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This paper describes a Markov chain based approach to modelling multi-modal transportation networks. An
advantage of the model is the ability to accommodate complex dynamics and handle huge amounts of data. The
transition matrix of the Markov chain is built and the model is validated using data extracted from a traffic
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the ability of the proposed methodology to handle big quantities of data. Then, we use the Markov chain as
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1 Introduction

1.1 Motivation

Recently, many papers have been published on modelling and optimizing public transportation
networks. Motivated, in principle, by the availability of large amounts of data in real time,
authors have focussed, for the most part, on problems such as: journey planning for individuals
and the associated optimization under uncertainty problem [Hame and Hakula (2013)]; schedul-
ing of public transport systems, and more recently, on demand public transport applications
[Tsubochi et al. (2010)]; and niche topics such as bus-bunching [Bartholdi and Eisenstein
(2012)]. Despite this intense interest many open questions remain to be resolved. These include:
the development of simple tractable mathematical models that can accommodate the huge
volume of real time data that is now available to public transport operators (GPS, mobile
phone data, loop detectors, cameras, etc.); the development of mathematical models that allow
to incorporate different modes of transport (walking, bikes, buses, taxis, trains, private cars,
etc.); and the development of models that allow the extraction of key macroscopic design criteria.

A first important requirement is this latter objective of developing models that capture
macroscopic properties of the network. Much of the current work in this area focusses on
quality of service metrics as applied to a given individual. This latter aspect assumes that
individuals operate essentially in a bath of noise, and ignores coupling between individuals.
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For example, in multi-modal journey planning, every journey has the possibility of affect-
ing every other journey. For example, if enough individuals are recommended a particular
bus-leg, then the bus may be full, thereby invalidating other plans already calculated for
other network users. Our objective in this paper is to develop models that do not focus
on the individual, but rather focus on aggregated behavior. We are specifically interested
in answering high-level questions that pertain to how accessible certain key spots in the
city are (for example, hospitals), and how easy it is to travel, on average, from one part of
a city to another. Such questions, we believe, are important characterizations of urban dynamics.

A second important requirement is that a useful model should have the ability to sup-
port transportation engineers in implementing control actions aiming at improving the
efficiency of a transportation network. In this perspective, a model should be able to proactively
predict the effect of some control actions (e.g., removing a bus stop, increasing the frequency
of a train, adding an extra bus line) in an existing public transportation network. Given such
a basic requirement, it is of paramount importance to adopt a model that can be constructed
from (a big quantity of) real data obtained directly from the transportation network in near real
time. For this purpose, our starting point is a recently proposed Markov-chain based framework
for capturing macroscopic urban dynamics [Crisostomi et al. (2011a)].

1.2 State of the art and related work

In [Crisostomi et al. (2011a)], graph theory and Markov chain ideas were used to reveal
non-trivial patterns of urban mobility and to support engineers with practical tools to solve a
number of mobility applications; namely, routing, traffic light regulation, and road planning.
The work of [Crisostomi et al. (2011a)] was well received by the transport community giving
rise to further research along the same lines, see [Crisostomi et al. (2011b)], [Schlote et al.
(2012)], [Jensen et al. (2014)], [Bekkerman et al. (2013)] and [Morimura et al. (2013)]. Also, the
findings of [Crisostomi et al. (2011a)] were further validated using real data of Beijing [Moosavi
and Hovestadt (2013)].

The objectives of this paper are twofold: (i) first, we want to illustrate how the approach of
[Crisostomi et al. (2011a)] can be adapted to analyse a multi-modal public transport network.
For the purpose of clarity, we illustrate our approach using a bus network in a small area of
Dublin as an initial example throughout the paper. We later show how the same strategy can
be applied to a general multi-modal transportation network, through a more realistic example
pertaining the city of London; (ii) second, we want to show how the proposed model can be
used to leverage appropriate control actions to improve the performance of a multi-modal
transportation network. A preliminary 2-page draft paper outlining the proposed methodology
had been first shown in [Faizrahnemoon et al. (2013)].

This paper is organised as follows: Section 2 reviews the basic notions of Markov chain
theory that will be used in the remainder of the paper. Section 2.3 illustrates how to use
collected data to build the Markov chain model. Section 4 validates the model using the mobility
simulator SUMO (Simulator of Urban MObility) [Krajzewicz et al. (2012)], which is well-known
in the transportation community, and shows that the results from the Markov chain approach
are consistent with those obtained via simulation. The same result is obtained when the model
is validated over some data related from bus and Tube data from the transportation network
of London in Section 5. Section 6 describes how the developed big-data model can be used as a
platform to deliver control actions to improve the quality of the public transportation service.
Finally, Section 7 concludes the paper and outlines current and future lines of research.
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2 A primer on Markov chains

Markov chains are a standard tool for engineers and applied mathematicians and many of their
properties can be found in classic references like [Kemeny and Snell (1960), Langville and Meyer
(2006)]. We repeat here a discussion from [Crisostomi et al. (2011a)] that introduces some basic
definitions and standard results that are needed for our discussion. Throughout this paper only
discrete-time, finite-state, homogeneous Markov chains will be considered. In this situation, the
Markov chain is a discrete time stochastic process xk, k ∈ N and characterised by the equation

p(xk+1 = Sik+1
|xk = Sik , ..., x0 = Si0) =

p(xk+1 = Sik+1
|xk = Sik) ∀k ≥ 0,

(1)

where p(E|F ) denotes the conditional probability that event E occurs given that event F occurs.

A Markov chain with n states is completely described by the n × n transition probabil-
ity matrix P, whose entry Pij denotes the probability of passing from state Si to state Sj in
exactly one step. P is a row-stochastic non-negative matrix, as the elements in each row are
probabilities and they sum up to 1. Within Markov chain theory, there is a close relationship
between the transition matrix P and a corresponding graph. The graph consists of a set of
nodes that are connected through edges. The graph associated with the matrix P is a directed
graph, whose nodes are given by the states Si, i = 1, ..., n, and there is a directed edge leading
from Si to Sj if and only if Pij 6= 0. A graph is strongly connected if for each pair of nodes there
is a sequence of directed edges leading from the first node to the second one. The matrix P is
irreducible if and only if its directed graph is strongly connected. Some important properties of
irreducible transition matrices follow from the well-known Perron-Frobenius theorem [Langville
and Meyer (2006)]:

• The spectral radius of P is 1; 1 also belongs to the spectrum of P, and has an algebraic
multiplicity of 1;

• The left-hand Perron eigenvector π is the unique vector defined by πTP = πT , such that every
single entry of π is strictly positive and ‖π‖1 = 1. Except for positive multiples of π there are
no other non-negative left eigenvectors for P.

One of the main properties of irreducible Markov chains is that the i′th component πi of the
vector π represents the long-run fraction of time that the chain will be in state Si. The row
vector πT is also called the stationary distribution vector of the Markov chain.

We now discuss three properties of Markov chains that render them suitable for modelling
large scale urban systems.

2.1 Mean first passage times and the Kemeny constant

A transition matrix P with 1 as a simple eigenvalue gives rise to a singular matrix I −P (where
the identity matrix I has appropriate dimensions) which is known to have a group inverse
(I −P)#. The group inverse is the unique matrix such that (I −P)(I −P)# = (I −P)#(I −P),
(I −P)(I −P)#(I −P) = (I −P), and (I −P)#(I −P)(I −P)# = (I −P)#. More properties of
group inverses and their applications to Markov chains can be found in [Meyer (1975(@)]. The
group inverse (I−P)# contains important information on the Markov chain and it will be often
used in this paper. For this reason, it is convenient to denote this matrix as Q#. The mean first
passage time (MFPT) mij from the state Si to the state Sj denotes the expected number of
steps to arrive at destination Sj when the origin is Si, and the expectation is averaged over all

possible paths following a random walk from Si to Sj . If we denote by q#
ij the ij entry of the

matrix Q#, then the mean first passage times can be computed according to [Cho and Meyer
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(2001)]

mij =
q#
jj − q

#
ij

πj
i, j = 1, ..., n, i 6= j. (2)

We assume that mii = 0. The Kemeny constant is defined as

K =

n∑
j=1

mijπj (3)

where the right-hand side is independent of the choice of the origin state Si [Kemeny and Snell
(1960)]. An interpretation of this result is that the expected time to get from an initial state Si
to a destination state Sj (selected randomly according to the stationary distribution π) does not
depend on the starting point Si [Doyle (2009)]. Therefore, the Kemeny constant is an intrinsic
measure of a Markov chain, and if the transition matrix P has eigenvalues λ1 = 1, λ2, ..., λn,
then another way of computing K is [Levene and Loizou (2002)]

K =

n∑
j=2

1

1− λj
. (4)

As can be seen from Equation (4), K is only related to the particular matrix P and it increases
if one or more eigenvalues of P get close to 1.

2.2 Clustering and the second eigenvector

In this section we discuss another Markov chain characteristic, that we will use to investigate
clusters in the bus network. It is well known that the eigenvectors of transition matrices for
undirected graphs have good clustering properties, see for instance [Luxburg (2007)]. In [Crisos-
tomi et al. (2011a)] it was further shown that the sign pattern of an eigenvector associated
with an eigenvalue close to 1 can be also used to identify two different clusters. Since an
irreducible transition matrix has only one eigenvalue equal to 1, such an eigenvector is called the
second eigenvector (as it is associated with the eigenvalue of second largest modulus). However,
the justification of the second eigenvector given in [Crisostomi et al. (2011a)] held under the
assumption that it is real. In some cases, for instance when cyclic behavior occurs, (which could
frequently occur if one thinks to typical bus routes), see Theorem 4.15 in [Huisinga (2003)], it
is known that the eigenvalue of second largest modulus is actually a pair of complex conjugated
eigenvalues. Accordingly, we extend below the justification initially given in [Crisostomi et al.
(2011a)] to such a circumstance when we have two complex eigenvalues.

The rationale behind the clustering properties of the second eigenvector, which will be
later used in Sections 4 and 6 is now anticipated through an illustrative example. Suppose that
we have three irreducible stochastic matrices P1,P2 and P3 of order k1, k2 and k3 respectively.
Assume that the last column of each of the three matrices is positive. Consider the transition
matrix

A =

P1 000 000
000 P2 000
000 000 P3

 ;

note that A has 1 as an eigenvalue of multiplicity three (as we have diagonally combined three
matrices that have 1 has eigenvalue, see Section 2). Suppose now that we perturb A slightly to
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obtain the matrix

B = A + ε

−111k1eee
T
k1,k1

111k1eee
T
k2,1

000k1×k3
000k2×k1 −111k2eee

T
k2,k2

111k2eee
T
k3,1

111k3eee
T
k1,1

000k3×k2 −111k3eee
T
k3,k3

 ,
where 111m represents an all ones vector of order m, 000i×l represents an i × l matrix of all
zeros, eeei,l is a vector of zeros of length i with a 1 in the l′th position, and ε is a small
positive number. Positivity of the last column of Pi, i = 1, 2, 3 guarantees that the perturbed
matrix does not have negative entries for small ε. It is easily verified that B is a stochastic
matrix which has complex eigenvalues 1 − 3/2ε ± j

√
3/2ε, with corresponding right eigen-

vector

 111k1
111k2 · (−0.5± j

√
3/2)

111k3 · (−0.5∓ j
√

3/2)

, where the eigenvectors are independent of the (small) value of ε.

In practice, the previous plausibility argument simply states that if we have three quasi-
disconnected graphs, then we might have two complex eigenvalues of modulus very close to 1,
whose corresponding eigenvectors have three main well-separated clusters of entries if plotted
in the complex plane (note that either second eigenvector can be used as they are complex
conjugates of each other). Thus, the second eigenvector can be used to identify clusters in the
graph.

2.3 Markov chains and big-data

Markov chains are particularly suited to big-data applications for several reasons: (i) Microscopic
behavior is embedded into the chain through aggregation; namely, in the form of probabilities.
These probabilities are easily measured or calculated (turning probabilities, bus occupancies,
bike pickup and delivery data) without need for large data processing or storage capabilities; (ii)
Many of the key properties (e.g., Perron eigenvectors and MFPT matrices) of a Markov chain
can be calculated in a recursive fashion using simple update formulae [Langville and Meyer
(2006)]. The suitability of Markov chains for big-data application is discussed, for example, in
the context of Google’s PageRank algorithm [Langville and Meyer (2006)]. Well-established and
robust algorithms are available to handle data-sets of the size of thousands, if not millions, of
web-pages that might contain the relevant information pertaining the user’s query. Some exam-
ples at this regard are given in the remainder of the section; (iii) Many of the properties of the
chain correspond to real quantities of interest to network designers. We shall have more to say on
this in the next sections; (iv) The suitability of Markov chains for capturing and modelling com-
plex dynamics is discussed and justified, among others, in [Schlote (2014)] and [Froyland (2001)].

To gain insight into fast recalculation of Markov chain quantities for changed data, re-
gard the following theorem from [Langville and Meyer (2006)] addressing row updates to
Markov chain transition matrices and their effect on the stationary distributions.

Theorem 2.1 : Let P and P̃ be irreducible n×n Markov chain transition matrices that satisfy
the relationship P̃ − P = −eiδ>, where ei is a vector of zeros of length n with a 1 in the i’th
position and δ ∈ Rn. Let π and π̃ be the respective left Perron eigenvectors of P and P̃. Let
Q = (I − P) and let Q# be its group inverse. Then

π̃> = π> − ε>, (5)
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where ε> = πi

1+δ>Q#ei
δ>Q#. Further, with 111 ∈ Rn being the vector of all ones,

(I − P̃)# = Q# + 111ε>(Q# − ε>Q#ei
πi

I)− Q#eiε
>

πi
. (6)

The above theorem allows to explicitly compute the stationary distribution of a Markov chain
after updating a single row using the original stationary distribution and the group inverse of
(I − P). It also allows to directly compute the group inverse of the updated Markov chain and
this theorem can thus be used iteratively to obtain updated stationary distributions for arbitrary
changes in the transition matrix by means of describing them as consecutive row updates. In
some situations even simpler formulas can be obtained. For example, the following theorem was
proved in [Schlote et al. (2012)].

Theorem 2.2 : Let P and P̃ be irreducible n×n Markov chain transition matrices such that P̃
is obtained from P by multiplying the i′th diagonal entry with a factor wi > 0 for each i = 1 . . . , n
and scaling the off diagonal entries in each row so that their ratios remain constant. Let π and
π̃ be the respective left Perron eigenvectors of P and P̃. Then

π̃ = κWπ, (7)

where W = diag(w1, . . . , wn) and κ = 1
‖Wπ‖

1

is a scaling factor that ensures that the entries of

π̃ sum to 1.

This property is particularly useful for our model. It will be shown later that changing the
diagonal entries corresponds to changing the public transport service frequency.

Figure 1. Area of Dublin city center used for analysis and simulations.
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3 Models of transport networks

We now describe how to fill the entries of the Markov chain transition matrix to model a
transportation network. For the sake of clarity, we shall use an example from the small area of
Dublin shown in Figure 1. The blue icons in Figure 1 correspond to bus stops. We can depict
them as in the graph in Figure 2 where consecutive bus stops are connected through an edge
yielding 17 nodes connected by 21 edges.
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Figure 2. Graph of the bus network.

3.1 Waiting graph

A Markov chain transition matrix corresponding to the graph shown in Figure 2 can easily be
constructed from collected data according to the procedure outlined below:
(i) Each diagonal entry Pii of the transition matrix is computed as Pii = (ti − 1)/ti, where
ti > 1 is the average time that people spend at the i′th bus stop waiting for the bus, so that the
expected time before leaving the i′th state equals the average waiting time. The waiting time ti
can be expressed in any unit of measurement, for instance in seconds, in which case a step of
the Markov chain corresponds to one second.
(ii) The value of each off-diagonal entry Pij of the transition matrix is proportional to the
proportion of passengers that travel from the bus stop i to bus stop j as the next bus stop. This
implies that if bus stops i and j are not directly connected (e.g., bus stops 1 and 7 in Figure 2),
then Pij = 0.
(iii) We add an extra state to denote the people that leave the bus network, and we call this the
’idle state’ and denote it by Sn+1. Accordingly, entry Pi,n+1 takes into account the proportion
of people who leave the network after having reached bus stop i; similarly, entry Pn+1,i denotes
the proportion of travellers who start their journey from the i′th bus stop; finally, we set the
diagonal entry as Pn+1,n+1 = (tn+1 − 1)/tn+1, where tn+1 corresponds to the inter-arrival time
of passengers in the bus network.
(iv) We first set the diagonal entries of the transition matrix P as previously described. Then,



March 26, 2015 8:39 International Journal of Control MC˙MultiModal˙IJC˙rev˙v4

8 Taylor & Francis and I.T. Consultant

we scale the off-diagonal entries in order to make matrix P row-stochastic.

The transition matrix constructed this way has the useful property that its Perron eigenvector
corresponds exactly to the density of people at bus stops waiting for buses. This is analogous to
what had been previously found in [Crisostomi et al. (2011a)] in the case of vehicular density,
and is validated through SUMO simulations in Section 4. The density of people at bus stops
is computed by averaging the mean waiting times at bus stops weighted with the number of
people waiting on average (i.e., if we have on average 3 people waiting for on average 10 minutes
at bus stop A, and we have one person waiting for 30 minutes at bus stop B, then we have
equal densities of people at the two bus stops).

The previous transition matrix can be built by collecting waiting times at bus stops (for
the diagonal entries), and by checking how many passengers are on each bus (to build the
off-diagonal entries and the entries of the idle state). However, we have not considered travel
times so far. This information can be neglected if, for example, one is interested in making
waiting times uniform all over the city. In other applications they have to be taken into account,
as will be explained in Section 6. The next section illustrates how a transition matrix can be
built to take travel times into account. To make a distinction, we will refer to the “waiting
graph” (or “waiting transition matrix”) when referring to the graph considered in this section,
while the graph in the next section will be denoted as the “travel graph” (or “travel transition
matrix”).

3.2 Travel graph

Let us consider a new graph whose nodes are given by the existing direct connections between
two consecutive bus stops, and the edges are given by the possibility to pass from one connection
to a second connection. For instance, in the example of Figure 2, the new graph is shown in
Figure 3. Accordingly, note that the new nodes in Figure 3 correspond to the edges in the
previous Figure 2. This graph is sometimes denoted as the dual of the previous one [Porta et al.
(2006)]. A Markov chain transition matrix corresponding to the graph shown in Figure 3 can
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Figure 3. Dual graph of the bus network shown in Figure 2.

be easily constructed from collected data, according to the procedure outlined below. We shall
denote such a second travel transition matrix as P(t) for clarity.
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(i) Each diagonal entry of the transition matrix P
(t)
ii is computed again as P

(t)
ii = (ti − 1)/ti

where now ti is the average time that people spend along the i′th bus connection, computed as
the sum of the time spent waiting for the bus and the time to actually travel until the next bus
stop.

(ii) The value of each off-diagonal entry P
(t)
ij of the transition matrix is proportional to the

proportion of passengers that directly travel from the bus connection i to the bus connection j.
This implies that if two bus connections i and j are not directly connected (e.g., connections 1

and 7, as can be seen from Figures 2 and 3), then P
(t)
ij = 0.

(iii) We add an extra state to denote the people that leave the bus network. As before we call

this the ’idle state’ and denote it by Sn+1. Accordingly, entry P
(t)
i,n+1 takes into account the

proportion of people whose last travel in the bus network was connection i, and then they leave

the network; similarly, entry P
(t)
n+1,i denotes the proportion of travellers who start their journey

form the i′th bus connection; finally, we set P
(t)
n+1,n+1 = (tn+1− 1)/tn+1, where tn+1 corresponds

to the inter-arrival time of passengers in the bus network.
(iv) We first set the diagonal entries of the transition matrix P(t) as previously described. Then,
we scale the off-diagonal entries in order to make matrix P row-stochastic.

The transition matrix constructed according to the previous procedure has the useful
property that its Perron eigenvector corresponds exactly to the density of people along each
bus connection. Such a density takes into account both people waiting for taking a given
bus connection, and people currently travelling on that bus. Such a result is confirmed from
experimental results in Section 4. Note that this second transition matrix requires the same
information of the waiting transition matrix, plus the information of the average travel times
between (all pairs of) two consecutive bus stops.

Comment : We make the assumption that in a transportation network it is possible to
get from every possible node to any other possible node. This implies for instance that from a
particular bus stop, one can get to any other bus stop with an appropriate sequence of buses.
Such an assumption is realistic and holds for most transportation networks, and allows us to
obtain strongly connected graphs, and thus irreducible transition matrices. Note also that the
transition matrices are primitive because they are irreducible and have at least one positive
diagonal element by construction [Langville and Meyer (2006)].

3.3 Multimodality

One of the the main advantages of the Markov chain model is that it can accommodate different
means of transport without introducing significant changes to the proposed theory. In particular,
we do not have to know a priori if a given node in the graph is associated with a bus stop, rather
than with a train station or a metro stop. Clearly, if one can take advantage of different transport
modes, then the density of people at bus stops can be balanced by supporting the bus network
with another means of transportation (e.g., taxis) instead of simply increasing the frequency of
buses; analogously, accessibility to a critical destination (hospitals) can be realized by supporting
the network with a dedicated service of shuttle buses. We shall have more to say on such issues
in Section 6.

4 Validation

4.1 Simulation

We validate our approach simulating the bus network in the small area of Dublin city center
shown in Figure 1. For simplicity we focus on buses only; as explained above other modes of
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transport can be incorporated into the graph easily.

The bus network consists of 17 bus stops, 21 connections between the bus stops, and 4
bus lines, and the corresponding waiting and travel graphs were given in Figures 2 and 3. We
use SUMO, a popular open source traffic simulation software [Krajzewicz et al. (2012)], to
simulate the bus network and extract the data required to build the corresponding Markov
chain, and to compare the simulations results with those obtained through the Markov chain
approach. In our simulation, we assume that a sensor is installed at each bus stop to collect
information regarding the time of the day at which every single bus stops at that bus stop to
collect passengers. Such information can also be collected from GPS enabled mobile phones.
We assume that people start their journey at a random bus stop, chosen with equal probability,
according to a Poisson process with expected inter-arrival time of 2 minutes. We made this
choice as Poisson processes are well established to model bursty traffic. We choose the final
destination of the passenger in a uniform fashion in a first simulation (i.e., every node is equally
likely to be the final destination), or according to a different probability distribution in a second
simulation, as it will be explained later. If more than one sequence of buses can be used to get
to the destination, we assume that the passenger minimizes the number of required buses, or,
in case of a tie, minimizes the number of bus stops, and in case of further tie, the passenger
would simply take the first bus.

4.2 Perron eigenvector

As previously explained, the Perron eigenvector of the waiting transition matrix corresponds
to the long-run fraction of time that a person spends in a given state. Thus, we computed the
Perron eigenvector, deleted its last entry (corresponding to the time spent in the idle state,
i.e., not at a bus stop, which was not interesting in this case), and renormalised the remaining
entries so that they would sum to 1. Note that this vector corresponds to the density of people
waiting at each bus stop. We computed the same quantity from the SUMO simulation, and
the two densities are shown in Figure 4.a. Similarly, we repeated the same procedure in the
travel graph, in which case we obtain a density of people that is proportional to the time that
people spend for a given connection (waiting for the bus to arrive, plus travelling on the bus)
and results are given in Figure 4.b. As can be seen from the two figures, the two densities are
clearly the same in both cases.

Comment : Note that the Perron eigenvector corresponds exactly to the density of
people at bus stops as we have assumed that there is no noise in the sensors. In practice, if
there is some noise in the measurements of the sensors (e.g., some people getting on the bus are
not counted), then there will be a difference between the real density of people and the Perron
eigenvector.

4.3 Clusters

A useful information regarding flows of bus passengers involves the analysis of frequent patterns
and the identification of clusters. Here we define a cluster as a set of bus stops from which
people unlikely travel towards other sets of bus stops. To clarify our point of view, using the
bus network example in Figure 2, we say that three clusters exist if, for instance, people mainly
travel within the three sets of nodes having the same colour (i.e., within nodes 1 to 6, 7 to 11
and 12 to 17) and more rarely travel from one set of nodes to another set of nodes. This could
happen if, for instance, we assume that each set of nodes belongs to a given neighbourhood that
contains everything that the people need (e.g., shopping centres, cinemas, hospital, swimming
pool), and more rarely people have the necessity to travel to another set of nodes.
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Figure 4. The densities of people at bus stops (a), and at bus connections (b) computed from the Perron eigenvector of
the Markov chain are the same of those computed in SUMO.

If clusters exist, then the MFPTs should be very low among nodes belonging to the
same clusters, and high if the origin and the destination belong to two different clusters. This
simply follows from the fact that random walks are more likely to occur within the same
set than from one set to another one. Also, if clusters exist, it should be possible to identify
them using the second eigenvector as claimed in Section 2.2. To simulate such a situation, we
assumed that 90% of the people would indeed choose their destination among one of the nodes
belonging to the same cluster of origin. As can be seen from Figure 5.a, mean first passage
times are indeed low (blue colour) among nodes belonging to the same cluster, and are higher
(brighter colours) among nodes belonging to different clusters. Analogously, Figure 5.b shows
the entries of the second (complex) eigenvector in a complex plane, and nodes belonging to the
same cluster (shown with the same colours of those used in Figure 2) are clearly separated in
the complex plane.

Comment : While it is very simple to compute the second eigenvector and check the
(possible) presence of clusters in passengers’ flows, it is not straightforward to obtain the same
information in another way, either from simulation results or even from collecting real data.

5 Big-data example

The objective of this section is to further validate the proposed methodology in a more realistic
transportation network, consisting of 28 stops belonging to two tube lines and two bus lines of
London, namely, Bakerloo Metro, Victoria Metro, Bus 13 and Bus 390. In particular, the chosen
graph is shown in Figure 6. Note that we added some “walking edges” to connect bus stops with
tube stops, and vice versa, to take into account the passengers that take a connection between the
two different means of transportation, indicated with dashed lines in Figure 6. We then assumed
that people would appear at bus/tube stations according to a Poisson process whose average
frequency of arrival was chosen consistently with the data provided by TFL1, and summarised
in Table 1. Similarly, the destination of the passengers was chosen proportionally to the exit
data reported in Table 1. We then used a multi-modal journey planner to compute the shortest
path (in terms of travel time) from origin to destination, with the only constraint that the path
had to be fully contained in the map considered in Figure 6. We consider a period of two hours,
namely, between 8 a.m. and 10 a.m., which according to data from TFL corresponds to a traffic
of about 90000 people on average (i.e., 10 % of the total) among the considered bus/tube stops.
As shown in Figure 7, we still have that the Markov chain well encapsulates the information
related to the density of people at bus/tube stops, as, similarly to before, we are assuming that

1https://www.tfl.gov.uk/
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Figure 5. The MFPT matrix and (especially) the second eigenvector are useful in identifying clusters. MFPTs are low
among nodes belonging to the same clusters (a); similarly entries of the second eigenvector do identify what bus stops
belong to what cluster (b).

the sensors measuring people information are noiseless. Note that from Figure 7 we have a large
number of people that spend a significant amount of time at stop 11. This is due to the fact that,
for our choice of the subgraph of the London transportation network, stop 11 is the only stop
that is common between the two chosen tube lines. Stop 11 is also connected with both the two
bus lines (stops 12 and 13) via a short walk. Finally, we show in Figure 8 the second eigenvector
of the waiting graph, which makes a clear distinction between the stops of the tube network
(red asterisks in figure), corresponding to the positive entries of the second (real) eigenvector
and those of the bus network (blue dots in figure), corresponding to the negative entries of the
eigenvector. This distinction is due to the fact that most of the trips consist of taking a single
means of transportation, while more rarely a second different means of transportation is taken,
thus it is possible to identify two main clusters of stops.
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Figure 6. Subgraph of London transportation network, consisting of two bus lines and two tube lines, used for a more
realistic validation of the proposed methodology.

Figure 7. Data from the simulation match data from the Markov chain model.

6 Markov chain based control applications to improve the public transportation network

The question as to how to measure a good network is a somewhat controversial topic. There are
two basic stakeholders in the city. The first is the user of the transport network; he or she wants a
good quality of service always (fast, clean, reliable service). On the other hand, the municipality
is much more interested in aggregated average behaviour. Cities are concerned with issues such
as:
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Table 1. Average number of people entering and exiting tube/bus stops in London in weekdays (data of year 2012). In Italic, the

bus stops.

Node Stop Entries Exits Node Stop Entries Exits

1 Tufnell park station 316 196 15 Piccadilly circus/Regent street 48 440

2 Camden road/Breckrock road 279 142 16 Waterloo/Waterloo East 139941 146314

3 King’s cross/st Pancras International station 328 235 17 Baker Street 45141 43559

4 King’s cross/st Pancras International Station 122769 120873 18 Baker Street 282 666

5 Eusten 56039 57197 19 Paddington 70505 72237

6 Eusten 131 341 20 Stone Bridge Park 4092 3929

7 Warren Street 28841 29195 21 Firchly road Station 132 736

8 Orchard street/Selfridge 107 625 22 Swiss Cottage Cheese 348 256

9 Notting Hill gate/Palace Garden Terrace 200 200 23 Green Park 51766 58893

10 Marble arch Station 352 372 24 Victoria 126275 130050

11 Oxford 119401 130658 25 Brixton 39375 36606

12 Oxford 359 517 26 Dorset Square 313 116

13 Oxford 215 514 27 Seven Sisters 21758 19300

14 Piccadilly circus/Regent street 59135 59279 28 Black Horse road 11956 10879
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Figure 8. The entries of the second (real) eigenvector distinguish tube stops (positive red circles) and bus stops (negative
blue squares).

(i) On average, how easy it is to travel from one part of the city to another?
(ii) On average, are certain spots accessible in an equitable manner from other parts of the city?
(iii) On average, are the travel times small between certain bus-stops?
(iv) Is it possible to identify emerging clusters in the bus network?
In the remainder of this section we focus on such issues and show how the proposed big-data
model can be used as a platform to identify and implement practical control actions to improve
the performance of the transportation network.

6.1 Node maintenance and control in the transportation network

The Kemeny constant illustrated in Section 2.1 is known to be a global indicator of the
efficiency of a network [Crisostomi et al. (2011a), Moosavi and Hovestadt (2013)]. For instance,
it can be used to evaluate the critical nodes of a transportation network. Typically, this can
be done by picking out a node from the transportation network, and checking the efficiency of
the residual network. This procedure can be carried out for all the nodes, and comparing the
Kemeny constants obtained removing every single node. Those giving rise to highest Kemeny



March 26, 2015 8:39 International Journal of Control MC˙MultiModal˙IJC˙rev˙v4

International Journal of Control 15

constants suggest that the removed nodes were indeed critical, as the residual network becomes
less efficient.

The information on the most critical nodes of a mobility network is useful to implement
a number of control actions:

• Maintenance - Special care should be devoted to maintain critical nodes always working
properly, as a failure would greatly affect the efficiency of the remaining transportation net-
work;

• Road works - When planning road works, one should be aware that temporarily disconnecting
a critical node from the network would generally increase travelling times;

• Strengthening critical nodes - The public transportation network planner might want to
strengthen critical nodes with redundant mobility services to improve their efficiency and their
robustness.

To show the validity of the approach, we follow such a procedure for the usual bus network
shown in Figure 2. We made the assumption that all the waiting times were the same at each
bus stop, otherwise the Kemeny constant might give the obvious solution that the most efficient
network is obtained by removing the least efficient node. In this way, the efficiency of the net-
work is only given by its topology and by people’s bus patterns. Accordingly, Figure 9 shows
that the most critical bus stops of the bus networks are the bus stops from which people are
allowed to change the bus. While such a solution could be easily expected from the simple bus
network considered here by visual inspection, in realistic multi-modal transportation network
the identification of critical nodes is not equally trivial.
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Figure 9. The Kemeny constant shows that the most critical bus stops are 1, 7, 12 and 15, i.e., those from which it is
possible to change bus line.

6.2 Fair access control to critical areas

It is clear that in any functioning city some critical spots like hospitals should be easily accessible
for all citizens. That is, they should be well-connected to all the neighbourhoods of the city, and
accessible from any origin point. One way to ensure that hospitals are well-connected is to balance
the average travel times from any point to the hospital, for instance making average travel times
proportional to the distance (in meters) from the hospital; alternatively, one could use graph
theory to increase the connectivity of the stops close to the hospital in a transportation network.
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As MFPTs are a way to take into account both average travel times (as they are an increasing
function of average travel times) and also the topology of the network (a poorly connected
network gives rise to high MFPTs and to a higher Kemeny constant as shown in the previous
section), here we suggest that MFPTs can be used as an indicator of accessibility to some given
areas.
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Figure 10. In this example, the MFPTs to the hospital (a) are compared to the distances to the hospital (b). We say that
the hospital is fairly connected if the two vectors have the same (normalised) values. We later try to improve the fairness of
bus stops 5, 7 and 12 by supporting the bus network with two new lines of specific shuttle buses, obtaining a fairer result
(c).

To give a practical example of how to control and ensure a fair accessibility to a critical key spot
in the city, let us assume that node 16 in Figure 2 corresponds to the bus stop close to the only
hospital in the area. Figure 10.(a) then compares the 16′th column of the MFPT matrix (MFPTs
from any other bus stop to bus stop 16) with (b) the distance (in meters) from any bus stop
to the 16′th bus stop (the same scale was used for comparison purposes). Comparing the two
figures, one can easily note that bus stops 5, 7 and 12 are those that are not well-connected to
the hospital (i.e., MFPTs are high despite the path being relatively short). We now assume that
the public transportation planner wishes to implement a control action to increase the fairness of
connectivity to the hospital. The previously mentioned MFPT data can be used to predict that
a fair access to the hospital can be achieved if, for instance, two fast shuttle-buses are added,
one along the loop 2−5−16−2 and another one along the loop 7−16−12−7. The new primal
graph is now shown in Figure 11. Correspondingly, we have that the accessibility of bus stops 5,
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Figure 11. The new transportation network where the bus network is further supported by two new shuttle-buses lines
(shown with red dashed lines) to improve the connectivity of the hospital.

7 and 12 has increased, as predicted by the MFPT analysis, as shown in Figure 10.(c).

6.3 Balanced control of waiting and travel times

Another concern of network transport planners is to ensure that the travel time between stops
is fairly distributed between destinations. This ensures, on average, a fair QoS delivered to
network participants. Clearly, achieving fairness requires to control that the average waiting
times are the same at each bus stop. More realistically, one could balance aggregated waiting
times (i.e., one takes into account how many people take the bus, and accordingly waiting
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times should be smaller where more people take the bus, and larger where fewer people take
the bus). This last control objective exactly corresponds to balancing the entries of the Perron
eigenvector of the waiting transition matrix. Also, one could expect that doubling the frequency
of a bus at the i′th bus stop should imply that average waiting times at the i′th bus stop should
be halved as well, and this is exactly what happens to the i′th entry of the Perron eigenvector
(apart from normalisation constraints, see Theorem 2.2 in Section 2.3). Accordingly, the entries
of the Perron eigenvector automatically give to the mobility planner the expected optimal
relative frequency of buses to achieve perfectly balanced aggregated waiting times.

We now give an example of this by trying to improve the balance of the bus network
shown in Figure 4.a. As can be noticed from the figure, entries 1, 6, 10, 12 and 15 were the
largest entries of the Perron eigenvector. Accordingly, we now double the frequency of the
bus line serving stations (1-15-12-10-11-7-6), and the new, more balanced, Perron eigenvector
is shown in Figure 12. Note that since a single bus line serves more stations, it is obviously
impossible to arbitrarily control the frequency with which single bus stops are served (unless
we assume that single buses can be used for point-to-point connections). Also notice that
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Figure 12. After the control action (i.e., doubling the frequency of the bus line 1-15-12-10-11-7-6), the densities of people
at bus stops are better balanced.

more bus lines might serve the same bus stops (e.g., bus stop 1). Accordingly, changing the
frequency of a single bus line only affects a subset of the people waiting for the bus at bus stop 1.

In some cases, the network planner might be interested in obtaining another specific dis-
tribution of waiting times, for instance to take into account queues of people at bus stops, but
in such a way that a given threshold of waiting time is never exceeded. In fact, the bus network
would not be efficient if in some circumstances a small number of people would have to wait an
unacceptable long time for the bus. In such cases, it is not obvious what the optimal frequency
of buses and the optimal network topology are to achieve a target density of people at bus
stops. However, some Markov chain tools are available for finding such results [Kirkland (2014)].

6.4 Clustering, services and advertising control

As a final control application of our model we now consider the identification of clusters in
the network. Recall, clusters are a function of networks, bus routes, population movement,
and demographic information. By filtering the population appropriately, information can be
extracted from the population about the behaviour of demographic groups. This information
can be used to provision bus services, or as part of targeted advertising campaigns. Here the
basic idea is to control the adequate spread of information in the network among a specific
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particular group. Clearly, clusters are important in this context and should be targeted by
advertisers to ensure rapid information dissemination. Similarly, critical nodes can be use as
part of targeted health campaigns (flu vaccination).

Section 2.2 provided a justification for the use of the second eigenvector to identify clus-
ters in a transport network, and we remind here that clusters do not only depend on the
topology of the network, but also on how people do use the transport network (e.g., how often
they travel from one area to other areas). The information of clusters can be conveniently used
for a number of control applications, and referring to network planning and city management,
they can be also used

• to design transport routes within clusters, and to minimize the use of transport resources
to connect the clusters. Clusters would correspond to sub-cities within the whole city (e.g.,
neighbourhoods);

• when planning the construction of new facilities, one could focus on what facilities are missing
in what neighbourhoods (e.g., if one plans to open a new pharmacy, it could be convenient to
check if one cluster is missing a pharmacy);

• finally, the same information regarding clusters could be given to some interested service
providers as a means to link clusters (e.g., taxi companies, car rental companies, adverstising
companies, etc.).

7 Conclusions

In this paper a Markov chain approach was developed to model multi-modal transport networks.
Some information collected from the transport network (e.g., waiting and travel times) was used
to build the transition matrix of our model. The model was then validated using the mobility
simulator SUMO, and some data available from the multi-modal transportation network in
London. Then, some applications of efficient network control were outlined to demonstrate the
potentials of the proposed model. Future work will further investigate the described applications,
and extend the model to incorporate data over multiple time-scales.
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Häme, L., and Hakula, H. (2013), “Dynamic Journeying in Scheduled Networks,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 14, no. 1, pp. 360–369.

Tsubouchi, K., Yamato, H., and Hiekata, K. (2010), “Innovative on-demand bus system in
Japan,” IET Intelligent Transport Systems, vol. 4, no. 4, pp. 270–279.

Bartholdi III, J.J., and Eisenstein, D.D. (2012), “A self-coordinating bus route to resist bus
bunching,” Transportation Research Part B, vol. 46, no. 4, pp. 481–491.

Crisostomi, E., Kirkland, S., and Shorten, R. (2011), “A Google-like model of road network
dynamics and its application to regulation and control,” International Journal of Control,
vol. 84, no. 3, pp. 633–651.

Crisostomi, E., Kirkland, S., Schlote, A., and Shorten, R. (2011), “Markov Chain based Emissions
Models: a Precursor for Green Control,” Green IT: Technologies and Applications, Springer
Verlag, pp. 381–400.

Schlote, A., Crisostomi, E., Kirkland, S., and Shorten, R. (2012), “Traffic Modelling Framework
for Electric Vehicles,” International Journal of Control, vol. 85, no. 7, pp. 880–897.

Yang, B., Kaul, M., and Jensen, C.S. (2014), “Using Incomplete Information for Complete Weight
Annotation of Road Networks,” IEEE Transactions on Knowledge and Data Engineering, vol.
26, no. 5, pp. 1267–1279.

Bekkerman, E.N., Kataev, S.G., and Kataeva, S.S. (2013), “Heuristic approximation method for



March 26, 2015 8:39 International Journal of Control MC˙MultiModal˙IJC˙rev˙v4

REFERENCES 19

a random flow of events by an MC-flow with arbitrary number of states,” Automation and
Remote Control, vol. 74, no. 9, pp. 1449–1459.
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