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Abstract

In this paper, we focus on the synthesis of secure timed mgstehich are modelled as timed automata. The security
property that the system must satisfy is@n-interferenceroperty. Intuitively, non-interference ensures the abseof any causal
dependency from a high-level domain to a lower-level dom&frious notions of non-interference have been defined én th
literature, and in this paper we focus 8trong Non-deterministic Non-Interferen(@NNI) and two (bi)simulation based variants
thereof (CSNNI and BSNNI). We consider

timed non-interference properties for timed systems specifietirgd automateand we study the two following problems:
(1) check whether it is possible to find a sub-system so thatribisinterferent; if yes2) compute a (largest) sub-system which
is non-interferent.

Index Terms

Non-Interference, Timed Automaton, Safety Timed Games)it©g Synthesis

I. INTRODUCTION

Modern computing environments allow the use of programsdhasent or fetched from different sites. Such programs may
deal with secret information such as private data (of a usecjassified data (of an organization). One of the basic eors
in such a context is to ensure that the programs do not leaitsendata to a third party, either maliciously or inadeeaitty.
This is often calledsecrecy

In an environment with two partiegformation flow analysislefines secrecy as: “high-level information never flows into
low-level channels”. Such a definition is referred to asam-interferenceoroperty, and may capture any causal dependency
between high-level and low-level behaviors.

We assume that there are two users and the set of actions sfyshem.sS is partitioned intoX;, (high-level actions) and
¥, (low-level actions). The non-interference properties weus on are strong non-deterministic non-interferenceNI3N
cosimulation-based strong non-deterministic non-ietenfice (CSNNI) and bisimulation-based strong non-detastic non-
interference (BSNNI). Thaon-interference verification problerfor a given systens$, consists in checking whethéris non-
interferent. It is worth noticing that non-interferent pesties are out of the scope of the common safety/livenessification
of system properties [1].

There is a large body of works on the use of static analysisnigoes to guarantee information flow policies. A general
overview can be found in_[2]. Verification of information flogecurity properties [1],[[3] can be applied to the analysis
of cryptographic protocols where many uniform and concisaracterizations of information flow security propertiesg(
confidentiality, authentication, non-repudiation or ayoity) in terms of non-interference have been proposed.gxample,
the Needham-Schroeder protocol can be proved insecurefioyngdethe security property using SNNII[4], and other exaespl
of the use of non-interference in computer systems and gotsdor checking security properties can be found_in [5], [@],

(8]

In case a system is not non-interferent, it is interestingtestigate how and if it cam be rendered non-interferent.

This is the scope of this paper where we consider the problesymthesizinghon-interferent timed systems. In contrast
to verification, thenon-interference synthesis probleassumes the system @pen i.e., we can restrict the behaviors 6f
some events, from a particular s8¢ C X; U X5, of S can be disabled. Theon-interference control problefior a systemS
asks the following: “Is there a controll€¥ s.t. C'(S) is non-interferent?” wher€'(S) is “S controlled byC”. The associated
synthesis problemasks to compute a witness controllérwhen one exists.

As mentioned earlier, SNNI is expressive enough for exartplerove that the Needham-Schroeder protocol is flawed [4].
Controller synthesis enables one to find automatically thehfes) to apply to make such a protocol secure. The use of
dense-time to model the system clearly gives a more accarmteealistic model for the system and a potential attadier t
can measure time.

Related Work. In [9] the authors consider the complexity of many non-ifgernceverification problems but synthesis is not
addressed. IN_[10] an exponential time decision proceduretiecking whether a finite state system satisfies a giveic Bas

G. Benattar is with ClearSy (Safety Critical Systems Engiimg Company) Paris, France.
D. Lime and O. H. Roux are with IRCCyN laboratory, LUNAM Unigité, Ecole Centrale Nantes, France.
F. Cassez is with National ICT Australia, Sydney, Australia


http://arxiv.org/abs/1207.4984v1

Security Predicate (BSP) is presented but the synthesllgurois not addressed. Recently supervisory control forciypa
property has been studied in [11], [12], [13] in the untimedtting. Opacity is undecidable for timed systems| [14] angsth
the associated control problem is undecidable as well_Bh fie controller synthesis problem for non-interferencepgrties
is addressed for untimed systems. [Inl[16], supervisoryrobi enforce Intransitive non-interference for threeelesecurity
systems is proposed in the untimed setting.

The non-interference synthesis problem for dense-tim&esys specified by timed automata was first considered_ih [17].
The non-interference property considered(inl [17] is $keenon-interference property, which is less demanding thanotie
we consider here. This paper extends the results of [18]taBNiNI control problemsor timed systems: SectidnlV addresses
the SNNI control problem for timed systems and is a detailesgntation of the result of [18] with proofs of the theorems
that were unpublished. Sections IIl dnd IV are new and thtergrovides a new result, Theoréin 2. Secfioh VI addresses th
CSNNI and BSNNI control problems for timed systems and atsttains new results: Theoreinq 9] 11 and Propositibns 4
and®.

Our Contribution. In this paper, we first exhibit a clagbl'A of timed automata for which the SNNI verification problem is
decidable. The other main results are: (1) we prove thatdifegziwhether there is a controll€r for a timed automatom
such that (s.t. in the followingd’(A) is SNNI, is decidable for the previous clad¥A (2) we reduce the SNNI controller
synthesis problem to solving a sequencesafety timed gameg3) we show that there is not always a most permissive
controller for CSNNI and BSNNI; (4) we prove that the contpobblem for CSNNI is decidable for the clad$Aand that the
CSNNI controller synthesis problem falTA reduces to the SNNI controller synthesis problem. We alge thie theoretical
complexities of these problems.

Organization of the paper. Section[dl recalls the basics of timed automata, timed laggs and some results on safety
timed games. Sectidnlll gives the definition of the non+ifgeence properties we are interested in. Sedfidn IV adéethe
verification of non-interference properties in the timettisg. Sectiori’V gives the definition of the non-interferersynthesis
problem and presents the main result: we show that thereaigadt subsystem which is SNNI and this subsystem is efédgti
computable. Section VI addresses the control problem amdrater synthesis problem for CSNNI and BSNNI properties.
Finally, we conclude in Sectidn VII.

Il. PRELIMINARIES

Let R, be the set of non-negative reals aNdthe set of integers. Lek be a finite set of positive real-valued variables
calledclocks A valuation of the variables itX is a functionX — R, that can be written as a vector Efjf. We let(x be
the valuation s.t0x (z) = 0 for eachz € X and usel when X is clear from the context. Given a valuationand R C X,
v[R — 0] is the valuation s.tv[R — 0](x) = v(z) if = ¢ R and0 otherwise. An atomic constraint (ovef) is of the form
x<e, with z € X, e {<,<,=,>,>} andc € N. A (convex) formula is a conjunction of atomic constrair@$X) is the
set of convex formulas. Given a valuationover X) and a formulay over X, ~(v) is the truth value, iB = {true, false},
of v when each symbat in « is replaced by(z). If ¢t € R4, we letv + ¢ be the valuation s.t{w + t)(z) = v(z) +t. We let
|V| be the cardinality of the sét.

Let ¥ be a finite sete ¢ ¥ and>° = ¥ U {e}. A timed wordw over X is a sequencev = (dp,ag)(01,a1) - (0, an)
s.t. (§;,a;) € Ry x X for 0 < i < n whered; represents the amount of time ela;ﬂ;bétweenai,l anda;. TX* is the set
of timed words oveix. We denote byuv the concatenatiorof two timed wordsu andwv. As usuale is also the empty word
s.t. (01,¢)(02,a) = (01 + d2,a): this means that language-wise, we can always eliminate #hetion by taking into account
its time interval in the next visible action. Given a timedrdav € TY* and L C ¥ the projectionof w over L is denoted
by proj;(w) and is defined byproj; (w) = (do,b0)(d1,b1) - - - (0, br) With b; = a; if a; € L andb; = ¢ otherwise. The
untimedprojection ofw, Untimedw), is the wordaga - - - a,, of X*.

A timed languagds a subset of'’¥*. Let L be a timed language, the untimed languagelofs UntimedL) = {v €
¥* | Jw e L s.t. v=Untimedw)}.

Definition 1 (Timed Transition System (TTS)A timed transition system (TTS$ a tupleS = (Q, qo, X°, —) whereQ is a
set of statesg is the initial state,> a finite alphabet of actions»C @ x £ UR, x @ is the transition relation. We use the
notationq = ¢’ if (¢, e,q') €—. Moreover, TTS should satisfy the classical time-relatedditions wherel, d’ € Rx¢: i) time

determinismi(q % ¢) A (¢ % @) = (¢’ = ¢"), ii) time additivity: (¢ % ¢') A (¢ S ¢") = (¢ 2% ), i) null delay:
Vg :q > g, and iv) time continuity{q % ¢') = (Vd' < d,3¢",q % ¢").

A run p of S from g is a finite sequence of transitiops= gy = ¢1 = -+ <% ¢, S.t. (s, €4, giy1) €= for0 <i <n—1.
We denote bylast(p) the last state of the sequenice, the stateg,,. We letRungq, S) be the set of runs fromg in S and

RungS) = Rungqo,S). We write ¢ == ¢’ if there is a rung —— --- = ¢ from ¢ to ¢ i.e, == %' (—=)«. Given

a €

a €Y UR,, we define== %'£. 2,5 We write gy —— g, if there is a run fromy, to ¢,.. The set ofreachablestates

1For ¢ = 0 this is the amount of time since the system started.



in RungS) is ReacliS) = {¢|q — ¢}. Each run can be written in a normal form where delay and efisctransitions
alternatei.e., p = gy 2<% gy 25 o 2l g S g/ Thetrace of p is trace(p) = (5o, €0) (61, €1) -+ (O, €0).

Definition 2 (Timed automata (TA)) A timed automaton (TAjJs a tuple A = (Q, qo, X, X%, E, Inv) where: gy € Q is the
initial location; X is a finite set of positive real-valued clockss is a finite set of actionsf C Q x C(X) x X¢ x 2% x Q

is a finite set of edges. An edge v, a, R,q’) goes fromg to ¢/, with the guardy € C(X), the actiona and the reset set
R C X; Inv: Q — C(X) is a function that assigns an invariant to any location; weuie that the atomic formulas of an
invariant are of the forme < ¢ with e {<, <}.

A finite (or untimed) automator = (Q, qo, X°, E) is a special kind of timed automaton wifti = &, and consequently all
the guards and invariants are vacuously true. A timed autemé is deterministicif for (q1,7v,a, R, ¢2), (¢1,7,a, R, ¢}) €
E,v ANy +# false = ¢2 = ¢5 and R = R’. We recall that timed automata cannot always be deterndnize. find a
deterministic TA which accepts the same language as a nemrdi@istic one, se€ [19]), and moreover, checking whether
timed automaton is determinizable is undecidable [20].

Definition 3 (Semantics of Timed automatajhe semanticsof a timed automatom = (Q, go, X, X%, E, Inv) is the TTS
S4 = (89,50,%°, =) with S = Q x (RT)¥X, 59 = (qo,0), and — defined as follows:

~v(v) = true
(q,v) % (¢',v") iff 3(g,7,a,R,q') € E such that{ o' =v[R s 0]
Inv(¢’)(v') = true

vV=v4+4
(g,v) LN (q,0") iff Vo', 0 < <6,
Inv(q)(v + ") = true

If s = (q,v) is a state ofS“, we denote by + J the (only) state reached aftéitime units,i.e., s+ 6 = (¢,v+J). The sets
of runs of A is defined aRungA) = RungS#) whereS* is the semantics ofl. A timed wordw € TX* is generatecby A
if w = trace(p) for somep € RungA). The timed language generated Ay L(A), is the set of timed words generated Ay

Definition 4 (Language equivalencewo automatad and B are language equivalentienoted byd ~, B, if L(A) = L(B)
i.e., they generate the same set of timed words.

Definition 5 (Simulation) Let 77 = (S1, 8§, X%, —1), T2 = (52, 82, ¢, —2) be two TTS. LeR C S; x S2 be a relation
s.t. R is total for S5. R is a weak simulation of; by 7; iff:
1) s%’Rs%,
2) Y(s,p) € S1 x Sa, such thatsRp:
o If p =, p’ then3s’ such thats =, s’ and s'Ryp/,
e Ya € XUR,, if p 2, p’ then3s’ such thats = s’ and s'Rp/.
T: weakly simulateds if there exists a weak simulatidR of 73 by 7; and we notel; Cyy 7>. Let A; and As be two timed
automata, we say thatl; weakly simulatesi; if the semantics ofd; weakly simulates the semantics 4§, and we note
Ay By As.

Definition 6 (Cosimulation) Two timed automatad; and A, are co-similariff A; C,, As and As Ty A;. We note
Ay =ew Ag
Definition 7 (Bisimulation) Two timed automatal; and A are bisimilar iff there exists a simulatio® of A, by A; such
that R ! is a weak simulation ofi; by A,. We noted; ~, As.

Note that when na transition exists, we obtaistrong versions of similarity and bisimilarity.

Definition 8 (Product of timed automatalet A, = (Q1,qo1,X1,%%, E1, Invy) and Ay = (Q2, o2, Xo, X5, Ea, Invs)
be two TA withX; N X, = @. Let ¥, C X. The synchronized produatf 4; and A, w.r.t. X, is the timed automaton
Ay x5, Az = (Q1 X Q2, (g1, qo2), X1 U X2, X¢, E, Inv) whereE is defined as follows:
o ((QIan)a’yl AW?aaaRl U R27 (qlhqé)) er If ac Eav (qla/ylaaaRlaqll) S El and (q21727a1R27qé) S E21

)s

) R,q}) € Ey and g = ¢2
. , ca, R, (¢}, ¢5)) e Eifae X\ ¥, and (01,7,0, By 1 2
((ql q2),7y (ql QQ)) \ { or (QQ,’Y,G,R, qé) € E, and qll T

and whereInv((q1,g2)) = Invi(q1) A Inve(qa).

It means that synchronization occurs only for action&jn When it is clear from the context we omit the subscbigtin
X,-



Moreover, in the sequel we will use two operators on TA: thet fime gives amabstractedautomaton and simply hides a set
of labelsL C ¥. Given a TAA = (Q, g0, X, X%, E, Inv) and L C 3 we define the TAA/L = (Q, qo, X, (X\L)¢, EL, Inv)
where(q,v,a,R,q') € E;, <= (¢,7,a,R,q¢) € E fora € X\L and(q,v,¢,R,¢') € E. < (q,7,a,R,q") € E for
a € LU{e}. Therestrictedautomaton cuts transitions labeled by the letter§ il ©: Given a TAA = (Q, qo, X, %, E, Inv)
and L C ¥ we define the TAA\L = (Q, g0, X, X\ L, Er, Inv) where(q,v,a,R,q¢') € B, < (q,7,a,R,q') € E for
a€X\L.

We will also use some results on safety control for timed gamkich have been introduced and solvedLin [21].

Definition 9 (Timed Game Automaton (TGA))A Timed Game Automaton (TGAX = (Q,qo, X, %, E, Inv) is a timed
automaton with its set of actioris partitioned intocontrollable(3.) and uncontrollable(y:,) actions.

Let A be a TGA andBadC Q x Rﬁf be the set of bad states to avolsad can be writtenU,<;<x (¢;, Z;), with eachZ;
defined as a conjunction of formulas 6{X) and eacl; € @ . The safety control problenfor (A, Bad) is: decide whether
there is a controller to constantly avoghd Let A be a fresh special symbol not ¥ denoting the action “do nothing”.

A controller C for A is a partial function frorRungA) to 2=<“{A, We require that/p € RungA), if a € C(p) N X, then
last(p) % (¢',v") for some(q’,v’) and if A € C(p) thenlast(p) 2, (¢’,v") for somed > 0. A controllerC is state-basedr
memorylessvheneveivp, o’ € RungA), last(p) = last(p’) implies thatC(p) = C(p’).

Remark 1. We assume a controller gives a set of actions that are enakhech differs from standard definitions [21] where
a controller only gives one action. Nevertheless for safetyed games, one computes a most permissive controllene(ié t
is one) which gives for each state the largest set of actiomshware safe. It follows that any reasonabked, Non-Zeno)
sub-controller of this most permissive controller avoille set of bad states.

C(A) defines ‘A supervised/restricted bg” and is inductively defined by its set of runs:
e (0,0) € RungC(A)),
o if p € RungC(A)) andp = s’ € RungA), thenp — s’ € RungC(A)) if one of the following three conditions holds:
1) e Xy,
2) ecX.NCp),
3) ec Ry andVi s.it. 0< 46 <e,last(p) SN last(p) + 6 A X € C(p SN last(p) + 0).
C(A) can also be viewed as a TTS where each state is a ruhafd the transitions are given by the previous definition.
is awinning controller for (A4, Bad) if ReaciC(A)) N Bad= @. For safety timed games, the results are the following [21],
[22]:
« it is (EXPTIME-complete to decide whether there is a winnaumtroller for a safety gamgéA, Bad);
« in case there is one, there igv@st permissiveontroller which is memoryless on the region graph of the T&AThis
most permissive controller can be represented by a TA. Thisraeans that the set of runs@f A) is itself the semantics
of a timed automaton, that can be effectively built from

IIl. FORMAL DEFINITIONS OFNON-INTERFERENCEPROPERTIES

In the sequel, we will consider Timed Automata defined on drofactionsY = ¥; U X, with ¥; N X, = @, whereX;,
are thehigh levelactions and; the low levelactions. In order to define the different classes of non fiatence properties
on an automaton!, we are going to compard\%;, and A/%; w.r.t. different criteria.

A. Strong Non-Deterministic Non-Interference (SNNI)

The propertyStrong Non-Deterministic Non-Interferen¢€8NNI) has been introduced by Focardi and Gorrierilin [1] as a
trace-basedyeneralization of non-interference for concurrent syste8NNI has been extended to timed models_in [17].

Definition 10. A timed automatom is SNNI iff A\X), =, A/,

Since finite automata are timed automata with no clocks, #fmition also applies to finite automata.
Moreover, asC(A\X,) C L(A/Xy), we can give a simple characterization of the SNNI property:

Proposition 1. A timed automatom is SNNI iff L(A/X),) C L(A\Zh).

Example 1. Let us consider the automatof, of figure[I(a) with:; = {h} and X, = {¢}. This automaton is not SNNI,
becauseL(A\X};) = ¢ whereasL(A/Xy) = £ . The automatom, is SNNI.

As demonstrated by the following examplés 2 Ahd 3, a timedmaatonA can be non SNNI whereas its untimed underlying
automaton is SNNI andl can be SNNI whereas its untimed underlying automaton is not.

Example 2. Let us consider the timed automatdy of figure[2(a), with>;, = {h} andX; = {¢}. It is not SNNI sinc€2.5, ¢)
is accepted by, />, but not byA,\X,,. Its untimed underlying automatody, is SNNI sinceC(A,\Xy,) = {¢} = L(An/Zh).
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Fig. 2. A non SNNI timed automaton and its untimed underlyangomaton which is SNNI

Example 3. Let us consider the timed automatoty of figure[3(@), withy;, = {h} et ¥, = {{1,4>}. It is SNNI, since
L(A;\Xr) = L(A;/2). Its untimed underlying automatad, is not SNNI since; - £2 is accepted by4; /X, but not by
Ak\Eh.

Example 4 (SNNI). Figure[4 gives examples of system@:) which are SNNI and not SNNI depending on the value of integer
k. The high-level actions ar&;, = {h} and the low-level actions arE; = {i}. (4,1) with 1 < § < 2 is a trace ofA(1)/%),
but not of A(1)\X;, and so,A4(1) is not SNNI.A(2) is SNNI as we can see that(2)/%, =, A(2)\X;.

Finally since SNNI is based on language equivalence, we travéollowing lemma:
Lemma 1. If A’ =, A, thenA is SNNI< A’ is SNNI.

Proof: First L(A/¥y) = projy, (L(A)) = projy, (L(A")) = L(A'/Eh). Second L(A\Xy) = L(A)NTE} = L(A) N
TS = L(A\Zh).
|

B. Cosimulation Strong Non-Deterministic Non-Interfere {CSNNI)

The Cosimulation Strong Non-Deterministic Non-Interfered€SNNI) property has been introduced in[[17], and is based
on cosimulation

h h
- 4o > {3 - 4o > (3
(173&‘>2 61,:1:>2 0y /4
Y Y
q1 qa q1 q4
/1 lo,x < 2 2 2 £l 4y
Y Y
q2 ds a2 qs
(a) A;, a SNNI timed automaton (b) Ag, the non SNNI untimed automaton associated to
A;

Fig. 3. A SNNI timed automaton and its untimed underlyingoawaton which is non SNNI.
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(a) Ac, a SNNI but not CSNNI automaton (b) A4z, a CSNNI automaton

Fig. 5. CSNNI is stronger than SNNI

Definition 11. A timed automatom is CSNNI iff A\Xj ~cyw A/X),.

Since A/%;, Cyy A\X,, we can give a simple characterization of CSNNI:
Proposition 2. A timed Automatom is CSNNI iff A\X, Ty, A/X.

By restricting the class of timed automata considered, waiotthe following result.

Example 5. Let us consider the automatof. of figure[5(a) with3, = {h} and X; = {1,453, ¢5}. A. is SNNI but is not
CSNNI, because no state df.\>; can simulate the statgs. The automatond, of figure[5(a) is CSNNI. The statg of
Ag\X; simulates the stateg and gs.

We complete this subsection by comparing SNNI and CSNNIefsitwo timed automatal,, 4>, A; T,y As implies
L(A3) C L(A1). CSNNI is thus stronger than SNNI as for each timed automatod\X; Ty, A/%;, implies L(A/%Z,) C
L(A\Z}).

The converse holds whe#\Y;, is deterministic:

Lemma 2. If A\Y,, is deterministic, them is SNNI impliesA is CSNNI.

Proof: As emphasized before, given two timed automdtg As, A1 Ty, Ao implies £(A2) C L(Ay). If Ay is
deterministic, thenC(As) C L(A;) implies A; Ty A». To obtain the result it suffices to také, = A\X, and A; = A/%,.
[ ]

C. Bisimulation Strong Non-Deterministic Non-Interfecen(BSNNI)

The Bisimulation Strong Non-Deterministic Non-Interfere@&SNNI) property has been introduced in [1] and is based on
bisimulation.
Definition 12. A timed automatom is BSNNI iff A\X;, a2y A/3),

The automatom ; of figure[6(b) is BSNNI. Bisimulation is stronger than coslation and we have for all timed automaton
A, if Ais BSNNI thenA is CSNNI (and thus4 is SNNI).
As the following example demonstrates, there exists annaation which is CSNNI and not BSNNI.

Example 6. Let us consider the automatof,. of figure[6(@) withy; = {h} et X, = {¢}. This automaton is deterministic
and SNNI, and therefore by lemrh 2, it is CSNNI. However, itosBSNNI, since the statg of A.\X; has no bisimilar
state inA,\Xy.

IV. V ERIFICATION OF NON-INTERFERENCEPROPERTIES FORTIMED AUTOMATA
In this section we settle the complexity of non-interferererification problems for timed automata.
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A. SNNI verification

The SNNI verification problem (SNNI-VP), asks to check wiegth systemA is SNNI.

For timed automata, this problem has been proved tatdecidablein [17] and the proof is based on the fact that
language containment for TA is undecidahlel[19]. HoweVewe consider the subclass of timed automdtauch thatd\X,,
is deterministi¢c then the problem becomes decidable. In the sequel, wedadilla the class of timed automata such that
A\Y), is deterministic.

Theorem 1. The SNNI-VP is PSPACE-complete for dTA.

Proof: Let A; and A, be two timed automata. Checking wheth#rd,) C L£(A;) with A; a deterministic TA is PSPACE-
complete[[19]. Checking’(A/%,) C L(A\X},) can thus be done is PSPACEAf\Y}, is deterministic. Using Propositidd 1,
it follows that SNNI-VP is PSPACE-easy faTA

For PSPACE-hardness, we reduce the language inclusiotepnalf{ A;) C £(A;), with A; a deterministic TA, to the SNNI-
VP. Let 41 = (@1, g01, X1, %, E1, Invy) be a deterministic TA andly = (Q2, qo2, X2, %, E2, Invs) a TAZ. We leth Z Y be
a fresh lettery ¢ X; U X, be a fresh clock and defing;o = ({¢%5} U Q1 U Q2, qo1, X1 U X2 U {z}, X¢ U {h}, E12, Invia)
be the timed automaton defined (as shown in figuire 7) as follows

« the transition relatior;, containsE; U E, and the additional transition(g?s, true, h, @, qo2) and (¢¥y, true, e, 3, qo1);
e Invia(q) = Invi(q) if ¢ € Q;,1 € {1,2}, andInvi2(qf,) = [z < 0].
We letY; = ¥ andX;, = {h}. We prove thatd;, is SNNI iff £(A2) C L(A;). This is easily established as:
A2 is SNNI iff  L(A12/25) C L(A12\2h) [Propositior[1]
iff L(A2) C L(A).
Thus the SNNI-VP is PSPACE-complete fdTA [ ]

2We assume thaf); N Q2 = @ and X1 N Xs = @.



For non-deterministic finite automat& and A», checking language inclusiofi(A;) C L(Az) is PSPACE-complete [23].
Then, using the same proof with; being a non deterministic finite automaton, It follows that:

Corollary 1. The SNNI-VP is PSPACE-complete for non-deterministicefiaittomata.

Moreover, whenAs is a deterministic finite automaton, language containmanthe checked in PTIME and thus we have
the following corollary:

Corollary 2. For finite automata belonging to dTA, the SNNI-VP is PTIME.

The tabld]l summarizes the results on the complexity of th&lISIXP.

I I Timed Automata | Finite Automata I
A\X}, is deterministic(dTA PSPACE-complete (Theoren 1) PTIME (Corollary[2)
General Case Undecidable[[1l7] PSPACE-complete (Corollafy 1

TABLE |

COMPLEXITY IF SNNI-VP

B. Verification of CSNNI and BSNNI properties

BSNNI-VP and CSNNI-VP are decidable for timed automhata [ifite simulation and bisimulation are decidable. For finite
automata, the complexity of BSNNI-VP and CSNNI-VP is knowrbe PTIME [15]. We settle here the complexity of those
problems for timed automata.

Theorem 2. The CSNNI-VP and BSNNI-VP are EXPTIME-complete for Timadmata.

Proof: Strong timed bisimilarity and simulation pre-order aretb@XPTIME-complete for timed automata. The EXPTIME-
hardness is established [n [24] where it is shown that aratiosl between simulation pre-order and bisimilarity is EXRE-
hard for Timed Automata.

The EXPTIME-easiness for strong timed bisimulation wasigighed in[[25] and for simulation pre-order [n_[26].

To establish EXPTIME-completeness for CSNNI-VP and BSNi®-we show that these problems are equivalent to their
counterparts for timed automata.

To do this, we use the automath, A and A;» already defined in the proof of Theorér 1.

We show that:A; simulatesA, iff A5 is CSNNI.

AssumeA; simulatesA,. There exists a relatio® s.t. : 1) (qol,ﬁxl)R(qm,@X]) and 2) for each statéss, 73), there
exists (s1, 1) S.t. (s2,73)R(s1,71), and whenevetsy, 75) —— (sh,43") for a € Y UR,, then(sy,77) % (s},21’) and
(sh, @5 )YR(s,41").

We define a relatiorR’ for each(/, 7iz5x) of Aj2/Y), to a state(?’, 77'2%'2") of A1x\X), as follows:

o if £ =qY then (¢, 71252)R! (£, 77 75 2");

o if £€Q, then(l, 21552)R/ (£, 2105 2");

o if £€Qy, then(l, zia52)R (¢, x1 x5 ") iff (¢, 22)R(, 21);

R’ is a simulation ofA;2 /%), by A12\Xp:

« the initial states of the two TA are in relation;

o asSUME(s, 125%) ——4,, /5, (8, 21'23'2"); If s € {¢0,} UQ, then clearly it is simulated by the same statedip\X),

. Otherwise, ifs € 2, then there exists a staté/, 715'z’) in A15\X) s.t. (s, 51252)R/ (s, 21 '23"2"): by definition of

R’ we can take anys’, z1'z3'z") with (s, 23)R(s’,27). It is easy to see that becaude can simulated, from there

on, R’ is indeed a simulation relation. Thuk» />, and A15\X;, are co-similar by Propositidnl 2.

Now assume conversely that there is a simulafidnof A,,/%, by A12\¥,. We can define a simulation relation df
by A; as follows: each statés, zi252) with s € Q2 of A15/%, is simulated by a statés’, 7725 2") with s’ € Q. We then
defineR by (s,23)R(s’,21’). Again it is easy to see th& is a simulation relation.

It follows that CSNNI is EXPTIME-complete.

Now assume thatl; and A, are bisimilar. We can define the relatiG® exactly as above and this time it is a weak
bisimulation betweem5\X;, and A2 /3.

If A1 is BSNNI, the bisimulation relatiorR’ betweenA;5\Y;, and A;2/%;, induces a bisimulation relatioR between
A1 and A,: it suffices to buildR as the restriction ofR’ between states with a discrete component)in and a discrete
component inQ.

As checking bisimulation between TA is also EXPTIME-contplethe EXPTIME-completeness of BSNNI-VP for TA
follows.

[ |

The tabld 1l summarize the results on the verification of tt8N®I and BSNNI properties.



I I Timed Automata | Finite Automata [|

CSNNI-VP EXPTIME-C (Theoreni D) PTIME [15
BSNNI-VP EXPTIME-C (Theoreni D) PTIME [15
TABLE Il

RESULTS FORCSNNI-VPAND BSNNI-VP
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Fig. 8. AutomatonD

V. THE SNNI CONTROL PROBLEM

The previous non-interference verification problem, cstissin checkingwhether an automatod has the non-interference
property. If the answer is “no”, one has to investigate why tlon-interference property is not true, modifyand check the
property again. In contrast to the verification problem, diiethesis problem indicates whether there is a way of o#istgi the
behavior of users to ensure a given property. Thus we coniidé only some actions in the sgt, with ¥, C ¥, U Y, are
controllable and can be disabled. We &t = ¥\ . denote the actions that are uncontrollable and thus carendigdabled.
Note that, contrary ta [15], we release the constraint= X;,. The motivations for this work are many fold. Releasig= X;,
is interesting in practice because it enables one to sp#wfyan action front;, cannot be disabled (a service must be given),
while some actions oE,; can be disabled. We can view actionsXf as capabilities of the low-level usee., pressing a
button), and it thus makes sense to prevent the user frong tissnbutton for instance by disabling/hiding it temposaril

Recall that acontroller C for A gives for each rurp of A the setC/(p) € 2“1} of actions that are enabled after this
particular run. The SNNCGontrol Problem(SNNI-CP) we are interested in is the following:

Is there a controllerC' s.t. C(A) is SNNI ? (SNNI-CP)
The SNNIController Synthesis ProblefSNNI-CSP) asks to compute a witness when the answer to tihN-ER is “yes”.

A. Preliminary Remarks

First we motivate our definition of controllers which are s fromRungA) to 2=<“{*}, The common definition of a
controller in the literature is a mapping froRungA) to . U {\}. Indeed, for the safety (or reachability) control problem,
one can compute a mappidd : RungA) — 2><“{} (most permissive controller), and a controli@rensures the safety goal
iff C(p) € M(p). This implies that any sub-controller @f is a good controller. This is not the case for SNNI, even faitdin
automata, as the following example shows.

Example 7. Let us consider the automatadb of Figure[8 withY. = {a, h}. The largest sub-system &f which is SNNI is
D itself. Disablinga from state0 will result in an automaton which is not SNNI.

We are thus interested in computing the largest (if theredsssub-system afl that we can control which is SNNI. Second,
in our definition we allow a controller to forbid any contralille action. In contrast, in the literature, a controllesidd ensure
some liveness and never block the system. In the contextaifrigg property, it makes sense to disable everything if the
security policy cannot be enforced otherwise. This makes3INNI-CP easy for finite automata.

B. SNNI-VP versus SNNI-CP

SNNI-CP is harder than SNNI-VP since SNNI-VP reduces to SHRIby takingX. = @. Note that this is not true if we
restrict to the subclass of control whete = X;,. Indeed, in this case SNNI-CP is always true (and then dbtjiaince the
controller which forbid all controllable transitions makee system SNNI.

We then have the following theorem:

Theorem 3. For general Timed Automata, SNNI-CP and SNNI-CSP are uddbts.

Proof: SNNI-CP obviously reduces to SNNI-CSP. SNNI-VP reduces WRNECP by taking>. = @. SNNI-VP is
undecidable for non-deterministic Timed Automata.
[ ]
We will now show that SNNI-CP reduces to the SNNI-VP for firgigtomata.
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Theorem 4. For finite automata, the SNNI-CP is PSPACE-Complete.

Proof: The proof consists in proving that if a finite automaton canrdricted to be SNNI, then disabling all the.
actions is a solution. Thus the SNNI-CP reduces to the SNRIavid the result follows.

As time is not taken into account in untimed automaton, we ltare C(p) = @ for finite automaton (for general timed
automaton, this would mean that we block the time.) The pofdhe theorem consists in proving that if a finite automaton
can be restricted to be SNNI, then disabling all Hieactions is a solution. Lef', be the controller defined bg\y(p) = .

We prove the following: ifC is a controller s.tC(A) is SNNI, thenCy(A) is SNNI.

Assume a finite automatal is SNNI. Lete € ¥, U, and letL, be the set of words containing at least en®epending
on the type ofe we have:

o if e e Xy, thenl((D\{e})\Xr) = L(D\Xy)\ L. and asD is SNNI, it is also equal t€(D /X)) \ L = L((D\{e})/Z1);

o if e € Xp, LI(D\{e})/En) € LID/En) = LID\ER) = LI(D\{e})\Zn).

So, if D is SNNI, D\ L is SNNI, VL C X. SinceL(Cy(D)) = L(D\X.), if D is SNNI, thenD\3, is also SNNI and therefore
Cv(D) is SNNI.

Let A be the TA we want to restrict. Assume there is a contrdlles.t. C'(A) is SNNI. Cy(C(A)) is SNNI soCy(C(A)) =
Cy(A) is also SNNI which means that\X. is SNNI. This proves thatiC s.t. C(A4) is SNNI < A\X. is SNNI.

It is then equivalent to check that\X. is SNNI to solve the SNNI-CP fod and this can be done in PSPACE. PSPACE-
hardness comes from the reduction of SNNI-VP to SNNI-CP,akyngg >, = &.

[ |

Moreover since the SNNI-CP reduces to the SNNI-VP for finiikomata, and from corollary] 2 we have the following
result:

Corollary 3. For finite automata belonging to dTA, the SNNI-CP is PTIME.
We will now show that Theorerin 4 does not hold for timed aut@res the following example demonstrates.

Example 8. Figure[d gives an example of a timed automat@nwith high-level actions;, = {h} and low-level actions
El = {a, b}.

AssumeX. = {a}. Notice thatH\X, is not SNNI. Let the state based control&rbe defined byC(0,x) = {a, A\} whenH

is in state(0, z) with < 4; and C(0,z) = {a} whenz = 4. ThenC(H) is SNNI. In this example, when= 4 we prevent
time from elapsing by forcing the firing af which indirectly disables action. To do this we just have to add an invariant
[z < 4] to location0 of H and this cuts out the dashed transitions render@ig ) SNNI.

C. Algorithms for SNNI-CP and SNNI-CSP

In this section we first prove that the SNNI-CP is EXPTIMEhéor dTA Then we give an EXPTIME algorithm to solve
the SNNI-CP and SNNI-CSP.

Theorem 5. For dTA, the SNNI-CP is EXPTIME-Hard.

Proof: The safety control problem for TA is EXPTIME-hard |27]. Inettproof of this theorem, T.A. Henzinger and
P.W. Kopke use timed automata where the controller choasesction and the environment resolves non-determinism. The
hardness proof reduces the halting problem for alterndiimgng Machines using polynomial space to a safety contrabjem.

In our framework, we use TA with controllable and uncontible actions. It is not difficult to adapt the hardness prddRad]

to TA which are deterministic w.r.&2. actions and non deterministic w.r¥,, actions. AsY,, transitions can never be disabled
(they act only as spoiling actions), we can use a differdmlldor each uncontrollable transition without altering ttesult in
our definition of the safety control problem. Hence: the saf®ntrol problem as defined in sectibh Il is EXPTIME-hard fo
deterministic TA (with controllable and uncontrollablanisitions). This problem can be reduced to the safety cloptodblem
of TA with only one statebad. We can now reduce the safety control problem for detertiénisdA which is EXPTIME-hard
to the SNNI control problem odTA Let A = (Q U {bad}, qo, X, X. U X, F, Inv) be a TGA, withX, (resp.X,) the set
of controllable (resp. uncontrollable) actions, andl a location to avoid. We defind’ by adding toA two uncontrollable
transitions: (bad, true, h, @, ¢) and (g, true,l, @, q) wheregq; and g, are fresh locations with invariaritue. [ and h are
two fresh uncontrollable actions iA’. We now defineX;, = {h} and¥; = 3. U X, U {i} for A’. By definition of A’, for
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any controllerC, if location Bad is not reachable irC'(A4’), then the actiong and then/ can not be fired. Thus if there is
controller forC for A which avoidsBad, the same controlle€’ rendersA’ SNNI. Now if there is a controlle€”’ s.t. C'(A’)

is SNNI, it must never enable: otherwise a (untimed) word.h.l would be inUntimed £(C’(A")/%4)) but as no untimed
word containing ari can be inUntimed £(C’(A")\X},)), and thusC’(A’) would not be SNNI. Notice that it does not matter
whether we require the controllers to be non blocking (maggiromRungA) to 2><V{* \ @) or not as the reduction holds
in any case. [ ]

To compute the most permissive controller (and we will alsavp there is one), we build a safety game and solve a safety
control problem. It may be necessary to iterate this proeeddf course, we restrict our attention to TA in the cld3#\ for
which the SNNI-VP is decidable.

Let A = (Q, g0, X, XpUX;, E, Inv) be a TA s.t.A\X;, is deterministic. The idea of the reduction follows from tbiowing
remark: we want to find a controlle?’ s.t. L(C(A)\Xr) = L(C(A)/X}). For any controllerC we haveL(C(A)\X) C
L(C(A)/Z)) because each run 6f(A)\X, is a run of C(A)/%}). To ensure SNNI we must hav{C(A)/3p) C L(A\Z):
indeed,A\X;, is the largest language that can be generated witkpactions, so a necessary condition for enforcing SNNI
is L(C(A)/Xh) C L(A\Z}). The controllerC(A) indicates what must be pruned out.hto ensure the previous inclusion.
Our algorithm thus proceeds as follows: we first try to find atomler C! which ensures that(C*(A)/%,) C L(A\X3).

If L(C1(A)/S)) = L(A\X,) thenC? is the most permissive controller that enforces SNNI. Itiddae that what we had to
prune out to ensuré(C*(A)/%)) C L(A\X),) does not rendef (4) SNNI. In this case we may have to iterate the previous
procedure on the new systefif (A).

We first show how to comput€’. As A\, is deterministic, we can construdt = (QU{qbaa}, 43, X2, 2n U, Ea, Invs)
which is a copy of4 (with clock renaming) withy,.4 being a fresh location and s4; is acompletd(i.e., £L(A42) = T~*) version
of A\X, (A, is also deterministic). We writlast (w) the state(q, v) reached ind, after reading a timed wordh € TX*. A,
has the property that € £(A\X,,) if the state reached i, after readingw is not in Badwith Bad= {(qyaa,v) | v € R }.

Fact 1. Letw € TY*. Thenw ¢ L(A\Y}) < lask(w) € Bad.

We now define the product, = A x5, A, and the set of bad stateBad® of A, to be the set of states wherb, is in Bad
—, denotes the transition relation of the semanticsigfand s the initial state of4,. When it is clear from the context we
omit the subscripp in —.

Lemma 3. Letw € L£(A). Then there is a rup € RungA,) s.t. p = s5 —, s with s € Bad® iff projy, (w) ¢ L(A\Zy).

The proof follows easily from Fagil 1. Given a rgnin RungA,,), we letpj; be the projection of the rup on A (uniquely
determined) ancp, be the unique rhin A, whose trace iprojy, (traceg(p)). The following Theorem proves that any
controllerC s.t. C(A) is SNNI can be used to ensure tigad” is not reachable in the game,:

Lemma 4. Let C be a controller forA s.t. C(A) is SNNI. LetC® be a controller on4,, defined byC®(p') = O(ph). Then,
ReactiC®(A,)) NBad® = 2.

Proof: First C® is well-defined becaus,q’1 is uniquely defined. Le€' be a controller forA s.t. C'(A) is SNNI. Assume
ReacliC®(A,)) N Bad® # @. By definition, there is a rup’ in RungC®(A,)) such that:

pl = ((qO7 q(2))7 (6’ 6)) — ((QI7 qI1)7 (Ulavll)) 2 ((Qna Q;z)7 (Un’ ’U;z))
= ((gn+1, q;+1), (Un+17U;L+1))

With ((@n+1:@n11)s (vn+1,v),41)) € Bad” and we can assum;, v;) ¢ Badfor 1 <i < n (andqj ¢ Bad. Let p = pf,
andw = projy, (trace(p’)) = projy, (trace(p)). We can prove (1)p € RungC(A)) and (2):w ¢ L(C(A)\Er). (1) directly
follows from the definition ofC®. This implies thatw € £L(C(A4)/%1). (2) follows from LemmdR. By (1) and (2) we obtain
thatw € L(C(A)/Z) \ LIC(A\Z) i.e, LIC(A)/Er) # L(C(A)\Xr) and soC(A) does not have the SNNI property
which is a contradiction. Hend@eaciC®(A,)) N Bad® = @. [ |

If we have a controller which solves the safety gaimg, Bad”), we can build a controller which ensures tf&tC (A) /%)) C
L(A\X},). Notice that as emphasized before, this does not necgseaslre that’(A) is SNNI.

Lemma 5. Let C® be a controller forA, s.t. ReachC®(A,)) NBad® = @. Let C(p) = C%(p') if p; = p- C is well-defined
and L(C(A)/Zh) C L(A\Z).

Proof: Let p = (go,0) = (q1,v1) = --- =5 (gn,v,) be a run ofA. Since A, is deterministic and complete there
is exactly one run’ = ((go, 40), (0,0)) == ((a1,41), (v1,01)) == -+ = ((gn+ ), (vn, 07,)) In Ay St pfy = p. SOC s
well-defined. Now, assume there is somec L(C(A)/Zp) \ L(A\X}). Then, there is a rup in RungC(A)) C RungA)
s.t. projy, (trace(p)) = w, there is a unique rup € Rung4,) s.t. p{, = p andtrace(p’) = w. First by LemmdBlast(p’) €

3Recall thatAs is deterministic.
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Fig. 10. The Automatork’

Bad®. Second, this rup’ is in RungC®(A,)) because of the definition af. HenceReacliC®(A,)) N Bad® # @ which is
a contradiction. [ |

It follows that if C® is the most permissive controller fot, then C(A) is a timed automaton (and can be effectively
computed) because the most permissive controller foryséfaed games is memoryless. More precisely,ig¥(A,) be the
the region graph of4,. C'is memoryless otRG(A,\X;) becaused; is deterministic. The memory required I6y is at most
RG(A\X}) on the rest of the region graph &G (A4,).

Assume the safety gantel,, Bad®) can be won and’® is the most permissive controller. L€t be the controller obtained
using Lemmab. Controllef’ ensures that (C'(A4)/%,) C L(A\X}). But as the following example shows, it may be the case
that C(A) is not SNNI.

Example 9. Consider the TAK of Figure[10 withY;, = {h} and X, = {a}.

We can comput€(K) from C® which satisfies Reati@® (K xx, K,)) NBad® = @, and is given by the sub-automaton of
K with the plain arrows.C'(K) is obviously not SNNI. For the example 4f1) in Figure[4, if we comput& in the same
manner, we obtail(A(1)) = A(2) and moreoverZ (C(A(1))/X5) = L(A(1)\Xr). And then the most permissive sub-system
which is SNNI is given by'(A(1)) = A(2) (the guardz > 1 of A(1) is strengthened).

The example of Figure 10 shows that computing the most psiveigontroller ond,, is not always sufficient. Actually, we
may have to iterate the computation of the most permissimraiter on the reduced syste@i(A).

Lemma 6. Consider the controlleCC' as defined in Lemnid 5. #(A)\X, ~, A\X, thenC(A) is SNNI.

Proof: If C(A\Sy ~z A\Sy, then, £L(C(A)/Sh) C LA\E) = LC(ANS). As LC(ANE) C L(C(A)/S) is
always true, L(C(A)/Xr) = L(C(A)\X}) and so,C(A) is SNNL. [ |
Let L be the symbol that denotes non controllability (or the nasterce of a controller). We inductively define the sequence
of controllersC? and timed automata’ as follows:
« let C° be the controller defined bg?(p) = 25-V{* and A° = C°(A) = 4;
o Let A} = A’ x5, A} andCy, be the most permissive controller for the safety gdmp, Bad®) (L if no such controller
exists). We use the notatidad” because this set depends.df. We defineC**! using Lemmabr+!(p) = CZ, (p')
if pil = p. Let AT = (A%,
By Lemmal®, if CiT(AY)\X), ~, A'\Z), thenCH1(A?) is SNNI. Therefore this condition is a sufficient conditiaor the
termination of the algorithm defined above:

Lemma 7. There exists an indek> 1 s.t. C*(A*~!) is SNNI orC* = 1.

Proof: We prove that the region graph 6fT1(A%) is a sub-graph of the region graph©f (A°) for i > 1. By Lemmd®
(and the remark following it)C'1(A°) is a sub-graph oG (A x A). MoreoverC* is memoryless oM\, and requires a
memory of less thahRG(A\X)| on the remaining part. Assume on this part, a nod&G61 A x As) is of the form((q,r), k)
whereq is a location ofA andr a region ofA andk € {1, |RG(A\X,)|}.

AssumeRG(AF) is a sub-graph oRG(A¥~1) for k > 2 and RG(A*~1\¥,,) is sub-graph oRG(A\%}). Using Lemmab,
we can computet® = C*(A¥~1) and: (1) RG(A*\X,) is a sub-graph ofd*~1\ ¥, and (2) the memory needed f6r> on
the remaining part is less tha®G(A*~1)|. Actually, becaused*~1\¥,, is deterministic, no more memory is required for
C*. Indeed, the memory corresponds to the noded’f>;,. Thus a node oRRG(A*) which is not in RG(A*\%;,) is of the
form ((g,7),k, k') with k = &’ or k' = qpaq. This implies thatRG(A*) is a sub-graph oRG(A*1).

The most permissive controllef’® will either disable at least one controllable transition A)@H\Eh or keep all the
controllable transitions ofi’~'\X;. In the latter cased’\X;, = A""'\¥; and otherwisd RG(A"\¥;)| < |[RG(A""\Xy)|.
This can go on at mosRG(A\X,)| steps. In the end eithet’\>;, = A*=1\%,, and this implies thatt’\¥,, ~, A""1\3,
(Lemmal®) or it is impossible to contral*~! andC? = L. In any case, our algorithm terminates in less tha6'(A)| steps.

[ |

To prove that we obtain the most permissive controller whanoforces SNNI, we use the following Lemma:

Lemma 8. If M is a controller such thaiC(M (A)/%),) = L(M(A)\X,), thenVi > 0 andVp € RungA), M(p) C C(p).

Proof: The proof is by induction:
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« for ¢ =0 it holds trivially.

« Assume the Lemma holds for indices up untiThus we hav&RungM (A4)) C RungA?). Therefore, we can definl over
A? andM(A*) is SNNI. By Lemmd# M ® is a controller for the safety ganiel!, Bad®), thereforeh/®(p') C C, (p')
becauseC | is the most permissive controller. This implies thdtp) C C***(p) by definition of C*+1.

[

Using Lemmd, the sequenc& converges to a fix-point. Lef™* denote this fix-point.

Lemma 9. C* is the most permissive controller for the SNNI-CSP.

Proof: Either C* = L and there is no way of enforcing SNNI (Lemrk 4), @t # L is such thatZ(C*(A)/%;) =
L(C*(A)\Xp) by Lemmdb. As for any valid controlle¥! such thatC(M(A)/2,) = L(M(A)\X,) we haveM (p) C C*(p)
for eachp € RungA) (LemmalB) the result follows. [ ]
LemmalT proves the existence of a bound on the number of tineekawe to solve safety games. For a timed automaton
A in dTA let |A] be the size ofA.

Lemma 10. For a dTA A, C* can be computed i®(2%14).

Proof: As the proof of Lemmal7 shows, the region graphAsfis a sub-graph of the region graph df, vi > 1,
and the algorithm ends in less thaRG(A)| steps. Computing the most permissive controllerﬁjjr avoiding Bad® can
be done in linear time in the size of the region graph4df As RG(A’) is a sub-graph ofRG(A'), RG(A}) is a sub-
graph of RG(A}). So we have to solve at mogRG/(A)| safety games of sizes at mdftG(A,)|. As A' is a sub-graph of
A) = A% x5, A3, |[RG(A")| < |[RG(A)]>. And asA), = A' xx, A}, [RG(A})| < |[RG(A)]*. So,C* can be computed in
O(IRG(A)|.|[RG(4})]) = O(IRG(A)|*) = O(2*14]). m

Theorem 6. For dTA, the SNNI-CP and SNNI-CSP are EXPTIME-complete.
For the special case of finite automata we even have:
Lemma 11. For finite automataC* = C2.

Proof: We know thatL(C?(A)\X,) C L(C(A)\Xy). Suppose thatiw s.t.w € L(CH(A)\Zr) andw ¢ L(C?(A)\X4)
(w cannot not be the empty word). We can assume that u.l with u € X7, 1 € £, N Y. andu € L(CH(A)\Zp)
andu.l ¢ L(C?(A)\X) (I is the first letter which witnesses the non membership ptgpef [ had to be pruned in the
computation ofC?, it is because there is a wotdl.m with m € ¥} s.t.projy, (u.l.m) € L(C*(A)/E4) butprojs, (u.l.m) &
L(C'(A)\Xy). But by definition of C!, L(C'(A)/X,) € L(A\X,) (Lemma[b) and thuprojy, (u.l.m) € L(A\X)). As
u.l € X}, projy, (u.l.m) = w.l.projy, (m) and projy, (m) € 3. Sinceu.l € L(C*(A)\X;) and projy, (m) € I}, we
havew.l.projs, (m) € L(C*(A)\X,) which is a contradiction. Thug(C?(A)\X,) = L(C*(A)\X,) which is our stopping
condition by lemmédl6 and thus* = C?2. [

It follows that:

Theorem 7. For a finite automatord in dTA (i.e. such thatd\ X, is deterministic), the SNNI-CSP is PSPACE-complete.

As untimed automata can always be determinized, we can @xdean algorithm to untimed automata whet\>;, non-
deterministic. It suffices to determinizé&,i = 1, 2:

Theorem 8. For a finite automatom such thatA\X, is non deterministic, the SNNI-CSP can be solved in EXPTIME.

Proposition 3. There is a family of finite automatal;);>o such that:(i) there is a most permissive controll&} s.t. Df(A;)
is SNNI and(ii) the memory required by} is exponential in the size of;.

Proof:

Let A be a finite automaton over the alphabetDefine the automator’ as given by Figuré 11. Assume the automaton
B is the sub-automaton aft’ with initial state ¢(,. We take¥;, = {h} = ¥, and¥; = ¥ = ¥.. The most permissive
controllerD s.t. D(A’) is SNNI generates the largest sub-languagg€f’) s.t. L(A'\X,) = L(A’/X},) and thus it generates
L(A) = LIA\X).

The controllerD is memoryless o'\ Y, as emphasized in Lemra 5. It needs finite memory on the renggparti.e., on
B. The controllerD on B gives for each run a set of events Xifthat can be enabled? (g SN ah —= ¢h) = X with
w € ¥* and X C ¥;.As B is deterministic,D needs only the knowledge af and we can writeD(hw) ignoring the states of
A’. For B we can even writdD(w) instead ofD(hw). Define the equivalence relatiaaon X* by: w = w' if D(w) = D(w’).
Denote the class of a word@ by [w]. BecauseD is memory boundedeE is of finite index which is exactly the memory
needed byD.

Thus we can define an automatély— = (M, mo, %, —) by: M = {{w] | w € £*}, mo = [¢], and [w] — [wa] for
a € D(hw). D= is an automaton which accepfgA) (and it is isomorphic taD(5)) and the size of which is the size &f
because3 has only one state. This automaton is deterministic and fhusis also deterministic and accepd$A). There is a



14

0]
L= DY

Fig. 11. AutomatonB

family (A;);>o of non-deterministic finite automata, such that the deteistic and language-equivalent automaton of ea¢ch
requires at least exponential size. For each of thsee construct the controlleb’_ as described before, and this controller
must have at least an exponential size (w.r.tAtdp. This proves the EXPTIME lower bound. ]

In this section we have studied the strong non-determémstn-interference control problem (SNNI-CP) and contyokkesis
problem (SNNI-CSP) in the timed setting. The main resultshaee obtained are: (1) the SNNI-CP can be solved\E;, can
be determinized and is undecidable otherwise; (2) the SEIBI- can be solved by solving a finite sequence of safety games
if A\X,;, can be determinized. We have provided an optimal algorithrsotve the SNNI-CP and CSP in this case (although
we have not proved a completeness result).

A Timed Automaton A Finite Automaton
A\X;,, Non-Det. | A\X,, Det. A\X;,, Non-Det. | A\X,, Det.
SNNI-CP undecidable (Theorefd 3) EXPTIME-C (Theoreni 6)[] PSPACE-C (Theoreml4] PTIME (Corollary[3)
SNNI-CSP || undecidable (Theorefd 3) EXPTIME-C (Theoreni B)|| EXPTIME (Theoren] B)| PSPACE-C (Theorern] 7

TABLE Il
SUMMARY OF THE RESULTS FORSNNI-CPAND SNNI-CSP

The summary of the results is given in Tablg IIl.

VI. BSNNI AND CSNNI CoNTROL PROBLEMS

In this section, we will show that for more restrictive naniarference properties (CSNNI and BSNNI) the control peabl
presents a major drawback: in the general case, there is sbpramissive controller.
The CSNNIControl ProblemCSNNI-CP (respectively BSNNGontrol ProblemBSNNI-CP) we are interested in is the
following:
Is there a controllerC s.t. C(A) is CSNNI (respectively BSNNI) ? (CSNNI-CP, BSNNI-CP)

The CSNNIController Synthesis Probler@SNNI-CSP (respectively BSNNTontroller Synthesis ProbleBSNNI-CSP)
asks to compute a witness when the answer to the CSNNI-CPpegtégely BSNNI-CSP) is “yes”.

A. CSNNI-CP and CSNNI-CSP
Theorem 9. For finite automata the CSNNI-CP is in PTIME.

Proof:

Let A, be a finite automaton, we show that there exists a contr6llsuch thatC(A) is CSNNI if and only if A\X, is
CSNNI.

Theif direction is obvious: the controll&?y that prevents any controllable action from occurring isrtediby:Cy(p) = 2,
Vp € RungA). It is easy to see thafly(A) is isomorphic toA\X, and thus bisimilar.

This only if direction is proved as follows: lefi; and A, be two finite automata over alphakgt such that4; weakly
simulatesA;. Considerd] = A;\{e} and A, = As\{e} for e € X. Clearly, A} simulatesA), (by definition of the simulation
relation).

Therefore, if there exist§' s.t. C(A) is CSNNI, then so iC(A)\Y’ for any ¥’ C X. It follows that C(A)\X. must be
CSNNI.

The CSNNI-CP reduces to the CSNNI-VP which is PTIME for firégtetomata.

Theorem 10. For the class of deterministic finite automata, the CSNNR@GSPSPACE-complete.

Proof: By Lemmal2, for deterministic automata, SNNI is equivalen©SNNI. Hence the CSNNI-CSP is equivalent to
the SNNI-CSP which is PSPACE-complete by Theofém 7. [ ]
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h,x >4
— o —— > (2 — 4o
li,z>1 Uy li,z>1
q1 q3 q1
(a) The automatomd (b) The automatoit’(A)

Fig. 12. Counterexample of theordrh 9 in timed setting

h h
-+ o > G5 - o > g5
l 4
1 g 1 g
51 gl
q1 a2 de a1 a2 d6
l3
| | | |
ly
q3 da a7 q3 qa qs
(a) AutomatonC (Ac) (b) AutomatonC(A.)

Fig. 13. AutomataCi(Ac) and C2(Ac)

In the timed setting, the previous reduction to a verifiaatmroblem cannot be applied as illustrated by the following
example1D.

Example 10. Let A be the deterministic timed automaton given in figure 12(ah Wi, = {¢1, 42}, ¥, = {h} and X, = {¢1}.
A\X. is neither CSNNI nor SNNI (here SNNI and CSNNI are equivaderde A is deterministic). However there exists a
controller C' such thatC(A) is both CSNNI and SNNE'(A) can be given by the timed automaton given in figure 12(b).

However for the timed automata ofiTA thanks to Lemm&]2 and Theorehds 6 &hd 7, we have:
Theorem 11. For timed automata in dTA, the CSNNI-CP and CSNNI-CSP areTEME-complete.

Proof: By Lemma2 the CSNNI-CP/CSNNI-CSP is equivalent to the SIIRISNNI-CSP fodTAand by Theorerfi]6, it
follows that CSNNI-CP and CSNNI-CSP are EXPTIME-complete. [ ]
Moreover, fordTA thanks to the algorithm of sectiéd V there always exists atmermissive controller for CSNNI. However
we will now show that there is a non-deterministic finite am&ton s.t. there is no most permissive controller ensurigyigl.

Proposition 4. There is no most permissive controller ensuring CSNNI fer fthite automatord ¢ dTA of figurd 5(3) (i.e.
such thatA\X, is non deterministic) wittE, = {h}, X; = {¢1,42, 43} and X, = {{3, {3},

Proof:
Let A, be the finite automaton of figufe 5(a) withy, = {h}, X, = {¢1, 02, l3} and X, = {f2, l3}. A. & dTAsince A \Xy,
is non-deterministic. This automaton is not CSNNI. The oaltérs C; andC; of figure[I3 make the system CSNNI. However
(C1 UCy)(A:) = A. is not CSNNI and, by construction is the only possible cdigranore permissive thad; and Cs.
Therefore, there is no most permissive controller ensu@B@INI for A. with ..
[ |

B. BSNNI-CP and BSNNI-CSP

We first show by example_11 that even if there exists a coetrddr a finite automatom and a controllable alphabgt,
ensuring BSNNI (i.e. the answer to BSNNI-CPtige), it is possible to havel\>. not BSNNI.

Example 11. Let A; be the finite automaton of figukel14 wibtty, = {hq, ho} et X; = {¢}. This automaton is BSNNI, then
the answer to BSNNI-CP isue for all X.. However, forX. = {hs}, the automatom;\X. = A, is not BSNNI.
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hi ha

-+ 4o > (2 > (3
l /
q1 g4
Fig. 14. The automatom;
- qo
-+ o — (2
12
q1
(a) (b) AutomatonC(Ae)
Automaton
C1(Ae)

Fig. 15. AutomataCi(Ae) andCa(Ae)

We will now prove that for deterministic finite automaton ithdés not always a most permissive controller that enforces
BSNNI. This result is in contrast with CSNNI where a most pissive controller always exists f@TA

Proposition 5. There is no most permissive controller ensuring BSNNI fer dieterministic finite automaton of figyre G(a)
with ¥, = {h}, ¥, = {¢} and =, = {/, h}.

Proof:

Let A, be the deterministic finite automaton of figire §(a) with = {h}, &, = {¢} and X, = {¢, h}. This automaton is
not BSNNI. The controllerg; andCs of figure[I% make the system BSNNI. Howevéf); U Cs)(A.) = A, is not BSNNI
and, by construction is the only possible controller moremssive thanC; and Cs. Therefore, there is no most permissive
controller ensuring BSNNI ford, with X..

|
A Timed Automaton A Finite Automaton
A\X;, Non-Det. | A\X;, Det. A\Xj, Non-Det. | A\XZj, Det.
CSNNI-CP open EXPTIME-C (Theoren_1I1) PTIME (Theorenl D) PTIME (TheorenB)

CSNNI-CSP || NMPC* (Propositiol#) | EXPTIME-C (Theoreni_11)[| NMPC* (Proposition[#) | PSPACE-C (Theorem 10
BSNNI-CSP || NMPC* (Propositionb)| NMPC* (Propositiorb) NMPC* (Propositio b) | NMPC* (Propositior{_b)

* NMPC means that there not always exists a most permissingater.

TABLE IV
SUMMARY OF THE RESULTS FORCSNNIAND BSNNI CONTROL PROBLEMS

The summary of the results for CSNNI and BSNNI Control Protdes given in Tabl&TV.

VII. CONCLUSION AND FUTURE WORK

In this paper we have studied the strong non-deterministicinterference control problem and control synthesishiem
in the timed setting. The main results we have obtained djethe SNNI-CP can be solved #\X;, can be determinized
and is undecidable otherwise; (2) the SNNI-CSP can be sdiyesblving a finite sequence of safety gameslifx;, can be
determinized; (3) there is not always a least restrictiveginpermissive) controller for (bi)simulation based noteiference
even for untimed finite automata. However, there is a mostfssive controller for CSNNI ifA\3;, is deterministic and
CSNNI-CP and CSNNI-CSP are EXPTIME-complete in this casthétimed setting.

The summary of the results is given in Tables | @id Il for théfieation problems and Tablés]il and]lV for the control
problems.
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Our future work will focus on the CSNNI-CP (and BSNNI-CP) agm® when there is no most permissive controller it is
interesting to find one. Another future direction will costsn determining conditions under which a least restrictiontroller
exists for the BSNNI-CSP.
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