
ar
X

iv
:1

20
7.

49
84

v1
 [

cs
.L

O
]

11
 J

ul
 2

01
2

1

Control and Synthesis of Non-Interferent Timed
Systems

Gilles Benattar, Franck Cassez, Didier Lime and Olivier H. Roux,

Abstract

In this paper, we focus on the synthesis of secure timed systems which are modelled as timed automata. The security
property that the system must satisfy is anon-interferenceproperty. Intuitively, non-interference ensures the absence of any causal
dependency from a high-level domain to a lower-level domain. Various notions of non-interference have been defined in the
literature, and in this paper we focus onStrong Non-deterministic Non-Interference(SNNI) and two (bi)simulation based variants
thereof (CSNNI and BSNNI). We consider

timed non-interference properties for timed systems specified bytimed automataand we study the two following problems:
(1) check whether it is possible to find a sub-system so that it isnon-interferent; if yes (2) compute a (largest) sub-system which
is non-interferent.

Index Terms

Non-Interference, Timed Automaton, Safety Timed Games, Control, Synthesis

I. I NTRODUCTION

Modern computing environments allow the use of programs that are sent or fetched from different sites. Such programs may
deal with secret information such as private data (of a user)or classified data (of an organization). One of the basic concerns
in such a context is to ensure that the programs do not leak sensitive data to a third party, either maliciously or inadvertently.
This is often calledsecrecy.

In an environment with two parties,information flow analysisdefines secrecy as: “high-level information never flows into
low-level channels”. Such a definition is referred to as anon-interferenceproperty, and may capture any causal dependency
between high-level and low-level behaviors.

We assume that there are two users and the set of actions of thesystemS is partitioned intoΣh (high-level actions) and
Σl (low-level actions). The non-interference properties we focus on are strong non-deterministic non-interference (SNNI),
cosimulation-based strong non-deterministic non-interference (CSNNI) and bisimulation-based strong non-deterministic non-
interference (BSNNI). Thenon-interference verification problem, for a given systemS, consists in checking whetherS is non-
interferent. It is worth noticing that non-interferent properties are out of the scope of the common safety/liveness classification
of system properties [1].

There is a large body of works on the use of static analysis techniques to guarantee information flow policies. A general
overview can be found in [2]. Verification of information flowsecurity properties [1], [3] can be applied to the analysis
of cryptographic protocols where many uniform and concise characterizations of information flow security properties (e.g.
confidentiality, authentication, non-repudiation or anonymity) in terms of non-interference have been proposed. Forexample,
the Needham-Schroeder protocol can be proved insecure by defining the security property using SNNI [4], and other examples
of the use of non-interference in computer systems and protocols for checking security properties can be found in [5], [6], [7],
[8]

In case a system is not non-interferent, it is interesting toinvestigate how and if it cam be rendered non-interferent.
This is the scope of this paper where we consider the problem of synthesizingnon-interferent timed systems. In contrast

to verification, thenon-interference synthesis problemassumes the system isopen, i.e., we can restrict the behaviors ofS:
some events, from a particular setΣc ⊆ Σl ∪Σh, of S can be disabled. Thenon-interference control problemfor a systemS
asks the following: “Is there a controllerC s.t.C(S) is non-interferent?” whereC(S) is “S controlled byC”. The associated
synthesis problemasks to compute a witness controllerC when one exists.

As mentioned earlier, SNNI is expressive enough for exampleto prove that the Needham-Schroeder protocol is flawed [4].
Controller synthesis enables one to find automatically the patch(es) to apply to make such a protocol secure. The use of
dense-time to model the system clearly gives a more accurateand realistic model for the system and a potential attacker that
can measure time.
Related Work. In [9] the authors consider the complexity of many non-interferenceverificationproblems but synthesis is not
addressed. In [10] an exponential time decision procedure for checking whether a finite state system satisfies a given Basic

G. Benattar is with ClearSy (Safety Critical Systems Engineering Company) Paris, France.
D. Lime and O. H. Roux are with IRCCyN laboratory, LUNAM Université, Ecole Centrale Nantes, France.
F. Cassez is with National ICT Australia, Sydney, Australia.

http://arxiv.org/abs/1207.4984v1

2

Security Predicate (BSP) is presented but the synthesis problem is not addressed. Recently supervisory control for opacity
property has been studied in [11], [12], [13] in the untimed setting. Opacity is undecidable for timed systems [14] and thus
the associated control problem is undecidable as well. In [15] the controller synthesis problem for non-interference properties
is addressed for untimed systems. In [16], supervisory control to enforce Intransitive non-interference for three level security
systems is proposed in the untimed setting.

The non-interference synthesis problem for dense-time systems specified by timed automata was first considered in [17].
The non-interference property considered in [17] is thestatenon-interference property, which is less demanding than the one
we consider here. This paper extends the results of [18] about SNNI control problemsfor timed systems: Section V addresses
the SNNI control problem for timed systems and is a detailed presentation of the result of [18] with proofs of the theorems
that were unpublished. Sections III and IV are new and the latter provides a new result, Theorem 2. Section VI addresses the
CSNNI and BSNNI control problems for timed systems and also contains new results: Theorems 9, 10, 11 and Propositions 4
and 5.

Our Contribution. In this paper, we first exhibit a classdTA of timed automata for which the SNNI verification problem is
decidable. The other main results are: (1) we prove that deciding whether there is a controllerC for a timed automatonA
such that (s.t. in the following)C(A) is SNNI, is decidable for the previous classdTA; (2) we reduce the SNNI controller
synthesis problem to solving a sequence ofsafety timed games; (3) we show that there is not always a most permissive
controller for CSNNI and BSNNI; (4) we prove that the controlproblem for CSNNI is decidable for the classdTAand that the
CSNNI controller synthesis problem fordTA reduces to the SNNI controller synthesis problem. We also give the theoretical
complexities of these problems.

Organization of the paper. Section II recalls the basics of timed automata, timed languages and some results on safety
timed games. Section III gives the definition of the non-interference properties we are interested in. Section IV addresses the
verification of non-interference properties in the timed setting. Section V gives the definition of the non-interference synthesis
problem and presents the main result: we show that there is a largest subsystem which is SNNI and this subsystem is effectively
computable. Section VI addresses the control problem and controller synthesis problem for CSNNI and BSNNI properties.
Finally, we conclude in Section VII.

II. PRELIMINARIES

Let R+ be the set of non-negative reals andN the set of integers. LetX be a finite set of positive real-valued variables
calledclocks. A valuation of the variables inX is a functionX → R+, that can be written as a vector ofRX

+ . We let~0X be
the valuation s.t.~0X(x) = 0 for eachx ∈ X and use~0 whenX is clear from the context. Given a valuationv andR ⊆ X ,
v[R 7→ 0] is the valuation s.t.v[R 7→ 0](x) = v(x) if x 6∈ R and0 otherwise. An atomic constraint (overX) is of the form
x ⊲⊳ c, with x ∈ X , ⊲⊳∈ {<,≤,=,≥, >} and c ∈ N. A (convex) formula is a conjunction of atomic constraints.C(X) is the
set of convex formulas. Given a valuationv (overX) and a formulaγ overX , γ(v) is the truth value, inB = {true, false},
of γ when each symbolx in γ is replaced byv(x). If t ∈ R+, we letv+ t be the valuation s.t.(v+ t)(x) = v(x) + t. We let
|V | be the cardinality of the setV .

Let Σ be a finite set,ε 6∈ Σ andΣε = Σ ∪ {ε}. A timed wordw over Σ is a sequencew = (δ0, a0)(δ1, a1) · · · (δn, an)
s.t. (δi, ai) ∈ R+ × Σ for 0 ≤ i ≤ n whereδi represents the amount of time elapsed1 betweenai−1 andai. TΣ∗ is the set
of timed words overΣ. We denote byuv the concatenationof two timed wordsu andv. As usualε is also the empty word
s.t. (δ1, ε)(δ2, a) = (δ1 + δ2, a): this means that language-wise, we can always eliminate theε action by taking into account
its time interval in the next visible action. Given a timed word w ∈ TΣ∗ andL ⊆ Σ the projection of w overL is denoted
by projL(w) and is defined byprojL(w) = (δ0, b0)(δ1, b1) · · · (δn, bn) with bi = ai if ai ∈ L and bi = ε otherwise. The
untimedprojection ofw, Untimed(w), is the worda0a1 · · · an of Σ∗.

A timed languageis a subset ofTΣ∗. Let L be a timed language, the untimed language ofL is Untimed(L) = {v ∈
Σ∗ | ∃w ∈ L s.t. v = Untimed(w)}.

Definition 1 (Timed Transition System (TTS)). A timed transition system (TTS)is a tupleS = (Q, q0,Σ
ε,→) whereQ is a

set of states,q0 is the initial state,Σ a finite alphabet of actions,→⊆ Q×Σε ∪R+ ×Q is the transition relation. We use the
notationq

e
−→ q′ if (q, e, q′) ∈→. Moreover, TTS should satisfy the classical time-related conditions whered, d′ ∈ R≥0: i) time

determinism:(q
d
−→ q′) ∧ (q

d
−→ q′′) ⇒ (q′ = q′′), ii) time additivity: (q

d
−→ q′) ∧ (q′

d′

−→ q′′) ⇒ (q
d+d′

−−−→ q′′), iii) null delay:

∀q : q
0
−→ q, and iv) time continuity:(q

d
−→ q′) ⇒ (∀d′ ≤ d, ∃q′′, q

d′

−→ q′′).

A run ρ of S from q0 is a finite sequence of transitionsρ = q0
e1−→ q1

e2−→ · · ·
en−→ qn s.t. (qi, ei, qi+1) ∈→ for 0 ≤ i ≤ n−1.

We denote bylast(ρ) the last state of the sequencei.e., the stateqn. We let Runs(q,S) be the set of runs fromq in S and
Runs(S) = Runs(q0,S). We write q

ε
==⇒ q′ if there is a runq

ε
−−→ · · ·

ε
−−→ q′ from q to q′ i.e.,

ε
==⇒

def
= (

ε
−−→)∗. Given

a ∈ Σ ∪R+, we define
a

==⇒
def
=

ε
==⇒

a
−−→

ε
==⇒. We write q0

∗
−−→ qn if there is a run fromq0 to qn. The set ofreachablestates

1For i = 0 this is the amount of time since the system started.

3

in Runs(S) is Reach(S) = {q | q0
∗

−−→ q}. Each run can be written in a normal form where delay and discrete transitions

alternatei.e., ρ = q0
δ0−→

e0−→ q1
δ1−→

e1−→ · · ·
δn−→

en−→ qn+1

δ
−→ q′n+1. The trace of ρ is trace(ρ) = (δ0, e0)(δ1, e1) · · · (δn, en).

Definition 2 (Timed automata (TA)). A timed automaton (TA)is a tupleA = (Q, q0, X,Σε, E, Inv) where: q0 ∈ Q is the
initial location; X is a finite set of positive real-valued clocks;Σε is a finite set of actions;E ⊆ Q× C(X)× Σε × 2X ×Q
is a finite set of edges. An edge(q, γ, a, R, q′) goes fromq to q′, with the guardγ ∈ C(X), the actiona and the reset set
R ⊆ X ; Inv : Q → C(X) is a function that assigns an invariant to any location; we require that the atomic formulas of an
invariant are of the formx ⊲⊳ c with ⊲⊳∈ {<,≤}.

A finite (or untimed) automatonA = (Q, q0,Σ
ε, E) is a special kind of timed automaton withX = ∅, and consequently all

the guards and invariants are vacuously true. A timed automaton A is deterministicif for (q1, γ, a, R, q2), (q1, γ
′, a, R′, q′2) ∈

E, γ ∧ γ′ 6= false ⇒ q2 = q′2 andR = R′. We recall that timed automata cannot always be determinized (i.e., find a
deterministic TA which accepts the same language as a non-deterministic one, see [19]), and moreover, checking whethera
timed automaton is determinizable is undecidable [20].

Definition 3 (Semantics of Timed automata). The semanticsof a timed automatonA = (Q, q0, X, Σε, E, Inv) is the TTS
SA = (S, s0,Σ

ε,→) with S = Q× (R+)X , s0 = (q0,~0), and→ defined as follows:

(q, v)
a
−→ (q′, v′) iff ∃(q, γ, a, R, q′) ∈ E such that







γ(v) = true
v′ = v[R 7→ 0]
Inv(q′)(v′) = true

(q, v)
δ
−→ (q, v′) iff







v′ = v + δ
∀δ′, 0 ≤ δ′ ≤ δ,
Inv(q)(v + δ′) = true

If s = (q, v) is a state ofSA, we denote bys+ δ the (only) state reached afterδ time units,i.e., s+ δ = (q, v+ δ). The sets
of runs ofA is defined asRuns(A) = Runs(SA) whereSA is the semantics ofA. A timed wordw ∈ TΣ∗ is generatedby A
if w = trace(ρ) for someρ ∈ Runs(A). The timed language generated byA, L(A), is the set of timed words generated byA.

Definition 4 (Language equivalence). Two automataA andB are language equivalent, denoted byA ≈L B, if L(A) = L(B)
i.e., they generate the same set of timed words.

Definition 5 (Simulation). Let T1 = (S1, s
1
0,Σ

ε,→1), T2 = (S2, s
2
0, Σ

ε,→2) be two TTS. LetR ⊆ S1 × S2 be a relation
s.t.R is total for S2. R is a weak simulation ofT2 by T1 iff:

1) s10Rs20,
2) ∀(s, p) ∈ S1 × S2, such thatsRp:

• If p
ε
=⇒2 p′ then∃s′ such thats

ε
=⇒1 s′ and s′Rp′,

• ∀a ∈ Σ ∪ R+, if p
a
=⇒2 p′ then∃s′ such thats

a
=⇒1 s′ and s′Rp′.

T1 weakly simulatesT2 if there exists a weak simulationR of T2 by T1 and we noteT1 ⊑W T2. Let A1 andA2 be two timed
automata, we say thatA1 weakly simulatesA2 if the semantics ofA1 weakly simulates the semantics ofA2, and we note
A1 ⊑W A2.

Definition 6 (Cosimulation). Two timed automataA1 and A2 are co-similar iff A1 ⊑W A2 and A2 ⊑W A1. We note
A1 ≈CW A2

Definition 7 (Bisimulation). Two timed automataA1 andA2 are bisimilar iff there exists a simulationR of A2 by A1 such
that R−1 is a weak simulation ofA1 by A2. We noteA1 ≈W A2.

Note that when noε transition exists, we obtainstrongversions of similarity and bisimilarity.

Definition 8 (Product of timed automata). Let A1 = (Q1, q01, X1,Σ
ε, E1, Inv1) and A2 = (Q2, q02, X2,Σ

ε, E2, Inv2)
be two TA withX1 ∩ X2 = ∅. Let Σa ⊆ Σ. The synchronized productof A1 and A2 w.r.t. Σa, is the timed automaton
A1 ×Σa

A2 = (Q1 ×Q2, (q01, q02), X1 ∪X2,Σ
ε, E, Inv) whereE is defined as follows:

• ((q1, q2), γ1 ∧ γ2, a, R1 ∪R2, (q
′
1, q

′
2)) ∈ E if a ∈ Σa, (q1, γ1, a, R1, q

′
1) ∈ E1 and (q2, γ2, a, R2, q

′
2) ∈ E2;

• ((q1, q2), γ, a, R, (q′1, q
′
2)) ∈ E if a ∈ Σ \ Σa and

{

(q1, γ, a, R, q′1) ∈ E1 and q′2 = q2
or (q2, γ, a, R, q′2) ∈ E2 and q′1 = q1

and whereInv((q1, q2)) = Inv1(q1) ∧ Inv2(q2).

It means that synchronization occurs only for actions inΣa. When it is clear from the context we omit the subscriptΣa in
×Σa

.

4

Moreover, in the sequel we will use two operators on TA: the first one gives anabstractedautomaton and simply hides a set
of labelsL ⊆ Σ. Given a TAA = (Q, q0, X,Σε, E, Inv) andL ⊆ Σ we define the TAA/L = (Q, q0, X, (Σ\L)ε, EL, Inv)
where(q, γ, a, R, q′) ∈ EL ⇐⇒ (q, γ, a, R, q′) ∈ E for a ∈ Σ\L and (q, γ, ε, R, q′) ∈ EL ⇐⇒ (q, γ, a, R, q′) ∈ E for
a ∈ L∪{ε}. The restrictedautomaton cuts transitions labeled by the letters inL ⊆ Σ: Given a TAA = (Q, q0, X,Σ, E, Inv)
andL ⊆ Σ we define the TAA\L = (Q, q0, X,Σ\L,EL, Inv) where (q, γ, a, R, q′) ∈ EL ⇐⇒ (q, γ, a, R, q′) ∈ E for
a ∈ Σ\L.

We will also use some results on safety control for timed games which have been introduced and solved in [21].

Definition 9 (Timed Game Automaton (TGA)). A Timed Game Automaton (TGA)A = (Q, q0, X,Σ, E, Inv) is a timed
automaton with its set of actionsΣ partitioned intocontrollable(Σc) and uncontrollable(Σu) actions.

Let A be a TGA andBad⊆ Q × R
X
+ be the set of bad states to avoid.Bad can be written∪1≤i≤k(ℓi, Zi), with eachZi

defined as a conjunction of formulas ofC(X) and eachℓi ∈ Q . The safety control problemfor (A,Bad) is: decide whether
there is a controller to constantly avoidBad. Let λ be a fresh special symbol not inΣε denoting the action “do nothing”.

A controller C for A is a partial function fromRuns(A) to 2Σc∪{λ}. We require that∀ρ ∈ Runs(A), if a ∈ C(ρ)∩Σc then

last(ρ)
a
−→ (q′, v′) for some(q′, v′) and if λ ∈ C(ρ) then last(ρ)

δ
−→ (q′, v′) for someδ > 0. A controllerC is state-basedor

memorylesswhenever∀ρ, ρ′ ∈ Runs(A), last(ρ) = last(ρ′) implies thatC(ρ) = C(ρ′).

Remark 1. We assume a controller gives a set of actions that are enabledwhich differs from standard definitions [21] where
a controller only gives one action. Nevertheless for safetytimed games, one computes a most permissive controller (if there
is one) which gives for each state the largest set of actions which are safe. It follows that any reasonable (e.g., Non-Zeno)
sub-controller of this most permissive controller avoids the set of bad states.

C(A) defines “A supervised/restricted byC” and is inductively defined by its set of runs:
• (q0,~0) ∈ Runs(C(A)),
• if ρ ∈ Runs(C(A)) andρ

e
−−→ s′ ∈ Runs(A), thenρ

e
−−→ s′ ∈ Runs(C(A)) if one of the following three conditions holds:

1) e ∈ Σu,
2) e ∈ Σc ∩ C(ρ),

3) e ∈ R+ and∀δ s.t. 0 ≤ δ < e, last(ρ)
δ

−−→ last(ρ) + δ ∧ λ ∈ C(ρ
δ

−−→ last(ρ) + δ).
C(A) can also be viewed as a TTS where each state is a run ofA and the transitions are given by the previous definition.C
is a winning controller for (A,Bad) if Reach(C(A)) ∩ Bad= ∅. For safety timed games, the results are the following [21],
[22]:

• it is (EXPTIME-complete to decide whether there is a winningcontroller for a safety game(A,Bad);
• in case there is one, there is amost permissivecontroller which is memoryless on the region graph of the TGAA. This

most permissive controller can be represented by a TA. This also means that the set of runs ofC(A) is itself the semantics
of a timed automaton, that can be effectively built fromA.

III. F ORMAL DEFINITIONS OFNON-INTERFERENCEPROPERTIES

In the sequel, we will consider Timed Automata defined on an set of actionsΣ = Σl ∪ Σh with Σl ∩ Σh = ∅, whereΣh

are thehigh levelactions andΣl the low levelactions. In order to define the different classes of non interference properties
on an automatonA, we are going to compareA\Σh andA/Σh w.r.t. different criteria.

A. Strong Non-Deterministic Non-Interference (SNNI)

The propertyStrong Non-Deterministic Non-Interference(SNNI) has been introduced by Focardi and Gorrieri in [1] as a
trace-basedgeneralization of non-interference for concurrent systems. SNNI has been extended to timed models in [17].

Definition 10. A timed automatonA is SNNI iff A\Σh ≈L A/Σh

Since finite automata are timed automata with no clocks, the definition also applies to finite automata.
Moreover, asL(A\Σh) ⊆ L(A/Σh), we can give a simple characterization of the SNNI property:

Proposition 1. A timed automatonA is SNNI iffL(A/Σh) ⊆ L(A\Σh).

Example 1. Let us consider the automatonAa of figure 1(a) withΣh = {h} and Σl = {ℓ}. This automaton is not SNNI,
becauseL(A\Σh) = ε whereasL(A/Σh) = ℓ . The automatonAb is SNNI.

As demonstrated by the following examples 2 and 3, a timed automatonA can be non SNNI whereas its untimed underlying
automaton is SNNI andA can be SNNI whereas its untimed underlying automaton is not.

Example 2. Let us consider the timed automatonAg of figure 2(a), withΣh = {h} andΣl = {ℓ}. It is not SNNI since(2.5, ℓ)
is accepted byAg/Σh but not byAg\Σh. Its untimed underlying automatonAh is SNNI sinceL(Ah\Σh) = {ℓ} = L(Ah/Σh).

5

q0 q2

q3

h

ℓ

(a) Aa is not SNNI

q0

q1

q2

ℓ

h

(b) Ab is SNNI

Fig. 1. Examples for the SNNI property

q0

q1

q2

q3

ℓ, x < 2

h

ℓ

(a) Ag , a non SNNI timed au-
tomaton

q0

q1

q2

q3

ℓ

h

ℓ

(b) Ah, the SNNI untimed au-
tomaton associated toAg

Fig. 2. A non SNNI timed automaton and its untimed underlyingautomaton which is SNNI

Example 3. Let us consider the timed automatonAj of figure 3(a), withΣh = {h} et Σl = {ℓ1, ℓ2}. It is SNNI, since
L(Aj\Σh) = L(Aj/Σh). Its untimed underlying automatonAk is not SNNI sinceℓ1 · ℓ2 is accepted byAk/Σh but not by
Ak\Σh.

Example 4 (SNNI). Figure 4 gives examples of systemsA(k) which are SNNI and not SNNI depending on the value of integer
k. The high-level actions areΣh = {h} and the low-level actions areΣl = {l}. (δ, l) with 1 ≤ δ < 2 is a trace ofA(1)/Σh

but not ofA(1)\Σh and so,A(1) is not SNNI.A(2) is SNNI as we can see thatA(2)/Σh ≈L A(2)\Σh.

Finally since SNNI is based on language equivalence, we havethe following lemma:

Lemma 1. If A′ ≈L A, thenA is SNNI⇔ A′ is SNNI.

Proof: First L(A/Σh) = projΣl
(L(A)) = projΣl

(L(A′)) = L(A′/Σh). Second,L(A\Σh) = L(A) ∩ TΣ∗
l = L(A′) ∩

TΣ∗
l = L(A′\Σh).

B. Cosimulation Strong Non-Deterministic Non-Interference (CSNNI)

The Cosimulation Strong Non-Deterministic Non-Interference(CSNNI) property has been introduced in [17], and is based
on cosimulation.

q0

q1

q3

q4

q2 q5

ℓ1, x > 2

ℓ1

h

ℓ1, x > 2

ℓ1ℓ2, x < 2

(a) Aj , a SNNI timed automaton

q0

q1

q3

q4

q2 q5

ℓ1

ℓ1

h

ℓ1

ℓ1ℓ2

(b) Ak, the non SNNI untimed automaton associated to
Aj

Fig. 3. A SNNI timed automaton and its untimed underlying automaton which is non SNNI.

6

0

1

2

3

l, x ≥ 2

h, x ≥ k

l

Fig. 4. AutomatonA(k)

q0

q1 q2

q3 q4

q5

q6

q7 q8

ℓ1

ℓ1

ℓ2 ℓ3

h

ℓ1

ℓ2

ℓ3

(a) Ac, a SNNI but not CSNNI automaton

q0

q1

q2 q3

q4

q5 q6

q7 q8

ℓ1

ℓ2

ℓ3

h

ℓ1

ℓ1

ℓ2 ℓ3

(b) Ad, a CSNNI automaton

Fig. 5. CSNNI is stronger than SNNI

Definition 11. A timed automatonA is CSNNI iff A\Σh ≈CW A/Σh.

SinceA/Σh ⊑W A\Σh, we can give a simple characterization of CSNNI:

Proposition 2. A timed AutomatonA is CSNNI iffA\Σh ⊑W A/Σh.

By restricting the class of timed automata considered, we obtain the following result.

Example 5. Let us consider the automatonAc of figure 5(a) withΣh = {h} and Σl = {ℓ1, ℓ2, ℓ3}. Ac is SNNI but is not
CSNNI, because no state ofAc\Σl can simulate the stateq6. The automatonAd of figure 5(a) is CSNNI. The stateq1 of
Ad\Σl simulates the statesq5 and q6.

We complete this subsection by comparing SNNI and CSNNI. Given two timed automataA1, A2, A1 ⊑W A2 implies
L(A2) ⊆ L(A1). CSNNI is thus stronger than SNNI as for each timed automatonA, A\Σh ⊑W A/Σh impliesL(A/Σh) ⊆
L(A\Σh).

The converse holds whenA\Σh is deterministic:

Lemma 2. If A\Σh is deterministic, thenA is SNNI impliesA is CSNNI.

Proof: As emphasized before, given two timed automataA1, A2, A1 ⊑W A2 implies L(A2) ⊆ L(A1). If A1 is
deterministic, thenL(A2) ⊆ L(A1) impliesA1 ⊑W A2. To obtain the result it suffices to takeA1 = A\Σh andA2 = A/Σh.

C. Bisimulation Strong Non-Deterministic Non-Interference (BSNNI)

The Bisimulation Strong Non-Deterministic Non-Interference(BSNNI) property has been introduced in [1] and is based on
bisimulation.

Definition 12. A timed automatonA is BSNNI iffA\Σh ≈W A/Σh

The automatonAf of figure 6(b) is BSNNI. Bisimulation is stronger than cosimulation and we have for all timed automaton
A, if A is BSNNI thenA is CSNNI (and thusA is SNNI).

As the following example demonstrates, there exists an automaton which is CSNNI and not BSNNI.

Example 6. Let us consider the automatonAe of figure 6(a) withΣh = {h} et Σl = {ℓ}. This automaton is deterministic
and SNNI, and therefore by lemma 2, it is CSNNI. However, it isnot BSNNI, since the stateq2 of Ae\Σh has no bisimilar
state inAe\Σh.

IV. V ERIFICATION OF NON-INTERFERENCEPROPERTIES FORTIMED AUTOMATA

In this section we settle the complexity of non-interference verification problems for timed automata.

7

q0

q1

q2

ℓ

h

(a) Ae, a CSNNI but not
BSNNI automaton

q0

q1

q2

q3

ℓ

h

ℓ

(b) Af , a BSNNI automaton

Fig. 6. BSNNI is stronger than CSNNI

q012
[x ≤ 0]

q01

q02

h

ε
A1

A2

Fig. 7. The timed automatonA12

A. SNNI verification

The SNNI verification problem (SNNI-VP), asks to check whether a systemA is SNNI.
For timed automata, this problem has been proved to beundecidablein [17] and the proof is based on the fact that

language containment for TA is undecidable [19]. However, if we consider the subclass of timed automataA such thatA\Σh

is deterministic, then the problem becomes decidable. In the sequel, we called dTA the class of timed automataA such that
A\Σh is deterministic.

Theorem 1. The SNNI-VP is PSPACE-complete for dTA.

Proof: Let A1 andA2 be two timed automata. Checking whetherL(A2) ⊆ L(A1) with A1 a deterministic TA is PSPACE-
complete [19]. CheckingL(A/Σh) ⊆ L(A\Σh) can thus be done is PSPACE ifA\Σh is deterministic. Using Proposition 1,
it follows that SNNI-VP is PSPACE-easy fordTA.

For PSPACE-hardness, we reduce the language inclusion problemL(A2) ⊆ L(A1), with A1 a deterministic TA, to the SNNI-
VP. Let A1 = (Q1, q01, X1,Σ, E1, Inv1) be a deterministic TA andA2 = (Q2, q02, X2,Σ, E2, Inv2) a TA2. We leth 6∈ Σ be
a fresh letter,x 6∈ X1 ∪X2 be a fresh clock and defineA12 = ({q012} ∪Q1 ∪Q2, q01, X1 ∪X2 ∪ {x},Σε ∪ {h}, E12, Inv12)
be the timed automaton defined (as shown in figure 7) as follows:

• the transition relationE12 containsE1 ∪E2 and the additional transitions(q012, true, h,∅, q02) and(q012, true, ε,∅, q01);
• Inv12(q) = Invi(q) if q ∈ Qi, i ∈ {1, 2}, andInv12(q012) = [x ≤ 0].

We letΣl = Σ andΣh = {h}. We prove thatA12 is SNNI iff L(A2) ⊆ L(A1). This is easily established as:

A12 is SNNI iff L(A12/Σh) ⊆ L(A12\Σh) [Proposition 1]

iff L(A1) ∪ L(A2) ⊆ L(A1)

iff L(A2) ⊆ L(A1).

Thus the SNNI-VP is PSPACE-complete fordTA.

2We assume thatQ1 ∩Q2 = ∅ andX1 ∩X2 = ∅.

8

For non-deterministic finite automataA1 andA2, checking language inclusionL(A1) ⊆ L(A2) is PSPACE-complete [23].
Then, using the same proof withA1 being a non deterministic finite automaton, It follows that:

Corollary 1. The SNNI-VP is PSPACE-complete for non-deterministic finite automata.

Moreover, whenA2 is a deterministic finite automaton, language containment can be checked in PTIME and thus we have
the following corollary:

Corollary 2. For finite automata belonging to dTA, the SNNI-VP is PTIME.

The table I summarizes the results on the complexity of the SNNI-VP.

Timed Automata Finite Automata

A\Σh is deterministic(dTA) PSPACE-complete (Theorem 1) PTIME (Corollary 2)
General Case Undecidable [17] PSPACE-complete (Corollary 1)

TABLE I
COMPLEXITY IF SNNI-VP

B. Verification of CSNNI and BSNNI properties

BSNNI-VP and CSNNI-VP are decidable for timed automata [17]since simulation and bisimulation are decidable. For finite
automata, the complexity of BSNNI-VP and CSNNI-VP is known to be PTIME [15]. We settle here the complexity of those
problems for timed automata.

Theorem 2. The CSNNI-VP and BSNNI-VP are EXPTIME-complete for Timed Automata.

Proof: Strong timed bisimilarity and simulation pre-order are both EXPTIME-complete for timed automata. The EXPTIME-
hardness is established in [24] where it is shown that any relation between simulation pre-order and bisimilarity is EXPTIME-
hard for Timed Automata.

The EXPTIME-easiness for strong timed bisimulation was established in [25] and for simulation pre-order in [26].
To establish EXPTIME-completeness for CSNNI-VP and BSNNI-VP, we show that these problems are equivalent to their

counterparts for timed automata.
To do this, we use the automataA1, A2 andA12 already defined in the proof of Theorem 1.
We show that:A1 simulatesA2 iff A12 is CSNNI.
AssumeA1 simulatesA2. There exists a relationR s.t. : 1) (q01,~0X1

)R(q01,~0X1
) and 2) for each state(s2, ~x2), there

exists(s1, ~x1) s.t. (s2, ~x2)R(s1, ~x1), and whenever(s2, ~x2)
a

−−→ (s′2, ~x2
′) for a ∈ Σ ∪ R+, then (s1, ~x1)

a
−−→ (s′1, ~x1

′) and
(s′2, ~x2

′)R(s′1, ~x1
′).

We define a relationR′ for each(ℓ, ~x1 ~x2x) of A12/Σh to a state(ℓ′, ~x1
′ ~x2

′x′) of A12\Σh as follows:
• if ℓ = q012 then (ℓ, ~x1 ~x2x)R

′(ℓ, ~x1
′ ~x2

′x′);
• if ℓ ∈ Q1, then(ℓ, ~x1 ~x2x)R

′(ℓ, ~x1 ~x2
′x′);

• if ℓ ∈ Q2, then(ℓ, ~x1 ~x2x)R
′(ℓ′, ~x1

′ ~x2
′x′) iff (ℓ, ~x2)R(ℓ′, ~x1);

R′ is a simulation ofA12/Σh by A12\Σh:
• the initial states of the two TA are in relation;
• assume(s, ~x1 ~x2x)

a
−−→A12/Σh

(s′, ~x1
′ ~x2

′x′); If s ∈ {q012} ∪Q1 then clearly it is simulated by the same state inA12\Σh

. Otherwise, ifs ∈ Q2, then there exists a state(ℓ′, ~x1 ~x2
′x′) in A12\Σh s.t. (s, ~x1 ~x2x)R

′(s′, ~x1
′ ~x2

′x′): by definition of
R′ we can take any(s′, ~x1

′ ~x2
′x′) with (s, ~x2)R(s′, ~x1

′). It is easy to see that becauseA1 can simulateA2 from there
on, R′ is indeed a simulation relation. ThusA12/Σh andA12\Σh are co-similar by Proposition 2.

Now assume conversely that there is a simulationR′ of A12/Σh by A12\Σh. We can define a simulation relation ofA2

by A1 as follows: each state(s, ~x1 ~x2x) with s ∈ Q2 of A12/Σh is simulated by a state(s′, ~x1
′ ~x2

′x′) with s′ ∈ Q1. We then
defineR by (s, ~x2)R(s′, ~x1

′). Again it is easy to see thatR is a simulation relation.
It follows that CSNNI is EXPTIME-complete.

Now assume thatA1 and A2 are bisimilar. We can define the relationR′ exactly as above and this time it is a weak
bisimulation betweenA12\Σh andA12/Σh.

If A12 is BSNNI, the bisimulation relationR′ betweenA12\Σh andA12/Σh induces a bisimulation relationR between
A1 andA2: it suffices to buildR as the restriction ofR′ between states with a discrete component inQ1 and a discrete
component inQ2.

As checking bisimulation between TA is also EXPTIME-complete, the EXPTIME-completeness of BSNNI-VP for TA
follows.

The table II summarize the results on the verification of the CSNNI and BSNNI properties.

9

Timed Automata Finite Automata

CSNNI-VP EXPTIME-C (Theorem 2) PTIME [15]
BSNNI-VP EXPTIME-C (Theorem 2) PTIME [15]

TABLE II
RESULTS FORCSNNI-VPAND BSNNI-VP

0

3

1

2

a

h

a

Fig. 8. AutomatonD

V. THE SNNI CONTROL PROBLEM

The previous non-interference verification problem, consists in checkingwhether an automatonA has the non-interference
property. If the answer is “no”, one has to investigate why the non-interference property is not true, modifyA and check the
property again. In contrast to the verification problem, thesynthesis problem indicates whether there is a way of restricting the
behavior of users to ensure a given property. Thus we consider that only some actions in the setΣc, with Σc ⊆ Σh ∪ Σl, are
controllable and can be disabled. We letΣu = Σ \Σc denote the actions that are uncontrollable and thus cannot be disabled.
Note that, contrary to [15], we release the constraintΣc = Σh. The motivations for this work are many fold. ReleasingΣc = Σh

is interesting in practice because it enables one to specifythat an action fromΣh cannot be disabled (a service must be given),
while some actions ofΣl can be disabled. We can view actions ofΣl as capabilities of the low-level user (e.g., pressing a
button), and it thus makes sense to prevent the user from using the button for instance by disabling/hiding it temporarily.

Recall that acontroller C for A gives for each runρ of A the setC(ρ) ∈ 2Σc∪{λ} of actions that are enabled after this
particular run. The SNNI-Control Problem(SNNI-CP) we are interested in is the following:

Is there a controllerC s.t.C(A) is SNNI ? (SNNI-CP)

The SNNI-Controller Synthesis Problem(SNNI-CSP) asks to compute a witness when the answer to the SNNI-CP is “yes”.

A. Preliminary Remarks

First we motivate our definition of controllers which are mappings fromRuns(A) to 2Σc∪{λ}. The common definition of a
controller in the literature is a mapping fromRuns(A) to Σc ∪ {λ}. Indeed, for the safety (or reachability) control problem,
one can compute a mappingM : Runs(A) → 2Σc∪{λ} (most permissive controller), and a controllerC ensures the safety goal
iff C(ρ) ∈ M(ρ). This implies that any sub-controller ofM is a good controller. This is not the case for SNNI, even for finite
automata, as the following example shows.

Example 7. Let us consider the automatonD of Figure 8 withΣc = {a, h}. The largest sub-system ofD which is SNNI is
D itself. Disablinga from state0 will result in an automaton which is not SNNI.

We are thus interested in computing the largest (if there is such) sub-system ofA that we can control which is SNNI. Second,
in our definition we allow a controller to forbid any controllable action. In contrast, in the literature, a controller should ensure
some liveness and never block the system. In the context of security property, it makes sense to disable everything if the
security policy cannot be enforced otherwise. This makes the SNNI-CP easy for finite automata.

B. SNNI-VP versus SNNI-CP

SNNI-CP is harder than SNNI-VP since SNNI-VP reduces to SNNI-CP by takingΣc = ∅. Note that this is not true if we
restrict to the subclass of control whereΣc = Σh. Indeed, in this case SNNI-CP is always true (and then decidable) since the
controller which forbid all controllable transitions makethe system SNNI.

We then have the following theorem:

Theorem 3. For general Timed Automata, SNNI-CP and SNNI-CSP are undecidable.

Proof: SNNI-CP obviously reduces to SNNI-CSP. SNNI-VP reduces to SNNI-CP by takingΣc = ∅. SNNI-VP is
undecidable for non-deterministic Timed Automata.

We will now show that SNNI-CP reduces to the SNNI-VP for finiteautomata.

10

0

1

2

3

a, x > 1

h, x > 4

b

Fig. 9. The AutomatonH

Theorem 4. For finite automata, the SNNI-CP is PSPACE-Complete.

Proof: The proof consists in proving that if a finite automaton can berestricted to be SNNI, then disabling all theΣc

actions is a solution. Thus the SNNI-CP reduces to the SNNI-VP and the result follows.
As time is not taken into account in untimed automaton, we canhaveC(ρ) = ∅ for finite automaton (for general timed

automaton, this would mean that we block the time.) The proofof the theorem consists in proving that if a finite automaton
can be restricted to be SNNI, then disabling all theΣc actions is a solution. LetC∀ be the controller defined byC∀(ρ) = ∅.
We prove the following: ifC is a controller s.t.C(A) is SNNI, thenC∀(A) is SNNI.

Assume a finite automatonD is SNNI. Lete ∈ Σh ∪Σl and letLe be the set of words containing at least onee. Depending
on the type ofe we have:

• if e ∈ Σl, thenL((D\{e})\Σh) = L(D\Σh)\Le and asD is SNNI, it is also equal toL(D/Σh)\Le = L((D\{e})/Σh);
• if e ∈ Σh, L((D\{e})/Σh) ⊆ L(D/Σh) = L(D\Σh) = L((D\{e})\Σh).

So, if D is SNNI,D\L is SNNI,∀L ⊆ Σ. SinceL(C∀(D)) = L(D\Σc), if D is SNNI, thenD\Σc is also SNNI and therefore
C∀(D) is SNNI.

Let A be the TA we want to restrict. Assume there is a controllerC s.t.C(A) is SNNI.C∀(C(A)) is SNNI soC∀(C(A)) =
C∀(A) is also SNNI which means thatA\Σc is SNNI. This proves that:∃C s.t.C(A) is SNNI ⇔ A\Σc is SNNI.

It is then equivalent to check thatA\Σc is SNNI to solve the SNNI-CP forA and this can be done in PSPACE. PSPACE-
hardness comes from the reduction of SNNI-VP to SNNI-CP, by takingΣc = ∅.

Moreover since the SNNI-CP reduces to the SNNI-VP for finite automata, and from corollary 2 we have the following
result:

Corollary 3. For finite automata belonging to dTA, the SNNI-CP is PTIME.

We will now show that Theorem 4 does not hold for timed automata as the following example demonstrates.

Example 8. Figure 9 gives an example of a timed automatonH with high-level actionsΣh = {h} and low-level actions
Σl = {a, b}.
AssumeΣc = {a}. Notice thatH\Σc is not SNNI. Let the state based controllerC be defined by:C(0, x) = {a, λ} whenH
is in state(0, x) with x < 4; and C(0, x) = {a} whenx = 4. ThenC(H) is SNNI. In this example, whenx = 4 we prevent
time from elapsing by forcing the firing ofa which indirectly disables actionh. To do this we just have to add an invariant
[x ≤ 4] to location0 of H and this cuts out the dashed transitions renderingC(H) SNNI.

C. Algorithms for SNNI-CP and SNNI-CSP

In this section we first prove that the SNNI-CP is EXPTIME-hard for dTA. Then we give an EXPTIME algorithm to solve
the SNNI-CP and SNNI-CSP.

Theorem 5. For dTA, the SNNI-CP is EXPTIME-Hard.

Proof: The safety control problem for TA is EXPTIME-hard [27]. In the proof of this theorem, T.A. Henzinger and
P.W. Kopke use timed automata where the controller chooses an action and the environment resolves non-determinism. The
hardness proof reduces the halting problem for alternatingTuring Machines using polynomial space to a safety control problem.
In our framework, we use TA with controllable and uncontrollable actions. It is not difficult to adapt the hardness proof of [27]
to TA which are deterministic w.r.t.Σc actions and non deterministic w.r.t.Σu actions. AsΣu transitions can never be disabled
(they act only as spoiling actions), we can use a different label for each uncontrollable transition without altering the result in
our definition of the safety control problem. Hence: the safety control problem as defined in section II is EXPTIME-hard for
deterministic TA (with controllable and uncontrollable transitions). This problem can be reduced to the safety control problem
of TA with only one statebad. We can now reduce the safety control problem for deterministic TA which is EXPTIME-hard
to the SNNI control problem ondTA. Let A = (Q ∪ {bad}, q0, X, Σc ∪ Σu, E, Inv) be a TGA, withΣc (resp.Σu) the set
of controllable (resp. uncontrollable) actions, andbad a location to avoid. We defineA′ by adding toA two uncontrollable
transitions:(bad, true, h,∅, qh) and (qh, true, l,∅, ql) whereqh and ql are fresh locations with invarianttrue. l and h are
two fresh uncontrollable actions inA′. We now defineΣh = {h} andΣl = Σc ∪ Σu ∪ {l} for A′. By definition ofA′, for

11

any controllerC, if location Bad is not reachable inC(A′), then the actionsh and thenl can not be fired. Thus if there is
controller forC for A which avoidsBad, the same controllerC rendersA′ SNNI. Now if there is a controllerC′ s.t.C′(A′)
is SNNI, it must never enableh: otherwise a (untimed) wordw.h.l would be inUntimed(L(C′(A′)/Σh)) but as no untimed
word containing anl can be inUntimed(L(C′(A′)\Σh)), and thusC′(A′) would not be SNNI. Notice that it does not matter
whether we require the controllers to be non blocking (mappings fromRuns(A) to 2Σc∪{λ} \∅) or not as the reduction holds
in any case.

To compute the most permissive controller (and we will also prove there is one), we build a safety game and solve a safety
control problem. It may be necessary to iterate this procedure. Of course, we restrict our attention to TA in the classdTA for
which the SNNI-VP is decidable.

Let A = (Q, q0, X,Σh∪Σl, E, Inv) be a TA s.t.A\Σh is deterministic. The idea of the reduction follows from thefollowing
remark: we want to find a controllerC s.t. L(C(A)\Σh) = L(C(A)/Σh). For any controllerC we haveL(C(A)\Σh) ⊆
L(C(A)/Σh) because each run ofC(A)\Σh is a run ofC(A)/Σh). To ensure SNNI we must haveL(C(A)/Σh) ⊆ L(A\Σh):
indeed,A\Σh is the largest language that can be generated with noΣh actions, so a necessary condition for enforcing SNNI
is L(C(A)/Σh) ⊆ L(A\Σh). The controllerC(A) indicates what must be pruned out inA to ensure the previous inclusion.
Our algorithm thus proceeds as follows: we first try to find a controller C1 which ensures thatL(C1(A)/Σh) ⊆ L(A\Σh).
If L(C1(A)/Σh) = L(A\Σh) thenC1 is the most permissive controller that enforces SNNI. It could be that what we had to
prune out to ensureL(C1(A)/Σh) ⊆ L(A\Σh) does not renderC1(A) SNNI. In this case we may have to iterate the previous
procedure on the new systemC1(A).

We first show how to computeC1. As A\Σh is deterministic, we can constructA2 = (Q∪{qbad}, q
2
0 , X2,Σh∪Σl, E2, Inv2)

which is a copy ofA (with clock renaming) withqbad being a fresh location and s.t.A2 is acomplete(i.e.,L(A2) = TΣ∗) version
of A\Σh (A2 is also deterministic). We writelast2(w) the state(q, v) reached inA2 after reading a timed wordw ∈ TΣ∗. A2

has the property thatw ∈ L(A\Σh) if the state reached inA2 after readingw is not in Badwith Bad= {(qbad, v) | v ∈ R
X
+}.

Fact 1. Let w ∈ TΣ∗. Thenw 6∈ L(A\Σh) ⇐⇒ last2(w) ∈ Bad.

We now define the productAp = A×Σl
A2 and the set of bad states,Bad⊗ of Ap to be the set of states whereA2 is in Bad.

−→p denotes the transition relation of the semantics ofAp ands0p the initial state ofAp. When it is clear from the context we
omit the subscriptp in −→p.

Lemma 3. Let w ∈ L(A). Then there is a runρ ∈ Runs(Ap) s.t. ρ = s0p
w

−−→p s with s ∈ Bad⊗ iff projΣl
(w) 6∈ L(A\Σh).

The proof follows easily from Fact 1. Given a runρ in Runs(Ap), we letρ|1 be the projection of the runρ on A (uniquely
determined) andρ|2 be the unique run3 in A2 whose trace isprojΣl

(trace(ρ)). The following Theorem proves that any
controllerC s.t.C(A) is SNNI can be used to ensure thatBad⊗ is not reachable in the gameAp:

Lemma 4. Let C be a controller forA s.t.C(A) is SNNI. LetC⊗ be a controller onAp defined byC⊗(ρ′) = C(ρ′|1). Then,
Reach(C⊗(Ap)) ∩ Bad⊗ = ∅.

Proof: First C⊗ is well-defined becauseρ′|1 is uniquely defined. LetC be a controller forA s.t.C(A) is SNNI. Assume
Reach(C⊗(Ap)) ∩ Bad⊗ 6= ∅. By definition, there is a runρ′ in Runs(C⊗(Ap)) such that:

ρ′ = ((q0, q
2
0), (~0,~0))

e1−−→ ((q1, q
′
1), (v1, v

′
1))

e2−−→ · · ·
en−−→ ((qn, q

′
n), (vn, v

′
n))

en+1

−−−→ ((qn+1, q
′
n+1), (vn+1, v

′
n+1))

with ((qn+1, q
′
n+1), (vn+1, v

′
n+1)) ∈ Bad⊗ and we can assume(q′i, v

′
i) 6∈ Bad for 1 ≤ i ≤ n (and q20 6∈ Bad). Let ρ = ρ′|1

andw = projΣl
(trace(ρ′)) = projΣl

(trace(ρ)). We can prove (1):ρ ∈ Runs(C(A)) and (2):w 6∈ L(C(A)\Σh). (1) directly
follows from the definition ofC⊗. This implies thatw ∈ L(C(A)/Σh). (2) follows from Lemma 3. By (1) and (2) we obtain
that w ∈ L(C(A)/Σh) \ L(C(A)\Σh) i.e., L(C(A)/Σh) 6= L(C(A)\Σh) and soC(A) does not have the SNNI property
which is a contradiction. HenceReach(C⊗(Ap)) ∩ Bad⊗ = ∅.

If we have a controller which solves the safety game(Ap,Bad⊗), we can build a controller which ensures thatL(C(A)/Σh) ⊆
L(A\Σh). Notice that as emphasized before, this does not necessarily ensure thatC(A) is SNNI.

Lemma 5. Let C⊗ be a controller forAp s.t. Reach(C⊗(Ap))∩Bad⊗ = ∅. LetC(ρ) = C⊗(ρ′) if ρ′|1 = ρ. C is well-defined
andL(C(A)/Σh) ⊆ L(A\Σh).

Proof: Let ρ = (q0,~0)
e1−−→ (q1, v1)

e2−−→ · · ·
en−−→ (qn, vn) be a run ofA. SinceA2 is deterministic and complete there

is exactly one runρ′ = ((q0, q0), (~0,~0))
e1−−→ ((q1, q

′
1), (v1, v

′
1))

e2−−→ · · ·
en−−→ ((qn, q

′
n), (vn, v

′
n)) in Ap s.t. ρ′|1 = ρ. SoC is

well-defined. Now, assume there is somew ∈ L(C(A)/Σh) \ L(A\Σh). Then, there is a runρ in Runs(C(A)) ⊆ Runs(A)
s.t. projΣl

(trace(ρ)) = w, there is a unique runρ ∈ Runs(Ap) s.t. ρ′|1 = ρ and trace(ρ′) = w. First by Lemma 3,last(ρ′) ∈

3Recall thatA2 is deterministic.

12

0

1 2 3

4 3

a, x ≥ 2

h

h b

a, x ≥ 2

Fig. 10. The AutomatonK

Bad⊗. Second, this runρ′ is in Runs(C⊗(Ap)) because of the definition ofC. HenceReach(C⊗(Ap)) ∩ Bad⊗ 6= ∅ which is
a contradiction.

It follows that if C⊗ is the most permissive controller forAp then C(A) is a timed automaton (and can be effectively
computed) because the most permissive controller for safety timed games is memoryless. More precisely, letRG(Ap) be the
the region graph ofAp. C is memoryless onRG(Ap\Σh) becauseA2 is deterministic. The memory required byC is at most
RG(A\Σh) on the rest of the region graph ofRG(Ap).

Assume the safety game(Ap,Bad⊗) can be won andC⊗ is the most permissive controller. LetC be the controller obtained
using Lemma 5. ControllerC ensures thatL(C(A)/Σh) ⊆ L(A\Σh). But as the following example shows, it may be the case
thatC(A) is not SNNI.

Example 9. Consider the TAK of Figure 10 withΣh = {h} andΣc = {a}.
We can computeC(K) from C⊗ which satisfies Reach(C⊗(K ×Σl

K2)) ∩ Bad⊗ = ∅, and is given by the sub-automaton of
K with the plain arrows.C(K) is obviously not SNNI. For the example ofA(1) in Figure 4, if we computeC in the same
manner, we obtainC(A(1)) = A(2) and moreoverL(C(A(1))/Σh) = L(A(1)\Σh). And then the most permissive sub-system
which is SNNI is given byC(A(1)) = A(2) (the guardx ≥ 1 of A(1) is strengthened).

The example of Figure 10 shows that computing the most permissive controller onAp is not always sufficient. Actually, we
may have to iterate the computation of the most permissive controller on the reduced systemC(A).

Lemma 6. Consider the controllerC as defined in Lemma 5. IfC(A)\Σh ≈L A\Σh thenC(A) is SNNI.

Proof: If C(A)\Σh ≈L A\Σh, then,L(C(A)/Σh) ⊆ L(A\Σh) = L(C(A)\Σh). As L(C(A)\Σh) ⊆ L(C(A)/Σh) is
always true,L(C(A)/Σh) = L(C(A)\Σh) and so,C(A) is SNNI.

Let ⊥ be the symbol that denotes non controllability (or the non existence of a controller). We inductively define the sequence
of controllersCi and timed automataAi as follows:

• let C0 be the controller defined byC0(ρ) = 2Σc∪{λ} andA0 = C0(A) = A;
• Let Ai

p = Ai×Σl
Ai

2 andC⊗
i+1 be the most permissive controller for the safety game(Ai

p,Bad⊗i) (⊥ if no such controller
exists). We use the notationBad⊗i because this set depends onAi

2. We defineCi+1 using Lemma 5:Ci+1(ρ) = C⊗
i+1(ρ

′)
if ρ′|1 = ρ. Let Ai+1 = Ci+1(Ai).

By Lemma 6, ifCi+1(Ai)\Σh ≈L Ai\Σh thenCi+1(Ai) is SNNI. Therefore this condition is a sufficient condition for the
termination of the algorithm defined above:

Lemma 7. There exists an indexi ≥ 1 s.t.Ci(Ai−1) is SNNI orCi = ⊥.

Proof: We prove that the region graph ofCi+1(Ai) is a sub-graph of the region graph ofC1(A0) for i ≥ 1. By Lemma 5
(and the remark following it),C1(A0) is a sub-graph ofRG(A×A2). MoreoverC1 is memoryless onA\Σh and requires a
memory of less than|RG(A\Σh)| on the remaining part. Assume on this part, a node ofRG(A×A2) is of the form((q, r), k)
whereq is a location ofA andr a region ofA andk ∈ {1, |RG(A\Σh)|}.

AssumeRG(Ak) is a sub-graph ofRG(Ak−1) for k ≥ 2 andRG(Ak−1\Σh) is sub-graph ofRG(A\Σh). Using Lemma 5,
we can computeAk = Ck(Ak−1) and: (1)RG(Ak\Σh) is a sub-graph ofAk−1\Σh and (2) the memory needed forC⊗

k on
the remaining part is less than|RG(Ak−1)|. Actually, becauseAk−1\Σh is deterministic, no more memory is required for
Ck. Indeed, the memory corresponds to the nodes ofAk\Σh. Thus a node ofRG(Ak) which is not inRG(Ak\Σh) is of the
form ((q, r), k, k′) with k = k′ or k′ = qbad. This implies thatRG(Ak) is a sub-graph ofRG(Ak−1).

The most permissive controllerC⊗
i will either disable at least one controllable transition ofAi−1

p \Σh or keep all the
controllable transitions ofAi−1

p \Σh. In the latter caseAi\Σh = Ai−1\Σh and otherwise|RG(Ai\Σh)| < |RG(Ai−1\Σh)|.
This can go on at most|RG(A\Σh)| steps. In the end eitherAi\Σh = Ai−1\Σh and this implies thatAi\Σh ≈L Ai−1\Σh

(Lemma 6) or it is impossible to controlAi−1 andCi = ⊥. In any case, our algorithm terminates in less than|RG(A)| steps.

To prove that we obtain the most permissive controller whichenforces SNNI, we use the following Lemma:

Lemma 8. If M is a controller such thatL(M(A)/Σh) = L(M(A)\Σh), then∀i ≥ 0 and ∀ρ ∈ Runs(A), M(ρ) ⊆ Ci(ρ).

Proof: The proof is by induction:

13

• for i = 0 it holds trivially.
• Assume the Lemma holds for indices up untili. Thus we haveRuns(M(A)) ⊆ Runs(Ai). Therefore, we can defineM over

Ai andM(Ai) is SNNI. By Lemma 4,M⊗ is a controller for the safety game(Ai
p,Bad⊗i), thereforeM⊗(ρ′) ⊆ C⊗

i+1(ρ
′)

becauseC⊗
i+1 is the most permissive controller. This implies thatM(ρ) ⊆ Ci+1(ρ) by definition ofCi+1.

Using Lemma 7, the sequenceCi converges to a fix-point. LetC∗ denote this fix-point.

Lemma 9. C∗ is the most permissive controller for the SNNI-CSP.

Proof: Either C∗ = ⊥ and there is no way of enforcing SNNI (Lemma 4), orC∗ 6= ⊥ is such thatL(C∗(A)/Σh) =
L(C∗(A)\Σh) by Lemma 5. As for any valid controllerM such thatL(M(A)/Σh) = L(M(A)\Σh) we haveM(ρ) ⊆ C∗(ρ)
for eachρ ∈ Runs(A) (Lemma 8) the result follows.

Lemma 7 proves the existence of a bound on the number of times we have to solve safety games. For a timed automaton
A in dTA, let |A| be the size ofA.

Lemma 10. For a dTAA, C∗ can be computed inO(24.|A|).

Proof: As the proof of Lemma 7 shows, the region graph ofAi is a sub-graph of the region graph ofA1, ∀i ≥ 1,
and the algorithm ends in less than|RG(A)| steps. Computing the most permissive controller forAi

p avoiding Bad⊗i can
be done in linear time in the size of the region graph ofAi

p. As RG(Ai) is a sub-graph ofRG(A1), RG(Ai
p) is a sub-

graph ofRG(A1
p). So we have to solve at most|RG(A)| safety games of sizes at most|RG(A1

p)|. As A1 is a sub-graph of
A0

p = A0 ×Σl
A0

2, |RG(A1)| ≤ |RG(A)|2. And asA1
p = A1 ×Σl

A1
2, |RG(A1

p)| ≤ |RG(A)|3. So,C∗ can be computed in
O(|RG(A)|.|RG(A1

p)|) = O(|RG(A)|4) = O(24.|A|).

Theorem 6. For dTA, the SNNI-CP and SNNI-CSP are EXPTIME-complete.

For the special case of finite automata we even have:

Lemma 11. For finite automataC∗ = C2.

Proof: We know thatL(C2(A)\Σh) ⊆ L(C1(A)\Σh). Suppose that∃w s.t.w ∈ L(C1(A)\Σh) andw 6∈ L(C2(A)\Σh)
(w cannot not be the empty word). We can assume thatw = u.l with u ∈ Σ∗

l , l ∈ Σl ∩ Σc and u ∈ L(C1(A)\Σh)
and u.l 6∈ L(C2(A)\Σh) (l is the first letter which witnesses the non membership property). If l had to be pruned in the
computation ofC2, it is because there is a wordu.l.m with m ∈ Σ∗

u s.t.projΣl
(u.l.m) ∈ L(C1(A)/Σh) butprojΣl

(u.l.m) 6∈
L(C1(A)\Σh). But by definition ofC1, L(C1(A)/Σh) ⊆ L(A\Σh) (Lemma 5) and thusprojΣl

(u.l.m) ∈ L(A\Σh). As
u.l ∈ Σ∗

l , projΣl
(u.l.m) = u.l.projΣl

(m) andprojΣl
(m) ∈ Σ∗

u. Sinceu.l ∈ L(C1(A)\Σh) andprojΣl
(m) ∈ Σ∗

u, we
haveu.l.projΣl

(m) ∈ L(C1(A)\Σh) which is a contradiction. ThusL(C2(A)\Σh) = L(C1(A)\Σh) which is our stopping
condition by lemma 6 and thusC∗ = C2.

It follows that:

Theorem 7. For a finite automatonA in dTA (i.e. such thatA\Σh is deterministic), the SNNI-CSP is PSPACE-complete.

As untimed automata can always be determinized, we can extend our algorithm to untimed automata whenA\Σh non-
deterministic. It suffices to determinizeAi

2, i = 1, 2:

Theorem 8. For a finite automatonA such thatA\Σh is non deterministic, the SNNI-CSP can be solved in EXPTIME.

Proposition 3. There is a family of finite automata(Ai)i≥0 such that:(i) there is a most permissive controllerD∗
i s.t.D∗

i (Ai)
is SNNI and(ii) the memory required byD∗

i is exponential in the size ofAi.

Proof:
Let A be a finite automaton over the alphabetΣ. Define the automatonA′ as given by Figure 11. Assume the automaton

B is the sub-automaton ofA′ with initial state q′0. We takeΣh = {h} = Σu and Σl = Σ = Σc. The most permissive
controllerD s.t.D(A′) is SNNI generates the largest sub-language ofL(A′) s.t.L(A′\Σh) = L(A′/Σh) and thus it generates
L(A) = L(A′\Σh).

The controllerD is memoryless onA′\Σh as emphasized in Lemma 5. It needs finite memory on the remaining parti.e., on

B. The controllerD on B gives for each run a set of events ofΣ that can be enabled:D(q0
h

−−→ q′0
w

−−→ q′0) = X with
w ∈ Σ∗ andX ⊆ Σl.As B is deterministic,D needs only the knowledge ofw and we can writeD(hw) ignoring the states of
A′. ForB we can even writeD(w) instead ofD(hw). Define the equivalence relation≡ onΣ∗ by: w ≡ w′ if D(w) = D(w′).
Denote the class of a wordw by [w]. BecauseD is memory bounded,Σ∗

/≡ is of finite index which is exactly the memory
needed byD.

Thus we can define an automatonD/≡ = (M, m0,Σ,→) by: M = {[w] | w ∈ Σ∗}, m0 = [ε], and [w]
a

−−→ [wa] for
a ∈ D(hw). D/≡ is an automaton which acceptsL(A) (and it is isomorphic toD(B)) and the size of which is the size ofD
becauseB has only one state. This automaton is deterministic and thusD/≡ is also deterministic and acceptsL(A). There is a

14

•
q0

•
q′0

h
Σl

A

Fig. 11. AutomatonB

family (Ai)i≥0 of non-deterministic finite automata, such that the deterministic and language-equivalent automaton of eachAi

requires at least exponential size. For each of theseAi we construct the controllerDi
/≡ as described before, and this controller

must have at least an exponential size (w.r.t. toAi). This proves the EXPTIME lower bound.
In this section we have studied the strong non-deterministic non-interference control problem (SNNI-CP) and control synthesis

problem (SNNI-CSP) in the timed setting. The main results wehave obtained are: (1) the SNNI-CP can be solved ifA\Σh can
be determinized and is undecidable otherwise; (2) the SNNI-CSP can be solved by solving a finite sequence of safety games
if A\Σh can be determinized. We have provided an optimal algorithm to solve the SNNI-CP and CSP in this case (although
we have not proved a completeness result).

A Timed Automaton A Finite Automaton
A\Σh Non-Det. A\Σh Det. A\Σh Non-Det. A\Σh Det.

SNNI-CP undecidable (Theorem 3) EXPTIME-C (Theorem 6) PSPACE-C (Theorem 4) PTIME (Corollary 3)
SNNI-CSP undecidable (Theorem 3) EXPTIME-C (Theorem 6) EXPTIME (Theorem 8) PSPACE-C (Theorem 7)

TABLE III
SUMMARY OF THE RESULTS FORSNNI-CPAND SNNI-CSP

The summary of the results is given in Table III.

VI. BSNNI AND CSNNI CONTROL PROBLEMS

In this section, we will show that for more restrictive non-interference properties (CSNNI and BSNNI) the control problem
presents a major drawback: in the general case, there is no most permissive controller.

The CSNNI-Control ProblemCSNNI-CP (respectively BSNNI-Control ProblemBSNNI-CP) we are interested in is the
following:

Is there a controllerC s.t.C(A) is CSNNI (respectively BSNNI) ? (CSNNI-CP, BSNNI-CP)

The CSNNI-Controller Synthesis ProblemCSNNI-CSP (respectively BSNNI-Controller Synthesis ProblemBSNNI-CSP)
asks to compute a witness when the answer to the CSNNI-CP (respectively BSNNI-CSP) is “yes”.

A. CSNNI-CP and CSNNI-CSP

Theorem 9. For finite automata the CSNNI-CP is in PTIME.

Proof:
Let A, be a finite automaton, we show that there exists a controllerC such thatC(A) is CSNNI if and only ifA\Σc is

CSNNI.
The if direction is obvious: the controllerC∀ that prevents any controllable action from occurring is defined by:C∀(ρ) = ∅,

∀ρ ∈ Runs(A). It is easy to see thatC∀(A) is isomorphic toA\Σc and thus bisimilar.
This only if direction is proved as follows: letA1 andA2 be two finite automata over alphabetΣε such thatA1 weakly

simulatesA2. ConsiderA′
1 = A1\{e} andA′

2 = A2\{e} for e ∈ Σ. Clearly,A′
1 simulatesA′

2 (by definition of the simulation
relation).

Therefore, if there existsC s.t. C(A) is CSNNI, then so isC(A)\Σ′ for any Σ′ ⊆ Σ. It follows thatC(A)\Σc must be
CSNNI.

The CSNNI-CP reduces to the CSNNI-VP which is PTIME for finiteautomata.

Theorem 10. For the class of deterministic finite automata, the CSNNI-CSP is PSPACE-complete.

Proof: By Lemma 2, for deterministic automata, SNNI is equivalent to CSNNI. Hence the CSNNI-CSP is equivalent to
the SNNI-CSP which is PSPACE-complete by Theorem 7.

15

q0

q1

q2

q3

ℓ1, x > 1

h, x > 4

ℓ2

(a) The automatonA

q0

q1

x ≤ 4

ℓ1, x > 1

(b) The automatonC(A)

Fig. 12. Counterexample of theorem 9 in timed setting

q0

q1 q2

q3 q4

q5

q6

q7

ℓ1

ℓ1

ℓ2 ℓ3

h

ℓ1

ℓ2

(a) AutomatonC1(Ac)

q0

q1 q2

q3 q4

q5

q6

q8

ℓ1

ℓ1

ℓ2 ℓ3

h

ℓ1

ℓ3

(b) AutomatonC2(Ac)

Fig. 13. AutomataC1(Ac) andC2(Ac)

In the timed setting, the previous reduction to a verification problem cannot be applied as illustrated by the following
example 10.

Example 10. Let A be the deterministic timed automaton given in figure 12(a) with Σl = {ℓ1, ℓ2}, Σh = {h} andΣc = {ℓ1}.
A\Σc is neither CSNNI nor SNNI (here SNNI and CSNNI are equivalentsinceA is deterministic). However there exists a
controller C such thatC(A) is both CSNNI and SNNI.C(A) can be given by the timed automaton given in figure 12(b).

However for the timed automata indTA, thanks to Lemma 2 and Theorems 6 and 7, we have:

Theorem 11. For timed automata in dTA, the CSNNI-CP and CSNNI-CSP are EXPTIME-complete.

Proof: By Lemma 2 the CSNNI-CP/CSNNI-CSP is equivalent to the SNNI-CP/SNNI-CSP fordTA and by Theorem 6, it
follows that CSNNI-CP and CSNNI-CSP are EXPTIME-complete.

Moreover, fordTA, thanks to the algorithm of section V there always exists a most permissive controller for CSNNI. However
we will now show that there is a non-deterministic finite automaton s.t. there is no most permissive controller ensuring CSNNI.

Proposition 4. There is no most permissive controller ensuring CSNNI for the finite automatonA 6∈ dTA of figure 5(a) (i.e.
such thatA\Σh is non deterministic) withΣh = {h}, Σl = {ℓ1, ℓ2, ℓ3} andΣc = {ℓ2, ℓ3}.

Proof:
Let Ac be the finite automaton of figure 5(a) withΣh = {h}, Σl = {ℓ1, ℓ2, ℓ3} andΣc = {ℓ2, ℓ3}. Ac 6∈ dTA sinceAc\Σh

is non-deterministic. This automaton is not CSNNI. The controllersC1 andC2 of figure 13 make the system CSNNI. However
(C1 ∪ C2)(Ac) = Ac is not CSNNI and, by construction is the only possible controller more permissive thanC1 andC2.
Therefore, there is no most permissive controller ensuringCSNNI for Ac with Σc.

B. BSNNI-CP and BSNNI-CSP

We first show by example 11 that even if there exists a controller for a finite automatonA and a controllable alphabetΣc

ensuring BSNNI (i.e. the answer to BSNNI-CP istrue), it is possible to haveA\Σc not BSNNI.

Example 11. Let Ai be the finite automaton of figure 14 withΣh = {h1, h2} et Σl = {ℓ}. This automaton is BSNNI, then
the answer to BSNNI-CP istrue for all Σc. However, forΣc = {h2}, the automatonAi\Σc = Ae is not BSNNI.

16

q0

q1

q2 q3

q4

ℓ

h1 h2

ℓ

Fig. 14. The automatonAi

q0

q1

ℓ

(a)
Automaton
C1(Ae)

q0 q2
h

(b) AutomatonC2(Ae)

Fig. 15. AutomataC1(Ae) andC2(Ae)

We will now prove that for deterministic finite automaton there is not always a most permissive controller that enforces
BSNNI. This result is in contrast with CSNNI where a most permissive controller always exists fordTA.

Proposition 5. There is no most permissive controller ensuring BSNNI for the deterministic finite automaton of figure 6(a)
with Σh = {h}, Σl = {ℓ} andΣc = {ℓ, h}.

Proof:
Let Ae be the deterministic finite automaton of figure 6(a) withΣh = {h}, Σl = {ℓ} andΣc = {ℓ, h}. This automaton is

not BSNNI. The controllersC1 andC2 of figure 15 make the system BSNNI. However,(C1 ∪ C2)(Ae) = Ae is not BSNNI
and, by construction is the only possible controller more permissive thanC1 andC2. Therefore, there is no most permissive
controller ensuring BSNNI forAe with Σc.

A Timed Automaton A Finite Automaton
A\Σh Non-Det. A\Σh Det. A\Σh Non-Det. A\Σh Det.

CSNNI-CP open EXPTIME-C (Theorem 11) PTIME (Theorem 9) PTIME (Theorem 9)
CSNNI-CSP NMPC∗ (Proposition 4) EXPTIME-C (Theorem 11) NMPC∗ (Proposition 4) PSPACE-C (Theorem 10)
BSNNI-CSP NMPC∗ (Proposition 5) NMPC∗ (Proposition 5) NMPC∗ (Proposition 5) NMPC∗ (Proposition 5)

* NMPC means that there not always exists a most permissive controller.

TABLE IV
SUMMARY OF THE RESULTS FORCSNNI AND BSNNI CONTROL PROBLEMS

The summary of the results for CSNNI and BSNNI Control Problems is given in Table IV.

VII. C ONCLUSION AND FUTURE WORK

In this paper we have studied the strong non-deterministic non-interference control problem and control synthesis problem
in the timed setting. The main results we have obtained are: (1) the SNNI-CP can be solved ifA\Σh can be determinized
and is undecidable otherwise; (2) the SNNI-CSP can be solvedby solving a finite sequence of safety games ifA\Σh can be
determinized; (3) there is not always a least restrictive (most permissive) controller for (bi)simulation based non-interference
even for untimed finite automata. However, there is a most permissive controller for CSNNI ifA\Σh is deterministic and
CSNNI-CP and CSNNI-CSP are EXPTIME-complete in this case inthe timed setting.

The summary of the results is given in Tables I and II for the verification problems and Tables III and IV for the control
problems.

17

Our future work will focus on the CSNNI-CP (and BSNNI-CP) as even when there is no most permissive controller it is
interesting to find one. Another future direction will consist in determining conditions under which a least restrictive controller
exists for the BSNNI-CSP.

REFERENCES

[1] R. Focardi, R. Gorrieri, Classification of security properties (part I: Information flow), in: R. Focardi, R. Gorrieri (Eds.), Foundations of Security Analysis
and Design I: FOSAD 2000 Tutorial Lectures, Vol. 2171 of Lecture Notes in Computer Science, Springer-Verlag, Heidelberg, 2001, pp. 331–396.

[2] A. Sabelfeld, A. Myers, Language-based information-flow security, IEEE Journal on Selected Areas in Communications 21 (1) (2003) 1–15.
[3] R. Focardi, R. Gorrieri, The compositional security checker: A tool for the verification of information flow securityproperties, IEEE Trans. Softw. Eng.

23 (9) (1997) 550–571.
[4] R. Focardi, A. Ghelli, R. Gorrieri, Using non interference for the analysis of security protocols, in: Proceedings of DIMACS Workshop on Design and

Formal Verification of Security Protocols, 1997.
[5] A. Bossi, C. Piazza, S. Rossi, Compositional information flow security for concurrent programs, J. Comput. Secur. 15(3) (2007) 373–416.
[6] G. Barthe, D. Pichardie, T. Rezk, A certified lightweightnon-interference java bytecode verifier, in: Proceedings of the 16th European conference on

Programming, ESOP’07, Springer-Verlag, 2007, pp. 125–140.
[7] F. Kammuller, Formalizing non-interference for a simple bytecode language in coq., Formal Asp. Comput. 20 (3) (2008) 259–275.
[8] M. Krohn, E. Tromer, Noninterference for a practical difc-based operating system, in: Proceedings of the 2009 30th IEEE Symposium on Security and

Privacy, SP ’09, IEEE Computer Society, Washington, DC, USA, 2009, pp. 61–76.
[9] R. van der Meyden, C. Zhang, Algorithmic verification of noninterference properties, in: Proceedings of the Second International Workshop on Views

on Designing Complex Architectures (VODCA 2006), Vol. 168 of Electronic Notes in Theoretical Computer Science, Elsevier, 2006, pp. 61–75.
[10] D. D’Souza, K. R. Raghavendra, B. Sprick, An automata based approach for verifying information flow properties, Electr. Notes Theor. Comput. Sci.

135 (1) (2005) 39–58.
[11] A. Saboori, C. Hadjicostis, Opacity-enforcing supervisory strategies for secure discrete event systems, in: the47th IEEE Conference on Decision and

Control, 2008.
[12] F. Cassez, J. Dubreil, H. Marchand, Dynamic Observers for the Synthesis of Opaque Systems, in: 7th Int. Symp. on Automated Technology for Verification

and Analysis (ATVA’09), Vol. 5799 of Lecture Notes in Computer Science, 2009, pp. 352–367.
[13] F. Cassez, J. Dubreil, H. Marchand, Synthesis of opaquesystems with static and dynamic masks, Formal Methods in System Design 40 (1) (2012)

88–115.
[14] F. Cassez, The Dark Side of Timed Opacity, in: Proc. of the 3rd International Conference on Information Security andAssurance (ISA’09), Vol. 5576

of Lecture Notes in Computer Science, Copyright Springer, Seoul, Korea, 2009, pp. 21–30.
[15] F. Cassez, J. Mullins, O. H. Roux, Synthesis of non-interferent systems, in: 4th Int. Conf. on Mathematical Methods, Models and Architectures for

Computer Network Security (MMM-ACNS’07), Vol. 1 of Communications in Computer and Inform. Science, Copyright Springer, 2007, pp. 307–321.
[16] Y. Moez, F. Lin, N. Ben Hadj-Alouane, Modifying security policies for the satisfaction of intransitive non-interference, IEEE Transactions on Automatic

Control 54 (8) (2009) 1961–1966.
[17] G. Gardey, J. Mullins, O. H. Roux, Non-interference control synthesis for security timed automata, in: 3rd International Workshop on Security Issues in

Concurrency (SecCo’05), Electronic Notes in Theoretical Computer Science, Elsevier, San Francisco, USA, 2005.
[18] G. Benattar, F. Cassez, D. Lime, O. H. Roux, Synthesis ofNon-Interferent Timed Systems, in: Proc. of the 7th Int. Conf. on Formal Modeling and

Analysis of Timed Systems (FORMATS’09), Vol. 5813 of Lecture Notes in Computer Science, Budapest, Hungary, 2009, pp. 28–42.
[19] R. Alur, D. Dill, A theory of timed automata, Theoretical Computer Science 126 (1994) 183–235.
[20] O. Finkel, On decision problems for timed automata, Bulletin of the European Association for Theoretical ComputerScience 87 (2005) 185–190.
[21] O. Maler, A. Pnueli, J. Sifakis, On the synthesis of discrete controllers for timed systems, in: STACS ’95, 1995.
[22] D. D’Souza, P. Madhusudan, Timed control synthesis forexternal specifications, in: STACS’02, Vol. 2285 of LNCS, Springer, 2002, pp. 571–582.
[23] L. J. Stockmeyer, A. R. Meyer, Word problems requiring exponential time: Preliminary report, in: STOC, ACM, 1973, pp. 1–9.
[24] F. Laroussinie, P. Schnoebelen, The state-explosion problem from trace to bisimulation equivalence, in: Foundations of Software Science and Computation

Structures (FoSSaCS 2000), Vol. 1784 of Lecture Notes in Computer Science, Springer-Verlag, 2000, pp. 192–207.
[25] K. C̆er̄ans, Decidability of bisimulation equivalence for parallel timer processes, in: Proceedings of the Fourth Workshop onComputer-Aided Verification,

LNCS, 1992.
[26] S. Tasiran, R. Alur, R. P. Kurshan, R. K. Brayton, Verifying abstractions of timed systems, in: U. Montanari, V. Sassone (Eds.), CONCUR, Vol. 1119

of Lecture Notes in Computer Science, Springer, 1996, pp. 546–562.
[27] T. Henzinger, P. Kopke, Discrete-time control for rectangular hybrid automata, in: ICALP ’97, 1997.

	I Introduction
	II Preliminaries
	III Formal Definitions of Non-Interference Properties
	III-A Strong Non-Deterministic Non-Interference (SNNI)
	III-B Cosimulation Strong Non-Deterministic Non-Interference (CSNNI)
	III-C Bisimulation Strong Non-Deterministic Non-Interference (BSNNI)

	IV Verification of Non-Interference Properties for Timed Automata
	IV-A SNNI verification
	IV-B Verification of CSNNI and BSNNI properties

	V The SNNI Control Problem
	V-A Preliminary Remarks
	V-B SNNI-VP versus SNNI-CP
	V-C Algorithms for SNNI-CP and SNNI-CSP

	VI BSNNI and CSNNI Control Problems
	VI-A CSNNI-CP and CSNNI-CSP
	VI-B BSNNI-CP and BSNNI-CSP

	VII Conclusion and Future Work
	References

