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Modelling uncertainty is a key limitation to the applicability of the classical 

Kalman filter for state estimation of dynamic systems. For such systems with 

bounded modelling uncertainty, the interval Kalman filter (IKF) is a direct 

extension of the former to interval systems. However, its usage is not yet 

widespread owing to the over-conservatism of interval arithmetic bounds. In this 

paper, the IKF equations are adapted to use an ellipsoidal arithmetic that, in some 

cases, provides tighter bounds than direct, rectangular interval arithmetic. In 

order for the IKF to be useful, it must be able to provide reasonable enclosures 

under all circumstances. To this end, a hybrid ellipsoidal-rectangular enclosure 

algorithm is proposed, and its robustness is evidenced by its application to two 

characteristically different systems for which it provides stable estimate bounds, 

whereas the rectangular and ellipsoidal approaches fail to accomplish this in 

either one or the other case. 

Keywords: interval Kalman filtering; ellipsoidal arithmetic; robust state 

estimation 

 

1. Introduction 

State estimation has been a topic of investigation for many years, with the Kalman filter 

(KF) (Kalman, 1960) being the most prominent example of a technique that has 

achieved widespread usage in the case of linear systems with stochastic uncertainty, 

owing to its optimality and ease of implementation. Modifications to this scheme have 

been developed over the years for the non-linear case, relaxed noise assumptions, etc. 

(Julier and Uhlmann, 1997; Smith, Schmidt, and McGee, 1961; Wu and Chen, 1999). 

However, the KF operates under the strict assumption of complete knowledge of 

the system dynamical model, which in many situations, if not most, constitutes a serious 

practical limitation. This has led to research on robust state estimation, which aims to 

obtain estimates of unmeasurable state variables when the system model is only known 

with some degree of precision.  
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Most of the research in the field of robust state estimation for uncertain systems 

has centred on the guaranteed cost state paradigm, the set-valued estimation approach, 

and robust  filtering. The first of these is sometimes regarded as an extension of the 

KF to uncertain systems, and called robust Kalman filtering. The approach is to 

construct a state estimator that bounds the mean square estimation error by establishing 

an upper bound on the state estimation error covariance (Jain, 1975; Petersen and 

McFarlane, 1996). The set-valued estimation approach is based on the deterministic 

interpretation of Kalman filtering obtained by describing the noise processes as norm 

bounded (Bertsekas & Rhodes, 1971), and then finding the set in the state space that is 

consistent with the observed measurements via set inversion, usually requiring some 

optimisation algorithm (Jaulin, 2009; Savkin and Petersen, 1998; Zhu, 2012).  

filtering centres on minimising the  norm of the transfer function from the 

disturbance inputs  to the estimation error, and in the case of robust  filtering, aims 

to minimise the worst case  norm (Gao and Chen 2007; Sayed 2001). 

All the aforementioned approaches involve a modification or extension of the 

KF algorithm. However, another approach is to directly use the KF on uncertain 

models. The method proposed by Chen, Wang, and Shieh (1997), the so called interval 

KF (IKF), is actually not a modification of the KF at all: as will be shown, its equations 

exactly mirror those of the traditional KF. In order for the filter to have the same 

equations, the model it operates on must have exactly the same form as required for a 

KF. The difference, in this case, is in the type of element set it is constructed upon: 

rather than the set of real numbers ℜ, the IKF assumes elements to belong to the set of 

nonempty, closed and bounded real intervals, Iℜ. This allows for a natural description 

of bounded uncertainty to be incorporated into any model without necessitating any 

additional morphological description. The IKF retains all the same optimal properties of 
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the standard KF, naturally providing guaranteed bounds to the optimal state estimate by 

giving these as interval-valued elements. 

Despite the seeming simplicity and advantage of this approach, the IKF has seen 

very limited acceptance since its conception, with only a few authors suggesting its 

usage for practical applications (He and Vik, 1999; Siouris, Chen, and Wang, 1997; 

Tiano, Zirilli, and Pizzocchero, 2001; Tiano, Zirilli, Cuneo, and Pagnan, 2005). One of 

the main reasons being that the IKF requires the use of interval arithmetic (IA), which 

can be difficult to implement successfully in practice owing to its overly conservative 

nature, resulting in very large over-estimations of the set of states of the interval system, 

as will be shown in this paper. The intention of this study is to develop a method that 

enables efficient computation of the IKF states so that these may be used as was 

intended by Chen and co-authors. 

Although there have been several studies aimed at surmounting the practical 

difficulties of implementing the IKF owing to the aforementioned overestimation, they 

typically find ways to reduce the estimation set enclosures to more useful ones, leading 

to a loss of the guaranteed bounds to the optimal state estimate that the IKF provides 

(Ahn, Kim, and Chen, 2012; Weng, Chen, Shieh, and Larsson, 2000). In contrast, this 

paper aims to find “tight” enclosures but always to the actual set of estimates that would 

be obtained if IA could be carried out with infinite tightness, thus without losing the 

guarantee of containing the optimal KF estimate. 

The layout of the paper is as follows. Section 2 motivates the need for robust 

estimation by illustrating the inadequacy of the standard KF when an incorrect 

dynamical system model is used by the filter, which in turn leads to the concept of the 

interval model as that which can fully describe the uncertain, but bounded, knowledge 

of the system dynamics. This is followed by an explanation, in Section 3, of why direct 
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application of IA yields over-conservative results. Section 4 outlines the ellipsoidal 

arithmetic used and shows that it is not always advantageous, based on which a hybrid 

ellipsoidal-rectangular enclosure algorithm is developed. Section 5 adapts the IKF 

equations as affine transformations in order to be able to apply ellipsoidal arithmetic, 

and the application of the hybrid enclosure method is then applied to interval Kalman 

filtering on two different systems with different dynamic characteristics in order to 

illustrate the robustness of the method. Finally conclusions are given in Section 7. 

2. Interval Kalman filtering for state estimation of stochastic systems with 

bounded parametric uncertainty 

Consider a dynamic system modelled in discrete-time via the following stochastic state-

space equations 

 ( + 1) = A ( ) + B ( ) + ( ) (1) 

 ( ) = C ( ) +  ( ) (2) 

with  

 A = 0.8 −0.22251 0 , B = 10 , C = [0 0.4225], ~ (0, Q), Q = ( ) = 0.01 ×{1,1}, = (0, R), R = 4  (3) 

where ( ) is the system state at time , ( ) is a controllable system input, ( ) is a 

random input disturbance,  and ( ) represents a noisy measurement of the system 

output, ( ) being the measurement noise. If { (0), (0), … ( ), (0), … , (  are )}
mutually independent, then Kalman filtering provides a statistically optimal estimate of 

the state vector at each time-step. 

KF equations: 
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Prediction: 

 ( | − 1) = A  ( − 1| − 1) + B ( − 1) (4) 

 P( | − 1) = A  P( − 1| − 1) A + Q (5) 

Kalman gain: 

 K( ) =  P( | − 1) C  {C  P( | − 1) C + R}  (6) 

Correction: 

 ( | ) = ( | − 1) + K( ) { ( ) − C ( | − 1)} (7) 

 P( | ) = { I − K( ) C} P( | − 1) (8) 

However, the optimality of the KF relies on precise knowledge of the system dynamical 

model (Motwani, Sharma, Sutton, and Culverhouse, 2013). 

To illustrate this point, consider a set-point tracking problem in which the 

system is controlled via a state-feedback control law according to 

 ( ) = − ( ) +  ( ) (9) 

where  is the vector of state-feedback gains,  is a scaling gain calculated to ensure 

that the overall steady-state closed-loop gain is unity, and   is a prescribed reference 

target for the system output. Let  be chosen so that the closed-loop step-response has 

zero overshoot (or unit damping), and a rise-time (0 to 90%) of < 5, for which a 

dominant closed-loop pole at 0.6 and a fast pole at 0.1 suffice, requiring a value of = [0.1, −0.1625] and ≈ 0.852 (note that this control law is used by way of 

example to generate a realistic stabilising input ( ), but for the sole purpose of state-

estimation, any other input could be prescribed instead). 
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A simulation of the system is carried out for one hundred time-steps, with the 

initial state being zero, and the target   being set at 20, 50 and -15 for each one-third 

of the simulation respectively. The disturbance and measurement noise sequences are 

generated pseudo randomly according to the statistics given in (3). The state trajectory 

of the system is then shown in Figure 1, and the output in Figure 2. Also shown in the 

two figures are the KF estimates of the system state and output, for the same control 

input, disturbance input, and output noise sequences, in which the model parameters 

used by the filter have been overestimated by 5%. The KF initial estimate was taken 

equal to the true initial state, and the initial error covariance as zero. One can clearly 

observe that the KF estimates are biased due to the modelling error. 

In practice, 100 percent accurate system modelling is utopian: at best, even in 

the case of modelling via a first-principles approach, small modelling errors exist 

because values of physical parameters (mass, geometry, resistivity, permittivity, 

absorbance, etc.) can only be measured with a finite tolerance, not to mention that such 

parameters are often sensitive to variable external factors, such as temperature, etc. 

Tolerances, though, provide bounds to the models obtained. 

If model parameters cannot be known with absolute precision, but bounds to 

these are known, then the idea of describing system dynamics with interval values arises 

naturally, ensuing in an interval model: 

 ( + 1) = A  ( ) + B  ( ) + ( ) (10) 

 ( ) = C  ( ) +  ( ) (11) 

in which A , B  and C  are interval-valued matrices, that is, their elements are made up 

of bounded intervals, i.e. elements of the form 
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 , = , , , ; with   , , , ∊ ℜ (12) 

so that they can be written as 

 A = A ± ΔA =   [A − ΔA, A + ΔA] (13) 

 B = B ± ΔB =   [B − ΔB, B + ΔB] (14) 

 C = C ± ΔC =   [C − ΔC, C + ΔC] (15) 

where A,  and C represent some nominal point-valued model. 

In the late nineties a KF applied to interval system models was proposed by 

Chen et al. (1997). Chen et al. leveraged the properties of an IA defined by Moore three 

decades earlier (Moore, 1966). One of the basic tenets of Moore’s IA was that 

calculations involving interval values must enclose every possible result that can be 

obtained by operating on individual point-values contained within these. The resulting 

interval thus guarantees bounds to the resulting set, though it may not equal it (a quality 

known as the inclusion property). Using an extension of habitual statistical properties to 

interval matrices and functions, Chet et al. constructed the IKF, whose equations ((16) 

to (20)) mimic those of the ordinary KF, but provides state estimates in the form of 

interval values. 

IKF equations: 

Prediction: 

 ( | − 1) = A   ( − 1| − 1) + B  ( − 1) (16) 

 P ( | − 1) = A   P( − 1| − 1) A + Q (17) 

Kalman gain: 
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 K ( ) =  P ( | − 1) C  C   P ( | − 1) C + R  (18) 

Correction: 

 ( | ) = ( | − 1) + K ( ) { ( ) − C  ( | − 1)} (19) 

 P ( | ) = { I − K ( ) C } P ( | − 1) (20) 

Note that the state and error covariance estimates, as well as the Kalman gain, are now 

interval-valued; however ( ) is point-valued as it is a measurement of the (true, not 

interval) output obtained via some sensor(s). The IKF, statistically optimal in the same 

sense as the ordinary KF, provides interval state estimates which guarantee to contain 

the KF estimates of every possible point-valued system contained in the interval model, 

a consequence of the aforementioned inclusion property of IA. That is, it allows the 

bounded uncertainty of the system model to be translated into bounds for the optimal 

state estimates. 

3. The wrapping effect 

Assume that in the model (1) to (3) the elements of A, B, and C are known only to 

within 5% of the given values. Then the interval model (10) to (11), with  

 A = A ± 0.05 |A| =   [A − 0.05 |A|, A + 0.05 |A|] (21) 

 B = B ± 0.05 |B| =   [B − 0.05 |B|, A + 0.05 |B|] (22) 

 C = C ± 0.05 |C| =   [C − 0.05 |C|, A + 0.05 |C|] (23) 

bounds the actual dynamics of the system, and the IKF estimates guarantee to contain 

the optimal KF estimates of the system state (Chen et al., 1997). Based on the same 
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inputs ( ) used in the previous simulation, and an initial state vector and error 

covariance given by 

 (0) = [−0.005, 0.005][−0.005, 0.005]  ;   P (0) =  [0,0] [0,0][0,0] [0,0]  (24) 

the upper and lower bounds of the IKF estimate of the output, C  ( ), are shown in 

Figure 3, along with the actual output ( ). The IA was carried out in MATLAB using 

the IA package known as INTerval LABoratory (INTLAB), developed by Rump 

(1999). 

 

One thing is clearly apparent from observation of the figure: the widths of the 

IKF interval-estimates expand exponentially, leading to bounds of the estimate that lose 

any practical value. Moreover the figure only depicts the simulation of the IKF until = 57: estimates of the bounds for = 60 and above were not possible as they 

surpassed the maximum and minimum IEEE 754 double precision floating point 

representation (≈ 1.8 × 10 ).  

 

One of the problems with IA is that direct computation yields over-conservative 

results as a consequence of the inclusion property. This can be seen with a simple 

example: consider an interval value = [− , ] , ∊ ℜ and ∊ ℜ, then  

 × ( − ) = × − × = [− , ] × − [− , ] × = [− × , × ] −[− × , × ] = [−2 × , 2 × ] (25) 

however, clearly the exact solution set is the single number zero. The overestimation 

occurs because, after expansion of the brackets in the initial product, the arithmetic does 

not remember that the interval variable  in both terms represent the same variable. In 
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the case of operations including interval vectors, the memory-less nature of IA has a 

more severe effect. 

Consider an interval vector = [−3,3][−1,1] , which can be represented as a 

rectangle (Figure 4), and the rotation matrix A = cos ( ) −sin( )sin ( ) cos ( ) , = 20 × . 

Then ≔ A  represents the anticlockwise rotation of this rectangle by the angle  

(20°). Upon performing this operation using IA, the resultant enclosure is not the 

rotated rectangle, but a rectangle with sides parallel to the coordinate axes that encloses 

the former, which is consistent with the memory-less nature of IA described earlier, 

since the correlation between the two dimensions given by the set of individually 

rotated points is lost. The visual interpretation of this consequence has resulted in its 

being known as the wrapping effect (Neumaier, 1993). The left column of Figure 4 

depicts this process, first for a single rotation, and then ten successive applications of 

the same, evidencing the ever-growing volume of the resulting rectangle; whereas the 

actual transformed set is always the same size, given the volume preserving nature of A, 

which is an orthogonal matrix. This process clearly shows that direct application of IA 

can be overly-conservative. However, as shown in the right column of Figure 4, if the 

initial rectangle is first enclosed by an ellipse, then each successive rotation of the 

ellipse does not need to be “wrapped” before a successive rotation is applied, since 

ellipses are preserved under rotations, and in general, ellipsoids under affine 

transformations. Indeed, let  be the set of points of the ellipsoid E( , L, )∶= { + L ∶ ∊ ℜ , ‖ ‖ ≤ }, ∊ ℜ , L ∊ ℜ ×  , ∊ ℜ , then, the set of points 

transformed by the affinity ≔ A + b, A ∊ ℜ × , , ∊ ℜ , is given by the ellipsoid E( ̅, L, ), with ̅ = A + b and L = A L. 
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4. A hybrid ellipsoidal-rectangular IA enclosure algorithm for recursive 

interval affine transformations 

In the previous section, the advantage of using ellipsoidal arithmetic over (rectangular) 

IA for recursive affine transformations of sets in order to avoid the wrapping effect was 

made apparent. However, whilst ellipsoids are conserved under affine transformations, 

they are not so under interval transformations. In the case of an interval affine 

transformation, ≔ A  + b , a practicable ellipsoidal enclosure to the set of 

transformed points must be sought. Neumaier (1993) has developed a method that 

guarantees such an enclosure with a certain degree of optimality. The main results of 

this method are summarised next.  

Let  be the set of points of the ellipsoid E( , L, ) ∶= { + L ∶ ∊ ℜ , ‖ ‖ ≤}, ∊ ℜ , L ∊ ℜ ×  , ∊ ℜ , and ≔ A + b, A ∊ A , b ∊ b  an interval affine 

transformation of ∊ ℜ , with A  and b  an ×  and × 1 interval-valued matrix and 

vector respectively. Neumaier shows that for any ̅ ∊ ℜ , L ∊ ℜ × , if ̃ =‖L (A + b − )‖ + ‖L A L‖ , then A + b ∊  E( ̅, L, ̃)  ∀ A ∊ A , b ∊ b , ∊ . 

This allows one to find an (ellipsoidal) enclosure for the interval affine transformed 

points of , but such enclosure may by no means be “tight”. 

However, let ̅ = (A + b ), = |A + b − |, B = (A L), and ′ = (A L − B), where  is the Frobenius norm. Then, for any non-singular L and any 

non-singular diagonal matrix D, it can be verified that ̃ ≤ ‖L B‖ + ‖L D‖ , where = ‖D ‖ + ‖D ′‖ . In particular, for an L that satisfies BB + DD = LL , 

then it is shown that ̅ = ‖L B‖ + ‖L D‖ ≤ 2 and that | L| ≤ L L B + L D  for any non-singular L, that is, that this choice 

of L provides an ellipsoid enclosure that is optimal to within a factor of 2 of the radius 

(note that L L B + L D  is an upper bound to the volume of the 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Pl

ym
ou

th
] 

at
 0

3:
14

 3
1 

M
ar

ch
 2

01
5 



Acc
ep

ted
 M

an
us

cri
pt

 

13 
 

ellipsoid for the arbitrarily chosen L). However, it is also noted that the optimality of the 

radius chosen is subject to that of the bound ̃ ≤ ‖L B‖ + ‖L D‖ . 

The choice of L and D still remains non-uniquely determined, and for reasons of 

computational stability, L is obtained as a Cholesky factor of BB + DD  and D = { + }. 
In summary, this procedure provides an ellipsoidal enclosure for the image-set 

of the points belonging to an initial ellipsoid by an interval affine transformation. In 

practice, to use this method for propagating the state vector of a dynamic system given 

an initial interval vector, which is representable by an n dimensional hyper rectangle, or 

box, an ellipsoidal enclosure to this initial state is first calculated. Although the ellipsoid 

circumscribing a given box is not unique, one option is to choose the minimal volume 

circumscribing ellipsoid, and is the method adopted in the subsequent examples. 

Consider the simulation of the interval system (10) and (11), with A , B , & C  

given by (21) to (23), where the nominal values of the interval matrices are the ones 

specified in (3), using the same inputs ( ) used in the previous simulation, and with an 

initial interval-valued state vector given by 

 (0) = [−0.005, 0.005][−0.005, 0.005]   (26) 

Figure 5(a) depicts the propagation of the state intervals using (rectangular) IA, 

whereas Figure 5(b) shows the same calculations but using ellipsoidal arithmetic with 

Neumaier’s enclosures. Clearly the elliptical enclosures are far tighter than the 

corresponding rectangular ones. Note that the interval affine transformation of the 

interval state vector at each time-step is given by (10), in which A  represents a linear 

interval transformation (i.e., set of linear transformations), and b ( ) ≝ B  ( ) +( ) an interval translation vector (i.e. set of translations). The eigenvalues of the 
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nominal linear transformation, A, are the complex conjugate pair 0.4 ± 0.25 , so the 

system is somewhat underdamped. 

Now consider the simulation of an interval system with nominal overdamped 

dynamics given by  

 A = 0.6 −0.051 0 , B = 10 , C = [0 1] (27) 

and interval matrices centred around these nominal ones with interval widths of 5% on 

either side, as stated in (21) to (23). As before, simulation is carried out for one-hundred 

time-steps, with a reference target  being set at 20, 50 and -15 for each one-third of 

the simulation respectively, and a state-feedback control law as in (9) with =[−0.1, 0.01] and = 0.8 calculated to have the same closed-loop poles as before (0.6 

and 0.1) (note that for generating the control input, the true state of the system is used, 

as the main concern here is not the control law generated but the calculation of the 

interval state trajectory). The resulting state propagation using (rectangular) IA and 

ellipsoidal arithmetic are shown in Figures 6(a) and 6(b) respectively, with the initial 

state being described by (26). In this case, IA provides tighter bounds to the state-vector 

sets than does ellipsoidal arithmetic. It is interesting to note that in this case, the 

nominal poles of the system are at 0.5 and 0.1. 

The tightness of the ellipsoidal enclosures computed according to Neumaier’s 

algorithm depends on the nature of the linear interval transformation matrix A . If the 

eigenvalues are predominantly complex conjugate (corresponding to underdamped 

systems), then the transformation has a greater rotation component, and Neumaier’s 

enclosures work well. On the other hand, for real eigenvalues (corresponding to 

overdamped systems), the transformation has a larger shear component, and the 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Pl

ym
ou

th
] 

at
 0

3:
14

 3
1 

M
ar

ch
 2

01
5 



Acc
ep

ted
 M

an
us

cri
pt

 

15 
 

ellipsoid enclosures become very elongated in the direction of largest stretching. Thus it 

becomes a necessity to develop a method that can be of use in either situation. 

In order to provide enclosures that are tight for both under and overdamped 

systems, the following algorithm is proposed for recursive affine transformations. Given 

an initial interval vector, which is an n-dimensional box, B0, obtain the smallest 

ellipsoid containing it, E0. The word “smallest” is used here vaguely, but one option 

(and the one implemented here) is to choose the ellipsoid with the smallest volume that 

contains the box, that is, an ellipsoid with the same eccentricity as the box. Then 

proceed to apply the interval affine transformation to both enclosures, B0 via 

(rectangular) IA and E0 via ellipsoidal arithmetic, resulting in B1 and E1, respectively. 

Note that the tightest set containing the transformed points at this stage will be given by 

the intersection of B1 and E1, which however is in general neither a box nor an 

ellipsoid. Thus, obtain the tightest box B2 that contains E1, which, intersected with B1 

results in B3. The box B3 is now the smallest box-enclosure that contains the 

transformed set, and is used as the starting box for the next interval transformation. On 

the other hand, obtain E3 as the smallest ellipsoid containing B3. Then select the 

smaller of E1 and E3 as the starting ellipsoid to be transformed by the next interval 

affine transformation. Again, smaller in this case could be in terms of volume, sum of 

semi-axes, etc. The algorithm is summarised in Figure 7. 

5. The IKF equations as affine transformations 

The ellipsoidal arithmetic approach is possible because ellipsoids are invariant under 

affine transformations. In order to be able to apply ellipsoidal arithmetic to the IKF 

equations, these must first be expressed as recursive affine transformations. The IKF 

equations were given in (16) to (20) and can be divided into three sets: propagation of 
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the state-vector, propagation of the error covariance, and calculation of the Kalman 

gain.  

With respect to propagation of the state vector, (16) and (19) must be applied in 

turn. The prediction equation (16) is already in the form of an interval affine 

transformation, whereas (19) can be written as 

 ( | ) = { I −  K ( ) C  } ( | − 1) +  K ( ) ( ) (28) 

which, if K ( ) has already been obtained, is also clearly an interval affine 

transformation. 

For the error covariance estimates, consider the prediction equation (17) written 

using indicial notation: 

 , ( | − 1) = ,  ,  , ( − 1| − 1) + ,  ;   , , , = 1, … ,  (29) 

In order to represent the state estimate error and disturbance covariance matrices as 

vectors, consider ( | − 1), ( − 1| − 1), and  ∊ ℜ defined as: 

 ( ) ( | − 1) ≝ , ( | − 1) , , = 1, … ,  (30) 

 ( ) ( − 1| − 1) ≝ , ( − 1| − 1) , , = 1, … ,  (31) 

 ( ) ≝ ,  , , = 1, … ,  (32) 

Then by (29), the relationship between these is 

 ( ) ( | − 1) =  , ( | − 1) = ,  ,  , ( − 1| − 1) + , = ,  ,  ( ) ( − 1| − 1) + ( )  (33) 

which is an interval affine transformation of the vector ( ) ( − 1| − 1). To see 
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this, define 

 ( , ) ∊ ℜ × ∶   ( ) , ( ) ≝  ,  ,  , , , , = 1, … ,  (34) 

and also 

 ≝  ( − 1) + , ≝  ( − 1) +  (35) 

from which  

 = − ( − 1), = − ( − 1) (36) 

Thus, 

 , = ,  ( ), ( )  for  , ∊ {1, … , } & − ( − 1), − ( − 1)  ∊{1, … , } (37) 

that is, 

 , = ,  ( ), ( )  for  , ∊ {1, … , }, ∊ {1 + ( − 1), 2 + ( −1), … , + ( − 1)}, ∊ {1 + ( − 1), 2 + ( − 1), … , + ( − 1)} (38) 

With these definitions, (33) is expressed as: 

  ( | − 1) = ,   ( − 1| − 1) +  ;   , = 1, … ,  (39) 

which is clearly seen to be an interval affine transformation of  ( − 1| − 1). 

Similarly, the correction equation (20) in indicial notation is 

 , ( | ) = { I − K ( ) C } ,   , ( | − 1),   , , = 1, … ,  (40) 

As before, define  
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 ( | ) ∊ ℜ ∶   ( ) ( | ) ≝ , ( | ),      , = 1, … ,  (41) 

and with ( | − 1) defined as before, (40) can be written as 

 ( ) ( | ) =  , ( | ) = { I − K ( ) C } ,   , ( | − 1)  = { I − K ( ) C } ,   ( ) ( | − 1) (42) 

which specifies an interval affine transformation of the vector ( ) ( | − 1). Once 

again, this can be seen more clearly by defining 

 (ℎ , ) ∊ ℜ × ∶   ℎ ( ) , ( ) ≝  { I − K ( ) C } ,   for  , = 1, … ,0   otherwise     , =
1, … ,  (43) 

and also 

 ≝  ( − 1) + ,     ≝  ( − 1) +  (44) 

from which  

 = + 1,    = + 1 (45) 

Thus, 

 ℎ , ≝  { I − K ( ) C } ,   if   + 1, + 1 ∊ {1, … , }0   otherwise , = 1, … , ;  , =
1, … ,   (46) 

ie, 
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 ℎ , ≝  { I − K ( ) C } ,   if   , ∊ { , + 2, … , + ( − 1)}0   otherwise , =
1, … , ;  , = 1, … ,   (47) 

Then, (42) can be written as 

  ( | ) = ℎ ,   ( | − 1) ;   , = 1, … ,  (48) 

which is clearly in the form of an affine transformation. 

For example, for = 2, the error covariance prediction equation is 

 , ( | − 1) , ( | − 1), ( | − 1) , ( | − 1) =
, ,, , , ( − 1| − 1) , ( − 1| − 1), ( − 1| − 1) , ( − 1| − 1) , ,, , + q , q ,q , q , (49) 

which can be expressed as 

 

 ( | − 1) ( | − 1) ( | − 1) ( | − 1) = ,  , , ,, , , , , , , ,  , , , ,, , , ,, , , , , , , ,, , , ,
 ( − 1| − 1) ( − 1| − 1) ( − 1| − 1) ( − 1| − 1) +

 (50) 

where 
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 ( | − 1) ( | − 1) ( | − 1) ( | − 1) ≝ , ( | − 1), ( | − 1), ( | − 1), ( | − 1)   ,
 ( − 1| − 1) ( − 1| − 1) ( − 1| − 1) ( − 1| − 1) ≝ , ( − | − 1), ( − | − 1), ( − | − 1), ( − | − 1)   & ≝ q ,q ,q ,q ,  (51) 

Similarly, the error covariance correction equation is  

 , ( | ) , ( | ), ( | ) , ( | ) = ℎ , ℎ ,ℎ , ℎ , , ( | − 1) , ( | − 1), ( | − 1) , ( | − 1)  (52) 

which is equivalent to 

 

 ( | ) ( | ) ( | ) ( | ) = ℎ ,  00 ℎ , ℎ , 0 0 ℎ ,ℎ , 00 ℎ , ℎ , 00 ℎ ,
 ( | − 1) ( | − 1) ( | − 1) ( | − 1)  (53) 

if 

 

 ( | ) ( | ) ( | ) ( | ) ≝ , ( | ), ( | ), ( | ), ( | )  (54) 

Finally, the Kalman gain is updated as a rectangular enclosure at each step 

according to (18) directly using IA. 
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6. Interval Kalman filtering using the hybrid ellipsoidal-rectangular 

enclosure algorithm 

Consider again the simulation of the two interval systems of the preceding section, 

namely, the systems described by (10) and (11), with A , B , & C  given by (21) to (23), 

and nominal values of the interval matrices given, in the first case, by (3) (underdamped 

nominal dynamics), and in the second, by (27) (overdamped nominal dynamics). For 

each case, using the same inputs ( ) used in the preceding section, and the same 

disturbance and noise processes described earlier, the state-trajectory and output of the 

nominal system are simulated from an initial state situated at the origin of the state-

space. Also, based on the initial estimates given in (24), the IKF equations are in turn 

simulated using purely IA based computations, via the ellipsoidal arithmetic recursions 

described in the preceding section, and lastly using the hybrid ellipsoidal-rectangular 

enclosure algorithm. The resulting state enclosures at each time step are depicted in 

Figures 8 to 11. 

As seen from the figures, in the case of the underdamped system with complex 

conjugate poles, the rectangular enclosures obtained via IA overestimate the actual state 

sets to such an extent that simulation cannot continue after a certain point, whereas the 

ellipsoidal arithmetic IKF provides much tighter bounds. The hybrid enclosure IKF in 

this case offers bounds similar to those of the ellipsoidal arithmetic IKF. In the case of 

the overdamped system with real poles, however, it is the rectangular IA IKF enclosures 

that provide the tighter bounds to the sets of state vectors, and so the hybrid enclosure 

IKF relies mostly on these. 

7. Conclusions 

For systems with bounded modelling uncertainty, the IKF provides guaranteed 

bounds to the optimal estimate of the state vector. Even if the exact values of the states 
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are not known, guaranteed bounds to these can be useful, for example, to ensure that 

they remain within some desirable or permissible operating region. However, 

implementation of the IKF via IA can result in over conservative bounds which are not 

representative of the actual set of possible optimal states, and in some cases can even 

grow indefinitely. It thus becomes necessary to develop alternative methods by which to 

compute the IKF estimates which yield stable and tighter bounds. 

The case studies presented in this paper show that implementation of the IKF 

equations by means of the hybrid enclosure algorithm provides stable and tighter 

bounds for a wider range of system dynamic characteristics than does the direct 

application of IA which generates rectangular enclosures. The hybrid enclosure 

approach is based on using ellipsoidal arithmetic as well as IA to propagate both an 

ellipsoidal and rectangular enclosure of the state vector at each time step, respectively, 

and subsequently fusing these prior to the next iteration. These fusions only require the 

intersecting of boxes and circumscribing these by ellipsoids, and are computationally 

inexpensive. 

Although it was shown that for certain types of systems the rectangular IA 

enclosures consistently provide tighter bounds than the ellipsoidal arithmetic ellipsoids, 

and that for another class of systems the opposite occurs, the advantage of using the 

hybrid enclosure approach over one or other set arithmetic is that for borderline cases 

the more effective type of enclosure may alternate from iteration to iteration. Moreover, 

in practice the dynamics of a system can be prone to large scale variations. Control 

strategies for such systems are often based on multiple model representations of the 

same. Thus, even though the large scale dynamical changes in the nominal model of the 

system may be known, it is necessary to use an IKF implementation that is effective for 

a broad spectrum of possible dynamic characteristics. 
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Furthermore, it should also be noted that if the closed-loop dynamics of the 

system are specified, such as in the examples shown here, then the IKF may be defined 

directly upon the resulting closed loop interval model obtained from applying the 

feedback control law to the uncertain open-loop model. The IKF implementation must 

therefore be robust to the choice of desired closed-loop specifications, or changes to 

these specifications over time.  

For the aforementioned reasons, the use of the hybrid enclosure implementation 

is clearly advantageous. Its mathematical development has been presented for generic 

linear state space models of any order, and its application will enable the practical and 

efficient use of the IKF as a guaranteed state estimator for all kinds of systems with 

bounded parametric uncertainty that respond to the linear model. Suggested future 

research includes further sharpening of the interval bounds by incorporating the 

calculation of an enclosure to the Kalman gain into the recursive ellipsoidal arithmetic 

scheme, or finding an alternative arithmetic that can implement all of the IKF equations. 

Another useful development would be the extension of the method to the nonlinear case 

(interval extended KF). 

 

Nomenclature 

KF  Kalman filter 

IKF  Interval Kalman filter 

INTLAB Interval laboratory 

IA  Interval arithmetic A(A )  real (interval) valued state transition matrix / linear transformation matrix 
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B(B )  real (interval) valued input matrix C(C )  real (interval) valued output matrix E( , L, ) set of points { + L ∶ ∊ ℜ , ‖ ‖ ≤ }, ∊ ℜ , L ∊ ℜ ×  , ∊ ℜ   K(K )  real (interval) valued Kalman gain 

  state feedback gain vector 

  scaling gain I  identity matrix Iℜ  set of nonempty, closed and bounded real intervals 
  normal distribution P(P )  real (interval) valued error covariance matrix Q  input disturbance covariance matrix R  output noise covariance matrix ℜ(ℜ )  set of real (positive real) numbers ( )  interval valued (augmented) state transition matrix  b(b )  linear (linear interval) translation vector ℎ   interval valued error covariance transition matrix 

  iteration number 

,   (i,j)th element of  ( )  interval valued error covariance matrix (vector) ( )  interval valued input disturbance covariance matrix (vector) 

  input or control vector 

  real state vector 

( )  real (interval) state vector estimate 
  output vector    reference output 
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|. |  element wise absolute value ‖. ‖  Euclidean norm ∶=  assignment operator Δ  increment 

  angular value 

  output noise vector / Frobenius norm 

  disturbance input vector 
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Figure 1. State trajectory and KF state trajectory estimate. 

 

 

Figure 2. System output ( ), noise-less output C ( ), and KF output estimate. 
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Figure 3. System output ( ) and IKF interval-estimate thereof. 
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Figure 4. Comparison of successive rotations of a 2D interval vector using (rectangular) 

IA and using elliptical arithmetic. 
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Figure 5(a). Simulation of the state-vector for the interval system with nominal poles at 0.4 ± 0.25  using IA. 
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Figure 5(b). Simulation of the state-vector for the interval system with nominal poles at 0.4 ± 0.25  using ellipsoidal arithmetic. 
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Figure 6(a). Simulation of the state-vector for the interval system with nominal poles at 0.5 and 0.1  using IA. 
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Figure 6(b). Simulation of the state-vector for the interval system with nominal poles at 0.5 and 0.1 using ellipsoidal arithmetic. 
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Figure 7. The hybrid ellipsoidal-rectangular enclosure algorithm. 
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Figure 8(a). Simulation of the state-vector for the nominal underdamped system with 

poles at 0.4 ± 0.25 . States are depicted as circles for clarity, although they represent 

point-values. 
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Figure 8(b). IKF estimates of the interval system state obtained using IA. Only the first 

20 iterations shown, as the rectangles keep growing exponentially. The arrow follows 

the initial propagation of rectangular state enclosures. 

 

 D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Pl

ym
ou

th
] 

at
 0

3:
14

 3
1 

M
ar

ch
 2

01
5 



Acc
ep

ted
 M

an
us

cri
pt

 

38 
 

 

Figure 8(c). IKF estimates of the interval system state obtained using ellipsoidal 

arithmetic. The dotted rectangles correspond to the smallest box enclosure of each 

ellipse, but are not used for propagation. 
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Figure 8(d). IKF estimates of the interval system state obtained using the hybrid 

enclosure algorithm. The dotted rectangles correspond to the box B3 at each iteration. 
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Figure 9. Output of the nominal underdamped system, and IKF bounds to the estimates 

of the output of the corresponding interval system using IA, ellipsoidal arithmetic, and 

hybrid enclosures respectively. 
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Figure 10(a). Simulation of the state-vector for the nominal overdamped system with 

poles at 0.5 and  0.1. States are depicted as circles for clarity, although they represent 

point-values. 
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Figure 10(b). IKF estimates of the interval system state obtained using IA. The arrows 

indicate the direction of propagation of rectangular state enclosures. 
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Figure 10(c). IKF estimates of the interval system state obtained using ellipsoidal 

arithmetic. The arrows indicate the direction of propagation of the state enclosures. 
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Figure 10(d). IKF estimates of the interval system state obtained using the hybrid 

enclosure algorithm. The arrows indicate the direction of propagation of the state 

enclosures. 
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Figure 11. Output of the nominal overdamped system, and IKF bounds to the estimates 

of the output of the corresponding interval system using IA, ellipsoidal arithmetic, and 

hybrid enclosures respectively. 
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