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Coordination Control of Quadrotor VTOL Aircraft in
Three-Dimensional Space

K.D. Do

Abstract

This paper presents a constructive design of distributed coordination controllers for a group of N quadrotor vertical
take-off and landing (VTOL) aircraft in three-dimensional space. A combination of Euler angles and unit-quaternion for
the attitude representation of the aircraft is used to result in an effective control design, and to reduce singularities in the
aircraft’s dynamics. The coordination control design is based on a new bounded control design technique for second-order
systems and new pairwise collision avoidance functions. The pairwise collision functions are functions of both relative
positions and relative velocities between the aircraft instead of only their relative positions as in the literature. To overcome
the inherent underactuation of the aircraft, the roll and pitch angles of the aircraft are considered as immediate controls.
Simulations illustrate the results.

Index Terms

Coordination control, quadrotor aircraft, collision avoidance.

I. INTRODUCTION

Quadrotor aircraft are attractive VTOL aerial vehicles for various military and civilian applications. A quadrotor aircraft
usually has a rigid cross frame equipped with two pairs of rotors, which rotate in opposite direction to compensate the
reactive torques. The vertical (altitude) motion is resulted by collectively increasing and decreasing the speed of all four
rotors. The pitch and roll motions are achieved by changing the speed of the front-rear pair and the left-right pair of
rotors, respectively. The yaw motion is realized by the difference in reactive torques between the two pairs of the rotors.
The horizontal (latitude and longitude) motions are resulted from the coupling of the roll, pitch and vertical motions.
There is no change in the direction of rotation of the rotors. The motions of the quadrotor aircraft are nonlinearly coupled.
Moreover, the aircraft are underactuated since there are only four independent control inputs (four rotors) while there
are six degrees of freedom (latitude, longitude, altitude, roll, pitch, and yaw) to be controlled, see [1] for more details on
controlling other underactuated mechanical systems. The underactuation and nonlinear coupling features of the quadrotor
aircraft result in difficulties in controlling their motions. A brief review of the works on controlling single and multiple
quadrotor aircraft is given below to motivate contributions of the present paper.

Due to the aforementioned difficulties, controlling a VTOL aircraft was initially restricted in a vertical plane. An input-
output linearization approach was used in [2], [3], [4] to develop controllers for stabilization and output tracking/regulation
of a VTOL aircraft. By noting that the output at a fixed point with respect to the aircraft body (the Huygens center
of oscillation) can be used, several controllers were designed in [5], [6], [7], [8]. Since the aircraft usually operate in
three-dimensional (3D) space, control of their six degrees of freedom has recently been addressed in [9], [10], [11] on
local position control, [12], [13] on attitude control, and [14], [15] on global position control. In comparison with the
two-dimensional (2D) case, control of the aircraft in 3D space has two main additional challenges. First, the 3D case
has four independent control inputs and six outputs to be controlled. Second, there are singularities in the kinematic
equations describing the motions of the aircraft if the Euler angles are used to represent its attitude. In addition to the
above works, control of quadrotor aircraft under bounded control inputs has also been considered by serveral authors
such as those in [16], [17], [18], [19] based on the use of nested saturation control design method [20] and its alternatives.

A number of approaches has been proposed to design coordination control systems for networked agents. Here, three
common approaches are briefly mentioned. The leader-follower approach (e.g., [21], [22], [23], [24]) uses several agents
as leaders and others as followers. This approach is easy to understand and ensures coordination maintenance if the
leaders are disturbed but the desired coordination shape cannot be maintained if the followers are perturbed unless a
feedback is implemented [25]. The behavioral approach (e.g., [26], [27]), where each agent locally reacts to actions
of its neighbors, is suitable for decentralized control but is difficult in control design and stability analysis since the
group’s behavior cannot explicitly be defined. The virtual structure approach (e.g., [28], [29], [30], [31], [32]) treats all
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the agents as a single entity, and is amenable to mathematical analysis but has difficulties in controlling critical points.
The coordination control design in this paper belongs to the virtual structure approach. Although most of the existing
works focus on the networked agents with first-order dynamics, cooperative control of multiple agents with second-order
dynamics was also addressed (e.g. [33], [34], [35], [36]). However, the problem of bounded control has been only solved
recently in [37] for the case where collision avoidance between the agents must be considered. It will be seen later
that since the quadrotor aircraft are underactuated it is necessary to address the bounded control problem for the agents
with second-order dynamics in order to design a coordination control system for a group of quadrotor aircraft. It is
noted that the proposed control design in [37] for double integrator agents is not directly applied to the problem of
coordination control for quadrotor aircraft considered in this paper because the quarotor aircraft dynamics can not be
globally transformed to a double integrator. Due to the mentioned difficulties and the unsolved issue, only few results
on cooperative control of multiple aircraft are available.

In most existing works (e.g, [38], [39] [40], [41]) on formation control of quadrotor aircraft, the leader-follower
approach, where the leader is either a actual or a virtual aircraft or a pay-load, has been utilized since as mentioned
above this approach is easy to understand and maintain the desired formation. The control design is usually based on the
sliding mode, Lyapunov direct and backstepping methods. In [42] and [43], several formation controllers were designed
to force a group of the quadrotor aircraft to track a desired reference linear velocity and to maintain a desired formation.
In the above works, collision avoidance between the aircraft is not considered. Based on potential functions, a formation
control algorithm with collision avoidance for quadrotors under bounded control forces was proposed in [44] but the
results are based on linearization of the aircraft dynamics (except for the yaw dynamics) around the zero value of the
roll and pitch angles.

From the above discussion, this paper proposes a design of a coordination controller for a group of the quadrotor
aircraft with collision avoidance between them. First, motivated by the author’s recent work [45] on controlling an
underactuated omni-directional intelligent navigator in 3D space a combination of Euler angles and unit-quaternion is
used for the attitude representation of the aircraft for an effective control design, and for reduce of singularities in the
attitude dynamics of the aircraft when only Euler angles are used for the attitude representation. Next, a new bounded
control design technique for second-order systems and new pairwise collision avoidance functions are proposed to design
a distributed coordination controller. In the control design, the roll and pitch angles of the aircraft are considered as
immediate controls. Therefore, the main contribution of the proposed coordination control system in this paper is the
design of distributed coordination control laws for a group of quadrotor aircraft that force each aircraft almost globally
asymptotically and locally exponentially tracks its reference trajectory, and guarantee no collision between aircraft under
bounded control inputs. The term “almost global” is referred to the fact that the aircraft need to be initialized at non-
collision conditions, see (6) in Assumption 2.1. Comparison with the aforementioned works on (coordination) control
of quadrotor aircraft is detailed below to show the above advantages of the proposed coordination control design in this
paper.

The bounded control designs for single aircraft in [16], [17], [18], [19] are based on the use of “linear” nested saturation
control design method [20] and its alternatives. As pointed out in [20], this sort of nested saturation can only be applied
to “restricted tracking” problems. Consequently, the above bounded control designs for aircraft are not applicable to
design almost global coordination controllers for aircraft with collision avoidance (based on potential functions). This is
because the repulsive forces approach extremely large values when a collision between aircraft tends to occur. Thus, a
“nonlinear” nested saturation control design is proposed in this paper to handle the above problem, which results in an
almost global bounded coordination controller with collision avoidance for aircraft, see Section III-B.

The coordination controllers proposed in [38], [39] [40], [41], [42], [43] did not address collision avoidance between
aircraft. Although a coordination control design with bounded control inputs was proposed in [44], there are several
drawbacks of this work. First, an on-line optimal algorithm is required to select the goal positions for avoidance of local
minima because the collision avoidance design is based on the potential functions in [46]. Second, the roll and pitch
angles had to be assumed to be very small so that the dynamics of the aircraft (except for the yaw dynamics) can be
considered as a linear system for a design of bounded control forces based on the nested design proposed in [20], [17].
Third, no stability analysis of critical points was carried out. Basically, the closed-loop system has multiple equilibrium
(critical) points due to collision avoidance taken into account but in [44] only stability of desired equilibrium points was
analyzed.

The rest of the paper is organized as follows. Section II defines the control objective. Section III gives essential
preliminary results. Proofs of preliminary results are given in [47], [29], [37] and Appendix A. The preliminary results
are to be used in the control design in Section IV and stability analysis in Appendix B. Simulations are given in Section
V. Section VI concludes the paper.
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II. PROBLEM STATEMENT

A. Aircraft dynamics

Under the assumption that the aerodynamics are neglected, the Lagrangian approach results in the following equations
of motion of the quadrotor aircraft i, for all i ∈ N with N the set of all the aircraft:{

η̇1i = v1i,
v̇1i = −ge3 + 1

mi
fiR1(qi)e3,

{
q̇i = R2(qi)ωi,

ω̇i = −J−1
i S(ωi)Jiωi + J−1

i τi,
(1)

where e3 = [0 0 1]T , g is the gravitational acceleration, mi is the mass of the aircraft i, Ji is the inertia matrix of the
aircraft i. The vector η1i = [xi yi zi]

T denotes the (latitude, longitude, altitude) displacements of the center of mass
of the aircraft i coordinated in the earth-fixed frame. The vector v1i denotes the linear velocity vector of the aircraft
coordinated in the earth-fixed frame. The skew-symmetric matrix S(x) is defined as S(x)y = x × y for all x ∈ R3

and y ∈ R3, where ′×′ denotes the vector cross product. The unit-quaternion qi = [qi0 q̄Ti ]
T is a four-element vector

composed of a scalar component q0i and a vector component q̄i ∈ R3 that satisfy q20i+∥q̄i∥2 = 1. The vector ωi denotes
the angular velocity vector of the aircraft i coordinated in the body-fixed frame. The rotational matrix R1(qi), and the
matrix R2(qi) are given by

R1(qi) = (q20i − ∥q̄i∥2)I3 + 2q̄iq̄
T
i + 2q0iS(q̄i), R2(qi) =

1

2

[
−q̄Ti

q0iI3 + S(q̄i)

]
, (2)

where I3 is the 3× 3 identity matrix. Note that RT
2 (qi)R2(qi) =

1
4I3. The force fi and the moment vector τi are

fi =

4∑
l=1

fil, τi =

 (fi4 − fi2)Li
(fi3 − fi1)Li

(fi2 − fi1 + fi4 − fi3)Eia

 , (3)

where fil, l = 1, .., 4 is the thrust generated by the lth rotor along the lth rotor axis of the aircraft i, Li is the distance
between the rotor and the center of mass of the aircraft i, and Eia is a coefficient relating the difference in the rotor’s speed
to the yaw moment about the vertical body axis. The aircraft dynamics (1) is underactuated because we are interested
in controlling all six outputs (latitude, longitude, altitude, roll, pitch and yaw) while there are only four independent
control inputs fil, l = 1, · · · , 4.

For the purpose of the control design later, we let ϕi, θi, and ψi be the roll, pitch, and yaw angles, respectively. The
unit-quaternion qi can be written in terms of ϕi, θi, and ψi as follows:

qi(η2i) =


cos(ϕi

2 ) cos(
θi
2 ) cos(

ψi

2 ) + sin(ϕi

2 ) sin(
θi
2 ) sin(

ψi

2 )

sin(ϕi

2 ) cos(
θi
2 ) cos(

ψi

2 )− cos(ϕi

2 ) sin(
θi
2 ) sin(

ψi

2 )

cos(ϕi

2 ) sin(
θi
2 ) cos(

ψi

2 ) + sin(ϕi

2 ) cos(
θi
2 ) sin(

ψi

2 )

cos(ϕi

2 ) cos(
θi
2 ) sin(

ψi

2 )− sin(ϕi

2 ) sin(
θi
2 ) cos(

ψi

2 )

 , (4)

with η2i = [ϕi θi ψi]
T . Using (4), we can write the matrix R1(qi) = R1(η2i) defined in (2) as

R1(η2i)=

cos(ψi) cos(θi) − sin(ψi) cos(ϕi) + sin(ϕi) sin(θi) cos(ψi)
sin(ψi) cos(θi) cos(ψi) cos(ϕi) + sin(ϕi) sin(θi) sin(ψi)

− sin(θi) sin(ϕi) cos(θi)

sin(ψi) sin(ϕi) + sin(θi) cos(ψi) cos(ϕi)
− cos(ψi) sin(ϕi) + sin(θi) sin(ψi) cos(ϕi)

cos(ϕi) cos(θi)

.
(5)

B. Coordination control objective

To design a coordination control system, it is necessary to specify a common goal for the group and initial positions
and velocities of the aircraft. We therefore impose the following assumptions on the reference trajectories and initial
conditions between the aircraft.

Assumption 2.1:
1) At the initial time t0 ≥ 0, each aircraft starts at a different location and all the aircraft do not approach each other

at high relative linear velocities. Specifically, there exist strictly positive constants ε11 and ε12 such that for all
(i, j) ∈ N with i ̸= j, the following conditions hold at the initial time t0:

∥η1ij(t0)∥ ≥ ε11,

ηT1ij(t0)
(
Kη1ij(t0) +∆i(t0)(v1i(t0)− η̇1id(t0))−∆j(t0)(v1j(t0)− η̇1jd(t0))

)
≥ ε12,

(6)
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where K = diag(k1, k2, k3) with k1, k2, and k3 being positive constants, η1id(t) and η1jd(t), which will be
specified below, are the reference trajectories to be tracked by the aircraft i and j, and

η1ij(t0) = η1i(t0)− η1j(t0),

∆i(t0) = I3 +
1

2
(v1i(t0)− η̇1id(t0)) ⋆ (v1i(t0)− η̇1id(t0)),

∆j(t0) = I3 +
1

2
(v1j(t0)− η̇1jd(t0)) ⋆ (v1j(t0)− η̇1jd(t0)).

(7)

For a vector x = [x1, x2, ..., xn]
T ∈ Rn, the operator ⋆ is defined as x ⋆ x = diag(x21, x

2
2, ..., x

2
n).

2) The reference position vector η1id(t) = [xid(t) yid(t) zid(t)]
T for the aircraft i to track is differentiable up to four

times and satisfies the following conditions:

∥η1id(t)− η1jd(t)∥ ≥ ε2,

η̇1id(t) = η̇1jd(t), η̈1id(t) = η̈1jd(t),
(8)

for all (i, j) ∈ N, j ̸= i and t ≥ t0, where ε2 is a positive constant. Moreover, the absolute value of the second
derivative of zid(t) is assumed to be strictly less than g, i.e.,

sup
t∈R+

|z̈id(t)| ≤ g − ϱ, (9)

where ϱ is a strictly positive constant. The reference yaw angle ψid(t) is assumed to be twice differentiable.
Coordination Control Objective 2.1: Under Assumption 2.1, for each aircraft i design the control inputs fil, l =

1, · · · , 4 such that the position vector η1i(t) and the yaw angle ψi(t) of the aircraft i track their reference trajectories
η1id(t) and ψid(t), respectively, and there is no collision with all other aircraft in the group. Specifically, we will design
the control inputs fil, l = 1, · · · , 4 for the aircraft i such that

lim
t→∞

(η1i(t)− η1id(t)) = 0, lim
t→∞

(ψi(t)− ψid(t)) = 0,

∥η1i(t)− η1j(t)∥ ≥ ε3,
(10)

for all (i, j) ∈ N, i ̸= j and t ≥ t0 ≥ 0, where ε3 is a strictly positive constant. Moreover, the control design needs to
keep all other states of the aircraft dynamics bounded for all initial conditions η1i(t0) ∈ R3 and v1i(t0) ∈ R3 satisfying
(6), and qi(t0) ∈ R3 with ∥qi(t0)∥2 = 1, and ωi(t0) ∈ R3.

Remark 2.1:
1) If at the initial time t0 the aircraft approached each other at high relative linear velocities, the controls fil,

l = 1, · · · , 4 would not be able to prevent the aircraft from colliding with each other because the aircraft are
underactuated, see Section IV for more details. Therefore, it is reasonable to impose Assumption 2.1.1 for the
design of the controls fil for all i = 1, ..., N and l = 1, · · · , 4, which guarantee collision avoidance between the
aircraft.

2) Assumption 2.1.2 specifies feasible reference trajectories η1id(t) with i ∈ N for the aircraft to track since they have
to satisfy the conditions listed in (8). A desired coordination shape can be specified by the reference trajectories
η1id(t) with i ∈ N. Let us consider the virtual structure approach in [48], [29] to generate the reference trajectories
η1id(t) with i ∈ N. First, a virtual structure consisting of N vertices is designed as a desired coordination shape.
Second, we let the center of the virtual structure move along the common reference trajectory η1od(t). Third, as the
virtual structure moves, its vertex i generates the reference trajectory η1id(t). Specifically, the reference trajectory
η1id(t) can be generated as η1id(t) = η1od(t)+ li where li is a constant vector. The second equation of (8) implies
that all the aircraft have the same desired linear velocity and acceleration. As such, this approach also applies to
the case where uniform expansion or contraction of the desired virtual structure in the sense that the vectors li are
time-varying but need to satisfy the conditions

l̇i = l̇j , l̈i = l̈j ,

∥li(t)− lj(t)∥ ≥ ε2, ∀ t ≥ t0 ≥ 0,
(11)

for all (i, j) ∈ N, j ̸= i, where ε2 is the positive constant as defined in (8), and ∥l̇i∥ and ∥l̈i∥ are bounded.
Basically, the above conditions imply that all the aircraft have the same desired linear velocity and acceleration,
i.e., η̇1id(t) = η̇1jd(t), and η̈1id(t) = η̈1jd(t). This requirement is to make it possible to affine the control fi in
the derivative of proper Lyapunov function for the control design, see the paragraph just after (35).

3) The conditions listed (8) in Assumption 2.1.2 also implies that the approach in this paper excludes cases like Rendez-
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vous or flocking where no reference position is assigned to the group, or to a virtual center of the formation, and
a specified formation shape is required.

4) The condition (9) implies that the aircraft are not allowed to land faster than it freely falls under the gravitational
force. We specify this condition to design smooth controls fil for all i = 1, ..., N and l = 1, · · · , 4 to obtain
“almost global coordination” tracking results. The term “almost global coordination” is referred to the fact that the
initial conditions (6) hold.

5) There is a common point between this paper and the aforementioned works ( [38], [39] [40], [41]) on formation
control of aircraft in the sense that each aircraft has its own reference trajectory to track. The main difference is
the collision avoidance objective, i.e., the condition 3 in (10). Although this condition was not explicitly stated
in [44], the formation control design in [44] did consider this condition. However, there are drawbacks in [44] as
mentioned in the previous section.

III. PRELIMINARIES

This section presents saturation functions, a technique for designing bounded controllers for a second-order system,
a non-zero convergent lemma for a differential inequality, smooth step functions, and Barbalat-like lemma. These
preliminary results will be used in the control design and stability analysis later.

A. Saturation functions

Definition 3.1: The function σ(x) is said to be a smooth saturation function if it possesses the following properties:

σ(x) = 0 if x = 0, σ(x)x > 0 if x ̸= 0,

σ(−x) = −σ(x), (x− y)[σ(x)− σ(y)] ≥ 0,

|σ(x)| ≤ 1,
∣∣σ(x)
x

∣∣ ≤ 1,
∣∣∂σ(x)
∂x

∣∣ ≤ 1,

for all (x, y) ∈ R2.
Some functions satisfying the above properties include σ(x) = tanh(x) and σ(x) = x√

1+x2
. For the vector x =

[x1, · · · , xn]T , we use the notation σ(x) = [σ(x1), · · · , σ(xn)]T to denote the smooth saturation function vector of x.

B. Bounded control design for second-order systems

Lemma 3.1: Consider the following second-order system:

ẋ1 = x2,

ẋ2 = u,
(12)

where x1 and x2 are the states, and u is the control input. Let the positive constants k and c be chosen such that
0.5k+ c ≤ umax with umax being a strictly positive constant, and let σ(•) be a smooth saturation function of • defined
in Definition 3.1. The bounded control law

u =
1

1 + 1.5x22

(
− kx2 − cσ

(
kx1 +

(
1 + 0.5x22

)
x2

))
(13)

globally asymptotically stabilizes the system (12) at the origin and satisfies |u(t)| ≤ umax for all t ≥ t0 ≥ 0 and initial
values (x1(t0), x2(t0)) ∈ R2.
Proof. See [37]. The main difference between the bounded control law (13) and those, which are appeared in [16], [17],
[18], [19], [44], based on the nested saturation control design (e.g., [20], [49]) is the term 1+1.5x22. This important term
motivates the design of a bounded formation controller with collision avoidance between aircraft in the next section.

C. Non-zero convergent lemma

This subsection presents a non-zero convergent result for a first-order system. This result will be used to construct
pairwise collision avoidance functions in Subsection IV-A2.

Lemma 3.2: Assume that the vectors x1 ∈ Rn and x2 ∈ Rn satisfy the following conditions

∥x12(t0)∥ ≥ a0,

xT12

[(
In +

1

2
(ẋ1 − µ(t)) ⋆ (ẋ1 − µ(t))

)
(ẋ1 − µ(t))−

(
In +

1

2
(ẋ2 − µ(t)) ⋆ (ẋ2 − µ(t))

)
(ẋ2 − µ(t)) +Bx12

]
≥ a,

(14)
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for all t ≥ t0 ≥ 0, where x12 = x1 − x2, t0 ≥ 0 is the initial time, In is the n × n identity matrix, µ(t) ∈ Rn is
a vector whose elements are bounded functions of t, B is a symmetric positive definite matrix, a0 and a are strictly
positive constants. Then

∥x12(t)∥ ≥ min

(
a0,

√
a

λM (B)

)
(15)

for all t ≥ t0 ≥ 0, where λM (B) is the maximum eigenvalue of the matrix B.
Proof. See Appendix A.

D. Smooth step function

This subsection gives a definition of the smooth step function followed by a construction of this function. The smooth
step function is to be embedded in a pairwise collision avoidance function to avoid discontinuities in the control law in
solving the collision avoidance problem.

Definition 3.2: A scalar function h(x, a, b) is said to be a smooth step function if it is smooth and possesses the
following properties:

1) h(x, a, b) = 0, ∀x ∈ (−∞, a], 3) 0 < h(x, a, b) < 1, ∀x ∈ (a, b),

2) h(x, a, b) = 1, ∀x ∈ [b,∞), 4) h′(x, a, b) > 0, ∀x ∈ (a, b),
(16)

where h′(x, a, b) = ∂h(x,a,b)
∂x , and a and b are constants such that a < b.

Lemma 3.3: Let the scalar function h(x, a, b) be defined as

h(x, a, b) =
f(τ)

f(τ) + f(1− τ)
with τ =

x− a

b− a
, (17)

where f(τ) = 0 if τ ≤ 0 and f(τ) = e−
1

τ if τ > 0, with a and b being constants such that a < b. Then the function
h(x, a, b) is a smooth step function.

Proof. See [47].

E. Barbalat-like lemma

The following Barbalat-like lemma is to be used in the stability analysis of the closed-loop system.
Lemma 3.4: Assume that a nonnegative scalar differentiable function f(t) satisfies the following conditions

1)

∣∣∣∣ ddtf(t)
∣∣∣∣ ≤ k1f(t), ∀t ≥ 0, 2)

∫ ∞

0
f(t)dt ≤ k2 (18)

where k1 and k2 are positive constants, then limt→∞ f(t) = 0.
Proof. See [29]. Lemma 3.4 differs from Barbalat’s lemma found in [50]. While Barbalat’s lemma assumes that

f(t) is uniformly continuous, Lemma 3.4 assumes that | ddtf(t)| is bounded by k1f(t). Lemma 3.4 is useful in proving
convergence of f(t) when it is difficult to prove uniform continuity of f(t).

IV. CONTROL DESIGN

The control design consists of two stages. In the first stage, the first two equations of (1) will be considered. Using
the bounded control design for second-order systems in Subsection III-B and the pairwise collision avoidance functions
in Subsection IV-A2, we will design the total thrust fi and the virtual controls of the roll angle ϕi and the pitch angle
θi of the aircraft i. These controls are designed such that there is no collision between any aircraft and the tracking
error η1i(t) − η1id(t) is asymptotically stabilized at the origin. In the second stage, the last two equations of (1) will
be considered. Using the backstepping technique [51] the moment vector τi will be designed to globally asymptotically
and locally exponentially stabilize the tracking error ψi(t)−ψid(t) and the errors between the virtual controls of the roll
and pitch angles and their actual values at the origin.

A. Stage 1

1) Tracking and virtual control errors: We define

η1ie = η1i − η1id,

v1ie = v1i − η̇1id,

qie = qi −αqi

(19)
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where αqi
= [αq0i α

T
q̄i
]T with αq̄i

= [αq1i αq2i αq3i ]
T is a virtual control of qi. It is noted that either −αqi

or +αqi

can be used in the third equation of (19) and results in the same desired orientation of the aircraft when qie is equal to
zero. This is because from (4) we have qi(η2i) = −qi(η2i − 2π). Therefore, −αqi

represents the desired Euler angles
corresponding to those, which are represented by +αqi

, are rotated by an angle of 2π. Substituting the third equation
of (19) into (2) results in

R1(qi) = R1(αqi
) +H(qie,αqi

), (20)

where

H(qie,αqi
) =

[
q0ie(q0ie−2αq0i)−q̄Tie(q̄ie−2αq̄i

)
]
I3+2q̄ie(q̄

T
ie−2αT

q̄i
)+2

[
q0ie(S(q̄ie)−S(αq̄i

))−αq0iS(q̄ie)
]
, (21)

since S(x+ y) = S(x) + S(y) for all x ∈ R3 and y ∈ R3. Now let us define αη2i
= [αϕi

αθi αψi
]T with

αψi
= ψid, (22)

which is the virtual control of η2i corresponding to the virtual unit-quaternion vector αqi
. Using (5), we can write

R1(αqi
) = R1(αη2i

) as
R1(αqi

) = R1(η2i)
∣∣
η2i=αη2i

, (23)

where using (4) we have the relationship between αqi
and αη2i

as follows:

αqi
= qi(η2i)

∣∣
η2i=αη2i

. (24)

The purpose of writing down (23) and (24) is that it is difficult to directly design the virtual control αqi
. Therefore,

we will design the virtual control αη2i
(only αϕi

and αθi since αψi
is already available in (22)) by using (23) then the

virtual control αqi
will be found by substituting αη2i

into (24). With the second equation of (19), (20), and the first
equation of (1), we can write v̇1ie as

v̇1ie = −ge3 +
fi
mi

R1(αqi
)e3 − η̈1id +

fi
mi

H(qie,αqi
)e3. (25)

2) Pairwise collision avoidance functions: This subsection defines and constructs pairwise collision avoidance func-
tions. In constructing these functions, we utilize Lemma 3.2, Definition 3.2, and Lemma 3.3. The pairwise collision
avoidance functions will be used for the coordination control design in the next section.

Definition 4.1: Let βij with (i, j) ∈ N and i ̸= j be a scalar function of χij , which is given by

χij = ηT1ij

(
Kη1ij +∆iv1ie −∆jv1je

)
, (26)

where is the diagonal positive definite matrix defined in (6) and

η1ij = η1i − η1j ,

∆i = I3 +
1

2
v1ie ⋆ v1ie, ∆j = I3 +

1

2
v1je ⋆ v1je.

(27)

The function βij is said to be a pairwise collision avoidance function if it possesses the following properties:

1) βij = 0, β′ij = 0, β′′ij = 0, β′′′ij = 0, ∀χij ∈ [χ∗
ij ,∞),

2) βij > 0, ∀χij ∈ (0, χ∗
ij), β

′
ij ≤ 0, ∀χij ∈ R,

3) lim
χij→0

βij = ∞, lim
χij→0

β′ij = −∞, lim
χij→0

β′′ij = −∞,

4) βij is smooth, ∀χij ∈ (0,∞),

(28)

where β′ij =
∂βij

∂χij
, β′′ij =

∂2βij

∂χ2
ij

, β′′ij =
∂3βij

∂χ3
ij

, and the constant χ∗
ij is strictly positive and is chosen such that

χ∗
ij ≤ χijd, (29)

with χijd = χij
∣∣
η1i=η1id,η1j=η1jd,v1i=η̇1id,v1j=η̇1jd

, i.e.,

χijd = ηT1ijdKη1ijd,

η1ijd = η1id − η1jd.
(30)

Remark 4.1: Property 1) implies that the function βij is zero when the aircraft i and j are at their desired locations
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or are sufficiently faraway from each other and do not approach each other at a high relative linear velocity since the
constant χ∗

ij satisfies the condition (29). Property 2) implies that the function βij is positive when the aircraft i and j are
sufficiently close to each other and/or are approaching each other at a high relative linear velocity. Property 3) means
that the function βij is equal to infinity when a collision between the agents i and j occurs. Property 4) allows us to use
control design and stability analysis methods found in [50] for continuous systems instead of techniques for switched
and discontinuous systems found in [52] to handle the collision avoidance problem.

Using the smooth step function given in Definition 3.2, we can find many functions that satisfy all the properties listed
in (28). An example is

βij = dij
1− h(χij , aij , bij)

h(χij , aij , bij)
, (31)

where dij is a positive constant, and the positive constants aij and bij satisfy the condition

0 < aij < bij ≤ χ∗
ij . (32)

The function h
(
χij , aij , bij

)
is a smooth step function defined in Definition 3.2. It can be directly verified that the

function βij given in (31) possesses all the properties listed in (28). The function βij defined in (31) will be used in the
rest of the paper.

3) Design of fi and αη2i
: To design the control fi and the virtual control αη2i

, we consider the following Lyapunov-
like function:

V1 =
1

2

( N∑
i=1

∥2Kη1ie +∆iv1ie∥2 +
N∑
i=1

∑
j∈Ni

βij

)
, (33)

where the matrices K and ∆i, and the pairwise collision avoidance function βij are given in Definition 4.1, and Ni is
the set containing all the aircraft except for the aircraft i. Differentiating both sides of (33) gives

V̇1 =

N∑
i=1

ΩT
i

(
2Kv1ie + (∆i + v1ie ⋆ v1ie)v̇1ie

)
+

1

2

N∑
i=1

∑
j∈Ni

β′ijv
T
1ij(∆iv1ie −∆jv1je), (34)

where
Ωi = 2Kη1ie +∆iv1ie +

∑
j∈Ni

β′ijη1ij . (35)

Since η̇1id = η̇1jd, see (8), we have v1ij = v1i − η̇1id − (v1j − η̇1jd) = v1ie − v1je. Hence using the equality
v1ij = v1ie − v1je and definition of ∆i and ∆j in (27) results in vT1ij(∆iv1ie − ∆jv1je) ≥ 0 for all v1ie ∈ R3 and
v1je ∈ R3. Now, since β′ij ≤ 0 for all χij ∈ R, see Properties of βij listed in (28), we can write (34) as

V̇1 ≤
N∑
i=1

ΩT
i

(
2Kv1ie + (∆i + v1ie ⋆ v1ie)v̇1ie

)
. (36)

Substituting (25) into (36) yields

V̇1 ≤
N∑
i=1

ΩT
i

[
2Kv1ie + (∆i + v1ie ⋆ v1ie)

(
− ge3 +

fi
mi

R1(αqi
)e3 − η̈1id

)]
+

N∑
i=1

ΩT
i

fi
mi

H(qie,αqi
)e3. (37)

which suggests that we choose

fiR1(αqi
)e3 = mi

[
ge3 + η̈1id + (∆i + v1ie ⋆ v1ie)

−1(−2Kv1ie −C1σ(Ωi))
]
:= Φi, (38)

where C1 = diag(c11, c12, c13) with c11, c12, and c13 positive constants to be chosen later. It is noted that the matrix
(∆i + v1ie ⋆ v1ie) is invertible for all v1ie ∈ R3 since ∆i = I3 +

1
2v1ie ⋆ v1ie, see (27).

Let Φ1i, Φ2i, and Φ3i be the elements of Φi, i.e., Φi = [Φ1i Φ2i Φ3i]
T . From (38), we obtain the following bounds

of |Φ1i|, |Φ2i|, and Φ3i:

|Φ1i| ≤ mi

(
sup
t∈R+

∥η̈1id(t)∥+ k1 + 2c11

)
, Φ3i ≤ mi

(
2g − ϱ+ k1 + 2c13

)
,

|Φ2i| ≤ mi

(
sup
t∈R+

∥η̈1id(t)∥+ k1 + 2c12

)
, Φ3i ≥ mi

(
ϱ− k1 − 2c13

)
,

(39)

where we have used (8) and (9). We now specify the gain matrices K and C1 such that Φ3i ≥ Φ∗
3i with Φ∗

3i being a
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strictly positive constant. From the last inequality in (39), it is seen that Φ3i ≥ Φ∗
3i if we choose K and C1 such that

mi

(
ϱ− k1 − 2c13

)
≥ Φ∗

3i. (40)

This condition is necessary for designing a smooth control law for αθi later. We now solve (38) for fi, αϕi
, and αθi .

As such, the equation (38) yields
fie3 = R−1

1 (αqi
)Φi. (41)

Since R−T
1 (αqi

)R−1
1 (αqi

) = I3, we have

fi =
√

ΦT
i Φi. (42)

On the other hand, using (23) and e3 = [0 0 1]T we can write (41) in a component form as follows:

cos(αψi
) cos(αθi)Φ1i + sin(αψi

) cos(αθi)Φ2i − sin(αθi)Φ3i = 0,[
− sin(αψi

) cos(αϕi
) + sin(αϕi

) sin(αθi) cos(αψi
)
]
Φ1i +

[
cos(αψi

) cos(αϕi
) + sin(αϕi

) sin(αθi) sin(αψi
)
]
Φ2i+

sin(αϕi
) cos(αθi)Φ3i = 0,[

sin(αψi
) sin(αϕi

) + sin(αθi) cos(αψi
) cos(αϕi

)
]
Φ1i +

[
− cos(αψi

) sin(αϕi
) + sin(αθi) sin(αψi

) cos(αϕi
)
]
Φ2i+

cos(αϕi
) cos(αθi)Φ3i = fi.

(43)

Now multiplying the second equation of (43) by − cos(αϕi
) then adding with the first equation of (43) multiplied by

sin(αϕi
) results in

αϕi
= arcsin

(
sin(αψi

)Φ1i − cos(αψi
)Φ2i√

ΦT
i Φi

)
, (44)

which is well defined since | sin(αψi
)Φ1i − cos(αψi

)Φ2i| ≤
√

Φ2
1i +Φ2

2i <
√

ΦT
i Φi due to Φ3i ≥ Φ∗

3i > 0, see (40).
Moreover, from the first equation of (43) we have

αθi = arctan

(
cos(αψi

)Φ1i + sin(αψi
)Φ2i

Φ3i

)
, (45)

which is also well defined since Φ3i ≥ Φ∗
3i > 0, see (40).

Remark 4.2: Since β′ij = 0, ∀χij ∈ [χ∗
ij ,∞), see Property 1) of βij in (28), the control laws fi, αϕi

, and αθi of the
aircraft i depend only on its own states and the states of other neighbor aircraft if these aircraft are in a sphere, which
is centered at the aircraft i and has a radius no greater than χijd defined just below (29).

Substituting (38) into (37) results in

V̇1 ≤ −
N∑
i=1

ΩT
i C1σ(Ωi) +

N∑
i=1

ΩT
i

√
ΦT
i Φi

mi
H(qie,αqi

)e3. (46)

Substituting (38) into (25) results in

v̇1ie = (∆i + v1ie ⋆ v1ie)
−1(−2Kv1ie −C1σ(Ωi)) +

fi
mi

H(qie,αqi
)e3. (47)

B. Stage 2

In this stage, we design the control τi to stabilize qie at the origin. Before calculating q̇ie, let us calculate α̇qi. From
(24), we have

α̇qi = R2(αqi
)ϑi, (48)

where R2(•) is defined in (2), and

ϑi =

 1 0 − sin(αθi)
0 cos(αϕi

) cos(αθi) sin(αϕi
)

0 − sin(αϕi
) cos(αθi) cos(αϕi

)

×

[
∂αη2i

∂η̈1id

...
η1id +

∂αη2i

∂ψid
ψ̇id +

∂αη2i

∂η1ie
η̇1ie +

∂αη2i

∂v1ie
v̇1ie +

∂αη2i

∂Ωi

∑
j∈Ni

(
β′ijη̇1ij + β′′ijχ̇ijη1ij

)]
.

(49)
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Noticing all the derivatives η̇1ie, v̇1ie, η̇1ij , and χ̇ij are analytically available. Differentiating both sides of the last
equation of (19) along the solutions of (48) and the third equation of (1) yields

q̇ie = R2(qi)ωi −R2(αqi
)ϑi. (50)

Since qie ∈ R4 while ωi ∈ R3 and τi ∈ R3, it is difficult to design the control τi from (50) to stabilize qie at the origin.
To overcome this difficulty, we perform the following coordinate transformations:

z0i = αq0iq0i +αT
q̄i
q̄i,

z̄i = αq0i q̄i − q0iαq̄i
− S(αq̄i

)q̄i,
(51)

where αq0i is the first element of αqi
and αq̄i

is the vector containing the second, third and fourth elements of αqi
, i.e.,

αqi
= [αq0i α

T
q̄i
]T . (52)

Using (51), (52), and the third equation of (19), we have the following relationship between (z0i, z̄i) and qie:[
z0i − 1

z̄i

]
= Qiqie, (53)

where

Qi = −


q0i q1i q2i q3i
q1i −q0i q3i −q2i
q2i −q3i −q0i q1i
q3i q2i −q1i −q0i

 . (54)

It is noted that the matrix Qi is invertible because det(Qi) = −(q20i+q
2
1i+q

2
2i+q

2
3i) = −1. Due to (53), the transformation

(51) implies that designing the control τi to stabilize qie at the origin is equivalent to designing ωi to stabilize z0i at 1
and z̄i at the origin. Differentiating both sides of (51) along the solutions of the third equation of (1) and (48) yields

ż0i = −1

2
z̄Ti ωie,

˙̄zi =
1

2
Giωie,

(55)

where

Gi = (z0iI3 + S(z̄i)),

ωie = ωi − ϑi.
(56)

Since the matrix Gi is not globally invertible, it is not an easy task to use the backstepping technique to design a virtual
control for ωie to stabilize z̄i at the origin and z0i at 1. Therefore, we will construct a special Lyapunov function in
conjunction with the function V1 to directly design the moment vector τi. As such, differentiating both sides of the
second equation of (56) along the solutions of the last equation of (1) gives

ω̇ie = τie, (57)

where we have chosen the control τi as

τi = J−1
i S(ωi)Jiωi + Ji

(
ϑ̇i + τie

)
, (58)

and τie is a new control to be designed. It is noted that ϑ̇i is analytically obtained by differentiating ϑi, which is defined
in (49). Before designing τie, from the expression of the matrix H(qie,αqi

) in (21) and the relationship between qie

and (z0i, z̄i) defined in (53) we can write the term 1
mi

√
ΦT
i Φi Ω

T
i H(qie,αqi

)e3 in the right hand side of (46) as

1

mi

√
ΦT
i Φi Ω

T
i H(qie,αqi

)e3 =Ψ0i(z0i − 1) +Ψ
T
i z̄i (59)

where Ψ0i is a scalar function of, and Ψi is a vector of functions of Ωi, fi, qie, and αqi
. Now, to design the control

τie, we consider the following Lyapunov function candidate:

V2 = V1 +

N∑
i=1

(
(z0i − 1)2 + ∥z̄i∥2 +

1

2
ω̃Ti Γ

−1
i ω̃i

)
, (60)
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where Γi is a positive definite matrix, and

ω̃i = ωie − ωi,

ωi = −
(1
2
(Ψ2

0i + 1) + c2i

)
z̄i −Ψi,

(61)

with c2i being a positive constant. Differentiating both sides of (60) along the solutions of (46), (55) and using (59)
results in

V̇2 ≤−
N∑
i=1

ΩT
i C1σ(Ωi) +

N∑
i=1

(
Ψ0i(z0i − 1) +Ψ

T
i z̄i + z̄Ti ωie + ω̃Ti Γ

−1
i (τie − ω̇i)

)
, (62)

which suggests that we choose
τie = ω̇i − Γ2

i ω̃i − Γiz̄i. (63)

Note that ω̇i can be obtained analytically by differentiating ωi given in (61). The control τi is found by substituting
(63) into (58). Similar to Remark 4.2, we have the following remark:

Remark 4.3: By construction, the control τi of the aircraft i depend only on its own states and the states of other
neighbor aircraft if these aircraft are in a sphere, which is centered at the aircraft i and has a radius no greater than χijd
defined just below (29) because outside this sphere βij = 0, β′ij = 0, β′′ij = 0, and β′′′ij = 0, see Property 1) of βij in
(28).

Substituting (63) into (62) gives

V̇2 ≤−
N∑
i=1

ΩT
i C1σ(Ωi)−

N∑
i=1

ω̃Ti Γiω̃i −
N∑
i=1

[(1
2
(Ψ2

0i + 1) + c2i

)
∥z̄i∥2 −Ψ0i(z0i − 1)

]
. (64)

Since ∥z̄i∥2 = 1− z20i ≥ 1− z0i and |Ψ0i| ≤ 1
2(Ψ

2
0i + 1), we can write (64) as

V̇2 ≤−
N∑
i=1

(
ΩT
i C1σ(Ωi) + ω̃Ti Γiω̃i + c2i∥z̄i∥2

)
. (65)

From the above control design, we have the following closed-loop system:

η̇1ie = v1ie,

v̇1ie = (∆i + v1ie ⋆ v1ie)
−1(−2Kv1ie −C1σ(Ωi)) +

1

mi

√
ΦT
i ΦiH(qie,αqi

)e3,

q̇ie = R2(qi)ωi −R2(αqi
)ϑi,

ω̇ie = ω̇i − Γ2
i ω̃i − Γiz̄i.

(66)

The control design has been completed. We summarize the results in the following theorem.
Theorem 4.1: Under Assumption 2.1, the coordination control laws consisting of (42) and (58) for the aircraft i solve

Coordination Control Objective 2.1 provided that the gain matrices K and C1 are chosen such that the condition (40)
holds. In particular, the following results hold under Assumption 2.1:

1) The actual control input fil, l = 1, · · · , 4 to the rotor l of the aircraft i can be found by solving (3) with fi and
τi given in (42) and (58), respectively, i.e.,

fi1
fi2
fi3
fi4

 =


1 1 1 1
0 −Li 0 Li

−Li 0 Li 0
−Eia Eia −Eia Eia


−1 [

fi
τi

]
. (67)

2) There is no collision between any aircraft and the closed-loop system (66) is forward complete.
3) The position vector η1i(t) and the yaw angle ψi(t) of the aircraft i almost globally asymptotically and locally

exponentially track their reference trajectories η1id(t) and ψid(t), respectively, i.e., limt→∞(η1i(t)− η1id(t)) = 0
and limt→∞(ψi(t)− ψid(t)) = 0.

4) All other states of the aircraft dynamics are bounded.
Proof. See Appendix B.
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V. SIMULATION RESULTS

In this section, we illustrate the effectiveness of the proposed coordination control design through a numerical simulation
on a group of N = 6 identical quadrotor aircraft. The aircraft’s parameters are taken as mi = 0.5kg, Li = 0.25m,
Eia = 0.05m, g = 9.81m/s2, and Ji = 10−3diag(5, 5, 9)kg/m2. The initial conditions are taken as

η1i(0) = R0li + [0 0 2R0]
T , v1i(0) = [0 0 0]T , ωi(0) = [0 0 0]T , (68)

where R0 = 25m, l1 = [1 0 0]T , l2 = [0 1 0]T , l3 = [−1 0 0]T , l4 = [0 − 1 0]T , l5 = [0 0 1]T , l6 = [0 0 − 1]T . The
initial values of qi(0) are chosen such that [ϕi(0), θi(0), ψi(0)] = [4,−4, 1] π6i , i = 1, ..., N .

The above initial conditions mean that the aircraft are uniformly distributed on a sphere centered at (0, 0, 2R0) at the
initial time. We choose the above initial values of the roll and pitch angles, ϕi(0) and θi(0), to illustrate the capacity
of the proposed coordination control design in handling large roll and pitch angles at the initial time. Since the initial
value of the pitch angle of the aircraft 1 is −2π/3, the choice of the above initial values is also to demonstrate the fact
that the proposed coordination control design can avoid singularities. This is because the pitch angle of the aircraft 1
will converge to zero from its initial value of −2π/3. The reference trajectories are taken as

η1id(t) = −R0li +

 0
0

2R0

 , ∀ 0 ≤ t ≤ 40, η1id(t) =

 R0 sin(0.05(t− 40))
R0 cos(0.05(t− 40))
0.5(t− 40)

+

 0
−R0

2R0

 , ∀ 40 < t ≤ 180. (69)

The purpose of choosing the initial conditions (68) and the reference trajectories (69) is to illustrate both collision
avoidance and reference trajectory tracking capacities of the proposed coordination control design. With the above
initial conditions and the reference trajectories, all the aircraft need to cross the point (0, 0, 2R0), i.e., the center of the
aforementioned sphere. This is an effective illustration of the collision avoidance capacity of the proposed coordination
controller. The control gains dij , aij , bij , K, C1, c2i, and Γi need to be chosen such that the conditions (32) and (40)
hold. Since these conditions are independent from dij , c2i, and Γi, an easy way to choose aij , bij , K, and C1 that
satisfy the above conditions is given in the following steps:

1) Choose the positive constant ϱ such that it satisfies the condition (9). In this step, it is necessary to calculate
supt∈R+ |z̈id(t)| because it appears in the condition (9).

2) Choose the positive definite matrices K and C1 such that they satisfy the condition (40).
3) Choose the constants aij and bij such that they satisfy the condition (32). This step requires a calculation of

χijd = ηT1ijdKη1ijd, see (30). Since χijd ≥ λmin(K)∥η1ijd∥2, a simple practice is to choose the same aij and bij
for all (i, j) ∈ N, j ̸= i by taking χ∗

ij = λmin(K) inft∈R+ ∥η1ijd(t)∥2.
The rule of thumbs is that the larger value of the control gains results in a faster response and larger repulsive forces

but a larger control effort. Moreover, aij should not be chosen too close to bij because such as choice will result in a
large change of the smooth step function h(χij , aij , bij) from 0 to 1 when χij increases from aij to bij . This results in
a large derivation of β′ij , β

′′
ij , and β′′′ij when χij increases from aij to bij .

Since the specified reference trajectories (69) give supt∈R+ |z̈id(t)| = 0 and inft∈R+ ∥η1ijd(t)∥2 = 2R2
0, by applying the

above steps we can choose the control gains as dij = 1, aij = 75, bij = 140, for all (i, j) ∈ N, K = diag(0.25, 0.25, 0.25),
C1 = diag(0.5, 0.5, 0.5), c2i = 2, and Γi = diag(5, 5, 5), for all i = 1, ..., N . Simulation results are plotted in Fig. 1,
Fig. 2, and Fig. 3. The position trajectories of the aircraft are plotted in Fig. 1, where the red circles represent the
initial positions while the red and blue circular disks represent the positions at t = 40s and at the finial positions at
t = 180s of the aircraft. Fig. 2.A plots the normalized value of product of all the relative distances between the aircraft
da =

(∏
(i,j)∈N,i ̸=j ∥η1ij(t)∥

) 1

24 , which is always larger than zero for all 0 ≤ t ≤ 180. This means that there is no
collision between any aircraft. Fig. 2.B plots the control forces fil, i = 1, ..., N and l = 1, ..., 4. Fig. 2.C and Fig.
2.D plot the position and attitude tracking errors. Noticing that an sudden change in control inputs and tracking errors
at t = 40s due to a change of the reference trajectories at t = 40s. It is seen from these figures that all tracking
errors asymptotically converge to zero. Noticing that it takes longer time for the position tracking error vector η1ie(t)
to converge to zero than for the attitude tracking error vector qie(t) since we need to choose sufficiently small gain
matrices K and C1 so that the conditions (40) holds. Fig. 3.A plots the “repulsive forces”, ΩRe

i , without bounding by
the saturation function σ(•), i.e., ΩRe

i = −
∑

j∈Ni
β′ijη1ij . We see from Fig. 3.A that the repulsive forces are only active

(nonzero) for the first 22 second, i.e., when the quadrotors are sufficiently close to each other. Fig. 3.B, Fig. 3.C, and
Fig. 3.D plot the roll, pitch, and yaw angles. It is seen from Fig. 3.C that the proposed coordination control design can
avoid a singularity when the pitch angle of the aircraft 1 is equal to −π/2. This is because the pitch angle of the aircraft
1 converges smoothly to zero from its initial value of −2π/3. Finally, local exponential convergence of the tracking
errors can be seen from the magnified plots in Figs. 2.C, 2.D, 3.B, 3.C, and 3.D.
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Fig. 2. A) Normalized value of relative distances, B) control inputs, C) Position tracking errors, D) Attitude tracking errors.

VI. CONCLUSIONS

Distributed coordination controllers for a group of N quadrotor VTOL aircraft in three-dimensional space have been
designed. The controllers guaranteed no collision between any aircraft and an asymptotic convergence of tracking errors
to zero. The attractive points of this paper include the combination of the Euler angles and unit-quaternion for the
aircraft’s attitude representation in Subsections II-A and IV-A1, the new bounded control design technique for second-
order systems in Subsection III-B, the non-zero convergent result in Subsection III-C, pairwise collision avoidance
functions in Subsection IV-A2, and the technique to design the moment vector in Subsection IV-B . An extension of the
proposed coordination control design to underwater vehicles is under consideration.
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Fig. 3. A) Repulsive forces between quadrotors, B) Roll angles, C) Pitch angles, D) Yaw angles.
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APPENDIX A
PROOF OF LEMMA 3.2

Consider the following function

V =
1

2
∥x12∥2 (70)

whose derivative satisfies

V̇ = xT12ẋ12. (71)

Adding and subtracting xT12
(
Bx12+

1
2(ẋ1−µ) ⋆ (ẋ1−µ)(ẋ1−µ)− 1

2(ẋ2−µ) ⋆ (ẋ2−µ))(ẋ2−µ)
)

to the right hand
side of (71) result in

V̇ =xT12

[(
In×n +

1

2
(ẋ1 − µ) ⋆ (ẋ1 − µ)

)
(ẋ1 − µ)−

(
In×n +

1

2
(ẋ2 − µ) ⋆ (ẋ2 − µ)

)
(ẋ2 − µ) +Bx12

]
−

xT12Bx12 −
1

2
xT12Aẋ12,

(72)

where A = diag((ẋ11 − µ1)
2 + (ẋ11 − µ1)(ẋ21 − µ1) + (ẋ21 − µ1)

2, (ẋ12 − µ2)
2 + (ẋ12 − µ2)(ẋ22 − µ2) + (ẋ22 −

µ2)
2, ...., (ẋ1n − µn)

2 + (ẋ1n − µn)(ẋ2n − µn) + (ẋ2n − µn)
2), with ẋ11, ẋ12, ..., ẋ1n are elements of the vector ẋ1, i.e.,

ẋ1 = [ẋ11, ẋ12, ..., ẋ1n]
T ; ẋ21, ẋ22, ..., ẋ2n are elements of the vector ẋ2, i.e., ẋ2 = [ẋ21, ẋ22, ..., ẋ2n]

T ; and µ1, µ2, ..., µn
are elements of µ, i.e., µ = [µ1, µ2, ..., µn]

T . It is seen that the matrix A is diagonal and nonnegative definite. Now
using the second condition in (14), we can write (72) as

V̇ ≥ −xT12Bx12 −
1

2
xT12Aẋ12 + a. (73)

Let us consider the term xT12Aẋ12. This term must satisfy one of the following two conditions: 1) xT12Aẋ12 ≤ 0 and 2)
xT12Aẋ12 > 0. We define a sequence of points ti, i = 0, 1, · · · on the time axis such that ti < ti+1. Now, let us consider
each interval as follows.

First, Condition 1) holds in the interval [t0, t1] and Condition 2) holds in the interval (t1, t2]. In the interval [t0, t1],
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substituting xT12Aẋ12 ≤ 0 into (73) yields

V̇ ≥ −xT12Bx12 + a. (74)

Therefore, we have

V (t) ≥
(
V (t0)−

a

2λM (B)

)
e−2λM (B)(t−t0) +

a

2λM (B)
⇒ V (t) ≥ min

(
V (t0),

a

2λM (B)

)
(75)

for all t0 ≤ t ≤ t1. Substituting V (t) = 1
2∥x1(t) − x2(t)∥2, V (t0) = 1

2∥x1(t0) − x2(t0)∥2, see (70), and the first
condition specified in (14) into (75) results in (15) in the interval t0 ≤ t ≤ t1.

In the interval (t1, t2], since xT12Aẋ12 > 0 and A is diagonal and nonnegative definite matrix, there exists a diagonal
and nonnegative definite matrix Q, whose elements can be functions of t, ẋ1 − µ, and ẋ2 − µ, such that

Aẋ12 = Qx12. (76)

Since the matrices A and Q are nonnegative definite, the system (76) is unstable. Hence, ∥x12(t)∥ ≥ ∥x12(t0)∥. This
means from the first condition specified in (14) that ∥x12(t)∥ > a0 in the interval (t1, t2]. Hence, we have proved that
(15) holds in the interval [t0, t2].

Second, Condition 2) holds in the interval [t0, t1] and Condition 1) holds in the interval (t1, t2]. Carrying out the same
analysis as above, we have ∥x12(t)∥ > a0 for all t0 ≤ t ≤ t1 and (15) holds in the interval (t1, t2]. This means that (15)
holds in the interval [t0, t2] as well. Repeating the above procedure for the intervals (t2, t3] and (t3, t4] with a note that
∥x12(t2)∥ ≥ min

(
a0,

√
a

λM (B)

)
, and other intervals results in (15) for all t ≥ t0 ≥ 0. �

APPENDIX B
PROOF OF THEOREM 4.1

A. Proof of no collisions and complete forwardness of the closed-loop system

It is seen from (65) that V̇2 ≤ 0. Integrating V̇2 ≤ 0 from t0 to t and using the definition of V2 in (60), where V1 is
defined in (33), result in

V2(t) ≤ V2(t0), (77)

where

V2(t) =
1

2

( N∑
i=1

∥2Kη1ie(t) +∆i(t)v1ie(t)∥2 +
N∑
i=1

∑
j∈Ni

βij(t)

)
+

N∑
i=1

(
(z0i(t)− 1)2 + ∥z̄i(t)∥2 +

1

2
ω̃Ti (t)Γ

−1
i ω̃i(t)

)
(78)

and V2(t0) = V2(t)|t=t0 , for all t ≥ t0 ≥ 0. The initial condition (6) in Assumption 2.1 and Properties 2) and 3) of
βij in (28) imply that the right hand side of (77) is bounded by a positive constant depending on the initial conditions.
Boundedness of the right hand side of (77) implies that the left hand side of (77) must be also bounded. As a result,
βij(χij), where χij is defined in (26), must be smaller than some positive constant depending on the initial conditions
for all t ≥ t0 ≥ 0. Since βij(χij) is a smooth function of χij , which is a smooth function of η1ij , v1ie, and v1je, and at
the initial time t0 we have χij(t0) ≥ ε12, see Condition (6), we have χij(t) must be larger than some positive constant
depending on the initial conditions and the choice of the function βij . For example, if the function βij is chosen as in
(31), we then have χij(t) > aij with aij defined in (32) for all (i, j) ∈ N, i ̸= j and for all t ≥ t0 ≥ 0, i.e., from
definition of χij in (26) we must have

η1ij(t)
T
(
Kη1ij(t) +∆i(t)v1ie(t)−∆j(t)v1je(t)

)
≥ ε12, ∀t ≥ t0 ≥ 0, (79)

where ε12 > aij . Applying Lemma 3.2 with x1 = η1i, x2 = η1j , and µ(t) = η̇od gives η1ij(t) ≥ min
(
ε11,

√
ε12

λM (K)

)
:=

ε3 for all t ≥ t0 ≥ 0. This means that there is no collision between any aircraft for all t ≥ t0 ≥ 0.
Boundedness of V2(t) for all ≥ t0 ≥ 0 implies that of 2Kη1ie(t) + ∆i(t)v1ie(t), βij(t), z0i(t), z̄i(t), and ω̃i(t).

Since 2Kη1ie(t)+∆i(t)v1ie(t) is bounded, it is not difficult to show that η1ie(t) and v1ie(t) are bounded due to ∆i(t)
defined in (27). Moreover, boundedness of η1ie(t), v1ie(t), βij(t), z0i(t), z̄i(t), and ω̃i(t) implies by construction that
ωie(t) is bounded. Therefore, the closed-loop system (66) is forward complete due to boundedness of the above signals
and reference signals (η1id(t), ψid(t)) and their derivatives assumed in Assumption 2.1.
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B. Equilibrium set

We use Lemma 3.4 to find the equilibrium set, which the trajectories of the closed-loop system (66) tend to.
Integrating both sides of (65) gives

∫∞
0 ϖ(t)dt ≤ V2(t0), where ϖ(t) =

∑N
i=1ϖi(t) with ϖi(t) =

(
ΩT
i (t)C1σ(Ωi(t))+

ω̃Ti (t)Γiω̃i(t) + c2i∥z̄i(t)∥2
)
. The function ϖ(t) is scalar, nonnegative and differentiable. The derivative of ϖ(t) along

the solutions of the closed-loop system (66) using Properties of the function βij in (28) satisfies
∣∣ dϖ(t)

dt

∣∣ ≤Mϖ(t) with
M a positive constant. Therefore, Lemma 3.4 results in limt→∞ϖ(t) = 0, which means that limt→∞ϖi(t) = 0, i.e.,

lim
t→∞

(
ΩT
i (t)C1σ(Ωi(t)) + ω̃Ti (t)Γiω̃i(t) + c2i∥z̄i(t)∥2

)
= 0. (80)

This limit yields 
limt→∞Ωi(t) = 0,
limt→∞ ω̃i(t) = 0,
limt→∞ z̄i(t) = 0,

⇒


limt→∞Ωi(t) = 0,
limt→∞ωie(t) = 0,
limt→∞ qie(t) = 0,

(81)

where we have used the following implications:

lim
t→∞

Ωi(t) = 0 ⇒
{

limt→∞Ψ0i(t) = 0,

limt→∞Ψi(t) = 0,

lim
t→∞

z̄i(t) = 0 ⇒ lim
t→∞

z0i(t) = 1 ⇒ lim
t→∞

qie(t) = 0,
(82)

which are resulted from (59), (53), and z20i + ∥z̄i∥2 = 1.
The limit limt→∞ qie(t) = 0 implies that limt→∞(ψi(t)−ψid(t)) = 0. We now need to show that limt→∞ η1ie(t) = 0.

Since we have already proven that η1ie(t) and v1ie(t) are bounded for all t ≥ t0 ≥ 0 and i ∈ N, from the expression of
Ωi using properties of the pairwise collision avoidance function βij in (28) and the smooth step function h(χij , aij , bij)
in (16) with a note that the constants aij and bij are chosen as in (32), the limit limt→∞Ωi(t) = 0 implies that{

limt→∞(η1i(t)− η1id(t)) = 0,
limt→∞(v1i(t)− η̇1id(t)) = 0

or
{

limt→∞(η1i(t)− η1ic(t)) = 0,
limt→∞(vi(t)− η̇1ic(t)) = 0,

(83)

for all i ∈ N, i.e., the equilibrium sets can be (η1d, η̇1d) or (η1c, η̇1c) where

η1d = [ηT11d, · · · ,ηT1id, · · · ,ηT1Nd]T , η̇1d = [η̇T11d, · · · , η̇T1id, · · · , η̇T1Nd]T ,
η1c = [ηT11c, · · · ,ηT1ic, · · · ,ηT1Nc]T , η̇1c = [η̇T11c, · · · , η̇T1ic, · · · , η̇T1Nc]T .

(84)

The vectors η1c and η̇1c are such that

Ωic = Ωi

∣∣
η1i=η1ic,v1i=η̇1ic=0

, ∀ i ∈ N. (85)

The limits (83) mean that (η1,v1) with η1 = [ηT11, · · · ,ηT1i, · · · ,ηT1N ]T and v1 = [vT11, · · · ,vT1i, · · · ,vT1N ]T tends to the
desired set of equilibrium points (η1d, η̇1d) denoted by Ed or the undesired set of equilibrium points (η1c, η̇1c) denoted
by Ec. Since it has been shown that the trajectories (η1,v1) can approach either the desired set Ed or the undesired
set Ec ’almost globally’. The term ’almost globally’ refers to the fact that the agents start from a set that includes the
condition (6) and that does not coincide at any point with the undesired set Ec. Hence, we need to prove that Ed is
locally asymptotically stable and that Ec is locally unstable. Moreover, we have already proved that the closed-loop
system (66) is forward complete and that limt→∞ qie(t) = 0, it therefore is sufficient to consider the first two equations
of the closed-loop system (66) to investigate local stability of the sets Ec and Ed. In addition, we consider qie(t) in

the term
√

ΦT
i Φi

mi
H(qie,αqi

)e3 in the right hand side of the second equation of the closed-loop system (66) as an input
instead of a state.

C. Proof of Ed being asymptotically stable

Linearizing the first two equations of the closed-loop system (66) at η1 = η1d and η1 = η̇1d, gives

η̇1e = v1e,

v̇1e = −2Kv1e −C1(2Kη1e + v1e) +Ξd,
(86)

where η1e = η1 − η1d, v1e = v1 − η̇1d, and we have used properties of the pairwise collision avoidance function βij in
(28) and the smooth step function h(χij , aij , bij) in (16) with a note that the constants aij and bij are chosen as in (32).
The vector Ξd is such that limt→∞ qe(t) = 0 implies that limt→∞Ξd(t) = 0 due to the matrix H(qie,αqi

) is defined
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in (21). It can be seen that the linearized closed-loop system (86) is exponentially stable at the origin since the matrices
K and C1 are positive definite, and limt→∞Ξd(t) = 0.

D. Proof of Ec being unstable

Linearizing the first two equations of the closed-loop system (66) around η1 = η1c and v1 = η̇1c results in[
η̇1i

v̇1i

]
=

∂F1i

∂[η1i, v1i]T

∣∣∣∣
η1i=η1ic,v1i=v1ic

[
η1i

v1i

]
−
[
η̇1id
η̈1id

]
+Ξc, (87)

where
F1i =

[
v1i

(∆i + v1ie ⋆ v1ie)
−1(−2Kv1ie −C1σ(Ωi))

]
, (88)

and the vector Ξc is such that limt→∞ qe(t) = 0 implies that limt→∞Ξc(t) = 0 due to the matrix H(qie,αqi
) is defined

in (21). We now investigate stability of (87) at (η1ic, η̇1ic).
Let N∗ be the set of the aircraft such that if the aircraft i and j belong to the set N∗ then χij < bij where it is recalled

that χij is defined in (26) and bij is chosen as in (32). Also let N∗ be the size of the set N∗. For those aircraft in the
set N∗, the collision avoidance is active. Let η1ijc = η1ic − η1jc, v1ijc = v1ic − v1jc with v1ic = η̇1ic and v1jc = η̇1jc,
β′ijc = β′ij |η1ij=η1ijc,v1i=v̇1ic,v1j=v̇1jc

. Now, from (85) we have∑
(i,j)∈N∗

(2Kη1ijc + (∆icv1ic −∆jcv1jc))
TΩijc = 0, i ̸= j, (89)

where Ωijc = Ωic −Ωjc. Expanding (89) with the use of (85) yields:∑
(i,j)∈N∗

(
1 +N∗β′ijc

)
∥2Kη1ijc + (∆icv1ic −∆jcv1jc)∥2 =∑

(i,j)∈N∗

(2Kη1ijc + (∆icv1ic −∆jcv1jc))
T (2Kη1ijd + (∆icη̇1id −∆jcη̇1jd)),

(90)

where η1ijd = η1id − η1jd. The sum
∑

(i,j)∈N∗(2Kη1ijc + (∆icv1ic −∆jcv1jc))
T (2Kη1ijd + (∆icη̇1id −∆jcη̇1jd)) is

strictly negative since at the point denoted by F where η1ij = η1ijd and v1i = η̇1id, v1j = η̇1jd, ∀(i, j) ∈ N∗, i ̸= j
all attractive and repulsive forces are equal to zero while at the point denoted by C where η1ij = η1ijc, v1ic = η̇1ic,
and v1jc = η̇1jc, ∀(i, j) ∈ N∗, i ̸= j the sum of attractive and repulsive forces are equal to zero (but attractive and
repulsive forces are nonzero). Therefore the point where η1ij = 0, vi = 0 and vj = 0, ∀(i, j) ∈ N∗, i ̸= j must
locate between the points F and C for all (i, j) ∈ N∗, i ̸= j, i.e., there exists a strictly positive constant b such that∑

(i,j)∈N∗(2Kη1ijc+(∆icv1ic−∆jcv1jc))
T (2Kη1ijd+(∆icη̇1id−∆jcη̇1jd)) ≤ −b, which is inserted in (90) to yield∑

(i,j)∈N∗

(
1 +N∗β′ijc

)
∥2Kη1ijc + (∆icv1ic −∆jcv1jc)∥2 ≤ −b. (91)

This inequality implies that there exists a nonempty set N∗∗ ⊂ N∗ such that for all (i, j) ∈ N∗∗, i ̸= j, (1 +N∗∗β′ijc),
where N∗∗ is the size of the set N∗∗, is strictly negative, i.e., there exists a strictly negative constant b∗∗ such that
(1 +N∗∗β′ijc) ≤ −b∗∗ for all (i, j) ∈ N∗∗, i ̸= j.

To investigate stability of (87) at (η1ic, η̇1ic), we consider the following function for the aircraft belonging to the set
N∗∗:

Vc =
∑

(i,j)∈N∗∗,j ̸=i

√
∥K(η1ij − η1ijc) +∆Lc(v1ij − v1ijc)∥2 + 1, (92)

where ∆Lc =
∂∆i

∂v1i

∣∣
v1i=vic

and it is noted that ∂∆i

∂v1i

∣∣
v1i=vic

= ∂∆j

∂v1i

∣∣
v1j=vjc

since η̇1ic = η̇1jc = 0. Differentiating both
sides of (92) along the solutions of (87) in the subspace defined by K(η1ij − η1ijc) + ∆Lc(v1ij − v1ijc) = 0 for all
(i, j) ∈ N \N∗∗ and (Kη1ijc+∆Lcv1ijc)

T (K(η1ij − η1ijc) +∆Lc(v1ij − v1ijc)) = 0 for all (i, j) ∈ N∗, i ̸= j satisfies

V̇c ≥ b∗∗
∑

(i,j)∈N∗∗

(K(η1ij − η1ijc) +∆Lc(v1ij − v1ijc))
TC(K(η1ij − η1ijc) +∆Lc(v1ij − v1ijc))√

∥K(η1ij − η1ijc) +∆Lc(v1ij − v1ijc)∥2 + 1
+

∑
(i,j)∈N∗∗

(K(η1ij − η1ijc) +∆Lc(v1ij − v1ijc))
TΞc√

∥K(η1ij − η1ijc) +∆Lc(v1ij − v1ijc)∥2 + 1
,

(93)
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where we have used (1 +N∗∗β′ijc) ≤ −b∗∗ for all (i, j) ∈ N∗∗, i ̸= j. Local instability of (η1ijc,v1ijc) for all (i, j) ∈
N∗∗, i ̸= j directly follows from (92) and (93) with a note that b∗∗ is a strictly positive constant and that limt→∞Ξc(t) = 0.
This in turn implies that the set Ec is unstable. �
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