3 gives 560
an instance where a CQLF exists for the switching system
but the transformation V required by our method cannot
be found. Finally, Section 4.4 demonstrates the application
of Theorem 3.4 on an example with nonlinear perturbation
bounds with affine overbound. The example also shows that 565
it may be possible to obtain tighter bounds by combining
bounds computed via CQLF and the proposed component-
wise method, in the case when no delay is present.

4.1 � not stable

Consider system (6) with N = 2, n = 2, no perturbation and 570
with

A1 =
[

1.19 −1.09
−0.81 0.91

]
A2 =

[
0.36 −0.86

−0.64 0.14

]
.
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Taking V as in Equation (38) and computing � as in Equa-
tion (14) yield

V =
[

1 1
−0.75 1

]
� =

[
2 0

0.0075 0.5

]
. (38)

Note that ρ(�) = 2 and hence � is not (Schur) stable. Since
there is no perturbation, the map ψ(x) in Equation (15) is575
identically zero. Taking δ ≡ ψ , the map T in Equation
(17) reduces to T(x) = �x. Every non-negative vector β

of the form β = [0, a]′ with a > 0 satisfies T(β) = �β

= [0, a/2]′ � β and hence Theorem 3.1 can still be ap-
plied, even though � is not stable. Note from this theorem580
that the line segments defined by |V −1x(t)| � T k(β), for
k ≥ 0, represent invariant sets inside which the switching
system trajectories ultimately converge to zero. Also note
that one of the eigenvalues of � has magnitude less than 1
(see comment above Remark 4).585

4.2 Simultaneous triangularisation and CQLF

Consider again system (6) with N = 2, n = 2, no perturba-
tion, but now with

A1 =
[−0.2 −0.4

0.4 −0.2

]
, A2 =

[ −0.2 −0.4a

0.4/a −0.2

]

for some a > 0. For every value of a, the eigenvalues of A2

are −0.2 ± 0.4i, identical to those of A1, and hence both
A1 and A2 are stable. The eigenvectors of A1 are [1,±i]′

and those of A2 are [1,±ai]′. To be simultaneously tri-
angularisable, it is necessary that both A1 and A2 have a
common eigenvector. Consequently, loosely speaking we
may say that this switching system is farther away from
simultaneous triangularisation as a is varied farther away
from 1. It can be shown via LMIs that for a > 3 + √

8,
the above switching system does not admit a CQLF. For
a = 3 + √

8 − 10−3, which corresponds to a switching sys-
tem with stable subsystems but so far from simultaneous

590

triangularisation that it is at the verge of not admitting
a CQLF, searching for an arbitrary V by means of the
optimisation proposed in Remark 4, we are able to obtain
the feasible solution,595

V =
[−9.1808 −10.913

3.3976 −5.5452

]
+

[
8.2018 13.386
3.8032 −4.5207

]
i,

for which the corresponding � is stable.

4.3 CQLF exists but method not applicable

Consider again system (6) with N = 3, n = 2, no perturba-
tion, and with

A1 =
[

0.954 0.121
−0.726 0.920

]
A2 =

[
0.960 0.122

−0.633 0.936

]

A3 =
[−0.053 0.389

−2.161 0.019

]
.

A CQLF for this switching linear system can be computed 600
via LMIs. However, searching for V according to Remark 4
does not give a useful solution, even when the optimisation
is run over 1000 times from arbitrary initial conditions.

4.4 Nonlinear perturbation bounds with affine
overbound 605

Consider a discrete-time switching system of the form (6)
with N = 2, n = 3, k1 = 2, k2 = 1 and

A1 =
⎡
⎣−0.46 0.75 −0.67

−0.18 −0.99 0.2
−0.56 −0.67 −0.19

⎤
⎦

A2 =
⎡
⎣ 0.84 0.14 0.65

−0.16 1.09 −0.5
−0.66 0.84 −0.83

⎤
⎦

H1 =
⎡
⎣ 0.01 0

−0.2 0.01
0 0

⎤
⎦H2 =

⎡
⎣ 0

0
−0.03

⎤
⎦.

The perturbation vectors w1(t) ∈ R
2 and w2(t) ∈ R are

componentwise bounded by |wi(t)| � δi(θ (t)) with θ (t)
as defined in Equation (8), τ̄ = 10, δ1 : R

3
+0 → R

2
+0 and 610

δ2 : R
3
+0 → R+0 given by

δ1(θ ) =

⎡
⎢⎢⎣

{
0.01 sin θ1 if θ1 ≤ π/2
0.01 if θ1 > π/2

+
{

0.02 sin θ2 if θ2 ≤ π/2
0.02 if θ2 > π/2{

0.03θ2e
−2θ2 if θ2 ≤ 1/2

0.03/(2e) if θ2 > 1/2
+ 0.02θ3 + 1

⎤
⎥⎥⎦

δ2(θ ) = 0.02 log[(1 + θ1)4(1 + θ3)] + 0.5,

where both δ1 and δ2 are continuous and CNI. In turn, these
bounding functions have affine bounds

δ1(θ ) �
[

0.01θ1 + 0.02θ2

0.03θ2 + 0.02θ3 + 1

]
= F̄1θ + w̄1,

δ2(θ ) ≤ 0.08θ1 + 0.02θ3 + 0.5 = F̄2θ + w̄2,
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where

F̄1 =
[

0.01 0.02 0
0 0.03 0.02

]
w̄1 =

[
0
1

]

F̄2 = [ 0.08 0 0.02 ] w̄2 = 0.5.

4.4.1 Ultimate bounds via componentwise method615

Since the perturbation bounds δ1 and δ2 admit affine
bounds, as shown above, then the function ψ in Equation
(15) can actually be bounded by an affine CNI function δ̃

for every V ∈ C
n×n invertible. To see this, note that

max
|wi |�δi (|V |x)

|V −1Hiwi | � |V −1Hi |δi(|V |x), (39)

for i = 1, 2 (note that the right-hand side of Equation (39)620
may not be a tight bound on its left-hand side only when V

has complex components). We thus have

ψ(x) � max
i∈{1,2}

[|V −1Hi |(F̄i |V |x + w̄i)] (40)

� δ̃(x) � F̄ x + w̄, with (41)

F̄ � max
i∈{1,2}

|V −1Hi |F̄i |V |, (42)
625

w̄ � max
i∈{1,2}

|V −1Hi |w̄i . (43)

To apply Theorem 3.4, an invertible matrix V ∈ C
n×n for

which ρ(� + F̄ ) < 1 should be found. We may seek such
a matrix by means of the optimisation problem outlined in
Remark 4. This yields

V =
⎡
⎣−4.335 1.317 0.222

1.773 2.369 −0.020
5.274 1.477 −0.010

⎤
⎦

+
⎡
⎣−2.221 2.546 −7.226

0.908 4.693 0.393
2.703 2.985 −1.043

⎤
⎦i.

Computation of the vector b̃ as in Equations (34) and (35)630
gives

b̃ =
⎡
⎣ 0.0705

0.0322
0.0444

⎤
⎦ |V |b̃ =

⎡
⎣ 0.7562

0.3269
0.5709

⎤
⎦.

An ultimate bound tighter than the above can be computed
by the application of Theorem 3.4(c), which yields

b =
⎡
⎣ 0.0652

0.0309
0.0404

⎤
⎦, |V |b =

⎡
⎣ 0.6982

0.3081
0.5314

⎤
⎦. (44)

Note that the bounds obtained are valid for every non-
negative value of the maximum delay τ̄ , provided the per- 635
turbation satisfies Equations (7) and (8).

4.4.2 Ultimate bound via quadratic Lyapunov function

If no delay is present, i.e. if τ̄ = 0 in Equation (8), we may
compute a CQLF according to Theorem 3.4(d). Solving the
LMIs, Equation (37) for D yields D = diag(17.73, 282.9, 640
504.4), which allows the computation of the CQLF given
by

P = Re{(V −1)∗DV −1}=
⎡
⎣ 6.227 −7.008 7.382

−7.008 24.41 −14.25
7.382 −14.25 11.38

⎤
⎦.

The function L(x) = x′Px is a CQLF for the switching
linear nominal (unperturbed) part of the system. In addition,
according to Theorem 3.4(e), the increment of L(x) along 645
any possible trajectory of the (perturbed) system will be
negative for every x such that ‖x‖ is big enough. We have


L(t, x) = x ′(A′
σ (t)PAσ (t) − P )x + 2x ′A′

σ (t)PHσ (t)wσ (t)(t)

+w′
σ (t)H

′
σ (t)PHσ (t)wσ (t)

≤ max
i∈N

[
x ′(A′

iPAi − P )x

+ max
|w|�δi (|x|)

(2x ′A′
iPHiw + w′H ′

i PHiw)
]
. (45)

The bound on 
L(t, x) given by Equation (45) is tight, in
the sense that for every x, there exists a value of the switch-
ing function σ (t) and a possible value of the perturbation 650
wσ (t)(t) for which 
L(t, x) equals the right-hand side of
Equation (45). Also, note that for a given x, the maximum
over w in Equation (45) can easily be computed by eval-
uating its argument only on the vertices of the polyhedral
region {w ∈ R

ki : |w| � δi(|x|)}. 655
A sufficient condition to be able to compute a global

ultimate bound by means of L(x) is that maxx ′Px≥k


L(t, x) < 0 for some k > 0. Numerical search for
such a k yields k = 0.3046, and it can be verified that
maxx ′Px=0.3045 
L(t, x) > 0. Consequently, the state tra- 660
jectory will satisfy lim supt→∞x(t)′Px(t) ≤ 0.3046. From
this latter bound, we may compute the componentwise ul-
timate bounds x̄i = maxx ′Px=0.3046 xi for i = 1, 2, 3:

⎡
⎣ x̄1

x̄2

x̄3

⎤
⎦ =

⎡
⎣ 0.6693

0.3131
0.7848

⎤
⎦ (46)

Comparing the ultimate bounds (44) and (46) (recall Re-
mark 3) shows that the bounds for the second and third 665
components of the state obtained via our component-
wise method are better than those obtained via the CQLF.
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Moreover, we may combine the bounds (44) and (46) in
order to obtain a componentwise bound tighter than that
can be obtained by either method applied individually:670

lim sup
t→∞

|x(t)| �
⎡
⎣ 0.6693

0.3081
0.5314

⎤
⎦.

5. Application to fault tolerant control

In this section, we utilise the ultimate bound and practical
stability results of this paper to investigate the fault toler-
ance properties of the winding machine control system of
Noura et al. (2009, Chapter 3), which was introduced in675
Section 2.1. We thus consider the system of Equation (1),
with

A0 =
⎡
⎣ 0.4126 0 −0.0196

0.0333 0.5207 −0.0413
−0.0101 0 0.2571

⎤
⎦,

B0 =
⎡
⎣−1.7734 0.0696 0.0734

0.0928 0.4658 0.1051
−0.0424 −0.0930 2.0752

⎤
⎦.

These values for A0 and B0 correspond to the nominal lin-
earised (incremental) model around the operating points
x0 = [0.6, 0.5, 0.4]′ an u0 = [−0.15, 0.55, 0.15]′ of the680
winding machine model, and discretised with a sampling
period ts = 0.1s. The state feedback control (2) was com-
puted, as an illustration, via LQR for (A0, B0) with identityQ3
state and control weightings, yielding

K0 =
⎡
⎣ 0.1768 −0.0149 −0.0097

−0.0303 −0.2423 0.0291
0.0040 −0.0152 −0.0992

⎤
⎦.

The perturbation vector w(t) is componentwise bounded685
as in Equation (5), corresponding to drift, bounded noise
and uncompensated nonlinearity, as already mentioned in
Section 2.1. The values for α, β and ν are 0.1, 0.1 and 0.2,
respectively. Note that the perturbation bound (5) admits an
affine overbound, since690

⎡
⎣ α|x1(t)|

ν

β| sin x3(t)|

⎤
⎦ �

⎡
⎣α 0 0

0 0 0
0 0 β

⎤
⎦

︸ ︷︷ ︸
F0

|x(t)| +
⎡
⎣ 0

ν

0

⎤
⎦

︸ ︷︷ ︸
w0

. (47)

Proceeding as in Section 4.4.1, for any V ∈ C
n×n invertible,

we bound the function ψ in Equation (15) as

ψ(x) � F̄ x + w̄, with (48)

F̄ � max
i∈{1,...,4}

|V −1BiK0|F0|V |, (49)

w̄ � max
i∈{1,...,4}

|V −1BiK0|w0. (50)

To apply Theorem 3.4, an invertible matrix V ∈ C
n×n for 695

which ρ(� + F̄ ) < 1 was computed by means of the opti-
misation problem outlined in Remark 4. Using such a V in
the evaluation of the vector b̃ defined in Equations (34) and
(35), yields1

b̃ =
⎡
⎣ 0.0054

0.0318
0.0063

⎤
⎦ |V |b̃ =

⎡
⎣ 0.0131

0.0507
0.0118

⎤
⎦. (51)

Thus, we conclude that the controller (2) is tolerant to the 700
considered actuator faults in the presence of sensor mea-
surement errors bounded as Equation (5). Moreover, the
componentwise ultimate bound vector |V |b̃ can be used as
a measure of the ‘degree’ of fault tolerance, if one compares
it with a similar ultimate bound obtained for the system 705
without actuator faults, that is for Bσ (t) ≡ B0 in Equation
(3). Denoting the latter componentwise ultimate bound as
|V0|b̃0, we obtain, proceeding as above with Bi = B0 in
Equations (48)–(50),

|V0|b̃0 =
⎡
⎣ 0.0037

0.0388
0.0033

⎤
⎦. (52)

Note that the ultimate bound (51) is componentwise larger 710
than Equation (52), as expected, but the deterioration in per-
formance is not dramatic. Keeping a fixed gain K0 for all
possible actuator fault modes and ensuring that the closed-
loop system remains stable under fault is a passive fault
tolerant control approach. An active fault tolerant control 715
strategy, on the other hand, would reconfigure the controller
by employing a suitable gain Ki to match the detected fault
mode Bi (assuming a fault detection and isolation mecha-
nism accurately provides this information). We can use the
ultimate bound tools to evaluate the performance of such a 720
strategy by computing suitable gains Ki (e.g. via LQR for
(A0, Bi) with identity weightings), replacing K0 by Ki in
Equations (48)–(50) and evaluating the associated compo-
nentwise ultimate bound vector, denoted as |VR|b̃R . This
yields 725

|VR|b̃R =
⎡
⎣ 0.0093

0.0500
0.0092

⎤
⎦. (53)

Note that the bound (53) resulting from reconfiguring
the controller gain is also componentwise larger than
the ‘healthy’ bound (52), but it improves the bound (51)
achieved by the passive approach. Other strategies can be
analysed and contrasted in a similar way. The method can 730

Q3
Queries
AU: Please spell out LQR in full at first mention.
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also be embellished by expanding the optimisation problem
outlined in Remark 4 to include the design of the fixed gain
or the reconfiguration gains. One could hence use these
results to rank different reconfiguration strategies and eval-
uate whether they are worth implementing and/or to design735
strategies that may improve the achieved bounds.

6. Conclusions

We have derived novel componentwise bounds and invariant
sets for switching discrete-time systems with perturbation
bounds that may depend nonlinearly on a delayed state. The740
method allows every component of the perturbation vec-
tor to have a different bound and provides componentwise
bounds on the system state. By means of the use of com-
ponentwise bounds, the need for bounding the norm of the
system state is avoided, thus reducing conservativeness due745
to different perturbation components having substantially
different bounds. Another contribution of the paper was to
establish that the class of switching linear systems to which
our componentwise bound and invariant set method can be
applied is strictly contained in the class of switching linear750
systems that admit a CQLF. We have shown the usefulness
of our method by applying the method to the analysis of
fault tolerance of a winding machine control system. Fu-
ture work may focus on switched systems where either the
switching signal or a control input can be designed in order755
to ensure a given ultimate bound (cf. Kofman et al., 2008)
and on the extension and application of the current results
to networked control systems (cf. Haimovich, Kofman, &

Q4

Seron, 2007).
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Note

1. Note that tighter ultimate bounds can be obtained by the appli-765
cation of Theorem 3.4(c), as was illustrated in Section 4.4.1.
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Appendix

A.1 Proofs of properties of CNI functions

A.1.1 Proof of Lemma 2.2
(i) Applying the CNI property to the inequality f(β) � β and
iterating the process, it follows that f k + 1(β) � f k(β) for all k ∈ Z+. 840
Also, since f maps non-negative vectors to non-negative vectors,
then f k(β) 
 0 for all k ∈ Z+. It follows that the vectors f k(β)
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form a componentwise non-increasing sequence which is lower
bounded by 0. Hence, each component must converge to some
non-negative real number and thus Equation (10) holds.845

(ii) Note that |f k
γ (β) − b| � |f k

γ (β) − f k(β)| + |f k(β) − b|.
From Equation (10), given ε ∈ R

n
+, we can select k = k(ε), such

that |f k(β) − b| ≺ ε/2. From the definition of fγ and the continuity
of f, it follows that for the selected value of k, we may select γ =
γ (ε) ∈ R

n
+ small enough so that |f k

γ (β) − f k(β)| ≺ ε/2. Then,850
|f k

γ (β) − b| ≺ ε, whence f k
γ (β) ≺ b + ε.

A.1.2 Proof of Lemma 2.3
By assumption we have R 
 0 and ρ(R) < 1. Let Rε be a slight
perturbation of R so that Rε � R and ρ(Rε) < 1. Then, Rε � 0
and by the Perron–Frobenius theorem (see, e.g. Theorem 8.2.2 of855
Horn and Johnson (1985)) ρ(Rε) > 0, and there exists x � 0 such
that Rεx = ρ(Rε)x. It follows that

Rx ≺ Rεx = ρ(Rε)x ≺ x. (A1)

(i) Immediate from the fact that R 
 0.
(ii) Immediate from the assumption ρ(R) < 1.
(iii) From Equation (A1), y � (I − R)x � 0. Define z � r + v,860

and let yi and zi denote the ith components of y and z, respectively.
Select α > 0 so that

α > max
i∈{1,...,n}

{
zi

yi

}
, (A2)

and define β � αx. Note that β � 0. Then, αy = (I − R)β � r +
v. Operating on the latter inequality yields Rβ + r + v = �(β)
+ v ≺ β, and the result follows.865

(iv) Note that Equation (12) with v 
 0 implies �(β) ≺ β. We
then have f(β) � �(β) ≺ β. Also, by Lemma 2.2(i), then Equation
(10) holds. Since both f and � are CNI and f(x) � �(x) for all
x ∈ R

n
+0, then f k(β) � �k(β) ≺ β for all k ∈ Z+, whence applying

limits yields b � b̃ ≺ β. Applying the CNI property of f to the lat-870
ter inequalities, and iterating, yields b = f k(b) � f k(b̃) � f k(β),
whence b � limk→∞ f k(b̃) � b. We have thus established Equa-
tion (13).

A.2 Proof of Theorem 3.1
(a) Since δ is CNI by assumption and � 
 0, it follows that T in875
Equation (17) is CNI. Part (a) then follows by applying Lemma
2.2(i) with f = T.

(b) Let x(t) = Vz(t) and rewrite Equation (6) as

z(t + 1) = V −1Aσ (t)V z(t) + V −1Hσ (t)wσ (t)(t).

Taking componentwise magnitudes in the above equation and
operating yields880

|z(t + 1)| � |V −1Aσ (t)V ||z(t)| + |V −1Hσ (t)wσ (t)(t)|. (A3)

Note from Equation (14) that, for all t,

|V −1Aσ (t)V | � �, (A4)

and from Equation (7), for all i ∈ N and all t,

|V −1Hiwi(t)| � max
w:|w|�δi (θ(t))

|V −1Hiw|. (A5)

The proof proceeds by induction on t ≥ 0. Note that, for any k ≥
0,

|V −1x(τ )| = |z(τ )| � T k(β), for all − τ̄ ≤ τ ≤ t (A6)

is valid at t = 0 by assumption. Next, suppose that Equation (A6) 885
holds at some arbitrary t ≥ 0. Then, θ (t) in Equation (8) can be
bounded using Equation (A6) as

θ (t) = max
t−τ̄≤τ≤t

|V V −1x(τ )|
� |V | max

t−τ̄≤τ≤t
|V −1x(τ )| � |V |T k(β). (A7)

Employing Equations (A4)–(A6), and recalling the fact that the δi

is CNI, it follows that Equation (A3) can be further bounded as

|z(t + 1)| � �T k(β) + max
i∈N

[
max

w:|w|�δi (|V |T k (β))
|V −1Hiw|

]
. (A8)

From Equation (15), the second term on the right-hand side of 890
Equation (A8) is equal to ψ(T k(β)). Then, using Equations (16)
and (17), we have

|z(t + 1)| � �T k(β) + ψ(T k(β))

� �T k(β) + δ(T k(β)) = T k+1(β). (A9)

Recalling that z(t) = V −1x(t), we have established that
|V −1x(t + 1)| � Tk + 1(β) � T k(β), where the last inequality fol-
lows from part (a). Hence, Equation (A6) holds at t + 1, and the 895
proof by induction is thus complete.

(c) By assumption, |V −1x(t)| � β for all −τ̄ ≤ t ≤ 0 and by
part (b), we know that this bound holds for all t ≥ −τ̄ . Then,
starting from t = 0 and recursively repeating the argument that
leads to Equation (A9) above, we can show that the vector T(β) 900
bounds |V −1x(t)| for t = 1, . . . , τ̄ + 1. Thus, using the invariance
result of part (b), it follows that

|V −1x(t)| � T (β), for all t ≥ 1. (A10)

In a similar way, we can show that T2(β) bounds |V −1x(t)| for
t = (τ̄ + 1) + 1, . . . , 2(τ̄ + 1) + 1 and, by invariance, for all t ≥
(τ̄ + 1) + 1. Thus, for all k ≥ 0, 905

|V −1x(t)| � T k(β), for all t ≥ (k − 1)(τ̄ + 1) + 1.

(d) By part (a), we have limk → ∞T k(β) = b. The result then
follows from part (c) by taking the latter limit into consideration.

A.3 Proof of Theorem 3.4

Consider the map T̃ : R
n
+0 → R

n
+0 defined as

T̃ (x) = �x + δ̃(x). (A11)

Then, T̃ (x) = Rx + w̄, with R as in Equation (34). Since ρ(R) < 910
1, then limk→∞ T̃ k(x) = b̃ for every x ∈ R

n
+0, with b̃ as in Equation

(35). Note that T̃ (b̃) = b̃ � b̃.
(a) The result follows by applying Theorem 3.1(b) with β = b̃.
(b) By Equations (14) and (34), we have R 
 0 and by as-

sumption ρ(R) < 1. Let v 
 0 be such that |V −1x(t)| � v for all 915
−τ̄ ≤ t ≤ 0. For such v Lemma 2.3(iii) shows that we can find β
� 0 such that T̃ (β) + v ≺ β, which implies T̃ (β) ≺ β and v ≺ β.
Then, (b) directly follows from Theorem 3.1(d).
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(c) By Equations (36), (A11) and (17), we have T (x) �
T̃ (x) for all x ∈ R

n
+0. As in (b) above, take β ∈ R

n
+0 such that920

T (β) � T̃ (β) � β and |V −1x(t)| � β for all −τ̄ ≤ t ≤ 0. Then,
by Theorem 3.1, it follows that |V −1x(t)| � b for all t ≥ −τ̄ ,
with b � limk → ∞T k(β). Further, applying Lemma 2.3(iv) yields
b = limk→∞ T k(b̃) � b̃.

(d) By Equation (14) and since F̄ 
 0, then R = � + F̄ 
 0.925
The application of Theorem 3.3(a) with �̄ = R establishes the
required result.

(e) For every i ∈ N , define pi(t) � V −1Hiwi(t). Let x = Vz
and rewrite Equation (6) as

z(t + 1) = �σ (t)z(t) + pσ (t)(t). (A12)

Using Equations (7) and (8) with τ̄ = 0, it follows that, for all930
i ∈ N ,

|pi(t)| � max
i∈N

[
max

|wi |�δi (|V z(t)|)
|V −1Hiwi |

]
(A13)

� ψ(|z(t)|) � δ̃(|z(t)|) = F̄ |z(t)| + w̄, (A14)

where the first inequality in Equation (A14) follows from |Vz| �
|V ||z| and δi CNI. Consider the function Lz(z) = z∗Dz. We have


Lz(t, z(t)) = Lz(z(t + 1)) − Lz(z(t))

= z(t)∗(�∗
σ (t)D�σ (t) − D)z(t)

+ 2Re{z(t)∗�∗
σ (t)Dpσ (t)(t)} + p∗

σ (t)Dpσ (t)

935

≤ |z(t)|′(M ′
σ (t)DMσ (t) − D)|z(t)|

+ 2|z(t)|′M ′
σ (t)D|pσ (t)| + |pσ (t)|′D|pσ (t)|

(A15)

≤ |z(t)|′(�′D� − D)|z(t)|
+ 2|z(t)|′�′D|pσ (t)| + |pσ (t)|′D|pσ (t)| (A16)

≤ |z(t)|′[(� + F̄ )′D(� + F̄ ) − D]|z(t)|
+ 2|z(t)|′(� + F̄ )′Dw̄ + w̄′Dw̄, (A17)

where we have used Equation (14) in Equations (A15) and (A16),
and Equation (A14) in Equation (A17). By Equations (37) and 940
(A17), it follows that 
Lz(t, z) < 0, whenever ‖z‖ is big enough.
Next, taking x ∈ R

n, we have


Lz(t, V
−1x(t))

= x(t)′[A′
σ (t)(V

−1)∗DV −1Aσ (t) − (V −1)∗DV −1]x(t)

+ 2Re{x(t)′A′
σ (t)(V

−1)∗Dpσ (t)} + p∗
σ (t)Dpσ (t)

= x(t)′(A′
σ (t)PAσ (t) − P )x(t) + 2x(t)′A′

σ (t)PHσ (t)wσ (t)(t)

+ wσ (t)(t)
′H ′

σ (t)PHσ (t)wσ (t)(t) = 
L(t, x(t)).

Consequently, we conclude that 
L(t, x(t)) < 0, whenever ‖x‖ is
big enough. 945
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