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Linear wave systems on n-D spatial domains
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Abstract

In this paper we study the linear wave equation on an n-dimensional
spatial domain. We show that there is a boundary triplet associated
to the undamped wave equation. This enables us to characterise all
boundary conditions for which the undamped wave equation possesses
a unique solution non-increasing in the energy. Furthermore, we add
boundary inputs and outputs to the system, thus turning it into an
impedance conservative boundary control system.
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1 Introduction

In this paper we study the following linear system associated to the wave
equation:





ρ(ξ)
∂2z

∂t2
(ξ, t) = div

(
T (ξ) grad z(ξ, t)

)
−

(
Qi

∂z

∂t

)
(ξ, t), ξ ∈ Ω, t ≥ 0,

0 =
∂z

∂t
(ξ, t) on Γ0 ×R+,

0 = ν ·
(
T (ξ) grad z(ξ, t)

)
+

(
Qb

∂z

∂t

)
(ξ, t) on Γ1 × R+,

u(ξ, t) = ν ·
(
T (ξ) grad z(ξ, t)

)
on Γ2 × R+,

y(ξ, t) =
∂z

∂t
(ξ, t) on Γ2 ×R+,

z(ξ, 0) = z0(ξ),
∂z

∂t
(ξ, 0) = w0(ξ) on Ω;

(1.1)
here Ω ⊂ R

n is a bounded spatial domain with Lipschitz-continuous bound-
ary ∂Ω = Γ0 ∪ Γ1 ∪ Γ2, with Γk ∩ Γℓ = ∅ for k 6= ℓ. The vector ν denotes
the outward normal at the boundary. Furthermore, z(ξ, t) is the deflection
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from the equilibrium position at point ξ ∈ Ω and time t ≥ 0, u (the forces
on Γ2) is the input, and y (the velocities at Γ2) is the output. The physical
parameters, ρ(·) and T (·) denote the mass density and Young’s elasticity
modulus, respectively. The operators Qi and Qb correspond to damping
inside the domain Ω and at a part of its boundary, respectively. Typically
Qi and Qb are point-wise multiplication operators, but they need not be.

Note that we do not assume that the sets Γk are separated, i.e., that
Γk ∩ Γℓ = ∅, k 6= ℓ. However, we assume that the Γk’s are disjoint open
subsets in the relative topology of the boundary, and that the boundaries
∂Γk of the Γk’s have surface measure zero.

The wave system is a standard system in control of partial differential
equations which has been widely studied before in the literature; see for
instance [Paz83, Section 7.3], [RR93, Section 11.3.2], or [Yos95, Section
XIV.3] for the zero-input case u = 0. Among the more recent papers which
are closer to our treatment are [ALM13, MS06, MS07]. Compared to these,
we allow a more general spatial domain, a more general boundary damping
operator Qb, and spatially varying physical parameters ρ and T .

A main difference between our treatment of the wave equation and those
cited above is the first-order representation used in this study. We consider
the semigroup generator

[
0 div

grad 0

]
rather than the standard

[
0 I
∆ 0

]
. This

makes it possible to associate a boundary triplet to the wave equation (Sec-
tion 3) and it turns out that also obtaining previously known results be-
comes technically simpler with this choice. Using the results obtained for
the homogeneous case, we show in Section 4 that the inhomogeneous system
presented above is an impedance passive boundary control system.

The general boundary triplet techniques that we develop generalise e.g.
[JZ12, Thm 7.2.4] to n-dimensional spatial domains, and they are certainly
of independent interest as boundary triplets are still being actively used in
the study of PDEs; see e.g. [GG91, DHMdS09, Arl12] and the references
therein.

In our analysis of the wave equation, we recover the well-known result
that the adjoint of the gradient operator, considered as an unbounded oper-
ator from L2(Ω) into L2(Ω)n, is minus the divergence operator, considered
as an unbounded operator from L2(Ω)n into L2(Ω). Other work making
extensive use of the duality between the divergence and the gradient in the
analysis of PDEs is [Tro13, Tro14]; this work suggests that there is poten-
tial for extending the approach to certain types of non-linearities at the
boundary.

We end the introduction with a summary of the structure of the paper.
Section 2 presents results for characterizing boundary conditions that induce
contraction semigroups, assuming the existence of a boundary triplet. In
Section 3, we associate a boundary triplet to the wave equation and show
how the results of Section 2 can be applied in this case. Section 4 concerns
the interpretation of the wave system as a conservative boundary control
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system in different ways: with different choices of input/output spaces, and
passivity is considered in both the impedance and scattering sense. The
paper also contains two appendices, one with Sobolev-space background
and one with two general operator-theoretical results. To our knowledge,
Theorem A.8 is new.

2 General results for boundary triplets

We begin by adapting the definition [GG91, p. 155] of a boundary triplet
for a symmetric operator to the case of a skew-symmetric operator; see also
[MS07, §5].

Definition 2.1. Let A0 be a densely defined, skew-symmetric, and closed
linear operator on a Hilbert space X. By a boundary triplet for A∗0 we mean
a triple (B;B1, B2) consisting of a Hilbert space B and two bounded linear

operators B1, B2 : dom (A∗0) → B, such that
[
B1

B2

]
dom(A∗0) =

[ B
B
]
and for

all x, x̃ ∈ dom(A∗0) there holds

〈A∗0x, x̃〉X + 〈x,A∗0x̃〉X = 〈B1x,B2x̃〉B + 〈B2x,B1x̃〉B . (2.1)

Indeed, the analogue of (2.1) is written as follows in [GG91, p. 155]:

〈A∗x, x̃〉 − 〈x,A∗x̃〉 = 〈Γ1x,Γ2x̃〉 − 〈Γ2x,Γ1x̃〉 ,

and setting A∗0 = (iA)∗, B1 = Γ1, and B2 = iΓ2 in (2.1), we obtain exactly
this. From the definition of boundary triplet it immediately follows that the
so-called minimal operator A0 can be recovered via A0 = −A∗0|ker(B1)∩ker(B2);
see [GG91, p. 155].

Let X be a Hilbert space and let R be a (linear) relation in X, i.e., a sub-
space of X2. Then R is called dissipative if Re 〈r1, r2〉X ≤ 0 for all [ r1r2 ] ∈ R,
and R is maximal dissipative if R has no proper extension to a dissipative
relation in X. The relation R is called skew-symmetric if Re 〈r1, r2〉 = 0 for
all [ r1r2 ] ∈ R, and it is (maximal) accretive if

[
I 0
0 −I

]
R is (maximal) dissipa-

tive. An operator A : X ⊃ dom (A) → X is called (maximal) dissipative,
(maximal) accretive, or skew-symmetric if its graph G(A) :=

[
I
A

]
dom (A),

seen as a relation in X, has the corresponding property.

Theorem 2.2. Let (B;B1, B2) be a boundary triplet for A∗0 and consider the
restriction A of A∗0 to a subspace D containing ker (B1) ∩ ker (B2). Define

a subspace of B2 by C :=
[
B1

B2

]
D. Then the following claims are true:

1. The domain of A can be written

dom (A) = D =

{
d ∈ dom (A∗0)

∣∣
[
B1d
B2d

]
∈ C

}
. (2.2)
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2. The operator closure of A is A∗0 restricted to

D̃ =

{
d ∈ dom (A∗0)

∣∣
[
B1d
B2d

]
∈ C

}
,

where C is the closure of C in B2. Actually, D̃ is the closure of D in
dom (A∗0), where dom (A∗0) is endowed with the graph norm. Further-
more, A is closed if and only if C is closed.

3. The adjoint A∗ is the restriction of −A∗0 to D′, where

D′ =
{
d′ ∈ dom (A∗0)

∣∣
[
B1d

′

B2d
′

]
∈
[
0 I
I 0

]
C⊥

}
.

4. The operator A is (maximal) dissipative if and only if C is a (maximal)
dissipative relation in B. Moreover, A is maximal dissipative if and
only if there exists a contraction V on B such that C = ker

([
I + V I − V

])
.

5. The operator A is skew-adjoint if and only if C = [ 0 1
1 0 ] C⊥. This holds

if and only if C = ker
([
I + V I − V

])
for some unitary operator V

on B.

It also holds that A is (maximal) accretive if and only if C is (maxi-
mal) accretive. Consequently, A is skew-symmetric if and only if C is skew-
symmetric.

In Theorem 2.2, we use the operator A to define a relation C, but we
can also go the other way around: If we start with an arbitrary C ⊂ B2 and
define A as the restriction of A∗0 to dom(A) by the right hand-side in (2.2),

then by the surjectivity of
[
B1

B2

]
, we have C =

[
B1

B2

]
dom (A), and hence

all statements in the theorem remain true. Similarly, it follows from part

(3) that
[
0 I
I 0

]
C⊥ =

[
B1

B2

]
dom (A∗). It is thus shown how to obtain C from

dom (A) and vice versa; part (4) also contains a formula that expresses C in
terms of V . Conversely, we can recover V from C as the mapping

V : e− f 7→ e+ f,

[
f
e

]
∈ C, dom (V ) =

[
−I I

]
C.

Indeed, if C is a maximal dissipative relation in B, then V defined by this
formula is a contraction on B; see also Lemma 2.4 below.

Proof. 1. Denote the set on the right-hand side of (2.2) by D̂. Then by the
definition of C:

d ∈ D =⇒
[
B1d
B2d

]
∈ C =⇒ d ∈ D̂.
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Conversely by the definitions of D̂ and C, respectively,

d ∈ D̂ =⇒
[
B1d
B2d

]
∈ C =⇒ ∃d′ ∈ D :

[
B1d
B2d

]
=

[
B1d

′

B2d
′

]

=⇒ ∃d′ ∈ D : d− d′ ∈ ker

([
B1d
B2d

])
⊂ D,

and for such a d′ we have d = d− d′ + d′ ∈ D. Thus D = D̂.

2. It follows from Lemma B.1 that dom
(
A
)
= dom (A) = D; hence A is a

closed operator if and only if D is a closed subspace of dom (A∗0). Moreover,
by (2.2) and statement (2) of Lemma B.2, we have that D = D̃ and that D
is closed if and only if C is closed.

3. From A ⊂ A∗0 and the definition of the minimal operator, we get −A0 ⊂ A
which in turn implies that A∗ ⊂ −A∗0. Then it follows from (2.1) that

d′ ∈ dom(A∗) if and only if
[
B2d′

B1d′

]
⊥

[
B1d
B2d

]
for all d ∈ D, and this proves

assertion 3.

4. Both claims follow from [GG91, Thm 3.1.6] and its proof.

5. Since −A∗, A ⊂ A∗0, it holds that A∗ = −A if and only if dom (A∗) =
dom (A). By item 3 and (2.2), dom (A∗) = dom (A) if C =

[
0 I
I 0

]
C⊥. Con-

versely, if dom (A∗) = dom (A), then by the above formulas connecting
dom (A), C, and dom (A∗):

C =

[
B1

B2

]
dom (A) =

[
B1

B2

]
dom (A∗) =

[
0 I
I 0

]
C⊥.

The other assertion is contained in [GG91, Thm 3.1.6].

Motivated by item (4) of Theorem 2.2, we now specialise Theorem 2.2 to
the case where C is the kernel of some WB ∈ L(B2;K), i.e., WB is a bounded
and everywhere-defined linear operator from B2 into K.

Theorem 2.3. Let (B;B1, B2) be a boundary triplet for the operator A∗0
on a Hilbert space X, let K be a Hilbert space, and let WB =

[
W1 W2

]
∈

L(B2;K). The following claims are true for the restriction A := A∗0
∣∣
dom(A)

to dom (A) = ker
([

W1 W2

] [
B1

B2

])
:

1. The operator A is closed.

2. The operator A is (maximal) dissipative if and only if ker (WB) is a
(maximal) dissipative relation in B.

3. The adjoint of A is A∗ = −A∗0
∣∣
dom(A∗)

, where

dom (A∗) =

{
x ∈ dom (A∗0)

∣∣
[
B1x
B2x

]
∈ ran

([
W ∗2
W ∗1

])}
. (2.3)
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4. The adjoint A∗ is dissipative if and only if

W1W
∗
2 +W2W

∗
1 ≥ 0 (2.4)

in K. The adjoint is skew-symmetric, i.e., Re 〈A∗x, x〉 = 0 for all
x ∈ dom (A∗), if and only if (2.4) holds with equality.

5. The operator A generates a contraction semigroup on X if and only if
A is dissipative and (2.4) holds.

6. The operator A generates a unitary group on X if and only if A is
skew-symmetric and (2.4) holds with equality.

Proof. The subspace D of Theorem 2.2 is

D = dom (A) = ker
([

W1 W2

] [
B1

B2

])
⊃ ker (B1) ∩ ker (B2) .

By (2.2) and the surjectivity of
[
B1

B2

]
, it is easy to see that C = ker (WB).

1. Since WB ∈ L(B2;K), C = ker (WB) is closed. Now the closedness of
dom (A) follows from part (2) of Theorem 2.2.

2. This follows from C = ker (WB) and part (4) of Theorem 2.2.

3. The domain and action of A∗ follow directly from part (3) of Theorem
2.2; note that [

0 I
I 0

]
C⊥ = ran

([
W ∗2
W ∗1

])
. (2.5)

4. Applying Theorem 2.2 to A∗, using (2.5), we obtain that A∗ is dissipative
if and only if

[
0 I
I 0

]
C⊥ is accretive; note the minus sign in the formula for

A∗ in item 3. By the continuity of the inner product this holds if and only

if ran
([

W ∗
2

W ∗
1

])
is accretive, but this is true if and only if (2.4) holds, since

2Re 〈W ∗2 f,W ∗1 f〉B = 〈(W1W
∗
2 +W2W

∗
1 )f, f〉K , f ∈ K.

A trivial modification of the above gives the proof for the skew-symmetric
case.

5. Since A is closed by the first item, this follows from the Lumer-Phillips
Theorem.

6. Since A is closed, both A and A∗ are skew-symmetric if and only if and
only if A∗ = −A. The claim follows from Stone’s theorem.

We next introduce a maximality condition, which implies that A is dis-
sipative if and only if A∗ is dissipative. Theorem 2.5 is a general boundary
triplet analogue of [JZ12, Thm 7.2.4]. This theorem can be applied to some
PDEs on n-dimensional spatial domains to show existence of solutions; see
also [GZM05, §4.1]. First, however, we need the following lemma:
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Lemma 2.4. Let B and K be Hilbert spaces, and let
[
W1 W2

]
∈ L(B2;K).

Assume that W1 +W2 is injective, and that

ran (W1 −W2) ⊂ ran (W1 +W2) . (2.6)

Then there exists a unique V ∈ L(B) such that

(W1 +W2)V = W1 −W2, (2.7)

or equivalently,

[
W1 W2

]
=

1

2
(W1 +W2)

[
I + V I − V

]
. (2.8)

Hence, ker
([
W1 W2

])
= ker

([
I + V I − V

])
and, moreover, the operator

inequality W1W
∗
2 +W2W

∗
1 ≥ 0 holds in K if and only if V V ∗ ≤ I in B.

We point out that W1W
∗
2 +W2W

∗
1 ≥ 0 can equivalently be written as

[
W1 W2

] [0 I
I 0

] [
W1 W2

]∗ ≥ 0. (2.9)

Proof. We first establish the existence and uniqueness of a V ∈ L(B) such
that (2.7) holds. Since W1+W2 is injective, there exists a closed left inverse

(W1 +W2)
−l defined on ran (W1 +W2)⊕

(
ran (W1 +W2)

)⊥
. Defining

V := (W1 +W2)
−l(W1 −W2),

we obtain from (2.6) that V is defined on all of B. By the boundedness of
W1 −W2 and the closedness of (W1 +W2)

−l, the composition V is closed,
and hence V ∈ B by the closed graph theorem. Using assumption (2.6), for
all b ∈ B there exists a z ∈ B such that (W1 −W2)b = (W1 +W2)z, and we
obtain (2.7):

(W1 +W2)V b = (W1 +W2)(W1 +W2)
−l(W1 −W2)b

= (W1 +W2)(W1 +W2)
−l(W1 +W2)z

= (W1 +W2)z = (W1 −W2)b.

On the other hand, because of the injectivity of W1 +W2, the operator V
is uniquely determined by (2.7).

Now assume that W1W
∗
2 +W2W

∗
1 ≥ 0; we prove that V is a contraction.

First note that
(W1 −W2)

∗
(
(W1 +W2)

−l
)∗

⊂ V ∗,

where the left-hand side is defined densely in B since (W1+W2)
−l is densely

defined and (W1 − W2)
∗ ∈ L(K;B); hence it suffices to show that (W1 −
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W2)
∗ ((W1 +W2)

−l)∗ is contractive. As B and K are Hilbert spaces and
W1,W2 bounded, we have that W1W

∗
2 +W2W

∗
1 ≥ 0 is equivalent to

‖(W1 −W2)
∗x‖2 ≤ ‖(W1 +W2)

∗x‖2, x ∈ B. (2.10)

For arbitrary y ∈ dom
((

(W1 +W2)
−l)∗

)
, we set x :=

(
(W1 +W2)

−l)∗ y
and obtain from (2.10) that ‖(W1 − W2)

∗ ((W1 +W2)
−l)∗ y‖2 ≤ ‖y‖2. We

conclude that W1W
∗
2 + W2W

∗
1 ≥ 0 implies that V V ∗ ≤ I. Conversely, if

V V ∗ ≤ I, then using (2.8) in (2.9), we have

[
W1 W2

] [0 I
I 0

] [
W1 W2

]∗
=

1

2
(W1 +W2)(I − V V ∗)(W1 +W2)

∗ ≥ 0.

Finally, it is straightforward to verify that (2.7) is equivalent to (2.8);
the equality of the kernels then follows from the injectivity of W1+W2.

If W1 +W2 : B → K is invertible then (2.6) holds. A good choice of K
can sometimes make this possible.

Theorem 2.5. Let A and
[
W1 W2

]
be the operators in Theorem 2.3, and

assume that (2.6) holds. Then the following conditions are equivalent:

1. The operator A generates a contraction semigroup on X.

2. The operator A is dissipative.

3. The operator W1+W2 is injective and the following operator inequality
holds in K:

W1W
∗
2 +W2W

∗
1 ≥ 0. (2.11)

Proof. The Lumer-Phillips Theorem provides the implication from 1 to 2.
We now prove that assertion 2 implies assertion 3. By part (2) of The-

orem 2.3 we know that C = ker(WB) is dissipative. So for every
[
h
k

]
∈

ker (WB) there holds
Re 〈h, k〉B ≤ 0. (2.12)

If y ∈ ker(W1 + W2), then WB [ yy ] = 0 and by (2.12), Re ‖y‖2B ≤ 0. Thus
y = 0 and W1 +W2 is injective. By Lemma 2.4, there exists a V ∈ L(B),
such that (2.8) holds and ker (WB) =

[
I + V I − V

]
.

Let u ∈ B be arbitrary and set y := V u. Then
[ y−u
y+u

]
lies in the dissipa-

tive ker
([
I + V I − V

])
and hence ‖V u‖2 −‖u‖2 = Re 〈y − u, y + u〉 ≤ 0,

which proves that V is a contraction. Lemma 2.4 gives that (2.11) holds.

Assertion 3 implies assertion 1. The assumptions of Lemma 2.4 are satis-
fied and in addition (2.11) holds, and so there exists a contraction V on B
satisfying (2.8). By part (4) of Theorem 2.2, A∗0 restricted to D := {d ∈
dom(A∗0) |

[
B1d
B2d

]
∈ ker([I + V, I − V ])} is maximal dissipative and thus the

8



infinitesimal generator of a contraction semigroup. From the injectivity of

W1+W2 and (2.8), we see that D equals {d ∈ dom(A∗0) |
[
B1d
B2d

]
∈ ker(WB)}.

Thus A generates a contraction semigroup.

The boundary triplet that we shall associate to the wave equation in the
next section is of the “pivoted” type described in the following result, which
is also important in the proof of Theorem 4.4 below.

Theorem 2.6. Let B be a Hilbert space densely and continuously contained
in a Hilbert space B0, let B′ be the dual of B with pivot space B0, and let
Ψ : B′ → B be a unitary operator. Let b2 be a bounded operator from
dom (A∗0) to B′ and assume that (B;B1,Ψb2) is a boundary triplet for the
operator A∗0 on the Hilbert space X.

Let VB =
[
V1 V2

]
∈ L(B2

0;K), where K is some Hilbert space, and define

A :=

{
a ∈ dom(A∗0)

∣∣ b2a ∈ B0 ∧
[
V1 V2

] [B1

b2

]
a = 0

}
. (2.13)

Then the following two conditions are together sufficient for the closure A
of the operator A∗0

∣∣
A (closure in the sense of an operator on X) to generate

a contraction semigroup on X:

1. Re 〈u, v〉B0 ≤ 0 for all u, v ∈ B0 such that V1u+ V2v = 0.

2. The following operator inequality holds in K:

V1V
∗
2 + V2V

∗
1 ≥ 0. (2.14)

The operator A generates a unitary group if Re 〈u, v〉B0 = 0 for all [ uv ] ∈
ker (VB) and V1V

∗
2 + V2V

∗
1 = 0.

Condition 2 is also necessary for A to generate a contraction semigroup
(unitary group) on X.

Here we have changed to a small b in the boundary mapping b2 in order
to avoid confusion. The mapping B2 used previously is analogous to Ψb2
here. If one wanted to try to reduce Theorem 2.6 to Theorem 2.3, then one
might try to set W1 := V1

∣∣
B and W2 := V2Ψ

∗. However, this does not go
through without complications, because V2Ψ

∗ is in general defined only on
ΨB0, and not bounded from B into K.

Proof. By the definition of A, A is dense in dom (A), and so the closed
operator A is maximal dissipative if and only if A

∣∣
A is dissipative and A

∣∣∗
A =

A∗ is dissipative.

9



By (2.13), we have

a ∈ A ⇐⇒
[
B1

b2

]
a ∈

[
B
B0

]
∩ ker

([
V1 V2

])

⇐⇒
[
B1

Ψb2

]
a ∈

[
B

ΨB0

]
∩ ker

([
V1 V2Ψ

∗])

⇐⇒
[
B1

Ψb2

]
a ∈ ker

([
V1

∣∣
B V2Ψ

∗∣∣
ΨB0

])
.

(2.15)

From this we see that the space C in Theorem 2.2 is

C =

{[
q
p

]
∈ B2

∣∣ ∃p̃ ∈ B0 : p = Ψp̃, V1q + V2Ψ
∗p = 0

}
. (2.16)

For [ qp ] ∈ C there holds

〈q, p〉B = 〈q,Ψp̃〉B = (q, p̃)B,B′ = 〈q, p̃〉B0 ≤ 0,

where we used condition 1. Theorem 2.2 now yields that A∗0
∣∣
A is dissipative,

and by the continuity of the inner product A is also dissipative. The same
argument gives that A is skew-symmetric in case V1u+V2v = 0 implies that
Re 〈u, v〉 = 0.

We next calculate A∗ and verify that this adjoint is dissipative if and
only if (2.14) holds. By items 1–3 in Theorem 2.2, the denseness of A in
dom (A), and (2.15), we obtain

d ∈ dom (A∗) ⇐⇒
[
Ψb2d
B1d

]
∈ B2 ⊖

([
B1

Ψb2

]
A
)

⇐⇒
[
Ψb2d
B1d

]
∈ ran

([
(V1

∣∣
B)
†

(V2Ψ
∗∣∣

ΨB0)
†

])B2
,

where † denotes the adjoint calculated with respect to the inner product in
B instead of that in B0. Since A

∗ = −A∗0
∣∣
dom(A∗)

, we obtain from part (4) of

Theorem 2.2 that A∗ is dissipative if and only if ran

([
(V2Ψ

∗∣∣
ΨB0)

†

(V1

∣∣
B)
†

])
is an

accretive relation in B. We finish the proof by verifying that this is indeed
the case, assuming (2.14).

It holds that

〈V1u, k〉K = 〈u, V ∗1 k〉B0 = (u, V ∗1 k)B,B′ = 〈u,ΨV ∗1 k〉B

for all u ∈ B and k ∈ B0, and thus (V1

∣∣
B)
† = ΨV ∗1 . Moreover, k ∈

dom
(
(V2Ψ

∗∣∣
ΨB0)

†
)
if and only if there exists some s ∈ B such that

〈V2Ψ
∗v, k〉K = 〈v, s〉B , v ∈ ΨB0. (2.17)
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Now assume that k ∈ dom
(
(V2Ψ

∗∣∣
ΨB0)

†
)

and choose a s ∈ B such that

(2.17) holds. Then it holds for all v ∈ ΨB0 that

〈Ψ∗v, s〉B0 = (Ψ∗v, s)B′,B = 〈v, s〉B = 〈V2Ψ
∗v, k〉K = 〈Ψ∗v, V ∗2 k〉B0 ,

i.e., that V ∗2 k = s ∈ B. Conversely, V ∗2 k ∈ B implies that k ∈ dom
(
(V2Ψ

∗∣∣
ΨB0)

†
)
,

because then we obtain for all v ∈ ΨB0 that

〈v, V ∗2 k〉B = (Ψ∗v, V ∗2 k)B′,B = 〈Ψ∗v, V ∗2 k〉B0 = 〈V2Ψ
∗v, k〉K .

We conclude that (V2Ψ
∗∣∣

ΨB0)
† is the restriction of V ∗2 to

dom
(
(V2Ψ

∗∣∣
ΨB0)

†
)
= {k ∈ K | V ∗2 k ∈ B} .

By definition

ran

([
(V2Ψ

∗∣∣
ΨB0)

†

(V1

∣∣
B)
†

])
=

{[
V ∗2 k
ΨV ∗1 k

]
| k ∈ K ∧ V ∗2 k ∈ B

}

is an accretive relation in B if and only if for all k ∈ K with V ∗2 k ∈ B it
holds that

Re 〈V ∗2 k,ΨV ∗1 k〉B = Re (V ∗2 k, V
∗
1 k)B,B′ = Re 〈V ∗2 k, V ∗1 k〉B0 = Re 〈V1V

∗
2 k, k〉K ≥ 0.

This is clearly true if (2.14) holds. Conversely, if the relation is accretive,

then (2.14) holds, since {k ∈ K | V ∗2 k ∈ B} = dom
(
(V2Ψ

∗∣∣
ΨB0)

†
)
which is

dense in K.

We end the section with the following remark: The only implication in
the proof of Theorem 2.6, which is not an equivalence, is where dissipativity
of

[
V1 V2

]
implies dissipativity of

[ B
B0

]
∩ ker

([
V1 V2

])
. If the intersection

is dense in ker
([
V1 V2

])
, then the converse implication is also true by the

continuity of the inner product. In this case Theorem 2.6 gives necessary
and sufficient conditions for A to generate a contraction semigroup.

3 The wave equation

The notation of this section is described in Appendix A, with the additional
observation that Γ• in the appendix equals Γ1 ∪ Γ2 in this section. In the
rest of the article, we throughout assume that Ω ⊂ R

n is a bounded set
with Lipschitz-continuous boundary ∂Ω. It is moreover convenient for us to
introduce the concept of a “splitting with thin common boundary”:

Definition 3.1. By a splitting of ∂Ω with thin boundaries, we mean a finite
collection of subsets Γk ⊂ ∂Ω, such that:

11



1.
⋃

k Γk = ∂Ω,

2. the sets Γk are pairwise disjoint,

3. the sets Γk are open in the relative topology of ∂Ω, and

4. the boundaries of the sets Γk all have surface measure zero.

For instance, if the subset Γk has Lipschitz-continuous boundary, then
the surface measure of ∂Γk is zero. In the sequel, we always assume the
boundary ∂Ω to be split into subsets with thin boundaries. If we furthermore
regard L2(Π), Π ⊂ ∂Ω, as the space of f ∈ L2(∂Ω) that satisfy f(x) = 0 for
almost every x ∈ ∂Ω \Π, then it holds that

L2(∂Ω) =
⊕

k

L2(Γk)

and we denote the corresponding orthogonal projections by πk. If {Γ0,Γ1}
is a splitting of ∂Ω with thin boundaries, then

L2(∂Ω) = L2(Γ0)⊕ L2(Γ1)⊕ L2
(
∂Ω \ (Γ0 ∪ Γ1)

)
= L2(Γ0)⊕ L2(Γ1),

since ∂Ω \ (Γ0 ∪ Γ1) = ∂Γ0 ∪ ∂Γ1 has zero surface measure; see also [TW09,
p. 427].

The rest of the paper is devoted to a study of the wave equation (1.1).
We will recall the definitions of scattering and impedance passive and con-
servative boundary control systems. We shall also associate two impedance
passive boundary control systems to (1.1) using different input- and output
spaces; the flavour is similar to [MS07, §6.2]. The main step of the proof
is an application of Theorem 2.6 to show that (1.1) is governed by a con-
traction semigroup on L2(Ω)n+1 equipped with a modified but equivalent
norm.

For physical reasons the mass density ρ(·) ∈ L∞(Ω) takes real positive
values and Young’s modulus T (·) ∈ L∞(Ω)n×n satisfies T (ξ)∗ = T (ξ) for
almost all ξ ∈ Ω. We make the additional (physically reasonable) assump-
tion that there exists a δ > 0, such that ρ(ξ) ≥ δ, and T (ξ) ≥ δI for almost
all ξ ∈ Ω. We let Qi and Qb be bounded and accretive operators on L2(Ω)
and L2(Γ1), respectively. If damping inside Ω is absent, then Qi = 0, and if
there is no damping at the boundary, then Γ1 = ∅.

The assumptions we made on the parameters imply that the following
multiplication operator is bounded, self-adjoint, and uniformly accretive on[

L2(Ω)

L2(Ω)n

]
:

Hx := ξ 7→
[
1/ρ(ξ) 0

0 T (ξ)

]
x(ξ), ξ ∈ Ω, x ∈

[
L2(Ω)
L2(Ω)n

]
. (3.1)
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Hence this operator defines an alternative, but equivalent, inner product on[
L2(Ω)

L2(Ω)n

]
through 〈z1, z2〉H := 〈Hz1, z2〉, where 〈·, ·〉 denotes the standard

inner product on
[

L2(Ω)

L2(Ω)n

]
. We denote

[
L2(Ω)

L2(Ω)n

]
equipped with the inner

product 〈·, ·〉H by XH.
We invite the reader to carry out the straightforward verification that

the first two lines of the PDE (1.1) correspond to the following abstract
ordinary differential equation

ẋ(t) = (S −Q)Hx(t), t ≥ 0, (3.2)

where the dot denotes derivative with respect to time, the state vector x(t) =[
Mρ ż(t)
grad z(t)

]
consists of the infinitesimal momentum and strain at the point

ξ ∈ Ω, Mρ is the operator in L2(Ω) of multiplication by ρ,

S =

[
0 div

grad 0

] ∣∣∣∣
dom(S)

, dom (S) =

[
H1

Γ0
(Ω)

Hdiv(Ω)

]
, and Q =

[
Qi 0
0 0

]
.

Note how the boundary condition on line two of (1.1) becomes part of the
domain of S. When we initialise (1.1) with the initial conditions z(ξ, 0) =
z0(ξ) and ż(ξ, 0) = w0(ξ), ξ ∈ Ω, then the corresponding initial state for

(3.2) will be x(0) =
[

Mρw0

grad z0

]
. At this point, any constants in z0 disappear,

but they can be recovered using Theorem 4.5 below.

The operator −QH =
[
QiM1/ρ 0

0 0

]
in (3.2) is dissipative, bounded and

defined on all of XH. By the passive majoration technique in [ALM13, Thm
3.2], we may without loss of generality assume that Qi = 0 in the sequel.

3.1 A boundary triplet and contraction semigroups

We shall associate a boundary triplet to the wave equation. The main
objective is to apply the results in Section 2 in order to characterise boundary
conditions giving a contraction semigroup.

In Appendix A, we give the definitions of the Sobolev spacesH1(Ω),Hdiv(Ω),H1
Γ0
(Ω),

and H1/2(∂Ω). Moreover, we define the Dirichlet trace γ0 : H1(Ω) →
H1/2(∂Ω), which maps H1

Γ0
(Ω) onto W ⊂ L2(Γ1 ∪ Γ2). Furthermore, we

introduce the restricted normal trace γ⊥ : Hdiv(Ω) → W ′, where W ′ is the
dual of W with pivot space L2(Γ1 ∪ Γ2). Note that γ⊥ is not a Neumann
trace γN ; if Γ0 = ∅, then W = H1/2(∂Ω) and the relation between the two
operators is γNx = γ⊥ grad x, for x smooth enough, where the equality is in
H−1/2(∂Ω). Finally define the Hilbert space

Hdiv
Γ0

(Ω) := ker (γ⊥) (3.3)

with the norm inherited from Hdiv(Ω).
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We next show how (1.1) is associated to a contraction semigroup on XH
by setting u(·, t) = 0 for all t ≥ 0 and disregarding the output equation on
the last line of (1.1). To this end, we combine line four (with u = 0) and
line three of (1.1) by writing

[
Qbπ1
0

]
γ0

∂z

∂t
+ γ⊥ T grad z = 0.

where π1 is the orthogonal projection of L2(Γ1 ∪ Γ2) onto L2(Γ1). More
precisely, we shall show the more general statement that the operator

AH := SH
∣∣
dom(AH)

, dom (AH) :=

{
x ∈ H−1

[
H1

Γ0
(Ω)

Hdiv(Ω)

] ∣∣∣∣
[
Q̃bγ0 γ⊥

]
Hx = 0

}
,

(3.4)
generates a contraction semigroup on XH, for an arbitrary accretive Q̃b ∈
L(W;W ′); note that Q̃b ∈ L

(
L2(Γ1 ∪ Γ2)

)
implies that Q̃b ∈ L(W;W ′).

Theorem 3.2. Let Ω be a bounded Lipschitz set. The operator

A0 :=

[
0 −div

−grad 0

]
H, dom (A0) := H−1

[
H1

0 (Ω)
Hdiv

Γ0
(Ω)

]
,

is closed, skew-symmetric, and densely defined on XH. Its adjoint is

A∗0 =

[
0 div

grad 0

]
H, dom (A∗0) = H−1

[
H1

Γ0
(Ω)

Hdiv(Ω)

]
. (3.5)

Let M1/ρ and MT be the multiplication operators on the diagonal of H in

(3.1), and set B0 :=
[
γ0M1/ρ 0

]
and B⊥ :=

[
0 γ⊥MT

]
. Then (W;B0,ΨWB⊥)

is a boundary triplet for A∗0, where ΨW : W ′ → W is any unitary operator.
In particular,

〈A∗0x, x̃〉XH
+〈x,A∗0x̃〉XH

= 〈B0x,ΨWB⊥x̃〉W+〈ΨWB⊥x,B0x̃〉W , x, x̃ ∈ dom(A∗0) .
(3.6)

Proof. That
[

B0

ΨWB⊥

]
H−1

[
H1

Γ0
(Ω)

Hdiv(Ω)

]
= W2 follows from γ0H

1
Γ0
(Ω) = W and

γ⊥Hdiv(Ω) = W ′; see Theorem A.8.
The identity (3.6) is obtained by polarizing the following consequence

of the integration by parts formula (A.5): For all
[
M1/ρg

MT f

]
∈

[
H1

Γ0
(Ω)

Hdiv(Ω)

]
, we

obtain

2Re

〈[
0 div

grad 0

] [
M1/ρ g

MT f

]
,

[
M1/ρ g

MT f

]〉

L2(Ω)n+1

=

2Re
( 〈

divMT f,M1/ρ g
〉
L2(Ω)

+
〈
MT f, gradM1/ρ g

〉
L2(Ω)n

)
=

2Re (γ⊥MT f, γ0M1/ρ g)W ′,W =

2Re

〈
ΨWB⊥

[
g
f

]
, B0

[
g
f

]〉

W
;

(3.7)
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in the last equality we also used that ΨW is unitary.
Now the adjoint of A∗0 in (3.5) is−A∗0 restricted to ker (B0)∩ker (ΨWB⊥).

This space equals H−1
[

H1
0 (Ω)

Hdiv
Γ0

(Ω)

]
by Lemma A.4 and (3.3), i.e., (A∗0)

∗ = A0,

so that A0 is closed and obviously it is also densely defined. Finally A0 is
skew-symmetric by (3.7).

An interesting special case is obtained by taking ρ and T identities, in
which case XH reduces to L2(Ω)n+1. On the other hand, taking Γ0 = ∅, we
get the following special case:

Corollary 3.3. The operator −
[

0 div
grad 0

]
H
∣∣∣
H−1

[

H1
0
(Ω)

Hdiv
0 (Ω)

] is closed, sym-

metric, and densely defined. A boundary triplet for its adjoint
[

0 div
grad 0

]
H

is given by

(
H1/2(∂Ω);

[
γ0M1/ρ 0

]
,Ψ1/2

[
0 γ⊥

]
MT

)
,

where Ψ1/2 : H
−1/2(∂Ω) → H1/2(∂Ω) is some arbitrary unitary operator.

The following by-product of Theorem 3.2 gives an exact statement on
the duality of the divergence and gradient operators. Surprisingly, we were
unable to find a citation of this well-known result.

Corollary 3.4. Let Γ0 ⊂ ∂Ω be open. Then grad
∣∣∗
H1

Γ0
(Ω)

= −div
∣∣
Hdiv

Γ0
(Ω)

and grad
∣∣∗
H1

0
(Ω)

= −div
∣∣
Hdiv(Ω)

.

Proof. Choosing H to be the identity in Theorem 3.2, we obtain that A0 is
given by

A0 =

[
0 −div

∣∣
Hdiv

Γ0
(Ω)

−grad
∣∣
H1

0
(Ω)

0

]
.

Using this expression and equation (3.5), we find that A∗0 satisfies

[
0 −grad

∣∣∗
H1

0
(Ω)

−div
∣∣∗
Hdiv

Γ0
(Ω)

0

]
= A∗0 =

[
0 div

∣∣
Hdiv(Ω)

grad
∣∣
H1

Γ0
(Ω)

0

]
.

This shows that grad
∣∣∗
H1

Γ0
(Ω)

= −
(
div

∣∣∗
Hdiv

Γ0
(Ω)

)∗
= −div

∣∣
Hdiv

Γ0
(Ω)

, since div
∣∣
Hdiv

Γ0
(Ω)

is closed. Looking at the upper right corners, we find grad
∣∣∗
H1

0
(Ω)

= −div
∣∣
Hdiv(Ω)

;

this can also be obtained from the previous equality by taking Γ0 = ∂Ω.

The following theorem gives an example of how the general results in
Section 2 can be applied to the wave equation.
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Theorem 3.5. For every accretive Q̃b ∈ L(W;W ′), the operator AH in
(3.4) generates a contraction semigroup on XH.

Proof. We use Theorem 2.5, and we begin by identifying WB . Since ΨW is
injective,

dom (A)H =

{[
g
f

]
∈ H−1

[
H1

Γ0
(Ω)

Hdiv(Ω)

] ∣∣∣ ΨW Q̃b γ0 M1/ρ g +ΨW γ⊥MT f = 0

}

= ker

([
ΨWQ̃b IW

] [ B0

ΨW B⊥

])
;

hence W1 = ΨW Q̃b

∣∣
W and W2 = IW with K = W. We next verify that

these operators satisfy (2.6) and (2.11), starting with the latter. We have
for all k ∈ W that

〈(W1W
∗
2 +W2W

∗
1 )k, k〉W = 2Re 〈ΨW Q̃b k, k〉W = 2Re (Q̃bk, k)W ′,W ≥ 0.

(3.8)
Since the operator ΨW Q̃b is defined everywhere, the calculation (3.8)

shows that ΨWQ̃b is maximal accretive onW. This implies that ΨW Q̃b+I =
W1+W2 is invertible inW; hence (2.6) holds and AH generates a contraction
semigroup on XH by Theorem 2.5.

It is as usual straightforward to verify directly that AH is dissipative if
Q̃b is dissipative, and so we might as well have used part (5) of Theorem
2.3 instead of Theorem 2.5. The preceding result should be compared to
[TW09, §3.9].

4 The wave equation as a conservative boundary

control system

In this section we show that, depending on the choices of the input and
output spaces, we can interpret (1.1) as an impedance passive boundary
control system in two different ways. First we briefly recall some central
concepts on boundary control systems; see e.g. [MS07, §2] for more details.

Definition 4.1. A triple (L,K,G) of operators is an (internally well-posed)
boundary control system on the triple (U ,X ,Y) of Hilbert spaces if it has
the following properties:

1. The linear operators L, K and G have the same domain Z ⊂ X and
take values in X , Y and U , respectively. The space Z is endowed with

the graph norm of
[
L
K
G

]
and it is called the solution space.

2. The operator
[
L
K
G

]
is closed from X into

[ X
Y
U

]
.
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3. The operator G is surjective.

4. The operator A := L|ker(G) generates a strongly continuous semigroup
on X .

The boundary control system is strong if L is a closed operator on X .

As was proved in [MS06, Lemma 2.6], a boundary control system (L,K,G)
on (U ,X ,Y) with solution space Z has the following solvability property:
For all initial states z0 ∈ Z and input signals u ∈ C2(R+;U) compatible
with z0, i.e., u(0) = Gz0, the following system has a unique state trajectory
z ∈ C1(R+;X ) ∩ C(R+;Z) and the corresponding output signal satisfies
y ∈ C(R+;Y):

ż(t) = Lz(t), u(t) = Gz(t), and y(t) = Kz(t), t ≥ 0, z(0) = z0.

Thus for those initial conditions and inputs, the above differential equation
possesses a unique classical solution.

A boundary control system Ξ := (L,K,G) is called time-flow invertible
if the triple Ξ← := (−L,G,K), the so called time-flow inverse, is also a
boundary control system. The following definition is adapted from [MS07,
§§2–3]:

Definition 4.2. A boundary control system is scattering passive if

2Re 〈z, Lz〉X + ‖Kz‖2Y ≤ ‖Gz‖2U , z ∈ Z, (4.1)

which holds if and only if all the classical solutions described above satisfy

‖x(T )‖2 +
∫ T

0
‖y(t)‖2 dt ≤ ‖x(0)‖2 +

∫ T

0
‖u(t)‖2 dt, T ≥ 0.

A boundary control system Ξ is called scattering energy preserving if we have
equality in (4.1), and if in addition Ξ← is also a scattering-energy preserving
boundary control system, then Ξ is called scattering conservative.

A boundary control system (L,K,G) with input space U and output
space Y is impedance passive (impedance conservative) if there exists a uni-
tary operator Ψ : U → Y, such that the so-called external Cayley transform
(L, K̃, G̃) is a scattering passive (scattering conservative) boundary control
system, where

K̃ :=
ΨG−K√

2
and G̃ :=

ΨG+K√
2

. (4.2)

The following two results formalise (1.1) as an impedance passive bound-
ary control system in two different ways. First we assume that Γ1 = ∅, i.e.,
that there is no damping on the boundary.
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Corollary 4.3. Let Z := H−1
[
H1

Γ0
(Ω)

Hdiv(Ω)

]
, L :=

[
0 div

grad 0

]
H, K := B0,

and G := B⊥. Then (L,K,G) is an internally well-posed strong impedance
conservative boundary control system with state space XH, input space U =
W ′, and output space Y = W.

Proof. The system (L,K,G) is an impedance conservative strong boundary
control system by Theorem 3.2 and [MS07, Thm 5.2].

In the case of Corollary 4.3, the operator Ψ in (4.2) converts forces into
velocities; here we use Ψ = ΨW in (A.4). If we instead choose L2(Γ2) as
input and output space, then we can drop the assumption Γ1 = ∅:

Theorem 4.4. Assume that Γk, k = 0, 1, 2, form a splitting of ∂Ω with thin
boundaries and let L, K, and G be as in Corollary 4.3. Let Qb ∈ L

(
L2(Γ1)

)

and define

ZQ :=

{
z ∈ H−1

[
H1

Γ0
(Ω)

Hdiv(Ω)

] ∣∣ Gz ∈ L2(Γ1 ∪ Γ2) ∧ Qbπ1Kz + π1Gz = 0

}

(4.3)

with the graph norm of ΞQ :=

[
LQ

KQ

GQ

]
:=

[ L
π2K
π2G

] ∣∣∣∣
ZQ

.

Then (LQ,KQ, GQ) is an internally well-posed impedance passive bound-
ary control system with state space XH and input/output space UQ = L2(Γ2).
This system is impedance conservative if and only if Qb is skew-adjoint. The
system is strong if and only if UQ = {0}.

Proof. By Definition 4.2, it suffices to verify that the external Cayley trans-

form
(
LQ,

1√
2
(GQ −KQ),

1√
2
(GQ +KQ)

)
of (LQ,KQ, GQ) is a scattering

passive (conservative) boundary control system. This can, according to
[ALM13, Prop. 2.4], be achieved by establishing the inequality

2Re 〈LQz, z〉XH
+

∥∥∥∥
GQ −KQ√

2
z

∥∥∥∥
2

L2(Γ2)

−
∥∥∥∥
GQ +KQ√

2
z

∥∥∥∥
2

L2(Γ2)

≤ 0, z ∈ ZQ,

(4.4)
the surjectivity condition (GQ+KQ)ZQ = L2(Γ2), and that LQ

∣∣
ker(GQ+KQ)

generates a contraction semigroup on X . In order to prove conservativity,
we additionally need to show that (4.4) holds with equality, that (GQ −
KQ)ZQ = X , and that −LQ

∣∣
ker(GQ−KQ)

generates a contraction semigroup

on XH. We do this in several steps.

Step 1 ((GQ ± KQ)ZQ = L2(Γ2)) and (4.4) holds): Pick a u ∈ L2(Γ2)
arbitrarily and extend this u by zero on Γ1; denote the result by ũ. Then
ũ ∈ L2(Γ1 ∪ Γ2), and by Theorem A.8 we can find an f ∈ Hdiv(Ω), such
that γ⊥f = ũ. Then H−1

[
0
f

]
∈ ZQ and (GQ ±KQ)H−1

[
0
f

]
= π2γ⊥f = u.
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The left-hand side of (4.4) can for every z ∈ ZQ be rewritten as

2Re 〈LQz, z〉X − 2Re 〈GQz,KQz〉L2(Γ2)
= 2Re 〈Lz, z〉X − 2Re 〈π2Gz, π2Kz〉L2(Γ2)

=

2Re 〈Lz, z〉X − 2Re (B⊥z,B0z)W ′,W + 2Re 〈π1Gz, π1Kz〉L2(Γ1)
=

2Re 〈Lz, z〉X − 2Re 〈ΨWB⊥z,B0z〉W + 2Re 〈π1Gz, π1Kz〉L2(Γ1)
=

2Re 〈π1Gz, π1Kz〉L2(Γ1)
= −2Re 〈Qbπ1Kz, π1Kz〉L2(Γ1)

≤ 0,

(4.5)
where we used (3.6), (4.3), and that Qb is accretive on L2(Γ1).

Step 2 (LQ

∣∣
ker(GQ+KQ)

generates a contraction semigroup): We use Theo-

rem 2.6 and start by verifying that LQ

∣∣
ker(GQ+KQ)

is a closed operator on

XH. Let therefore zk ∈ ker (GQ +KQ) tend to z in XH, so that Hzk → Hz
in L2(Ω)n+1. Let moreover LQzk =

[
0 div

grad 0

]
Hzk → v in XH, hence in

L2(Ω)n+1. By the closedness of
[

0 div
grad 0

]
, we have Hzk → Hz in

[
H1(Ω)

Hdiv(Ω)

]

and v =
[

0 div
grad 0

]
Hz. Since

[
K
G

]
H−1 is bounded from

[
H1(Ω)

Hdiv(Ω)

]
into

[ W
W ′

]
, we have

[
K
G

]
zk →

[
K
G

]
z in

[ W
W ′

]
. On the other hand, because

zk ∈ ker (GQ +KQ),

Gz = lim
k→∞

(π1 + π2)Gzk = lim
k→∞

−Qbπ1Kzk − π2Kzk = −(Qbπ1 + π2)Kz,

where the limits are taken in W ′. This shows that Gz ∈ L2(Γ1 ∪ Γ2),
π1Gz + Qbπ1Kz = 0, and GQz +KQz = 0. Thus, z ∈ ker (GQ +KQ) and
LQz = v, i.e., LQ is closed.

Furthermore, we have

ker (GQ +KQ) = ker

([
Qbπ1 π1
π2 π2

] [
B0

B⊥

])
(4.6)

and this space equals A in (2.13) with A∗0 = L, B1 = K, b2 = G, B0 =

L2(Γ1 ∪ Γ2), V1 =
[
Qbπ1
π2

]
, V2 = [ π1

π2
], and K =

[
L2(Γ1)

L2(Γ2)

]
. By Theorem

2.6, it is sufficient to show that ker
([
V1 V2

])
is a dissipative relation in

L2(Γ1 ∪ Γ2) and that V1V
∗
2 + V2V

∗
1 ≥ 0.

The following verifies that [ uv ] ∈ ker
([
V1 V2

])
=⇒ Re 〈u, v〉L2(Γ1∪Γ2)

≤
0: [

Qbπ1 π1
π2 π2

] [
u
v

]
= 0 =⇒

[
π1
π2

]
v = −

[
Qbπ1
π2

]
u =⇒

Re

〈[
π1
π2

]
u,

[
π1
π2

]
v

〉
= −Re

〈[
π1u
π2u

]
,

[
Qbπ1u
π2u

]〉
≤ 0.

Moreover, V ∗2 =
[
I1 I2

]
: K → L2(Γ1 ∪ Γ2), where Ik is the appropriate

injection, and hence for all r ∈ L2(Γ1), s ∈ L2(Γ2):

Re

〈
V1V

∗
2

[
r
s

]
,

[
r
s

]〉
= Re

〈[
Qbπ1(r + s)
π2(r + s)

]
,

[
r
s

]〉
= Re

〈[
Qbr
s

]
,

[
r
s

]〉
≥ 0.
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Theorem 2.6 now completes step 2.

Step 3 (ΞQ is impedance conservative iff Q∗b = −Qb): First assume that ΞQ

is impedance conservative; then (4.5) holds with equality. If we can establish
that KZQ = W, then π1KZQ is dense in L2(Γ1), and it follows from the
last equality in (4.5) and the boundedness of Qb that Q∗b = −Qb. We pick
w ∈ W arbitrarily and choose g ∈ MρH

1
Γ0
(Ω) such that γ0M1/ρg = w.

Further choosing f ∈ M−1T Hdiv(Ω), such that γ⊥MT f = Qbπ1w, we obtain[ g
f

]
∈ ZQ and K

[ g
f

]
= γ0M1/ρg = w.

Now conversely assume that Q∗b = −Qb. Then we have equality in
(4.5) and the argument in step 2 (with a few changes of signs) shows that
−LQ

∣∣
ker(GQ−KQ)

generates a contraction semigroup on XH.

Step 4 (The remaining claims): Internal well-posedness, i.e., that LQ

∣∣
ker(GQ)

generates a contraction semigroup, is proved using exactly the same argu-
ment as in Step 2, but with V1 =

[
Qbπ1

0

]
, since

ker (GQ) = ker

([
Qbπ1 π1
0 π2

])
.

It remains to show that ΞQ is strong if and only if UQ = {0}. If UQ = {0},
then

[
LQ

0
0

]
= ΞQ, which is a boundary control system by the above, hence

closed by Definition 4.1; then LQ is a closed operator. If UQ 6= {0}, then we

can choose a µ ∈ L2(Γ2)\L2(Γ2), where the closure is taken inW ′, and pick a
sequence µk ∈ L2(Γ2) such that µk → µ in W ′. Next we define a sequence in
ZQ that converges in the graph norm of LQ by setting

[ gk
fk

]
:= H−1

[
0

Rµk

]
,

where γ−r⊥ is any bounded right inverse of γ⊥. The limit H−1
[

0
γ−r
⊥

µ

]
of

this sequence has the property GH−1
[

0
γ−r
⊥

µ

]
= µ 6∈ L2(Γ1 ∪ Γ2), hence

[
0

γ−r
⊥

µ

]
6∈ ZQ and so LQ is not closed.

The following result connects the classical solutions of (1.1) to those of
(LQ,KQ, GQ):

Theorem 4.5. Let u ∈ C2
(
R+;L

2(Γ2)
)
and z0, w0 ∈ L2(Ω) be such that[

Mρw0

grad z0

]
∈ ZQ and GQ

[
Mρw0

grad z0

]
= u(0). Then the unique classical solution

[ g
f

]
of

d

dt

[
g(t)
f(t)

]
= LQ

[
g(t)
f(t)

]
, GQ

[
g(t)
f(t)

]
= u(t), t ≥ 0,

[
g(0)
f(0)

]
=

[
Mρw0

grad z0

]
,

(4.7)
satisfies M1/ρ g ∈ C

(
R+;H

1
Γ0
(Ω)

)
∩ C1

(
R+;L

2(Ω)
)

and

MT f ∈ C
(
R+;H

div(Ω)
)
∩ C1

(
R+;L

2(Ω)n
)
;

(4.8)
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in particular grad (M1/ρ g) ∈ C
(
R+;L

2(Ω)n
)
. Defining

y(t) := KQ

[
g(t)
f(t)

]
and z(ξ, t) := z0(ξ) +

∫ t

0

g(ξ, s)

ρ(ξ)
ds, ξ ∈ Ω, t ≥ 0,

we obtain that y ∈ C
(
R+;L

2(Γ2)
)
,

z ∈ C1
(
R+;H

1
Γ0
(Ω)

)
∩ C2

(
R+;L

2(Ω)
)

and

div
(
MT grad z(·)

)
∈ C

(
R+;L

2(Ω)
)
,

(4.9)

and that (z, y) solves (1.1) with Qi = 0. Note that by Proposition A.4 we
interpret the boundary mapping, ν ·

(
T (·) grad z(·, t)

)
, as γ⊥

(
MT grad z(t)

)
.

Proof. By the standard smoothness property of the state trajectory of a
boundary control system mentioned after Definition 4.1,

[ g
f

]
∈ C1(R+;XH)∩

C(R+;ZQ), and in particular H
[ g
f

]
∈ C

(
R+;

[
H1

Γ0
(Ω)

Hdiv(Ω)

])
, i.e, (4.8) holds.

We have

y = KQ

[
g
f

]
= π2γ0 M1/ρ g

which is in C
(
R+;L

2(Γ2)
)
by (4.8) and the continuity of π2γ0 : H1(Ω) →

L2(Γ2).
From the definition of z, it follows immediately that ż(t) = M1/ρ g(t)

and that (using (4.7))

grad z(t) = grad z0 +

∫ t

0
grad

(
M1/ρ g(s)

)
ds = grad z0 +

∫ t

0
ḟ(s) ds = f(t).

This implies that

Mρ z̈(t) = ġ(t) = div
(
MT f(t)

)
= div

(
MT grad z(t)

)
,

and so div
(
MT grad z(·)

)
∈ C

(
R+;L

2(Ω)
)
since z ∈ C2

(
R+;L

2(Ω)
)
, which

proves (4.9). Moreover, (y, z) solves (1.1) with Qi = 0.

Remark 4.6. By Definition 4.2 and Theorem 4.4, the system




ρ(ξ)
∂2z

∂t2
(ξ, t) = div

(
T (ξ) grad z(ξ, t)

)
−

(
Qi

∂z

∂t

)
(ξ, t), ξ ∈ Ω, t ≥ 0,

0 =
∂z

∂t
(ξ, t) on Γ0 ×R+,

0 = ν ·
(
T (ξ) grad z(ξ, t)

)
+

(
Qb

∂z

∂t

)
(ξ, t) on Γ1 × R+,

√
2u(ξ, t) = ν ·

(
T (ξ) grad z(ξ, t)

)
+

∂z

∂t
(ξ, t) on Γ2 × R+,

√
2y(ξ, t) = ν ·

(
T (ξ) grad z(ξ, t)

)
− ∂z

∂t
(ξ, t) on Γ2 × R+,

z(ξ, 0) = z0(ξ),
∂z

∂t
(ξ, 0) = w0(ξ) on Ω,

(4.10)
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is a scattering-passive boundary control system with state
[

ρ(·)ż
grad z

]
, input u,

and output y, and in particular it is L2-well-posed. The state space is XH
and the input/output space is L2(Γ2). The system (4.10) is even scattering
conservative if Qi = 0 and Q∗b = −Qb. The statements in Theorem 4.5
remain true for the scattering representation if one replaces all occurrences
of GQ and KQ by 1√

2
(GQ +KQ) and

1√
2
(GQ −KQ), respectively. The pair

(z, y) then solves (4.10) with Qi = 0 instead of (1.1).

The scattering-passive system (4.10) fits into the abstract framework
developed for Maxwell’s equations in [?, ?], at least in the case Γ1 = ∅, i.e.,
when there is no damping at the boundary. In a forthcoming paper, we shall
give more details on this.
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A Sobolev-space background

The necessary background for the present article has been compiled in
[KZ12]. Here we only fix the notation briefly and the reader is referred
to [KZ12] for more details. We mainly cite [TW09] for convenience; refer-
ences to the standard sources, such as [Spi65, Neč12, AF03, Gri85, LM72],
can be found there. To the best of our knowledge, Proposition A.6 and
Theorems A.7–A.8 are new for the case W ′ 6= H−1/2(∂Ω), i.e., for Γ0 with
positive surface measure.

A bounded Lipschitz set is a bounded and open subset Ω of Rn which has
a Lipschitz-continuous boundary; see [TW09, §13]. By D(Ω) we mean the
space of test functions on Ω, i.e., functions in C∞(Ω) with compact support
contained in Ω, and D′(Ω) denotes the set of distributions on Ω.

Definition A.1. The divergence operator is the operator div : D′(Ω)n →
D′(Ω) given by

div v =
∂v1
∂x1

+ . . .+
∂vn
∂xn

,

and the gradient operator is the operator grad : D′(Ω) → D′(Ω)n defined by

gradw =

(
∂w

∂x1
, . . . ,

∂w

∂xn

)⊤
.

The Laplacian is defined as a linear operator on D′(Ω) by ∆x := div (gradx).

The Sobolev space H1(Ω) is as usual defined as the space

H1(Ω) :=
{
v ∈ L2(Ω) | grad v ∈ L2(Ω)n

}

equipped with the graph norm of grad. Similarly, we define

Hdiv(Ω) :=
{
v ∈ L2(Ω)n | div v ∈ L2(Ω)

}
,

equipped with the graph norm of div. These are the maximal domains for
which grad and div can be considered as operators between L2 spaces.

Definition A.2. The closure of D(Ω) in H1(Ω) is denoted by H1
0 (Ω) and

the closure of D(Ω)n in Hdiv(Ω) is denoted by Hdiv
0 (Ω).
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It is easy to see that H1(Ω)n ⊂ Hdiv(Ω) ⊂ L2(Ω)n with continuous
embeddings. It is well known that D(Ω)n, the restrictions to the closure
of Ω of all functions in C∞(Rn), is dense in L2(Ω); see e.g. [GR86, Thm
I.1.2.1]. Hence, Hdiv(Ω) is dense in L2(Ω)n, and due to the following lemma
the other embedding is also dense:

Lemma A.3. Let Ω be a subset of Rn with Lipschitz-continuous boundary.
Then D(Ω)n is dense in Hdiv(Ω). It follows that also H1(Ω)n is dense in
Hdiv(Ω).

For proof, see [GR86, Thm I.2.4]. If Ω is a bounded Lipschitz set in R
n,

then the outward unit normal vector field is defined for almost all x ∈ ∂Ω
using local coordinates, and we can define a vector field ν in a neighbourhood
of Ω that coincides with the outward unit normal vector field for almost every
x ∈ ∂Ω; see [TW09, Def. 13.6.3] and the remarks following. According to
[TW09, pp. 424–425], we have ν ∈ L∞(∂Ω)n.

The space H1/2(∂Ω) is the Hilbert space of all functions in L2(∂Ω) with
finite H1/2(∂Ω) norm, which is given by

‖f‖2
H1/2(∂Ω)

= ‖f‖2L2(∂Ω) +

∫

∂Ω

∫

∂Ω

|f(x)− f(y)|2
‖x− y‖n

Rn

dσx dσy, (A.1)

where dσ is the surface measure on ∂Ω; see [KZ12, §4] or [TW09, pp. 422–
423] for more details. The space H−1/2(∂Ω) is the dual of H1/2(∂Ω) with
pivot space L2(∂Ω); see e.g. [TW09, §2.9].

The following result is a consequence of [GR86, Thm I.1.5]:

Lemma A.4. For a bounded Lipschitz set Ω, the boundary trace mapping
g 7→ g|∂Ω : D(Ω) → C(∂Ω) has a unique continuous extension γ0 that
maps H1(Ω) onto H1/2(∂Ω). The space H1

0 (Ω) in Definition A.2 equals{
g ∈ H1(Ω) | γ0g = 0

}
.

We call γ0 the Dirichlet trace map. In the following integration by parts
formula, the dot · denotes the inner product in R

n, p · q = q⊤p without
complex conjugate:

Lemma A.5. Let Ω be a bounded Lipschitz subset of Rn. Then

〈div f, g〉L2(Ω) + 〈f, grad g〉L2(Ω)n =

∫

∂Ω
(ν · γ0f) γ0g dσ. (A.2)

holds for arbitrary f ∈ H1(Ω)n and g ∈ H1(Ω).

For a proof, see [TW09, Rem. 13.7.2]. Note that f ∈ H1(Ω)n implies that
the boundary trace of f , γ0f ∈ H1/2(∂Ω)n ⊂ L2(∂Ω)n. Moreover, by the
above it holds that ν ∈ L∞(∂Ω)n, and hence we obtain that ν ·γ0f ∈ L2(∂Ω)
for all f ∈ H1(Ω)n.
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In the sequel we make the standing assumption that Γ0,Γ• forms a split-
ting of ∂Ω with thin boundaries; see Definition 3.1. The result statements
remain true if Γ• is further split into subsets with thin boundaries, as we do
in §§3–4. Following [TW09, §13.6], we write

H1
Γ0
(Ω) :=

{
g ∈ H1(Ω) | (γ0g)|Γ0

= 0 in L2(Γ0)
}
. (A.3)

We can also write H1
Γ0
(Ω) = ker (π0 γ0), where π0 is the orthogonal projec-

tion of L2(∂Ω) onto L2(Γ0). Since H1/2(∂Ω) is continuously embedded in
L2(∂Ω) by (A.1), the operator π0 γ0 : H1(Ω) → L2(Γ0) is bounded; hence
H1

Γ0
(Ω) is closed in H1(Ω).
Obviously γ0 maps H1

Γ0
(Ω) onto W := γ0H

1
Γ0
(Ω) with inner product

inherited from H1/2(∂Ω). This space is dense in L2(Γ•) by [TW09, Thm
13.6.10 and Rem. 13.6.12], and it is immediate that the inclusion map is
continuous. Denote the dual of W with pivot space L2(Γ•) by W ′.

By the Riesz representation theorem, there exists a unitary operator
ΨW : W ′ → W, such that

(x, z)W ′,W = 〈ΨWx, z〉W = 〈x,Ψ∗Wz〉W ′ (A.4)

for all x ∈ W ′ and z ∈ W; see [TW09, p. 57] and [MS07, p. 288–289]. Thus
W ′ is also a Hilbert space, with inner product

〈u, v〉W ′ = 〈ΨWu,ΨWv〉W , u, v ∈ 〈u, v〉W ′ .

The operator ΨW can alternatively be characterised as the operator in
L(W ′;W) uniquely determined by

〈ΨWx, z〉W = lim
n→∞

〈xn, z〉L2(Γ•)
, x ∈ W ′, z ∈ W,

where xn ∈ L2(Γ•) is an arbitrary sequence converging to x in W ′; see
[TW09, §2.9].

Proposition A.6. For a bounded Lipschitz set Ω, the restricted normal
trace map u 7→ (ν · u)

∣∣
Γ•

: D(Ω)n → L2(Γ•) has a unique continuous exten-

sion γ⊥ that maps Hdiv(Ω) into W ′.

Proof. We follow the argument in [GR86, Thm I.2.5] with some small mod-
ifications. By (A.2), we have

∣∣∣∣
∫

∂Ω
(ν · u)φ dσ

∣∣∣∣ ≤
∣∣∣〈div u, φ〉L2(Ω)

∣∣∣+
∣∣∣〈u, gradφ〉L2(Ω)n

∣∣∣

≤ ‖div u‖L2(Ω) ‖φ‖L2(Ω) + ‖u‖L2(Ω)n ‖grad φ‖L2(Ω)n

≤ 2‖u‖Hdiv(Ω) ‖φ‖H1(Ω), u ∈ D(Ω)n, φ ∈ H1(Ω).
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Denote an arbitrary continuous right inverse of γ0 by γ−r0 , choose an
arbitrary µ ∈ W, and set φ := γ−r0 µ. Since µ vanishes on Γ0, we obtain

∣∣∣∣
∫

Γ•

(ν · u)µ dσ

∣∣∣∣ =
∣∣∣∣
∫

∂Ω
(ν · u) γ−r0 µ dσ

∣∣∣∣ ≤ 2‖u‖Hdiv(Ω)‖γ−r0 ‖‖µ‖W ,

i.e., that the restricted normal trace has operator norm at most 2‖γ−r0 ‖ from
Hdiv(Ω) into W ′. This restricted normal trace is defined densely in Hdiv(Ω)
by Lemma A.3, and hence it can be extended uniquely to a bounded operator
γ⊥ from Hdiv(Ω) into W ′.

The operator γ⊥ is referred to as the (restricted) normal trace map.

Theorem A.7. Let Ω be a bounded Lipschitz set in R
n. For all f ∈ Hdiv(Ω)

and g ∈ H1
Γ0
(Ω) it holds that

〈div f, g〉L2(Ω) + 〈f, grad g〉L2(Ω)n = (γ⊥f, γ0g)W ′,W . (A.5)

In particular, we have the following Green’s formula:

〈∆h, g〉L2(Ω) + 〈gradh, grad g〉L2(Ω)n = (γ⊥ gradh, γ0g)W ′,W , (A.6)

which is valid for all h ∈ H1(Ω) such that ∆h ∈ L2(Ω) and all g ∈ H1
Γ0
(Ω).

Proof. Since π0γ0g = 0 for g ∈ H1
Γ0
(Ω), we obtain from (A.2) that

〈div f, g〉L2(Ω) + 〈f, grad g〉L2(Ω)n = 〈γ⊥f, γ0g〉L2(Γ•)

for f ∈ H1(Ω)n and g ∈ H1
Γ0
(Ω). Using the fact that W ′ is the dual of W

with pivot space L2(Γ•), we obtain (A.5) for f ∈ H1(Ω)n and g ∈ H1
Γ0
(Ω).

For every g ∈ H1
Γ0
(Ω), the mapping u 7→ (u, γ0g)W ′,W is a bounded linear

functional on W ′, and by Proposition A.6, γ⊥ maps Hdiv(Ω) continuously
into W ′. Hence, if fn ∈ H1(Ω)n tends to f in Hdiv(Ω), then div fn → div f
in L2(Ω), fn → f in L2(Ω)n, and γ⊥fn → γ⊥f in W ′. We can thus conclude
that (A.5) holds for all g ∈ H1

Γ0
(Ω) and all f in the closure of H1(Ω)n in

Hdiv(Ω), i.e., for all f ∈ Hdiv(Ω); see Lemma A.3.
In order to prove (A.6), we let h ∈ H1(Ω) be such that ∆h ∈ L2(Ω)

and set f := gradh. Then f ∈ L2(Ω)n and div (grad h) = ∆h ∈ L2(Ω), so
f ∈ Hdiv(Ω). Now (A.6) follows from (A.5).

If we take Γ0 = ∅ in the preceding theorem, then we obtain a well-known
special case. The next result gives the surjectivity of the normal trace map,
and this critical for associating a boundary triplet to the wave equation.

Theorem A.8. For a bounded Lipschitz set Ω, γ⊥ maps Hdiv(Ω) boundedly
onto W ′.
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Proof. By Proposition A.6, γ⊥ maps Hdiv(Ω) boundedly into W ′, and it
only remains to establish surjectivity. For this we use an adaptation of the
proof of [GR86, Cor. I.2.]. First we fix an arbitrary µ ∈ W ′ and using the
Lax-Milgram theorem [Gri85, Lemma 2.2.1.1], we find a unique φ ∈ H1

Γ0
(Ω)

which solves the following problem:

−∆φ+ φ = 0 in L2(Ω) and γ⊥grad φ = µ. (A.7)

Indeed, the sesqui-linear form (v, φ) 7→ 〈v, φ〉H1
Γ0

(Ω) is bounded and co-

ercive on H1
Γ0
(Ω)2, and the linear form v 7→ (γ0v, µ)W ,W ′ is bounded on

H1
Γ0
(Ω) according to Lemma A.4. By the Lax-Milgram theorem there exists

a unique φ ∈ H1
Γ0
(Ω), such that

〈v, φ〉H1
Γ0

(Ω) = (γ0v, µ)W ,W ′ , v ∈ H1
Γ0
(Ω). (A.8)

Taking v ∈ D(Ω), we by Lemma A.4 and Green’s identity (A.6) obtain that
for all v ∈ D(Ω) :

0 = 〈v, φ〉H1
Γ0

(Ω) = 〈v, φ〉L2(Ω) + 〈grad v, grad φ〉L2(Ω)n

= (v, φ)D(Ω),D(Ω)′ + (grad v, grad φ)D(Ω)n,(D(Ω)′)n = (v, (I −∆)φ)D(Ω),D(Ω)′ ,

i.e., that ∆φ = φ in the sense of distributions on Ω, and hence in particular
φ ∈ H1

Γ0
(Ω) with ∆φ ∈ L2(Ω). Using this and (A.6) on (A.8), we thus

obtain

(γ0v, µ)W ,W ′ = 〈v, φ〉H1
Γ0

(Ω) = 〈v, φ〉L2(Ω) + 〈grad v, grad φ〉L2(Ω)n

= 〈v, (I −∆)φ〉L2(Ω) + (γ0v, γ⊥gradφ)W ,W ′

= (γ0v, γ⊥gradφ)W ,W ′ , v ∈ H1
Γ0
(Ω).

(A.9)

This proves that φ solves the problem (A.7). Now we set v := grad φ, which
lies in Hdiv(Ω), because div (gradφ) = φ by (A.7). Furthermore, γ⊥v = µ
and hence γ⊥ maps Hdiv(Ω) onto W ′.

We can now recover [GR86, Thm I.2.5 and Cor. I.2.8] by taking Γ0 = ∅:

Corollary A.9. The normal trace mapping u 7→ ν · γ0u : D(Ω)n → L2(∂Ω)
has a unique continuous extension γ⊥ that maps Hdiv(Ω) boundedly onto
H−1/2(∂Ω).

B Two general operator-technical lemmas

We apply the following lemmas in the proof of Theorem 2.2:
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Lemma B.1. Let T be a closed linear operator from dom (T ) ⊂ X into Y ,
where X and Y are Hilbert spaces. Equip dom (T ) with the graph norm of
T , in order to make it a Hilbert space. Let R be a restriction of the operator
T .

The closure of the operator R is R = T
∣∣
dom(R)

, where dom (R) is the

closure of dom (R) in the graph norm of T . In particular, R is a closed
operator if and only if dom (R) is closed in the graph norm of T .

Proof. The following chain of equivalences, where G(R) =
[
I
R

]
dom (R) de-

notes the graph of R, proves that R = T
∣∣
dom(R)

:

[
x
y

]
∈ G(R)

(i)⇐⇒ ∃xk ∈ dom (R) : xk
X→ x, Rxk

Y→ y

(ii)⇐⇒ ∃xk ∈ dom (R) : xk
X→ x, Txk

Y→ y

(iii)⇐⇒ ∃xk ∈ dom (R) : xk
dom(T )→ x, Tx = y

⇐⇒ x ∈ dom (R), Tx = y,

where we have used that (i): G(R) = G(R) by the definition of operator
closure, (ii): G(R) ⊂ G(T ), and (iii): T is continuous from dom (T ) into Y
and dom (T ) is complete.

Now it follows easily that R is closed if and only if dom (R) is closed in
dom (T ):

R = R =⇒ T
∣∣
dom(R)

= T
∣∣
dom(R) =⇒ dom (R) = dom (R),

and moreover, assuming instead that dom (R) = dom (R), we obtain that

R = T
∣∣
dom(R)

= T
∣∣
dom(R)

= R.

Lemma B.2. Let γ be a linear operator from the Hilbert space T into the
Hilbert space Z.

1. Let R and R′ be two linear subspaces of T such that ker (γ) ⊂ R∩R′
then

γR = γR′ if and only if R = R′. (B.1)

2. Let R be a linear subspace of T and assume that γ : T → Z is contin-
uous and surjective with ker (γ) ⊂ R. Then γR = γR. Furthermore,
R is closed in T if and only if γR is closed in Z.
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Proof. 1. First assume that γR = γR′ and choose x ∈ R′ arbitrarily. Then
we can find a ξ ∈ R such that γx = γξ, and then x− ξ ∈ ker (γ) ⊂ R by the
assumption ker (γ) ⊂ R ∩R′, so that x = x − ξ + ξ ∈ R. This proves that
R′ ⊂ R, and since there is no distinction between R and R′ in the result
statement, it also holds that R ⊂ R′. The implication from right to left in
(B.1) is trivial.

2. Fix f ∈ R arbitrarily and let fk ∈ R tend to f in T . Then γfk → γf in
Z by the continuity of γ, and hence γf ∈ γR, i.e., γR ⊂ γR.

For the converse inclusion, we first remark that since γ is onto Z, there
exists a continuous right inverse of γ. We denote this right-inverse by γ−r.
Now let g ∈ γR be arbitrary and let fk ∈ R be a sequence such that
γfk → g in Z. Then γ−rγfk → γ−rg =: f ′ in T and thus γf ′ = g. By
the definition of a right inverse there holds γ(fk − γ−rγfk) = 0, and since
ker(γ) ⊂ R and fk ∈ R, we conclude that γ−rγfk ∈ R for all k. So f ′ ∈ R
and thus g = γf ′ ∈ γR. Combining this with the other inclusion, we have
established that γR = γR. We concentrate next on the last assertion.

If R is closed, then by the previous result γR = γR = γR. Thus γR is
closed.

If γR is closed, then γR = γR = γR, where we used the fist result
again. Defining R′ as R, we see that the left hand-side of (B.1) holds. Since
ker(γ) ⊂ R = R∩R′, we conclude from part (1) that R = R.
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