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Flexible loads, i.e. the loads whose power trajectory is not bound to a specific one, constitute a sizable
portion of current and future electric demand. This flexibility can be used to improve the performance of the
grid, should the right incentives be in place.

In this paper, we consider the optimal decision making problem faced by a flexible load, demanding a certain
amount of energy over its availability period, subject to rate constraints. The load is also capable of providing
Ancillary Services (AS) by decreasing or increasing its consumption in response to signals from the Independent
System Operator. Under arbitrarily distributed and correlated Markovian energy and AS prices, we obtain the
optimal policy for minimizing expected total cost, which includes cost of energy and benefits from AS provision,
assuming no capacity reservation requirement for AS provision. We also prove that the optimal policy has a
multi-threshold form and can be computed, stored and operated efficiently. We further study the effectiveness
of our proposed optimal policy and its impact on the grid.

We show that, while optimal simultaneous consumption and AS provision under real-time stochastic prices
is achievable with acceptable computational burden, the impact of adopting such real-time pricing schemes on
the network might not be as good as suggested by the majority of the existing literature. In fact, we show that
such price responsive loads are likely to induce peak-to-average ratios much more than what is observed in the
current distribution networks and adversely affect the grid.

1 Introduction

Smart grids are expected to bring about fundamental changes in terms of information availability
to electricity networks and provide bidirectional communication and energy exchange even to the
end points of the distribution network. Although it is generally understood that the closed loop
of information/energy exchange can improve the overall energy exchange process in many ways
(e.g. reducing cost, increasing reliability), models to quantitatively understand the fundamental
benefits of the information availability over smart grids are relatively lacking.

A considerable portion of the current electricity demand is inherently flexible i.e., electric
power need not be delivered to the load at a very specific trajectory over time. For these loads,
an amount of energy is needed by some (potentially recurring) deadline. In other words, over the
operation time of the load, the trajectory of the delivered power only needs to satisfy some con-
straints instead of exactly following a specific trajectory. Such loads include most heating/cooling
systems and electric vehicles (EV). The most recent EIA statistics ? suggest that such loads com-
prise more than 50% of average residential electricity consumption. The prospect of such loads
comprising a considerable portion of emerging loads urges us to investigate the benefits obtained
from such flexibility utilizing the infrastructure provided by smart grids.

Many authors have studied the impacts of demand flexibility in various contexts ???????
and demonstrated the potential benefits of demand flexibility. Considering a residential setting,
Mohsenian-Rad et al. ? propose a price-based load scheduling algorithm for smart grids. They
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consider a combination of real-time pricing (RTP) and inclining block rates (IBR) for prices.
Moreover, to model delay aversion they inflate future prices exponentially. After formulating
the deterministic model and proposing an optimal solution to it, they extended their proposed
algorithm to the stochastic case by proposing a price estimation method, which would convert
stochastic prices to deterministic equivalents for application of their deterministic algorithm.
This certainty equivalent approach fails to produce optimal responses and hence the perfor-
mance of their method is bound by the performance of the price estimation technique they have
proposed. Caramanis and Foster ? consider simultaneous energy consumption and AS provi-
sion in the context of a load aggregator and propose an approximate stochastic programming
approach to solve the intractable dynamic program resulting from their model. Kefayati and
Caramanis ? propose a computationally efficient approximate method for solving this problem.
Taking a different approach to utilize demand flexibility, Papavasiliou et al. ?, proposes coupling
flexible loads with intermittent generation, particularly wind, to reduce the uncertainty of net
production. A solution based on approximate dynamic programming is proposed and used to
analyze the economics of coupling intermittent and flexible resources. The same problem is ap-
proached by Neely et al. ? through Lyapunov optimization to obtain a computationally efficient
approximate solution that guarantees order-wise delay and cost performance.

The model we study in this work has close connections to storage assets and some of the benefits
provided by storage assets can be achieved by flexible loads. Storage assets and their benefits
have been studied by various authors ????????. Korpaas et al. ? studied optimal operation of
a storage asset in combination of a wind farm to meet the output schedule using a forecast
model. Similarly, Teleke ? studied smoothing strategies for the combined output of a wind farm
and a battery storage asset. Denholm and Sioshansi ?, studied the value of storage asset when
co-locating wind farms with Compressed Air Energy Storage (CASE). Secomandi ? considered
optimal policies for commodity trading with a capacitated storage asset and concluded that,
under some conditions, a multi-threshold policy is optimal. Faghih et al. ? examined ramp-
constrained storage assets and particularly demonstrated that storage assets can improve price
elasticity near average prices. Finally, Kefayati and Baldick ? studied the problem of optimal
storage asset operation under real-time prices and proved that under some conditions, a efficiently
computable multi-threshold policy, similar to what is presented here, is optimal.

In ?, we considered flexible loads responding to real-time prices from the grid as a signal to
reflect the more realistic cost of energy consumption. Yet, if the communication infrastructure
and the dynamics of the loads allow, their flexibility can be further utilized by the grid. This
would be achieved by the loads not only participating in the market for purchasing energy
they need, but also for providing ancillary services. Under such scenarios, loads would not only
respond to energy prices but also to requests for adjusting their consumption, at rates much faster
than market or pricing intervals, which are typically issued by the ISO. Such adjustment signals
are typically designed to fine tune supply demand mismatches by regulating system frequency,
as we discussed them in ?. This form of service, however, needs much faster communication
and capability but as we previously discussed, are well within rates available to residential
and commercial Internet users. Such ancillary services are typically traded as capacity, that is,
the operator pays for the ability to adjust the current rate (consumption of generation) of the
provider within a specified range (i.e. capacity).

In this paper, we consider an extension of the problem we considered in ? by adding the
potential for offering ancillary services to the problem of optimal energy consumption by a flexible
load. We first examine the model carefully and show that multiple cases are possible depending
on the form of capacity constraints to which the load is subjected when changing consumption at
paces faster than the decision interval. We then show that our previous techniques to obtain the
optimal policy can be extended to joint optimization of energy consumption and AS provision
and the optimal policy has a very similar multi-threshold form. We also show that the optimal
policy can be computed efficiently in a similar recursive fashion and the complexity order of
computations stays the same. Considering joint energy consumption and AS provision is not
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Figure 1. System model.

only a natural extension of the optimal consumption problem, but also play as a bridge towards
the work on coordinated energy delivery, where an Energy Services Company (ESCo) is in charge
of solving the optimal energy delivery and AS provision for a group of flexible loads.

The rest of this paper is organized as follows: In Section 2 we present and analyze our model and
the optimal demand satisfaction algorithm. In sections 3 we present our proposed optimal joint
consumption and AS provision policy for the case that AS provision does not need capacity
reservation. Section 4 is dedicated to analysis of network level performance of our proposed
algorithm through simulation as well as its system level impacts. We conclude the paper and
comment on our future directions in Section 5. The proof of the theorems are moved to the
appendices for better readability.

2 System Model

We model a consumer with a flexible load subject to a total energy demand and energy rate limits.
Assuming a discrete time model, our objective is to find out how much energy the consumer
should consume towards its total demand so that its total expected cost is minimized. The
consumer can also offer some of its flexible capacity for use as reserve in return for some reward.

Let us first introduce the price model. We assume a Markovian price structure for energy and
reserve prices, denoted by πet and πrt respectively. Defining πt , (πet , π

r
t ):

πt = λt(θt) + εt, θ0 given, (1)

where εt , (εet , ε
r
t ) is the random vector capturing price innovations, λt(θt) , (λet (θt), λ

r
t (θt))

models inter-stage correlation of prices and seasonality and θt represents the state of the Markov
process and throughout this work we assume θt = πt−1, i.e. the previous prices form the state
of the price process. We denote the distribution function of εt by Ft(•) and assume independent
price innovations over time, i.e. εt ⊥⊥ εt′ , ∀t 6= t′. Note that the prices are assumed to be
non-stationary, generally distributed and arbitrarily correlated (between energy and reserves).
Moreover, we assume λt(θt) to be monotone but otherwise arbitrary to avoid some technicalities.

We model the cost minimization problem faced by the consumer as a Dynamic Program (DP)
(a.k.a. Markov Decision Process). Under this model, which is schematically depicted in Figure
1, the consumer is assumed to have a certain amount of energy demand at time t = 0, and needs
to make decisions about exactly how to consume electricity in the next T time periods with
the knowledge of past and current prices and (remaining) energy demand. In other words, the
consumer has a deadline of T time slots and seeks an optimal demand satisfaction policy. We
assume that the consumer acts as a price taker; consequently, the optimal policy alternatively
captures the consumer’s bid for purchasing energy and offer for providing reserves. The consumer
is also subject to consumption rate limits; that is, its consumption at every stage cannot exceed
a certain amount. This models the capacity limits that a typical consumer is facing, from local
transformer capacity limits to the rate supported by the device (e.g. charging capacity of a
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charger).
The consumer is also assumed to sell its flexibility, i.e. its ability to change its consumption

rate, as a reserve capacity to the grid too. By modulating its output in a time frame faster than
the decision intervals, see Figure 2, it provides a balancing service (a.k.a. reserve) to the grid.
An example of such a situation in ERCOT is providing Regulation (REG) service in intervals
of four seconds while the market (and hence energy prices) is cleared every five minutes. Since
the fast deployments of the reserves is usually designed to manage the uncertainty between the
anticipated supply demand balance and its actual behavior, it is fair to expect that reserve
deployments have a zero mean and balance out over (relatively) long periods of time. Figure 3
demonstrates a sample path of this operation where et, energy consumption by the flexible load,
is modulated by reserve deployments (στ ). Note that the reserve deployments happen at about
two orders of magnitude higher frequency and hence the time indexes are different. Since the
consumer is assumed to be solely capable of consuming energy and not injecting it back, the
amount of reserves offered by the consumer cannot exceed its consumption in that time slot. On
the upper bound on consumption rate however, the actual constraint on the instantaneous rate
depends on the underlying limiting factor and can be either an average rate constraint (over
the time slot) or an instantaneous rate limit similar to the lower bound on consumption. For
example, if the constraint on the maximum consumption rate is due to thermal limits, like a
transformer, then typically the capacity can be modeled as an average rate limit per time slot.
Consequently, while instantaneous changes in consumption (due to the summation of designated
consumption and reserve deployments) can exceed the upper bound of the consumption rate,
the average rate of consumption remains within desired limits since reserve deployments are
assumed to be zero mean. This is the model we adopt in this paper.

Alternatively, the rate limit could be due to a hard limit and hence, the total consumption
rate (the sum of designated energy consumption rate and reserve deployments) cannot exceed
the rate limit. This alternate model basically asks the consumer to reserve some capacity for
reserves that could otherwise be used for energy consumption and will result in a more complex
optimal policy. We leave this case for future work.

With this model and denoting the remaining energy demand of the consumer by dt, and the
amount of consumed energy and offered reserve by et and rt, respectively, we have the following
dynamics:

dt+1 = dt − et + st, d0 given,
0 ≤ rt ≤ et ≤ min{dt, e},

(2)

where d0 denotes the initial energy demand of the flexible load, e denotes the maximum amount
of energy the consumer can consume in one time slot, st =

∑
τ στ denotes the sum of reserve

deployments over the time interval. Generally, st is assumed to be a zero mean independent
process, i.e. E[st] = 0, ∀t and εt ⊥⊥ st ⊥⊥ st′ , ∀t 6= t′; in this work, however, we assume st = 0, ∀t
as a simplifying assumption. That is, we assume that reserve deployments over each time slot
are balanced and sum up to zero. Note that in some jurisdictions, there are balanced reserve
products that ensure a balanced property.

The objective of the problem is to minimize the expected cost, i.e. to obtain J∗0 (d0,θ0):

J∗0 (d0,θ0)= min
et(dt,πt),
rt(dt,πt)

Eεt [
T−1∑
t=0

gt(et, rt,πt)+gT (dT )], (3)

. . .. . . . . .

t− 1 t t+ 1

τ

Figure 2. Timeline of decisions versus reserve deployments.
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Figure 3. A sample path of energy consumption by the consumer while providing reserves.

where the minimization is over policies that give et and rt upon observing (dt,πt), which we
denote by et(dt,πt), rt(dt,πt) by abuse of notation. Finally, we need to define our stage and final
cost:

gt(et, rt,πt) = πet et − πrt rt, (4)

gT (dT ) = m̂TdT , (5)

where mT is basically the marginal cost of unsatisfied energy demand which depends on the type
of the load. For example, for plug-in hybrid vehicles, m̂T is on the order of the equivalent price
of gasoline. This model can capture a wide range of flexible loads. The prime example of such
loads are battery charging loads like plug-in electric vehicles.

3 Optimal Energy Consumption and Reserve Provision Policy without Capacity
Reservation

First, we present our main result which gives the optimal joint energy consumption and reserve
provision policy. Then, we present the algorithm to recursively calculate the parameters of this
optimal policy derived from the main theorem and discuss its implications and complexity.
Finally, we establish another theorem which considers the result for the uncorrelated price case.

Theorem 3.1 Consider the system described in (1)–(5).

(a) The optimal value function is continuous, piecewise linear and convex with T + 1 pieces
given by:

J∗0 (d0,θ0) =

T−1∑
j=0

mj
0(θ0)[(d0 − je)+∧e] +mT

0 (θ0)(d0 − Te)+, (6)

where a ∧ b , min{a, b} and mi
t(θt) is given by the following backward recursion:

mi
t(θt) = Eεt [Mi(θt, εt)], (7)
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...
...

m̂i−1
t (•)i−1 = • mi−1

t (θ) Mi−1(θ, ε) Eεt [•]

m̂i
t (•)i = • mi

t(θ) Mi(θ, ε) Eεt [•]

...
...

Figure 4. Recursive calculation of value function coefficients and thresholds in block diagram form. Note that recursions
are backward on t and (•)j = • represents the corresponding solution to (9).

where,

Mi(θt, εt)=


mi
t+1(πt) m̂i

t+1 ≤πat ,

πat m̂i−1
t+1 ≤πat < m̂i

t+1,

mi−1
t+1(πt) πat < m̂i−1

t+1,

(8)

πt = λt(θt)+εt by (1), πat = πet−(πrt )
+, mi

T (θt) = m̂i
T = m̂T , ∀i, m0

t (θt) = m̂0
t = −∞, ∀t

and m̂i
t is given by:

m̂i
t = {mi

t(µ1, µ2)|mi
t(µ1, µ2) = µ1 − (µ2)+}. (9)

(b) The optimal policy is given by:

e∗t (d,πt) = (d− i∗e)+ ∧ e, (10)

r∗t (d,πt) = e∗t (d,πt)1{πrt >= 0}, (11)

where 1{•} is the indicator function and,

i∗ = max{i|m̂i
t < πet − (πrt )

+}. (12)

The proof is provided in Appendix A.
The value function obtained in Theorem 3.1 shows an interesting property of the problem under

study: even with arbitrary prices and correlation, the value function remains not only piecewise
linear, but also, all the pieces have the same length, namely e. More importantly, the number of
pieces scales only linearly with the number of available time slots, T , as opposed to exponential
scaling which typically happens in dynamic programming problems ?. Consequently, a relatively
simple multi-threshold optimal policy for joint demand satisfaction and reserve provision can
be obtained. Since such a policy is either to be implemented in embedded devices such as the
EVSE, PEV, Home Energy Management System (HEMS) or thermostat or used to control a
large group of flexible loads by a load aggregator, such scalability is very important.

While Theorem 3.1 gives a closed form optimal policy and value function, it also encapsulates
the essential richness of the problem due to the general price structure into the coefficients of
the value function and the corresponding thresholds obtained through (9). Whether a closed
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form can be attained for these thresholds depends on the assumed price statistics. Nevertheless,
Theorem 3.1 gives a straightforward algorithm for calculating these thresholds. Figure 4 depicts
the recursive algorithm that is used to calculate the coefficients and corresponding thresholds in
a block diagram form, mainly around the ith element. This block diagram basically depicts (7),
(8) and (9). Let us go through these steps for more clarity, assuming time t at the beginning:

(1) Using mj
t (θ), obtain m̂j

t using (9) for all j.

(2) For all j form the corresponding Mj(θ, ε) using mj
t (θ), mj−1

t (θ), m̂j
t , m̂

j−1
t obtained in

previous step and (8).

(3) For all j take the expected value of Mj(θ, ε) and obtain mj
t−1(θ) as in (7).

(4) Repeat these steps letting t = t− 1.

A considerable advantage of the above algorithm for obtaining the optimal thresholds is that
it can be implemented in parallel very efficiently. In particular, at each time t, all the T pieces,
indexed by j can be calculated in parallel. This is implicitly reflected also in the steps described
above, noting that each step happens for all j simultaneously for a given time slot t, without
using any of the information corresponding to other time slots. This parallelism can also be seen
in the parallel branches of the block diagram in Figure 4.

The computational complexity of obtaining the optimal policy using Theorem 3.1 is O(T
2

δ ),

assuming the operations in equations (7), (8) and (9) are O(1) and the resolution of mj
t (θ) in

θ is O(δ). Note that mj
t (θ) is a function of θ and, hence, at worst, it needs to be calculated

and stored numerically. Given the above discussion on the parallel computation of the optimal
policy, establishing this bound is straight forward. Note that we have at most O(T ) pieces and
T time slots. Bear in mind that assuming O(1) computation time on each operation only implies
that these computations do not depend on T and hence, do not scale with the problem.

In terms of storage complexity of the optimal policy, Theorem 3.1 gives an even better result.
Note that once (9) is solved, there is no need to store mj

t (θ) since m̂j
t is enough to run the

optimal policy. Therefore, the storage complexity of the optimal policy is O(T 2), which is great
for embedded systems or when the optimal policy is computed in the cloud and should be
transferred to the controller.

Another advantage of the proposed computational structure becomes vivid when multiple
flexible loads are involved and an aggregator is controlling all the loads simultaneously. In such
setups, the load aggregator can reuse the calculated coefficients and thresholds for the loads
which share the same (absolute) deadline and capacity. To observe this property, first note that
the loads with the same per stage capacity have the same break points in their value function.
Now, consider two loads with potentially different demands, say d and d′ and potentially different
dwell lengths, e.g. T and T ′, but with the same deadline, i.e. td = t′d. Now, for calculating the
optimal coefficients backward, the actual statistics seen by these loads are the same for all times
between td = t′d and td−min{T, T ′} since their deadlines are equal. Note that since the times are
measured relative to arrival times, the time indexes for these two loads might not be the same.
For the period where both loads share the same statistics, i.e. between td −min{T, T ′} and td,
the coefficients obtained in backward recursion discussed in the above algorithm are the same.
Note that the coefficients, mj

t (θ), do not depend on the demand. Hence, the load aggregator
essentially needs to calculate these coefficients and optimal thresholds only once per deadline
and load capacity, for the maximum amount of load dwell time. Moreover, in case a new load
arrives sharing deadline and capacity with another load but staying for more time, computations
are needed to be performed only for the extra amount of steps this load stays compared to longest
staying load with the same deadline and capacity. That is, the optimal policy parameters only
get augmented by the ones that are not calculated before arrival of a new load.

The optimal coefficients in the value function and their corresponding thresholds also have
a very interesting economic interpretation. Consider a load with demand d and capacity e and
let us define i = bdec, then for any t, mi

t(θ) basically gives the expected effective marginal cost
of energy for this load, noting that the expected value function is the expected cost to go for
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πat = πet − (πrt )
+

dt−ie

e

m̂i−1
t m̂i

t

Figure 5. Optimal policy.

πrt

πet

m̂i−1
t m̂i

t

m̂i−1
t

m̂i
t

Figure 6. Price regions.

such a load. This economic interpretation of the optimal coefficients results in a very intuitive
interpretation of the optimal policy: It basically says consume if the effective price, πat , i.e. energy
price minus reserve price if positive, is better than what you believe as the expected effective
marginal cost of consumption (at the level of remaining demand upon finishing consumption).
If the effective price is only better than the current expected effective marginal cost to go,
then only consume enough to satisfy the partial demand. Finally, if the effective price is higher
than the current expected effective marginal cost, then do not consume. Figure 5 depicts this
interpretation. Note that the price axis in this figure, and the price considered in the optimal
policy, is the effective price which depends on price of energy as well as price of reserve. Figure 6
depicts price regions corresponding to the three effective price regions in Figure 5 more vividly.
Note that these regions are exactly the ones defined by the conditional function Mi(θ, ε) in (8).

If further assumptions are made about the price statistics, the computational complexity of
the optimal policy can be further improved. An interesting case in this direction is the indepen-
dent price case, which also covers deterministic prices. We address the independent case in the
following theorem:

Theorem 3.2 Consider the system described in (1)–(5) and assume λt(θ) = 0, ∀t,θ, then, the
optimal value function given in Theorem 3.1 simplifies to:

J∗0 (d0) =

T−1∑
j=0

m̂j
0[(d0 − je)+∧e] + m̂T

0 (d0 − Te)+, (13)
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+

...
...

−

−

Figure 7. Recursive calculation of optimal thresholds under price independence assumption as described by (14).

where mi
t is given by:

m̂i
t = m̂i

t+1 −Gt(m̂i−1
t+1, m̂

i
t+1), (14)

in which,

Gt(z, z
′) ,

∫ z′

z
F at (ζ) dζ, (15)

where F at (•) is the marginal probability distribution function of the effective price random vari-
able defined as πat = εat , ε

e
t − (εrt )

+.
Moreover, the optimal policy is given by given by the same policy as in Theorem 3.1.

The proof is provided in Appendix B.
A corollary of Theorem 3.2, is that the computational and storage complexity of the description

of the optimal policy and value function is Θ(T ) for each t, and hence Θ(T 2). This is assuming
that evaluating Gt(•, •) function is Θ(1), which is in line with other assumptions we had in the
general case.

Similar to the general case, this solution can be implemented in T parallel processes in a very
straightforward way essentially resulting in a (T + 1)× (T + 1) table that represents the optimal
thresholds for every i and t. The implementation complexity of each branch, however, is reduced
dramatically. Figure 7 depicts the block diagram form of the optimal threshold calculation
algorithm.

As discussed, the independent case covers the deterministic price case. In deterministic case
finding the optimal consumption and reserve provision amounts is a straightforward optimization
problem, Theorem 3.2 gives a quick, recursive and parallel method to obtain the optimal policy
independent of the actual amount of demand. This is particularly useful for an aggregator which
would calculate the policy once and reuse it for many loads as discussed in the general case.
Note that in deterministic case, Gt(•, •) can be calculated in closed form very easily as:

Gt(z, z
′) = (z′ − (z ∨ εat ))+, (16)

where (a ∨ b) , max{a, b} and εat = εet − (εrt )
+ is a given deterministic number.
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Figure 8. Cost comparison between various consumption policies under different levels of uncertainty.

4 Numerical Analysis

Although we have proven the optimality of the proposed algorithms mathematically, we still need
to establish the improvements of optimal response and also compare it to the no AS case we
studied in ?. To this end, we use a similar setup as in ? where we studied the cost improvements
for PEV loads based on the dataset and charging session patterns obtained in ?.

In a same setup as in ?, we considered 10,000 scenarios in which a group of 1000 PHEVs which
show up over a 24 hour period of time. Energy demand, arrival and departure patterns are based
on the results of our study in ? using the transportation dataset published by NREL ?, assuming
a minimum dwell time of three hours and availability of charging everywhere under a non-
anticipative model ?. Dwell times of the loads are truncated to 24 hour for ease of calculations.

Energy price statistics are based on the real-time market prices in the Houston Load Zone for
year 2012 and only independent case is considered for simplicity. The prices are assumed to be
normally distributed with mean from average Houston Load Zone for each hour and simulations
are done for various price uncertainties reflected in the standard deviation of price realizations,
denoted by σ. Price uncertainty here can be be interpreted as Gaussian price estimation error
from the flexible loads perspective. AS prices are based on average of ERCOT REG Up and
REG Down prices and are assumed to be known to the load because AS prices are typically
obtained in the day-ahead market and hence are available at real-time.

For the comparative cost performance study, we have depicted the normalized per charging
session costs in Figure 8, normalized by the no-AS case. The comparison is done against no-AS
optimal algorithm, the static price responsive CEC based method we introduced in ?, as well
as price oblivious methods we studied in ?: immediate and AR charging. Moreover, to compare
the network level impact of AS providing optimal response, we have plotted the average diurnal
pattern of load produced by the above mentioned charging policies in Figure 9.

Figure 8 demonstrates considerable reduction in total cost due to AS provision, roughly about
10% to 15%, for all uncertainty levels. Since this cost savings is accompanied by AS capacity
offered to the grid equal to the amount of load served (since AS prices are always positive in
practice and hence optimal amount of AS to offer is equal to the amount of consumption due
to Theorem 3.1 and Equation 11), it is in the best interest of both load and the grid to adopt
this method versus the optimal consumption, if possible. On the other hand, the added cost
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Figure 9. Average diurnal load comparison between various consumption policies (σ = 10).

of infrastructure for receiving AS commands and reporting back to the grid, or localized AS
provision in case of autonomous response, should be considered. Finally, Figure 9 compares the
average diurnal pattern of load induced by various consumption policies. Based on this figure,
we observe no significant change in the pattern of load, mainly because the pattern of AS prices
is very similar to the pattern of energy prices as depicted in the figure.

5 Conclusion

In this paper we extended our results in the ? for optimal response of flexible loads to the case
where the loads can provide ancillary services in sub-market interval time frame and showed
that a similar optimal policy structure holds. We particularly considered the case where no
capacity reservation is needed for AS provision. Considering the case with capacity reservation
is an ongoing future work.

Based on our performance evaluation on PEV load, we observed similar network load patters
due to the high correlation of energy and AS prices. Moreover, we observed consistent cost re-
duction across the studied levels of uncertainty. Combined with the fact that AS provided by
the flexible loads can ultimately help the grid, we conclude that AS providing optimal response
should be adopted when communication infrastructure is readily available or economically jus-
tifiable.

As a natural direction for this work, we are already working on the case with capacity reserva-
tion requirement. Our preliminary results suggest that the same optimal multi-threshold optimal
policy structure holds and there exists a similar efficient method for calculating the thresholds.
We plan to perfect this case as our future work. To extend this work further, we also consider AS
providing optimal response as building block for approximating the coordinated energy delivery
problem we studied in ? and ?. This is another direction we are planning to work on in the
future.
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Appendix A: Proof of Theorem 3.1

We establish that the proposed optimal value function satisfies the Bellman equation. We assume
the CDFs and expected values exist throughout and the correlation structure is well behaved,
which holds for most practical cases. Before going through the details, let us first establish some
lemmas that help us streamline the proof.

Lemma A.1 For any d, e, e such that 0 ≤ d, 0 ≤ e, 0 ≤ e ≤ e, and letting i = bd/ec, and
d̃ = d− ie, we have:

(1) [(d− e− (i− 1)e)+ ∧ e] = e− (e− d̃)+,
(2) (d̃−e)+ = d̃− (e ∧ d̃).

Proof

(1) First observe that the left hand side (LHS) can be simplified as:

[(d− e− (i− 1)e)+ ∧ e] = [(d̃− e+ e)+ ∧ e].

Considering the left hand side, only three cases are possible:
a) d̃− e+ e ≤ 0: In this case, LHS=0. This condition can be rearranged as e ≤ e− d̃.

But given the conditions in the assumption, this can only happen if e = e − d̃.
Consequently, the right hand side (RHS) results in:

e− (e− d̃)+ = e− e = 0.

b) 0 ≤ d̃ − e + e ≤ e: In this case, LHS=d̃− e + e. Rearranging this condition results
in 0 ≤ e− d̃ ≤ e, which results in:

e− (e− d̃)+ = e− e+ d̃ = LHS.

c) e ≤ d̃− e+ e: In this case, LHS=e. This case can be also rearranged to e− d̃ ≤ 0,
and hence:

e− (e− d̃)+ = e− 0 = LHS.

(2) For this part, only two cases can happen, if d̃−e ≥ 0, then:

(d̃−e)+ = d̃− e = d̃− (e ∧ d̃),

otherwise,

(d̃−e)+ = 0 = d̃− d̃ = d̃− (e ∧ d̃).

�

Lemma A.2 For any d̃, e such that 0 ≤ e, 0 ≤ d̃, we have e = (e− d̃)+ + (e ∧ d̃).

Proof If e ≤ d̃:

(e− d̃)+ + (e ∧ d̃) = 0 + e = e,
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otherwise:

(e− d̃)+ + (e ∧ d̃) = e− d̃+ d̃ = e.

�

We skip establishing the convexity of the optimal value function for brevity. As in the proof of
Theorem ?? in Appendix ??, a proof similar to Proposition 1 in ? can be applied using convexity
of the stage and final costs and linearity of dynamics.

The main proof is based on backward induction on t; to this end, let us assume that the
proposed following form of the value function in Theorem 3.1 holds:

J∗t (dt,θt) =

∞∑
j=1

mj
t (θt)[(dt − je)+ ∧ e]. (A1)

where mj
t (θ) = mT

t for j ≥ T . We need to show that if this assumption holds for t + 1, then it
holds for t. These consecutive time slots are linked by the Bellman equation; that is:

J∗t (dt,θt) = Eεt [min
e,r

{
πet e− πrt r + J∗t+1(dt − e,πt)

}
], (A2)

using system dynamics equations and θt+1 = πt as assumed previously. Define i = bdt/ec,
ie ≤ dt < (i+ 1)e. Our objective is to obtain mi

t(θ) in the desired optimal value function; which
in this case can be rewritten as:

J∗t (dt,θt) =

i−1∑
j=1

mj
t (θt)e+mi

t(θt)d̃t, (A3)

where d̃t , dt − ie. Let us first rearrange the J∗t+1(dt − e,πt) term in (A2). Since 0 ≤ e ≤ e,
(i − 1)e ≤ dt − e ≤ (i + 1)e. Using (A1) for t + 1, by the induction hypothesis and similar to
(A3), we have:

J∗t+1(dt − e,πt) =

i−2∑
j=1

mj
t+1(πt)e

+mi−1
t+1(πt)[(dt − e− (i− 1)e)+ ∧ e]

+mi
t+1(πt)(dt − e− ie)+,

=

i−1∑
j=1

mj
t+1(πt)e+mi

t+1(πt)d̃t

−mi−1
t+1(πt)(e− d̃t)+ −mi

t+1(πt)(e ∧ d̃t),

(A4)

where we have used Lemma A.1 to obtain the second equality. Now, let us substitute (A4) in
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(A2) as depicted in (A5):

J∗t (dt,θt) = Eεt

min
e,r

πet e− πrt r +

i−1∑
j=1

mj
t+1(πt)e+mi

t+1(πt)d̃t (A5)

−mi−1
t+1(πt)(e− d̃t)+ −mi

t+1(πt)[e ∧ d̃t]




(a)
= Eεt

min
e,r

πet e− πrt r
−mi−1

t+1(πt)(e− d̃t)+ −mi
t+1(πt)(e ∧ d̃t)


+

i−1∑
j=1

mj
t+1(πt)e+mi

t+1(πt)d̃t


(b)
= Eεt

min
e,r

(πet −mi−1
t+1(πt))(e− d̃t)+

+ (πet −mi
t+1(πt))(e ∧ d̃t)− πrt r


+

i−1∑
j=1

mj
t+1(πt)e+mi

t+1(πt)d̃t


(c)
= Eεt

min
e

(πet − (πrt )
+ −mi−1

t+1(πt))(e− d̃t)+

+ (πet − (πrt )
+ −mi

t+1(πt))(e ∧ d̃t)


+

i−1∑
j=1

mj
t+1(πt)e+mi

t+1(πt)d̃t



where, (a) is obtained by rearranging terms, (b) is obtained by using Lemma A.2 and factoring
common terms. To obtain (c), notice that the minimization problem in r can be tackled directly,
that is, if its coefficient, (πrt ) is positive, then we want to maximize r and minimize it otherwise.
But we already know the 0 ≤ r ≤ e, hence, we can obtain the optimal reserve offering policy as:

r∗t (d,πt) = e∗t (d,πt) ∗ 1{πrt ≥ 0}. (A6)

Now (c) is obtained by using (A6), essentially substituting r with e with proper conditionals on
πrt , namely its positivity. The result of (A5) leaves us with a much simpler optimization problem
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since it is all in terms of e, which is essentially cut into two pieces: (e− d̃t)+ and (e ∧ d̃t) using
Lemma A.2. The problem at hand is essentially a linear programing problem, however, using the
convexity of the value function, we can parametrically solve it, basically by inspection. Since the
value function is piecewise linear, its convexity is equivalent to mj−1

t+1 (πt) ≤ mj
t+1(πt), ∀j; noting

that mj
t+1(πt) is the slope of the jth piece of the value function. This leaves us with essentially

three cases to consider for the minimization problem at hand, which we denote them by events
E1, E2 and E3:

E1 : mi
t+1(πt) ≤ πet − (πrt )

+, (A7)

E2 : mi−1
t+1(πt) ≤ πet − (πrt )

+ ≤ mi
t+1(πt), (A8)

E3 : πet − (πrt )
+ ≤ mi−1

t+1(πt). (A9)

Note that in each of these conditions, πt appears on both sides and hence the above conditions
are implicitly defined. Moreover, notice that each of these events consist of two simple events
corresponding to positivity of πrt . Conditioned on each of these events, it is straightforward to
solve the final minimization problem in (A5), understanding that the only constraint we are
facing is 0 ≤ e ≤ e: Under E1, none of the coefficients in are positive and hence, the optimal
decision is to minimize e. Under E2, only the second coefficient is negative and hence the optimal
decision is to maximize the second term, i.e. e∗ = d̃t. Finally, under E3, both coefficients are
negative and hence the optimal decision is to maximize e, i.e. e∗ = e. This basically gives us the
optimal policy as:

e∗(dt,πt)=


0 if (E1): mi

t+1(πt) ≤πet − (πrt )
+,

d−ie if (E2): mi−1
t+1(πt) ≤πet − (πrt )

+ ≤ mi
t+1(πt),

e if (E3): πet − (πrt )
+ ≤ mi−1

t+1(πt).

(A10)

As mentioned before, the conditions defining these events are implicit. Therefore, we need to
solve the following equation to obtain the explicit conditions:

mj
t+1(πet , π

r
t ) = πet − (πrt )

+ (A11)

Defining m̂j
t+1 as:

m̂j
t+1 = {mj

t+1(πet , π
r
t )|m

j
t+1(πet , π

r
t ) = πet − (πrt )

+}, (A12)

similar to (9), we can make these conditions explicit. The desired form in (10), is then obtained

by paying attention to the fact that m̂j
t+1 is increasing in j by convexity and hence there exists

i∗ such that πet − (πrt )
+ < m̂i∗

t+1, ∀j > i∗ and therefore, we can formulate the optimal policy as
stated in the theorem.

Plugging in the optimal policy in (A5), we can continue the proof. Conditioning based on the
Ek events, we have:

J∗t (dt,θt)=J
∗
t (dt,θt|E1)P{E1}+ J∗t (dt,θt|E2)P{E2}+ J∗t (dt,θt|E3)P{E3}, (A13)
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where,

J∗t (dt,θt|E1)=

i−1∑
j=1

Eεt [m
j
t+1(πt)|E1]e+Eεt [mi

t+1(πt)|E1]d̃t,

J∗t (dt,θt|E2)=

i−1∑
j=1

Eεt [m
j
t+1(πt)|E2]e+Eεt [πet − (πrt )

+|E2]d̃t,

J∗t (dt,θt|E3)=

i−2∑
j=1

Eεt [m
j
t+1(πt)|E3]e+Eεt [πet − (πrt )

+|E3]e+Eεt [mi−1
t+1(πt)|E3]d̃t.

It is now clear that the optimal value function has the desired form and what remains is to
calculate the coefficient of d̃t, i.e. mi

t(θt), to obtain the full recursion and conclude the proof. To
this end, we use (A13) and combine the three cases we introduced previously:

mi
t(θt)=Eεt [mi

t+1(πt)|E1]P{E1}+Eεt [πet − (πrt )
+|E2]P{E2}+Eεt [mi−1

t+1(πt)|E3]P{E3}

=Eεt [mi
t+1(λt(θt) + εt)|E1]P{E1}

+Eεt [λet (θt) + εet − (λet (θt) + εrt )
+|E2]P{E2}

+Eεt [mi−1
t+1(λt(θt) + εt)|E3]P{E3}

=Eεt [Mi(θt, εt)],

(A14)

where we have used the price evolution equation we defined in (1) and the definition of M(θt, εt)
from (8). The proof is completed by backward induction over t where (6) is obtained at t = 0. �

Appendix B: Proof of Theorem 3.2

With independent prices, we have πt = εt. Moreover, remaining demand, dt, is the only element
of state space. Therefore, the proposed form of the value function is automatically obtained
since mi

t(θt) is no longer a function of θt and hence mi
t(θt) = m̂i

t. This is because Mi(θt, εt) is
no longer a function of θt, i.e. Mi(θt, εt) = Mi(εt) and hence there would be no need to solve
(9). Consequently, equations (7), (8) and (9) can be consolidated into a single recursion and
conditional expected values can be approached directly. This is essentially what we establish in
this proof.

First let us define εat = πat , π
e
t − (πrt )

+ as the effective price variable. Now, let us revisit the
definition of Mi(εt), in this case:

Mi(εt) =


m̂i
t+1 m̂i

t+1 ≤εat ,

εat m̂i−1
t+1 ≤εat < m̂i

t+1,

m̂i−1
t+1 εat < m̂i−1

t+1.

(B1)

Note that the three cases in the above definition corresponds to the three events E1, E2 and E3

defined in (A7), (A8) and (A9) respectively. Now, we can use this notation to obtain a closed
form for (9), which would essentially be (14). Starting with (9):
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m̂i
t = Eεt [Mi(ε)]

= Eεt [m̂i
t+1|E1]P{E1}+ Eεt [εat |E2]P{E2}+ Eεt [m̂i−1

t+1|E3]P{E3}

= m̂i
t+1P{E1}+ Eεt [εat |E2]P{E2}︸ ︷︷ ︸

A

+m̂i−1
t+1P{E3}

(B2)

Now, using integration by parts:

A =

∫ m̂i
t+1

m̂i−1
t+1

ζ dF at (ζ)

= m̂i
t+1F

a
t (m̂i

t+1)− m̂i−1
t+1F

a
t (m̂i−1

t+1)−
∫ m̂i

t+1

m̂i−1
t+1

F at (ζ) dζ

= m̂i
t+1P{E1} − m̂i−1

t+1P{E3} −Gt(m̂i−1
t+1, m̂

i
t+1),

where E1 is the complement of event E1 and we have used definition (15). Plugging back for A
in (B2), we get:

m̂i
t = m̂i

t+1P{E1}+ m̂i
t+1P{E1} − m̂i−1

t+1P{E3} −Gt(m̂i−1
t+1, m̂

i
t+1) + m̂i−1

t+1P{E3}

= m̂i
t+1 −Gt(m̂i−1

t+1, m̂
i
t+1),

which is the desired result. �


