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Optimality of affine control system of several species in

competition on a Sequential Batch Reactor

Abstract

In this paper we analyze the optimalty of affine control system of several species
in competition for a single substrate on a Sequential Batch Reactors (SBR), with
the objective being to reach a given (low) level of the substrate. We allow controls
to be bounded measurable functions of time plus possible impulses. A suitable
modification of the dynamics leads to a slightly different optimal control problem,
without impulsive controls, for which we apply different optimality conditions de-
rived from Pontryagin principle and the Hamilton-Jacobi-Bellman equation. We
thus characterize the singular trajectories of our problem as the extremal trajecto-
ries keeping the substrate at a constant level. We also establish conditions for which
a Immediate One impulse (IOI ) strategy is optimal. Some numerical experiences
are then included in order to illustrate our study and show that those conditions
are also necessary to ensure the optimality of the IOI strategy.

Subject classification: 49J15, 49J20, 97M10
Key words: affine control systems, singular trajectories, optimal control problem, sequen-
tial batch reactors, pontryagin maximum principle.

1 Introduction.

In this paper, we focus on optimal control problem for an affine control system where
several species compete for a single substrate on a Sequential batch reactor, the objective
being to reach a given (low) level of the substrate.

The Sequential batch reactor (SBR) is a device that consists typically in a tank which
is filled with biological micro-organisms capable to degrade some undesirable substrate.
The method consists then in a sequence of cycles composed by three phases: - Phase 1:
filling the reactor with water to be treated, - Phase 2: waiting the concentration of the
undesirable substrate to decrease until a given (low) concentration, - Phase 3: emptying
the reactor from the clean water, leaving the sludge inside.

The Sequential batch reactor are often used in biotechnological application, notably
in waste-water treatments. See [6], [9], [11], [15] for more details about fundamental role
of SBR in bioengineering.

We consider only increasing growth functions for these species. So, this paper ex-
tends some results obtained for one and two species in [9] and [11]. For a multi-species
setting, we fully characterize the existence of singular arc (which existence can lead to
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complex solutions that are not easily tractable from the mathematical point of view).
The extremal trajectories of the singular arc type are characterized as the strategies used
to maintain the substrate at a constant level, and we study under which conditions the
strategy that consists of filling as fast as possible the tank up to its maximum capacity
and then waiting is optimal. This strategy is called on Immediate One Impulsive (IOI )
in the impulsional framework developed here and it will be precisely defined in Section 5.
The last issue has been sucessfully solved for one single species in [9] by only assuming
that the growth function is nondecreasing. However, when two species coexist in the
SBR, it is shown in [11] that the fact that both growth functions are increasing is no
longer enough to ensure the optimality of the IOI strategy. In Section 5, we have only
proved that the IOI strategy is optimal when one species is highly performant and the
others all are sufficiently close one to each other, which somehow captures the two species
case. However, the study of IOI and singular strategies for our problem in which some
of the functions of growth could be Haldane type and all remaining being increasing
functions must be analyzed to obtain new optimal strategies in the presence of several
species, and this will be done in future research by imposing appropriate additional con-
ditions on growth functions or their derivatives, and the use of higher–order optimality
conditions of affine control systems, the envelope theory, symplectic geometric methods.
See for instance [2], [5] and references therein.

2 Formulation of the optimal control problem

In this section we quickly describe the model and the optimal control problem involved
in our analysis.

We consider a SBR with several species in competition for a single substrate. The
dynamics of this process can be described as follows (see [15])

ẋi = µi(s)xi −
F

v
xi, xi(t0) = xi0 (i = 1 · · ·n),

ṡ = −
n∑
j=1

µj(s)xj +
F

v
(sin − s), s(t0) = s0,

v̇ = F, v(t0) = v0,

(2.1)

where s and v stand, respectively, for the concentration of the substrate and the current
volume of water present in the tank. The parameter sin > 0 is a constant which repre-
sents the substrate concentration in the input flow. The concentration of the ith species
is denoted by xi whose growth functions µi(·) are non-negative smooth functions such
that µi(0) = 0, and the input flow F is a non-negative control variable.

Given a (desirable) substrate concentration sout ∈]0, sin[ and a volume (of the reactor)
vmax > 0, consider the domain D = (IRn

+ \ {0})×]0, sin]×]0, vmax[ and the target T =
IRn

+×]0, sout]×{vmax}. From any initial condition ξ = (x10, . . . , xn0, s0, v0) in D at time
t0, the objective is to reach T in minimal time. This means to treat as fast as possible the
maximum quantity of water, which in the case of the considered SBR is given by vmax.
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In the context of optimal control theory it leads to the following optimization problem

inf
F (·)

{
t− t0 | st0,ξ,F (t) ≤ sout , vt0,ξ,F (t) = vmax

}
,

where st0,ξ,F (·), vt0,ξ,F (·) denote solutions of (2.1) with initial condition ξ ∈ D at time
t0 and control F (·).

Here F (·) is allowed to be a non-negative measurable function plus possible positive
impulses. Indeed, instead of an ordinary control F (·), we consider a measure dF (·) that
we decompose into a sum of a measure absolutely continuous with respect to the Lebesgue
measure u(t)dt and a singular or impulsive part dσ (see [12, 13])

dF (t) = u(t)dt+ dσ ,

where, u(·) is a measurable non-negative control that we impose to be bounded from
above by umax, because it corresponds to the use of a pump device. At time t, the non-
negative impulse dσ corresponds to an (instantaneous) addition of volume from v−(t) to
v+(t).

From [11] we know that a time parameterization τ ≥ t0 such that dt = r(τ)dτ with

r(τ) =

{
1 when the pump device is used
0 when an impulse is used,

permits to replace dynamics (2.1) by the system

dxi
dτ

= rµi(s)xi −
u

v
xi (i = 1 · · ·n) ,

ds

dτ
= −r

n∑
j=1

µj(s)xj +
u

v
(sin − s) ,

dv

dτ
= u ,

(2.2)

where the controls u(·) and r(·) are sought among measurable functions w.r.t. τ , taking
values in [0, umax] and {0, 1}, respectively. Notice that in this formulation u(·) plays the
both role of an ordinary control when r = 1 and the control of the amplitude of the jump
when r = 0, with the same single constraint u ∈ [0, umax].

Next, the system (2.2) can be rewritten as the following affine control system

ż = u1G1(z) + u2G2(z), (2.3)

where u1 = r, u2 = u, z> = (x1, · · · , xn, s, v), and G1(z(τ)), G2(z(τ)) be the vector
fields defined, respectively, by
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G1(z(τ)) =



µ1(s)x1

...

µn(s)xn

−
(

n∑
i=1

µi(s)xi

)
0


, G2(z(τ)) =



−x1

v

...

−xn

v

(sin−s)
v

1


The formalism given by system (2.3) will be intensively exploited in the next sections.

Remark 1 Any trajectory of (2.3) with initial condition ξ = (x10, . . . , xn0, s0, v0) ∈ D
lies in the region defined by:

ρ(ξ) = v

 n∑
j=1

xj + s− sin

 = w

 n∑
j=1

yj + z − sin

 . (2.4)

This leads to a reduction of variables in dynamics (2.2), which will be used in Section 5.

Remark 2 Since one can always take r = 0 and u = 0 on a arbitrarily large τ -interval
without modifying the total time, the minimal time problem has no unique solution.
Hence, we will be only interested in controls satisfying r(τ) 6= 0 or u(τ) 6= 0 for all
time τ .

Consequently, from now on, we work with V (·) the value function of the reformulated
problem (2.3) given by

V (ξ) = inf
(u,r)(·)

{∫ τ

t0

r(θ)dθ | st0,ξ,u,r(τ) ≤ sout , vt0,ξ,u,r(τ) = vmax

}
, (2.5)

where st0,ξ,u,r(·), vt0,ξ,u,r(·) denote solutions of (2.3) with initial condition ξ ∈ D at time
t0 and controls u(·) and r(·).

3 Generalities and Pontryagin’s Maximum Principle

In this section we recall the main notions and some results in [11] in order to have a
self-contained paper. Thus, in the next subsections we recall the equations and prop-
erties obtained from the application of Pontryagin’s principle and some known results
concerning the optimality of the IOI strategy.

For our purposes it is enough to use the version of the Pontryagin’s Maximum Princi-
ple (PMP) stated and proved in [14]. Recall that the principle gives a first order necessary
conditions for continuous–time optimal problems. Its geometric formulation takes place
on the cotangent bundle of the state space.
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In our particular case, the (PMP) for the affine control system (2.3) on Rn+2 reads:
If u∗ = (u1∗ , u2∗) is an optimal control and z∗ is the associated trajectory of (2.3) on
Rn+2, there exists a constant λ0 ≥ 0 and an absolutely continuous function λ : [0, T ] −→(
Rn+2

)∗
, τ 7→ λ(τ) = (λ(τ), λn+1(τ), λn+2(τ)) with λ(τ) = (λ1(τ), λ2(τ), · · · , λn(τ))

such that for almost every τ ∈ Dom(z∗), (λ, λ0) never vanishing and the extremals
satisfy

ż = ∂H
∂λ (z,λ, u1, u2), (3.1)

λ̇ = −λ(u1JG1 + u2JG2), (3.2)

Futhermore, the optimal control u∗ minimizes the Hamiltonian

H = u1HG1
+ u2HG2

+ u1λ0 (3.3)

over the set of admissible controls, through the curve (λ(τ), z(τ)). Here HGi
(z,λ) =

〈λ(τ), Gi(z(τ))〉, i = 1, 2 are the Hamiltonian lifts corresponding to each vector field Gi
respectively. Throughout this paper we assume λ0 = 1, which corresponds to the normal
extremals.

It is well know that the Poisson bracket of the Hamiltonian functions HG1
and HG2

,
denote by { ·, ·}, is associated with the Lie bracket by the relation

{HG1
,HG2

} = 〈λ, [G1, G2]〉 (3.4)

where , and the Lie bracket is defined to be [X,Y ](z) = J Y (z)(X(z)) − JX(z)(Y (z))
for any pair of vector fields X and Y . Here J stand for the Jacobian differential operator
with respect to z, and 〈·, ·〉 is the Euclidean inner product in Rn+2 (see for instance, [1]).

Now, introducing the auxiliary variables λ̃i = λi − λn+1, the adjoint system (3.2)
become the following dynamical systems

dλ̃
dτ = A(τ)λ̃, λ̃i(T ) = −1, i = 1, · · · , n. (3.5)

where λ̃ = (λ1 − λn+1, λ2 − λn+1, · · · , λn − λn+1) and A(τ) is a the n×n time dependent
matrix, given by



u1(−µ1 + µ′1x1) + u2

v u1µ
′
2x2 u1µ

′
3x3 · · · · · · · · · · · · u1µ′nxn

u1µ
′
1x1 u1(−µ2 + µ′2x2) + u2

v u1µ
′
3x3 · · · · · · · · · · · · u1µ′nxn

...
. . .

. . .
. . .

...

... u1µ
′

nxn

u1µ
′
1x1 · · · · · · · · · · · · · · · · · · · · · u1µ

′

n−1xn−1 u1(−µn + µ′nxn) + u2

v


.

Consequently, one has
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λ̃(τ) 6= 0 for any τ ∈ [τ0, T ]. (3.6)

Note that the Hamiltonian (3.3) can be equivalently written as follows

H = u1φu1(z,λ) + u2φu2(z,λ) (3.7)

where 
φu1(z(τ),λ(τ)) = 1 +

n∑
j=1

λ̃j(τ)µj(s(τ))xj(τ),

φu2
(z(τ),λ(τ)) = λn+2 + λn+1

(sin−s)
v − 1

v

n∑
j=1

λjxj

(3.8)

For notationally simplicity, we now write φui(τ) for φu1(z(τ),λ(τ)).
In the rest of the paper we will consider only increasing growth functions:

Assumption A1. The functions µi(·) are non decreasing.

Lemma 3.1 Under Assumption A1, the following assertions hold:

(i) The matrix A(τ) has non–negative off–diagonal terms, i.e., the dynamical system
(3.5) is cooperative.

(ii) The vector m1(·), defined by

m1(τ) =

µ
′
1(s(τ))x1(τ)

...
µ′n(s(τ))xn(τ)

 . (3.9)

lies in IRn
+.

Proof: The proof is direct and it was already established in [11]. 2

Notice that the controls are not obviously determined by the minimum condition at
times τ when φu1(τ) = φu2(τ) = 0. Indeed, PMP is not able to distinguish minima from
maxima in that periods of time. However, it is well known from the optimal control
theory that an optimal trajectory may well be singular; this is, switching functions
φui

(τ), i = 1, 2 may vanish identically along the trajectory. The characterization of such
trajectories, is in general a difficult task, but we provide a context for which this holds
for our problem defining the value function in (2.5).

4 Singular trajectories

In our context, a singular trajectory or singular arc corresponds to an extremal curve for
which there exists a nontrivial interval [τ1, τ2] ⊂ [0, T ] where both switching functions
φui(τ) are identically zero. This can be understood as an extension of the standard
definition of singular arcs when only one control is considered (e.g. [7, Part III, Ch. 2]).

Since the switching functions play a crucial role in the definition of a singular arc, we
proceed here below to analyze them. In particular, we focus on the computation of their
derivatives.
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Lemma 4.1 For dynamics (2.2), the first derivative with respect to the time τ of the
switching functions φui(τ), i = 1, 2, defined in (3.8), are given by

dφu2

dτ
= −u1

(sin − s)
v

〈λ̃,m1〉,

dφu1

dτ
= u2

(sin − s)
v

〈λ̃,m1〉.

(4.1)

where λ̃ = (λ1 − λn+1, λ2 − λn+1, · · · , λn − λn+1) and m1 = m1(τ) was defined in (3.9).

Proof: This property was shown in [11, Eq. (6.5)]. 2

Denote by

ψ :=
(sin − s)

v
〈λ̃,m1〉 (4.2)

the function appearing in the first derivative of the switching functions. We now establish
a formula of the n–order derivative for ψ.

Proposition 4.2 Consider a fixed time τ. For a given integer j, define mj = mj(τ) by

mj(τ) =


µ
(j)
1 (s(τ))x1(τ)

...

µ
(j)
n (s(τ))xn(τ)

 , (4.3)

where µ
(j)
i denotes the j-th derivative of µi with i = 1, 2, · · · , n. Then if 〈λ̃, mk〉 = 0 for

every k = 1, · · · , j, we have

djψ

dτ j
=

(sin − s)
v

〈λ̃,mj+1〉
(
ds

dτ

)j
, (4.4)

Proof: We proceed to prove the desired implication by induction on j. The case
j = 1 follows directly from the definition of ψ given in (4.2). Now, suppose that the
induction hypothesis holds true for a given j, that is, the following assertion is fulfilled:
if 〈λ̃, mk〉 = 0 for every k = 1, · · · , j then (4.4) is verified. In order to establish our

induction argument, we also suppose that 〈λ̃, mk〉 = 0 for every k = 1, · · · , j, and we
proceed to prove that equation (4.4) holds true when we replace j by j + 1.

The induction hypothesis implies that (4.4) holds, this yield

dj+1ψ

dτ j+1
=

(sin − s)
v

(
ds

dτ

)j
d

dτ
〈λ̃,mj+1〉+

d

dτ

(
(sin − s)

v

(
ds

dτ

)j)
〈λ̃,mj+1〉 (4.5)

On the other hand, direct computations lead to

〈λ̃, A(τ)>mj+1〉 = u2

v 〈λ̃,m
j+1〉+ u1

(∑
i

µ
(j+1)
i xi

)
〈λ̃,m1〉 − u1〈λ̃, m̃j+1〉 (4.6)
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and

〈λ̃, ddτm
j+1〉 =

(
ds
dτ

)
〈λ̃,mj+2〉 − u2

v 〈λ̃,m
j+1〉+ u1〈λ̃, m̃j+1〉, (4.7)

where we have used the auxiliary notation

m̃j =


µ
(j)
1 µ1x1

...

µ
(j)
n µnxn

 .

So, equations (4.6) and (4.7) lead to

d

dτ
〈λ̃,mj+1〉 = 〈λ̃, A(τ)>mj+1〉+ 〈λ̃, dm

j+1

dτ
〉

=
ds

dτ
〈λ̃,mj+2〉+ u1

(
n∑
i=1

µ
(j+1)
i xi

)
〈λ̃,m1〉,

(4.8)

Replacing (4.8) into (4.5) we have

dj+1ψ

dτ j+1
=

(sin − s)
v

(
ds

dτ

)j+1

〈λ̃,mj+2〉+ u1

(
ds

dτ

)j ( n∑
i=1

µ
(j+1)
i xi

)
〈λ̃,m1〉

+
d

dτ

[
(sin − s)

v

(
ds

dτ

)j]
〈λ̃,mj+1〉,

(4.9)

Finally, since by hypothesis the two last terms in the right hand side of (4.8) are equal
to zero, it follows that

dj+1ψ

dτ j+1
=

(sin − s)
v

(
ds

dτ

)j+1

〈λ̃,mj+2〉,

which proves our induction argument. 2

Now we are ready to state the main result of this section.

Theorem 4.3 Consider initial condition ξ = (x10, . . . , xn0, s0, v0) ∈ D. Suppose that
the determinant of the matrix

D =



µ
(1)
1 (s) · · · µ

(1)
n (s)

µ
(2)
1 (s) · · · µ

(2)
n (s)

...
. . .

...

µ
(n)
1 (s) · · · µ

(n)
n (s)


(4.10)

is nonsingular for any s ∈ (0, sin). Here µ
(j)
i denotes the j-th derivative of function

µi.Then, an extremal curve is a singular arc on (τ1, τ2) ⊂ [0, T ] if and only if s(·) is
constant on (τ1, τ2).
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Proof: First note that an initial condition ξ = (x10, . . . , xn0, s0, v0) ∈ D implies that
s(τ) ∈ (0, sin) for all time τ , so we will always suppose that s will remain in this interval.

Suppose that a singular arc defined in an interval of time (τ1, τ2) ⊂ [0, T ] is optimal.

Since u1 and u2 are not simultaneously equal to zero, 〈λ̃,m1〉 = 0 on (τ1, τ2) (via equations
(4.1)); this in particular implies that the derivatives of ψ with respect to the time τ are
null on (τ1, τ2) . So, we can apply inductively Proposition 4.2 and obtain that

djψ

dτ j
=

(sin − s)
v

(
ds

dτ

)j
〈λ̃,mj+1〉 = 0 (4.11)

on (τ1, τ2), and for all j = 1, 2, · · · , n− 1.
Suppose now that ds

dτ 6= 0. It follows from (4.11) that

〈λ̃,mj〉 = 0, j = 1, · · · , n on (τ1, τ2). (4.12)

Hence, using the fact that λ̃(τ) 6= 0 for all τ (see (3.6)), we have that m1,m2, · · · ,mn

are linearly dependent for any τ ∈ (τ1, τ2). However, we have mj = Xηj with

X =


x1

. . .

xn

 and ηj =


µ
(j)
1 (s(τ))

...

µ
(j)
n (s(τ))

 ,

And, since X is clearly non-singular and the vectors ηj are linearly independent (because
they are the rows of the matrix D, which is non-singular), these is a contradiction with
the linear dependence of mj , concluding thus ds

dτ = 0.

Reciprocally, suppose now ds
dτ = 0 on (τ1, τ2) . Equation (4.8) (with j = 0 for which

the formula is still valid) leads to

d
dτ 〈λ̃,m〉 = ϕ(τ)〈λ̃,m〉,

for some given function ϕ(·). Hence, 〈λ̃,m〉 = C exp

(∫ τ

0

ϕ(τ)dτ

)
on (τ1, τ2), for a real

constant C.
Suppose now that C 6= 0. One obtains from (4.1) that the switching functions φu1

and φu2
are both monotone on (τ1, τ2) . This implies that φu1

and φu2
are both strictly

positive on (τ1, τ2) . Consequently, (3.7) implies that controls u1 and u2 are both equal
to zero. This is a contradiction.

Therefore, the only possibility is C = 0. In this case, (4.1) implies that the switching
functions φu1

and φu2
are both constant on (τ1, τ2). Since u1 and u2 are strictly positive,

it follows from Lemma 4.1 that φu1
= φu2

= 0 on (τ1, τ2) . The theorem follows. 2

Assumption A2. The determinant of D given in (4.10) is non null.

Remark 3 The Assumption A2 extends to an arbitrary number of species the also called
Assumption A2 in [11] established only for two species.
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4.1 The n-species case with a Monod growth function

In section we analyze the case when the growth function of each species of microorganism
considered in the SBR follows a Monod law growth function [8], that is

µi(s) =
µmax,is

Ki + s
, i = 1, · · · , n (4.13)

where, for the i-species, µmax,i and Ki stand for the maximal growth rate and for the
half saturation constant or Monod constant. As a first step, we establish a formula for
the derivatives of a general Monod function.

Lemma 4.4 For any Monod function described by (4.14), its derivatives with respect to
s are given by

µ(j)(s) =
(−1)j+1j!µmax,i

(K+s)j+1 , j = 1, 2, · · · , n

Proof: The proof follows directly from induction on j. 2

As an application of the results obtained in this section, a characterization of singular
arcs, for the case in which several species compete for the same substrate and all of them
have Monod growth function, is given in the following proposition.

Proposition 4.5 Assume that any growth function in our setting follows a Monod law,
which is different from the growth function of any other species. This is, if

µi(s) =
µmax,is
Ki+s

, i = 1, · · · , n (4.14)

and Ki 6= Kj , for all i 6= j. Then, an extremal curve is a singular arc on (τ1, τ2) ⊂ [0, T ]
if and only if s(·) is constant on (τ1, τ2) .

Proof: Lemma 4.4 and some additional computations show that the determinant of
the matrix D, defined in (4.10), is given by

n([(n−1)!]2)
(

n∏
l=1

µmax,l

)(
n∏

l=1

Kl

)(
n∏

i,j=1, i>j
(Ki−Kj)

)
n∏

l=1

(Kl+s)
n+1

Now, sinceKi 6= Kj , for all i, j = 1, · · · , n it follows that the determinant of D is non null,
and consequently D is nonsingular. Then, the desired result follows from Theorem 4.3. 2

5 The Immediate One Impulse strategy

This section is devoted to evaluate whenever the Immediate One Impulse strategy (de-
noted from now on by IOI ) is optimal for our minimal time control problem, when one
species is highly performant and the others all are sufficiently close one to each other.
We begin by first describing the IOI strategy.

10



From an initial state ξ = (x10, . . . , xn0, s0, v0) ∈ D at time t0. We define the IOI
consisting of making:

1. An impulse of volume vmax − v0 at t0. This can be achieved by r(τ) = 0, u(τ) =
umax, for τ ∈ [t0, t0 + (vmax − v0)/umax].

2. A null control (no feeding) until the concentration s(τ) reaches sout.

For convenience, we shall denote by x̃i0(ξ), i = 1, · · · , n and s̃0(ξ) the concentrations
obtained with an impulse of volume vmax−v0 from a state ξ = (x10, . . . , xn0, s0, v0) ∈ D :

x̃i0(ξ) = xi0
v0
vmax

, i = 1, · · · , n , s̃0(ξ) = s0
v0
vmax

+ sin

(
1− v0

vmax

)
. (5.1)

Notice that for the particular case s̃0(ξ) ≤ sout, the first step only is used.
We consider a family of functions ϕc(·) defined on (IRn

+\{0})×IR+ and parameterized
by c > 0:

ϕc(x10, . . . , xn0, s0) = inf
{
t− t0 | st0,x10,...,xn0,s0(t) ≤ c

}
, (5.2)

where (st0,x10,...,xn0,s0)(·) is solution of the free dynamics:
dxi
dτ

= µi(s)xi, xi(t0) = xi0 (i = 1 · · ·n),

ds

dτ
= −

n∑
i=1

µi(s)xi, s(t0) = s0.
(5.3)

Standard analysis of minimal time problems shows that ϕc(·) are Lipschitz-continuous
functions and solutions, in the viscosity sense, of the partial differential equation (see for
instance [10])

n∑
j=1

(∂xj0
ϕc(x10, . . . , xn0, s0)− ∂s0ϕc(x10, . . . , xn0, s0))µj(s0)xj0 + 1 = 0 , (5.4)

on the domain (IRn
+ \ {0})× (c,+∞) with boundary conditions

ϕc(. , s0) = 0, ∀s0 ∈ (0, c]. (5.5)

The time cost of the IOI strategy can then be simply written in terms of above
functions, as follows

TIOI(ξ) = ϕsout(x̃10(ξ), . . . , x̃n0(ξ), s̃0(ξ)), (5.6)

where (x̃10(ξ), . . . , x̃n0(ξ)) and s̃0(ξ) are given by (5.1).
Now, we assume the following regularity on the function ϕc(·),

Assumption A3. For any c > 0, the function ϕc(·) is C1 on (IRn
+ \ {0})× (c,+∞).
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Remark 4 Observe that the sub-optimal IOI strategy has a finite time cost TIOI(ξ) for
any initial condition ξ in the domain D. Consequently, the optimal value V (ξ) is finite
for any ξ in D.

Finally, Proposition 5.3 in [11] provides a direct way to verify when the IOI strategy
is optimal for any initial condition ξ = (x10, . . . , xn0, s0, v0) ∈ D. We recall here below
this key tool.

Theorem 5.1 Under Assumption A3, the one impulse strategy is optimal for any ξ ∈ D
if and only if

∆u1
TIOI(ξ) ≥ 0, ∀ ξ ∈ D s.t. TIOI(ξ) > 0.

where ∆u1
TIOI(ξ) is computed as follows

∆u1TIOI(ξ) =

n∑
j=1

(
∂xj0

ϕsout
(x̃10(ξ), · · · , x̃n0(ξ), s̃0(ξ))

)
− ∂s0ϕsout

(x̃10(ξ), · · · , x̃n0(ξ), s̃0(ξ))

×x̃j0 (µj(s0)− µj(s̃0(ξ)))
(5.7)

In order to evaluate whenever the IOI strategy is optimal, the following assumption
will be crucial in the sequel.

Assumption A4 For any s1, s2 ∈ [sout, sin] and j = 1, · · · , n− 1, one has

s2 ≥ s1 ⇒ µn(s2)µj(s1) ≥ µj(s2)µn(s1). (5.8)

Remark 5 Notice that for Monod laws of the form (4.14), implications (5.8) are exactly
fulfilled when Kn ≥ Kj , j = 1, · · · , n− 1. Indeed, direct computations lead to

µn(s2)µj(s1)− µj(s2)µn(s1) =
µmax,nµmax,1s1s2 (s2 − s1) (Kn −Kj)

(Kj + s2) (Kj + s1) (Kn + s2) (Kn + s1)
.

In [11] it is shown that, when only two species coexist and one is clearly more performant
than other one (which is reflected via the condition µ2(s) ≥ µ1(s), for all s ∈ (0, ssin], on
the growth functions), then the IOI strategy is optimal. Moreover, numerical experiences
proved that this condition is also necessary. In other words, the fact that growth functions
are increasing is not enough to ensure the optimality of the IOI strategy. For instance,
see example below.

Following this idea of our analysis, one would like to investigate if similar behaviors
occur in this case when more than two species coexist (n > 2). For this, in what follows,
we assume the existence of a species which is clearly more performant than the other
ones. This is stated via the following assumption.

Assumption A5 µn(s) ≥ µj(s), ∀ j = 1, · · · , n− 1, ∀ s ∈ (0, sin].
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In this framework, next numerical example shows that Assumptions A1, A3, A4 and
A5 do not ensure the optimality of the strategy IOI. In other words, we establish the
surprising result that in the case of more than two species, even the existence of a “most
performant species”is not enough for this purpose. Next example shows that, even under
the Assumptions A1, A3, A4 and A5’, strategy IOI is not necessarily optimal.

Example: We consider the following three growth functions (see Figure 1):

µ1(s) =
s

1 + s
, µ2(s) =

2s

1.5 + s
, µ3(s) =

4s

2 + s
.

They clearly fulfill Assumptions A1, A2, A3, A4 and A5.
Consider also the parametric values vmax = 10, sout = 0.1 and sin = 5, and the

initial conditions x10 = 1, x20 = 0.001, s0 = 3 and v0 = 1. In table 1 we compare, for
different values of the initial conditions x30, the time achieved by the strategy IOI with
the time achieved by an alternative strategy consisting of to reach, as fast as possible,
a given level s∗ in (sout, sin), then to keep s constant and equal to s∗ until v reaches
vmax, and finally, put u = 0 and r = 1 (which means to close SA(s∗), and the level s∗ is
numerically computed in order to minimize the cost of this type of strategies among all
possible values of s∗ in (sout,sin). Recall that in this case of two species, it was shown
in [11] that this strategy besides IOI when Assumptions A1, A2, A3, A4 and A5 were
fulfilled.

So, reported results in Table 1 establish that SA(s∗) has an improvement close to 25%
with respect to IOI for some values of x30. We thus conclude that IOI is not optimal
for this particular setting.

Tabla 1.
x30 T (IOI) s∗ T (SA(s∗)) gain
10−4 5.416174 4.226000 5.402767 0.2%
10−3 5.389022 3.540000 4.978126 7.6%
10−2 5.172141 3.442000 4.170769 19.4%
0.05 4.669824 3.344000 3.548414 24.0%
0.1 4.350146 3.246000 3.274169 24.7%
0.5 3.458854 3.050000 2.620281 24.2%

2

The latter reveals another surprising and interesting result. Note that growth functions
satisfy the next stronger condition than A5 :
Assumption A5’ µn(s) ≥ µn−1(s) ≥ · · · ≥ µ1(s), ∀ s ∈ (0, sin].

This means that the performance of all the species are perfectly ordered. Thus As-
sumption A5’ can be interpreted as a stronger extension of the corresponding condition
in [11]. However, the example above states that even under this stronger condition it is
not possible to ensure the optimality of the IOI strategy.
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Figure 1: Graphs of the three growth functions considered in the example.

We proceed to investigate other hypotheses (stronger than A5) for which one can
prove that IOI strategy is optimal. For this, at this stage of our analysis, we need to
state a technical lemma for the family of functions ϕc(·). This is direct extensions of the
corresponding results in [11]. Since its proof is very similar to those appearing in [11], it
is omitted here.

Lemma 5.2 Under Assumptions A1, A3, A4 and A5, functions ϕc(·) posses the follow-
ing properties for all c ∈ (0, sin) , (y, z) := (x10, . . . , xn0, s0) ∈

(
IR2

+ \ {0}
)
× (c, sin] and

i = 1, · · · , n− 1 :

i. ∂zϕc(y, z) ≥ ∂xn0
ϕc(y, z),

ii. µn(z)−µn(z̃)
µn(z̃)

≤ µi(z)−µi(z̃)
µi(z̃)

≤ 0.

Now, we are in position to establish an additional condition for which IOI is optimal in
this framework.

Theorem 5.3 Suppose that the Assumptions A1, A3, A4 and A5 are fulfilled. Suppose
also that growth functions µi, for i = 1, . . . , n − 1, are all close enough one each other
on [0, sin], that is, there exists a small enough ε > 0 such that for all i, j = 1, . . . , n− 1,
s ∈ [0, sin] one has

µi(s)− µj(s) ≤ ε. (5.9)

Then IOI strategy is optimal for any initial condition in D.

Proof: Consider ξ = (x10, . . . , xn0, s0, v0) := (y, z, v0) ∈ D such that TIOI(ξ) > 0. Let

14



us denote for all i = 1, . . . , n− 1 :

γi =

(
µi(z)− µi(z̃)

µi(z̃)

)
/

n−1∑
j=1

µj(z)− µj(z̃)
µj(z̃)

.

Part iv of Lemma 5.2 ensures that γi ≥ 0 for all i. Moreover, Hypothesis (5.9) implies
that

γi ∈
[

1

n− 1
− ε̃, 1

n− 1
+ ε̃

]
, ∀i = 1, ..., n− 1, (5.10)

for some ε̃ > 0. Note that the magnitude of ε̃ is driven by ε, that is, ε̃ can be set as
small as necessary provided that ε is choosen small enough. Indeed, it suffices to note
that µi(z̃) ≥ µi(z) and the fact that the µi are bounded on [0, sin].

Notice that the term ∆u1
TIOI(ξ), given in (5.7), can be written as follows

∆u1
TIOI(ξ) =

n∑
j=1

(
∂yjϕsout

(ỹ, z̃)− ∂zϕsout
(ỹ, z̃)

)
µj(z̃)ỹj

µj(z)− µj(z̃)
µj(z̃)

.

So, from Part iv of Lemma 5.2 and (5.10) we obtain that γn ≥ γi ≥ 1
n−1 − ε̃, for all

i = 1, ..., n− 1. Then, Part i of Lemma 5.2 implies

∆u1
TIOI(ξ)∑n−1

j=1
µj(z)−µj(z̃)

µj(z̃)

≤
n−1∑
j=1

(
∂yjϕsout(ỹ, z̃)− ∂zϕsout(ỹ, z̃)

)
µj(z̃)ỹjγj

+ (∂ynϕsout
(ỹ, z̃)− ∂zϕsout

(ỹ, z̃))µn(z̃)ỹn

(
1

n− 1
− ε̃
)

≤ 1

n− 1

n∑
j=1

(
∂yjϕsout(ỹ, z̃)− ∂zϕsout(ỹ, z̃)

)
µj(z̃)ỹj

+ ε̃

n∑
j=1

∣∣∂yjϕsout
(ỹ, z̃)− ∂zϕsout

(ỹ, z̃)
∣∣µj(z̃)ỹj

= − 1

n− 1
+ ε̃

n∑
j=1

∣∣∂yjϕsout
(ỹ, z̃)− ∂zϕsout

(ỹ, z̃)
∣∣µj(z̃)ỹj ,

where this last equality is due to (5.4). Consequently

∆u1
TIOI(ξ) ≥ −

n−1∑
j=1

µj(z)− µj(z̃)
µj(z̃)

 1

n− 1
− ε̃

n∑
j=1

∣∣∂yjϕsout
(ỹ, z̃)− ∂zϕsout

(ỹ, z̃)
∣∣µj(z̃)ỹj


Therefore, since y, ỹ, z, z̃ remain in a compact set and all the function involved are C1,
the right hand side term in the above expression is positive provided that ε̃ is small
enough. We thus conclude by Theorem 5.1. 2
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Math., 5, (1993), 111–159.

[4] D’Ans G., D. Gottlieb and P. Kokotovic: Optimal control of bacterial growth,
Automatica, 8, (1972), 729–736.

[5] A.J. Sussmann: Envelopes, higher order optimality conditions and Lie Brackets,
I.E.E.E, Conf. Decision and Control, (1999).

[6] Irvine R. L. and L. H. Ketchum: Sequencing batch reactors for biological wastew-
ater treatment, Critical Rev. Environ. Control, 18, (1989), 255–294.

[7] J.F. Bonnans, P. Rouchon: Commande et optimisation de systémes dynamiques,
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