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This paper presents a model predictive control formulation for Networked Control Systems subject to independent and identically
distributed (i.i.d.) delays and packet dropouts. The design takes into account the presence of a communication network in
the control loop, resorting to a buffer in the actuator to store and consistently apply delayed control sequences when fresh
control inputs are not available. The proposed approach uses a statistical description of transmissions to optimize the expected
future control performance conditioned upon previously calculated control packets and transmission acknowledgements.Its
applicability to process control is illustrated via experimental studies using quadruple tank process.
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1 Introduction

Networked Control Systems (NCSs) are spatially distributed systems wherein the communication be-
tween plants, sensors, actuators and controllers occurs through a communication network. This kind of
systems and their characteristics are extensively described in J. P. Hespanha, P. Naghshtabrizi and Y. Xu
(2007), W. Zhang, M. S. Branicky and S. M. Phillips (2001), R. A. Gupta (2010) and S. Zampieri (2008).

NCSs have become a very important field in the control communitydue to its cost-effective and flexi-
ble applications. Nowadays, there is a large number of applications for which the use of communication
networks is necessary. For example, they are specially needed in systems where space and weight are
limited, when the distances under consideration are large or in control applications where the wiring is
not possible, see, for instance, coordination of UAV formations P. Millan, L. Orihuela, I. Jurado and F.R.
Rubio (2013) or Wireless Sensor Networks J. Chen, K. H. Johansson, S. Olariu, I. Ch. Paschalidis and I.
Stojmenovic (2011).

There are also some generic advantages when using digital communication networks:

(1) The complexity in point-to-point wiring connections arevery reduced, as well as the costs of
media. Therefore, installation costs can be also drastically reduced.

(2) In the case of wireless networks, the reduction of the wiring complexity makes easier the diag-
nosis and maintenance of the system, providing higher operation efficiency.

(3) NCSs are flexible and re-configurable.
(4) NCSs provide modularity, control decentralisation and integrated diagnostics.
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Nonetheless, NCS are tipically affected by time-varying delays, data losses and quantization effects,
which may degrade system performance and even destabilize the system.

To overcome these problems, several authors have proposed to send control sequences from the con-
troller side. This sequences, appropriately buffered and scheduled at the actuator end, become a safe-
guard in case of delays or eventual packet dropouts. This concept naturally fits the Model Predictive
Control (MPC) paradigm, which makes it possible to calculatefuture model-based data and to use them
to compute the control actions. Some examples of networked control, considering only dropouts, based
on MPC for linear and non-linear systems can be found in P. Millan, I. Jurado, C. Vivas and F. R. Rubio
(2008), D. Mũnoz and P. D. Christofides (2008), D. Quevedo and D. Nešic (2011), for deterministic
cases, and D. Quevedo, J. Østergaard and D. Nešić (2011), for stochastic cases. In D. Quevedo and I.
Jurado (2013), delays and dropouts are considered togetherfor the stability analysis of sequence-based
control for non-linear systems.

In this paper, a new stochastic model predictive controlleris presented to deal with different scenarios
depending on the network statistics. A MPC for NCSs is proposedin P. L. Tang and C. W. de Silva
(2007). The control strategy includes a buffering policy where the predicted control sequence at the
actuator in anticipation of typical data transmission errors associated with NCS. Closed-loop stability in
the sense of Lyapunov is guaranteed for the controller in thelinear case.

The related work F. Weissel and Hanebeck (2008) presents a framework for stochastic nonlinear model
predictive control (NMPC) that incorporates the noise influence on systems with continuous state spaces.
Also, a NMPC is designed in F. Weissel, T. Schreiter, M. F. Huberand U. D. Hanebeck (2008) for systems
for which the state is not directly accessible, but has to be estimated from observations. In D. Lyons, A.
Hekler, M. Kuderer and U. D. Hanebeck (2010), it is designed aclosed-loop NMPC for systems whose
internal states are not completely accessible, incorporating the impact of possible future measurements
into the planning process. A closed-loop control approach that considers the single future measurement
that has the worst impact on the control objective is proposed.

In A. Hekler, J. Fischer and U. D. Hanebeck (2012), a problem sequence-based approach is proposed
that extends a given controller designed without consideration of the network-induced disturbances. The
idea is to model the unknown future control inputs by random variables, the so-called virtual control
inputs, which are characterized by discrete probability density functions. Subject to this probabilistic
description, a sequence-based control approach is proposed.

In this work, it is supposed that the statistics, but not the actual realizations, of the time delays and
dropouts can be measured or estimated with enough precision, exploiting this fact to design a stochastic
packetized MPC to improve the control performance.

The paper is organized as follows: Section 2 presents the problem statement. Section 3 describes the
controller design method. Section 4 shows some experimentalresults. Section 5 draws conclusions.

2 Problem statement

This technique is focused on the design of a predictive control structure for a networked control system
with packet dropouts and delays.

Systems to be considered are unconstrained discrete-time linear multiple-inputs plants, under the effect
of disturbances as:

x(k+1) = Ax(k)+Bu(k)+Bww(k) (1)

with k∈ N0 , N∪{0} and

u(k) ∈ U⊆ R
m1, x(k) ∈ X⊆ R

n, ∀k∈ N0

In this setup, plant and controller are assumed to be linked through a communication network (see
Figure 1). Our interest lies in clock-driven Ethernet-like networks linking controller outputs to plant
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inputs. Data are sent in large packets, so the relevant phenomena for control purposes are transmission
delays and packet dropouts.

This approach assumes secured links in just one way, between plant output and controller input. That
is, packets or delays can occur only in the controller to actuator path. Sensor to controller link dropouts
can be included into the present framework by proceeding as in D. Quevedo and I. Jurado (2013).

Acknowledgments are assumed as part of the network protocol(TCP-like protocols), so that at any
time instantk, the controller knows whether a control packet arrived at destination or not. Packets are
also assumed to be time-stamped so they can be correctly sequenced at any point of the control loop.

To summarize, for the proposed control algorithm to work, all elements in the control loop are assumed
to behave in a time-driven manner. Thus, the network model operates at the same sampling rate as the
plant-controller model, with the following rules: time-driven sensors periodically sample plant outputs
and states, a time-driven predictive controller computes acontrol sequence at each sampling time and a
time-driven buffered actuator applies control signals at each sampling time.

3 Control Scheme

This section tackles the problem of designing a predictive packet-based control structure for a networked
control system affected by random time-delays and packet dropouts. For the control strategy to work, it
is assumed a prior study of the control network performance,in such a way that some given statistical
properties of delays and dropouts can be determined. Based on this information, this work adopts a
stochastic approach to improve the control performance in the presence of stringent network conditions.

3.1 Controller formulation

In order to achieve an appropriate performance level, it is proposed the use of a receding horizon predic-
tive control framework.

In standard model predictive control formulations, the controller has access to the plant statesx(k),
and computes at every time instantk a finite horizon optimal control sequenceUk ∈ (U)Nu of lengthNu,
such that the following functional is minimized

V(U(k),k) =
k+Nu−1

∑
i=k

ℓ(x′(i),u′(i))+F(x′(k+Nu))

where x′(·) and u′(·) denote predicted plant states and control values respectively, ℓ(x′(i),u′(i)) =
x′(i)TQx′(i) + u′(i)TRu(i) denotes thestage costand F(x′(k+ Nu)) = x′(k+Nu)

TPx′(k+ Nu) is the
terminal cost, with Q, RandP being positive definite matrices.

Assuming this setup, it is shown next how an stochastic predictive control structure can be combined
with an appropriate buffering and queuing strategy providing remarkable control performance and ro-

Controller
ref

U(k)

b(k)

Buffer

u(k)

Plant SensorNetwork

x(k)

x(k)

w(k)

Buffer ACKs

Figure 1.: Networked Control System
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bustness with respect to packet dropouts and communicationdelays.
The relevant phenomena to consider in this section are transmission delays and packet dropouts, which

can degrade the control performance or even destabilize theplant. The random nature of both effects in
real-time communication networks motivates the stochastic approach taken in this work. Delays and
dropouts are assumed to be stochastic i.i.d. processes withknown statistical distributions.

To summarize, for the proposed control scheme to work, all elements in the control loop are assumed
to behave in a time-driven manner, with the following elements:

(1) Sensors periodically sample the plant statex(k) and send it to the controller.
(2) A stochastic predictive controller computes a control sequenceU(k)= [u(k|k) u(k+1|k) ... u(k+

Nu|k)] at each sampling time and sends it through the network.
(3) At the actuator side, control inputs are applied to the plant according to a buffer policy to be

explained in the next section.
(4) Network is affected by i.d.d. dropouts and i.d.d delaysτ(k). Where

τ(k) =











i if U(k) is received at timek+ i

at the actuator node,

∞ if U(k) is lost

(2)

Assumption 1:The process{τ(k)}k∈N0 is i.i.d., with delay distribution,

Prob{τ(k) = i}= pi , i = {0,1, ...,τmax}, (3)

whereτmax is the maximum considered delay, andProb{τ(k) = ∞}= p∞ is the dropout probability.
In equation (3),τmax is the maximum considered transmission delay. Packets received with a delay larger
thatτmax are automatically rejected by the controller and treated asdropped papers.

Owing to the network effects, in our buffer-based implementation the controller does not know the
buffer state. This way, the MPC formulation has to be modified in order to deal with the uncertainties in
current and future control inputs. In order to maintain an appropriate performance level in the presence
of stringent network condition, this work proposes the use of a stochastic predictive controller making
use of the network statistics. More precisely, the controller will try to find U(k) which minimizes the
expected value of the following cost function:

V (x(k),Ud(k),T (k),U(k)) =
k+Nu−1

∑
i=k

ℓ(x′(i),u′(i))+F(x′(k+N)), (4)

whereNu is the prediction horizon,x(k) is the measured state of the plant at timek, Ud(k) is the set of
optimal control sequences sent betweenk−1 andk− τmax and

T (k) = {τ(k),τ(k−1), ...,τ(k− τmax)}

is the set of possible delays of those control sequences. Forexample, valuesτ(k−2) = 1, τ(k−1) = ∞
andτ(k) = 3 mean that the control sequence computed by the controller at timesk−2 reaches the buffer
at timek−1, the control input computed at timek reaches the buffer at timek+3, and that computed at
time k−1 is lost.

Also in (4),U∗(k) is the new control sequence to be computed by the controller at time k. Moreover,
x′(i) andu′(i) are state and control input open-loop predictions which take into account the buffer policy:

Open loop predictions



















x′(k) = x(k),
x′(k+1) = Ax(k)+Bu′(k),

...
x′(k+N) = Ax′(k+N−1)+Bu′(k+N−1),

(5)
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whereu′(k), . . ., u′(k+N−1)... is the predicted control sequence.
When random time-varying delays and dropouts are taken intoaccount, one of the main difficulties

is the impossibility of predicting the system trajectory ina deterministic way. This is true even in the
absence of disturbances and model uncertainties, as the inputs actually applied to the plant are unknown
to the controller. Different approaches, including min-max or worst-case techniques can be taken to deal
with this difficulty.

In this work it is exploited the fact that, for most of real networked system, it is not difficult to study
and approximate the statistics of time delays and dropouts to improve the control performance. That
way, open-loop predictions described above depend on future delay and dropout realizations, so that the
control inputs applied to the plant can be predicted by explicit enumeration of the realizations.

The actual control inputs applied to the plant depends on the arrival of the control sequences sent by
the controller and on the buffer policy.

3.2 Buffer policy

This section explains in detail the buffer operation and its model.
The buffer policy is based on consistently applying optimal control signals computed in the past and

stored in the buffer. Aditionaly, when a control sequence arrives, the buffer is updated if that sequence
has been calculated more recently than the one currently stored.

Let us represent the state of the buffer at a given time instantk asb(k) ∈ R
m1N and denote

k̂(k,τ(k)) = max
l
{k− l : τ(k− l)≤ l},

wherek̂(k,τ(k)) represents the time instant when the most recent control sequence received at the
buffer time up to timek was computed.

It easy to see thatτ(k− l) = l indicates that the optimal control sequence computed ink− l , that is
U(k− l), arrives at timek to the buffer. Then, the dynamics of the buffer can be expressed as the recursive
rule:

b(k) = α(T (k))U(k̂)+(1−α(T (k))S̃b(k−1) (6)

whereS̃∈ R
m1N×m1N is a shift matrix defined as the block matrix:

S̃=



















0m1 Im1 0m1 . . . 0m1 0m1

0m1 0m1 Im1 . . . 0m1 0m1
...

...
...

. . .
...

...
...

...
...

. . .
...

...
0m1 0m1 0m1 . . . 0m1 Im1

0m1 0m1 0m1 . . . 0m1 0m1



















In (6), α(T (k)) ∈ {0,1} is a signal accounting for reception of control sequences atthe buffer com-
puted by the controller subsequent to those received before, such that:

α(τ) =
{

1 if τ(k̂) = l
0 if otherwise

With this description the control actionu(k) provided by the buffer at instantk can be expressed as

u(k) =
[

Im1 0m1 ... 0m1

]

b(k) (7)
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From equations (1) and (7) one can easily see that the state of the buffer is involved in the state of
the NCS. However, the controller does not have access to its state and this entails a non standard MPC
problem. Every sampling time, the controller has access to the plant statesx(k) and finds a finite horizon
optimal control sequenceU(k) ∈ R

m1N by solving the following optimization problem:

min
U(k)∈Rm1N

E{V(x(k),Ud(k),T (k),U(k)|x(k),Ud(k),T (k))} (8)

where expectation is taken with respect to the discrete distribution of T (k) andUd(k) is the set of
optimal control sequences sent betweenk−1 andk− τmax. This can be done by explicit enumeration of
the realization ofT weighting all these realization with the corresponding probability.

As a consequence ofAssumption 1, the minimization problem becomes:

min
U(k)∈Rm

1

∞

∑
i∈N0

piV(x(k),Ud(k− i), i,U(k)) (9)

Next, it will be shown how this stochastic predictive controller combined with a buffer operation
provides robustness to packet delays and dropouts.

4 Experimental results

This section presents an application of the proposed scheme to test its performance in a laboratory-scale
experimental setup.

4.1 System description

The plant is a variant of the quadruple-tank process, originally proposed in Johansson (2000), see In-
struments (2012). A picture of the platform is given in Figure2. This educational plant is a model of a
fragment of a chemical plant and is intended to test different control strategies. It is composed of four
water tanks, each one equipped with a pressure sensor to measure the water level. The couplings between
the tanks can be modified using seven manual valves thereby changing the dynamics of the system. Wa-
ter is delivered to the tanks by two independently controlled, submerged pumps. Drain flow rates can be
modified using easy-to-change orifice caps

The coupled tanks are controlled using Simulink and an Advanced PCI1711 Interface Card. The sys-
tem is highly configurable, due to the numerous available valves. For the experiments, the following
configuration is chosen (see Figure 2):

• Input water is delivered to the upper tanks. Pump 1 feeds tank 1and pump 2 feeds tank 3.
• Tanks 1 and 3 are coupled by opening the corresponding valve.

Figure 2 shows a block diagram of the whole system.
The tanks are equiped with sesors that transmit the water level to the predictive controller. The control

objective is to track references for the water levels of the lower tanks by regulating voltage applied to
pumps 1 and 2.
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Figure 2.: Plant of four coupled tanks.

Value Unit Description

hi 0-25 cm Water level of tanki
vi 0-5 V Voltage level of pumpi
A 0.01389 m2 Cross-sectional area
ai 50.265e-6 m2 Outlet area of tanki
a13 50.265e-6 m2 Outlet area between tanks 1 and 3
η 0.22 cm

V.s Relating voltage and flow
h0

1 9.55 (12.6) cm Reference level of tank 1
h0

2 16.9 (12.6) cm Reference level of tank 2
h0

3 7.6 (11) cm Reference level of tank 3
h0

4 14.1 (11) cm Reference level of tank 4
v0

1 3.3 (3.5) cm Voltage level of pump 1
v0

2 2.6 (1.5) cm Voltage level of pump 2

Table 1.: Parameters of the plant. The terms in parentheses are related to the simulation experiments.

4.2 Plant modeling

The coupled tanks can be easily modeled by means of the following nonlinear model:

dh1(t)
dt

= −
a1

A

√

2gh1(t)+ηu1(t)−
a13

A

√

2g(h1(t)−h3(t)),

dh2(t)
dt

=
a1

A

√

2gh1(t)−
a2

A

√

2gh2(t),

dh3(t)
dt

= −
a3

A

√

2gh3(t)+ηu2(t)+
a13

A

√

2g(h1(t)−h3(t)),

dh4(t)
dt

=
a3

A

√

2gh3(t)−
a4

A

√

2gh4(t),
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wherehi(t) (i = 1, ...4) denote the water level in the corresponding tanki; ui (i = 1,2) are voltage applied
to the pumps;ai (i = 1, ...4) are the tank’s outlet areas;a13 is the outlet area between tanks 1 and 3;η is
a constant relating the control voltage with the water flow from the pump;A is the cross-sectional area
of the tanks; andg is the gravitational constant.

This system is linearized around the equilibrium point givenby h0
i andu0

i , yielding:

∆̇h= A∆h+B∆v, (10)

where∆h=
[

h1−h0
1 . . . h4−h0

4

]T
and∆h=

[

v1−v0
1 v2−v0

2

]T
.

4.3 Experimental results

In this section the experimental results are presented, using the described plant.
Delays are discrete uniformly distributed between 0 and 4 sampling times, while the disturbance are

random bounded disturbances with|w(k)|< 0.5. The sampling time istm = 9s.
Fig. 3, 4, 5 and 6 show the outputs of tanks 2 and 4, with their respective references. Fig. 3 and 4

compare the performance of a classical MPC when the network under consideration is perfect and when
it introduces dropouts. It can be seen how the dropouts make the performance much worse.
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Tank 2 level without network
Tank 2 reference
Tank 2 level with network

Figure 3.: Tanks 2 levels with a classical MPC

Fig. 5 and 6 consider the network with dropouts. They compare the classical MPC with the stochastic
MPC presented in this chapter. The classical MPC has been calculated with the following matrices:

Q=









10 0 0 0
0 100 0 0
0 0 1 0
0 0 0 100









and R=

[

50 0
0 50

]

.

It can be seen how the proposed stochastic MPC mantains a remarkable performance despite the
network-induced delays.
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Figure 4.: Tanks 4 levels with a classical MPC

Table 2 shows the Integral Square Error (ISE) index for the systemwith the network, comparing the
results with the classical MPC and with the the presented stochastic one. It can be seen how the proposed
stochastic controller provides better results than the classical one.
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Figure 5.: Tanks 2 levels with a classical MPC and the presentedstochastic MPC
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Figure 6.: Tanks 4 levels with a classical MPC and the presentedstochastic MPC

Table 2.: Integral Square Error (ISE)

Tank 2 Tank 4

Classical MPC 608 528
Stochastic MPC 532 402

5 Conclusions

This paper has presented a model predictive control strategyin order to deal with time-delays and packet
dropouts introduced by a communication network in a Networked Control System.

A stochastical model predictive controller has been designed, showing how statistical information
on packet delays and dropouts can be used in the design of a networked control system. Also, some
experimental results have been presented.

Future works may include studying closed loop stability and performance issues.
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