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Directionality Compensation for Linear Multivariable

Anti-windup Synthesis.

Ambrose A. Adegbege∗ and William P. Heath∗∗

Abstract

We develop new synthesis procedures for optimizing anti-windup control applicable to open-loop

exponentially stable multivariable plants subject to hardbounds on the inputs. The optimizing anti-

windup control falls into a class of compensator commonly termed directionality compensation. The

computation of the control involves the on-line solution ofa low-order quadratic program in place

of simple saturation. We exploit the structure of the quadratic program to incorporate directionality

information into the off-line anti-windup synthesis usinga decoupled architecture similar to that proposed

in the literature for anti-windup schemes with simple saturation. We demonstrate the effectiveness of

the design compared to several schemes using a simulated example.

I. INTRODUCTION

Most practical control problems must deal with constraintsimposed by equipment limitations

such as actuator nonlinearities. One approach that has received much attention in dealing with

such problems is the anti-windup technique [2], [3], [4], [5], [6], [7], [8]. It is also a common

practice to incorporate an additional artificial non-linearity (directionality compensator) in mul-

tivariable anti-windup designs to address the problem of directionality [9], [10], [11], [12], [13],

[14]. In general, the design of a directionality compensator is carried out independently of the

linear control design and with the assumption that the resulting optimizing structure inherits the
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stability of the unsaturated loop (e.g. [10], [12]). Such directionality compensators often take

the form of solutions to some convex optimization problems;these are solved either implicitly

([15]) or explicitly ([10], [11], [12]) on-line during control computation. When the control policy

is obtained by an explicit solution of an on-line optimization problem at each time step, the

resulting scheme is termed optimizing (e.g. [16], [17]). Inthis paper, we distinguish such on-line

optimization from the off-line synthesis required before implementation. We assume the control

action is available instantaneously, as the underlying optimization is low-order, independent of

state, piecewise affine in the solution space and can be solved order of magnitude faster than

the plant bandwidth [18].

The main contribution of this paper is the synthesis of anti-windup with both stability and

performance guarantees for systems incorporating directionality compensation in the form of

a quadratic program (QP). In particular, we note that the information from the directional

compensator that is resolved on-line can be incorporated into the off-line anti-windup synthesis

to guarantee closed-loop stability as well as improved performance.

This paper extends the preliminary results of [1], where development was restricted to the

internal model control (IMC) structure of [9], [15] and it is anatural generalization of [4]

to cases where the control non-linearity is coupled and satisfy a generalized sector condition.

The resulting off-line synthesis is characterized by two matrices:F from the linear anti-windup

conditioning andE from the directionality compensation. We designE to minimize some integral

squared error performance objective and then synthesizeF via a convex search over linear matrix

inequalities (LMIs).

Other related works include [17], [19], [20] where sufficient conditions for closed-loop stability

were derived in terms of the Karoush-Kuhn-Tucker (KKT) conditions associated with the input

non-linearity. These approaches allow only fora posteriori stability checks when the anti-windup

compensator has already been designed using an existing design technique (e.g. [15]). Others are

[21], [22] where non-diagonal stability multipliers are employed in the analysis of systems with

decoupled and repeated nonlinearities. Synthesis using the non-diagonal multipliers of ([21], [22])

may be problematic [23, Remark 3]. In [2], an algebraic loop was deliberately introduced into

the static anti-windup configuration for improved performance. Under certain conditions ([24]),

the algebraic loop leads to a QP whose solution may be considered a directionality compensator.

However, the well-posedness and practical implementations of such algebraic loops are non-
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trivial [25]. The synthesizing LMI of [2] is also not always feasible (see e.g.[3]) and the choice

of performance specification do not relate directly to the true goal of anti-windup design which

is the swift recovery of linear performance ([4], [26]). Here, we exploit an extra design freedom

for incorporating the system’s directional characteristics as well as stability and performance

requirements for a dynamic anti-windup synthesis which is always feasible. This extra design

freedom has previously been exploited in [27] but only to eliminate algebraic loop in the anti-

windup construction.

Notations: Let Lm
2

be the Hilbert space ofRm valued functionsf on [0,∞) such that
∫

∞

0
|f(t)|2dt is finite. The expression〈f, g〉 stands for the inner product of signalsf, g ∈ Lm

2

defined by
∫
∞

0
f(t)Tg(t)dt. For a general operatorΠ : Lm

2
→ Lm

2
, Π∗ denotes the adjoint. LetΠ

be a bounded self-adjoint operator satisfyingΠ = Π∗; then a bounded operatorψ : Lm
2
→ Lm

2

is said to satisfy the Integral Quadratic Constraint (IQC) defined byΠ or simply ψ ∈ IQC(Π)

if the following inequality holds [28]
〈
u
v


 ,Π


u
v



〉

≥ 0 for all v = ψ(u), u ∈ Lm
2
. (1)

The signs� and� denote element by element inequalities.

II. PROBLEM SETUP

Fig. 1: Configuration for anti-windup and directionality compensation.

We consider the optimizing structure of Fig. 1. The plant is given by y = Gu+ d with only

boundedu admissible and whereG represents the plant dynamics which are assumed to be

perfectly known. To avoid confusion, we discriminate between uK , ulin anduψ as follows:uK
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is the output of controllerK for the compensated closed-loop,ulin is the output of controllerK

when the closed-loop is in the linear range i.e. the input constraints are not active anduψ is the

input to the directionality compensator defined byψ(.). We denote the state space realizations

of G and its right co-prime factorizationG = NM−1 respectively as

G ∼


 A B

C D


and


M
N


 ∼




A+BF B

F I

C +DF D


 (2)

whereF is such thatA+BF is Hurwitz. The linear controller denoted asK is assumed to have

been designed to meet some acceptable linear stability and performance criteria. This implies

that the unconstrained closed-loop system

ylin = (I +GK)−1GKr + (I +GK)−1d

ulin = K(I +GK)−1(r − d)
(3)

is internally stable [29]. Usually, the linear controllerK is designed such that the closed loop

system (3) is decoupled. The signalylin is the unconstrained (linear) plant output. The exogenous

signalsr andd represent the reference and the disturbance signals respectively. The control input

bound is modeled using a saturation function block as follows:

û = sat(u) =




sat(u1)
...

sat(um)


 where sat(ui) =





umaxi ui ≻ umaxi

ui umini � ui � umaxi

umini ui ≺ umini

(4)

denotes the saturation non-linearity associated with eachof the manipulated inputui(t) for some

umini � 0 andumaxi � 0.

Since the multivariable saturation non-linearity (4) actselement by element, the direction of

the actual plant input vector̂u necessarily differs from that of the controller output vector u

[9], [13]. Such directional change may be unduly amplified especially for plants with strong

structural couplings [9]. For such class of systems, a naiveapplication of the classical anti-

windup techniques has been shown to result in significant performance deterioration or even

instability [30], [9]. This performance loss is generally attributed to the effects of directionality

(e.g. [31], [10], [11], [12]). The artificial non-linearity, represented asψ(.), is introduced in Fig. 1

such that the difference between the unconstrained response ylin and the constrained responsey
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is minimized in some sense. LetE ∈ R
m×m be a non-singular structural matrix that represents

the plant’s directional characteristics; the directionalcompensator is such that its optimal solution

v minimizes the Euclidean norm of the difference betweenEv andEuψ while not violating the

constraints imposed by the actuator limits. This constrained weighted least distance problem can

be stated as

min
v

1

2
(v − uψ)

TH(v − uψ), subject toumini � vi � umaxi , i = 1, · · · ,m (5)

or in the following standard form

ψ(uψ) = argmin
v

1

2
vTHv − vTHuψ, subject toLv � b with b � 0 (6)

whereH = ETE = HT > 0 ∈ R
m×m. The fixed termsL ∈ R

2m×m and b ∈ R
2m in the

inequality constraints are obtained from (4) as

L =
[
−Im, Im

]T
and b =

[
−(umin)T , (umax)T

]T
(7)

whereumin =
[
umin
1

, · · · , uminm

]T
� 0 and umax =

[
umax
1

, · · · , umaxm

]T
� 0 are the

lower and upper bounds on the control inputs respectively. It is important to note thatv = sat(uψ)

solves (6) whenE is diagonal or the identity and thatv is admissible for any choice ofE (i.e.

v = sat(v)). Sincev is always admissible, we can safely ignore the saturation block preceding

the plant modelG in Fig. 1. The objective function of (6) is strictly convex byvirtue ofH being

positive definite. Since the constraints describe a box which contains the origin, the feasible set

is not empty [17], the quadratic program always has a unique solution [32].

III. E QUIVALENT REPRESENTATIONS

We take advantage of the structure of the non-linearityψ(.) to obtain equivalent representations

of the optimizing anti-windup framework of Fig. 1. These alternative representations are directly

linked to the two design variablesF and E, and hence provide insights on their design or

synthesis. First, we transformψ(.) into related nonlinearities satisfying some sector conditions.

Lemma 1: Let v = ψ(uψ) be the quadratic program defined by (6) and letw = ξ(uψ) be the

quadratic program

ξ(uψ) = argmin
w

1

2
wTHw, subject toLuψ − Lw � b, (8)
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with H = ETE = HT > 0 and whereL and b are defined as in (7). The interconnection of

w = ξ(uψ) with v = uψ − w is equivalent tov = ψ(uψ).

Lemma 2: Let the quadratic program (6) be set asv = ψ(uψ) with H = ETE = HT > 0

andL and b are defined as in (7). Let̄v = φ(ū) be the quadratic program

φ(ū) = argmin
v̄

1

2
v̄T v̄ − v̄T ū, subject toRv̄ � b. (9)

Supposeφ(ū) = Eψ(uψ), ū = Euψ andR = LE−1, then by input-output scaling,ψ(u) and

φ(ū) are equivalent. Furthermore,φ(ū) belongs to the sector[0 1].

Remark 1: If E is chosen to be diagonal or the identity,ψ(.) andξ(.) reduce to the decentral-

ized saturation and dead-zone non-linearities respectively (see e.g. [19], [20]). This is the case

in most existing anti-windup formulations whereE is used to eliminate algebraic loops (e.g.

[27], [4]).

Fig. 2: Equivalent Structure I.

Using the transformation in Lemma 1 and the relationships in(3), the optimizing structure in

Fig. 1 can be represented in the decoupled structure of Fig. 2. This decoupled structure is attrac-

tive for anti-windup synthesis (e.g. [4], [33]) and allows for easy incorporation of information

from the directionality compensatorψ(.) or ξ(.) into the offline synthesis. Alternatively, using

the linear transformations in Lemma 2, the optimizing anti-windup structure in Fig. 1 can be

re-arranged as shown in Fig. 3 wherẽM and Ñ are given by:


M̃
Ñ


 ∼




A+ BF BE−1

F E−1

C +DF DE−1


 . (10)
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Fig. 3: Equivalent Structure II.

with F andE being design variables andE is invertible. The co-prime factorization (10) is more

general than (2) as it offers an extra degree of freedom via the static matrixE which can be

exploited in the anti-windup design. The anti-windup design then reduces to finding appropriate

parametersF andE which ensure both the stability and the performance of the closed-loop

system. This interpretation is similar to the co-prime-factor parametrization in [27], [33], but

here the optimizing framework provides some additional insights as to the role and the choice of

E. We also advocate thatE should not be used as a free design parameter but should be chosen

based on some structural characteristics of the plant. Fromthe equivalent structure of Fig. 3, the

blockE−1 may be considered a static pre-compensator for the plant andmay be chosen such that

the response is decoupled either in the transient period or at steady states (e.g. [12], [17], [34]).

Similarly, the blockE may be considered a static post-compensator for the controller and may

be chosen such thatKE is decoupled (e.g. [10]). Existing directionality compensation schemes

[10], [12], [17] correspond to particular choices ofE. We highlight some specific choices here

and refer readers to [35] for detailed derivations.

1. Optimization based Conditioning Technique [10]

E = lim
s→∞

[K(s)]−1 . (11)

2. Optimal Directionality Compensation [12]

E = lim
s→∞

[diag(sri)G(s)] . (12)
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whereri = min(ri1, ri2, . . . , rim) and ri,j is the relative degree of outputyi with respect to

manipulated inputuj [12]. In this case, it is usual to callE the characteristic or decoupling

matrix ofG(s) as it captures the structural couplings between its input and output channels

[34].

3. Steady State Directionality Compensation [17], [34]

E = lim
s→0

[G(s)] . (13)

Thus, it is possible to chooseE such that during saturation, the map between the admissibleinput

v and the plant outputy is decoupled at certain frequencies. Suppose thatE is chosen based

on the above structural considerations such that performance deterioration due to the effects

of directionality is minimized in some sense. Then,F can be chosen based on convex search

such that the anti-windup system is guaranteed stable and that recovery of linear performance is

hastened. For the special case whereE is diagonal, the directionality compensation (6) reduces

to the repeated saturation non-linearity (4) (see Remark 1).In this instance,v = sat(uψ) is the

optimal solution to (6) and the inclusion ofE in the anti-windup synthesis is of no use (see [27]

and also Corollary 2). We discuss in the next section a two-step procedure for the synthesis of

F andE and also comment on the procedure for the simultaneous synthesis ofF andE.

IV. A NTI-WINDUP COMPENSATORSYNTHESIS

We use the machinery of integral quadratic constraints (IQC)to synthesize appropriate anti-

windup compensator while incorporating information from the directionality compensator. We

only consider static IQCs, since it is our intention to employsuch IQCs in the convex synthesis

of a suitable anti-windup compensator. Consider the feedback structure of Fig. 4. Standard IQC

Fig. 4: Interconnections for Synthesis

theory [28] gives sufficient conditions for the stability ofsuch interconnection if for∆ ∈ IQC(Π),
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the following inequality is satisfied

M(jω)

I



T

Π


M(jω)

I


 < 0 ∀ ω ∈ R. (14)

Suppose we defineyd = y − ylin, a fictitious block∆p satisfying theL2 gain condition

‖ulin‖2 − 1

γ2
‖yd‖2 ≤ 0 with γ > 0 (e.g. [36]) and the nonlinear mapw = ξ(uψ) satisfying

wTH(w− uψ) ≤ 0 with w = uψ − v andH = HT > 0. The closed-loop structure Fig. 2 can be

transformed into the feedback interconnection of Fig. 4 with ∆ = diag(ξ,∆p) and

M =


I −M I

−N 0


 (15)

wherep =


uψ
yd


 and q =


 w

ulin


. The performance requirement that theL2 gain of the map

from ulin to yd be less thanγ > 0 is equivalent to checking the interconnection of Fig. 4 is stable

for all ∆p which is norm bounded by1/γ. This is a well-known convention (see [37, section 4.3]

and [21, comment after Theorem 2]). Also, such a performancespecification has been observed

to be central to the anti-windup design problem (e.g. [4], [38]) for the saturated case. Using

appropriate IQCs satisfied by the input-output maps ofξ and∆p, we state the following result.

Theorem 1: Given a stable linear time invariant plantG with co-prime factorization (2). Let

M be given by (15) and∆ = diag(ξ,∆p) be a bounded operator such thatξ and∆p satisfy

respectively the IQCs conditions
〈
uψ
w


 ,


 0 HΛ

ΛH −(HΛ + ΛH)




uψ
w



〉

≥ 0 ∀ w = ξ(uψ), uψ ∈ Lm
2

and (16)

〈
 yd

ulin


 ,


I 0

0 −γ2I




 yd

ulin



〉

≥ 0 ∀ ulin = ∆p(yd), yd ∈ Lm
2
. (17)

Suppose there existP = P T > 0, diagonalΛ > 0 andα = γ2 > 0 satisfying matrix inequality

(18)



ÃTP + PÃT PB − F THΛ 0

BTP − ΛHF −ΛH −HΛ ΛH

0 HΛ −αI


+




C̃T

DT

0







C̃T

DT

0




T

< 0 (18)
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with Ã = A + BF , C̃ = C + DF . Then, the feedback interconnection ofM and∆ is stable

for all uψ, yd ∈ Lm
2

and theL2-gain fromulin to yd is less thanγ.

Theorem 1 is not suitable for synthesis but allows for ana posteriori stability check when both

the anti-windup and the directionality compensations havealready been designed (i.eF andE

are both fixed). The IQC condition (16) is a generalization ofthe multivariable circle criterion

for sector-bounded nonlinearities [39]. In what follows, we modify (18) for convex synthesis.

We first consider the two-step design procedure.

A. Two-step design procedure for F and E

The following corollary provides an anti-windup synthesisprocedure for a given directionality

compensation parameterE.

Corollary 1: Consider the optimizing structure of Fig. 2 with a stable linear time invariant

plantG described by (2) and non-linearity described by the quadratic program (8). SupposeE is

fixed with H = ETE andT = H−1. Further Suppose there existQ = QT > 0, γ > 0, diagonal

U > 0 andX satisfying the linear matrix inequality (19)



AQ+QAT + BX +XTBT BUT −XT 0 QCT +XTDT

TUBT −X −UT − TU I TUDT

0 I −γI 0

CQ+DX DUT 0 −γI



< 0 (19)

Then, there exists a plant-order anti-windup compensator which renders the interconnection of

Fig. 2 stable with anL2 gain fromulin to yd less thanγ. The design parameterF characterizing

the co-prime factorization (2) is recovered usingF = XQ−1 whereX andQ are feasible

solutions of LMI (19).

After E has been chosen based on some structural considerations as highlighted in section III,

the design parameterF can be synthesized using (19) which is linear in its variables.

B. Simultaneous Synthesis of F and E

Corollary 2: Consider the optimizing structure of Fig. 2 with a stable linear time invariant

plant G described by (2) and non-linearity described by the quadratic program (8). Suppose
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there existQ = QT > 0, γ > 0, W andX satisfying the linear matrix inequality (20)



AQ+QAT + BX +XTBT BW −XT 0 QCT +XTDT

WBT −X −W −W T I WDT

0 I −γI 0

CQ+DX DW 0 −γI



< 0 (20)

Then, there exists a plant-order anti-windup compensator which renders the interconnection of

Fig. 2 stable with anL2 gain from ulin to yd less thanγ. The design parametersF and E

characterizing the co-prime factorization (10) are recovered using F = XQ−1 , E =
√
W−1U

whereX, Q andW are feasible solutions of LMI (20) andU > 0 is arbitrary.

Note that the feasibility of LMI (20) guarantees the invertibility of W . From the (2,2) element

of LMI (20), we have that−W −W T < 0. It follows thatW > 0 and henceW−1 exists.

Remark 2: Note that matrixW in LMI (20) is not restricted to be diagonal as in other LMI-

based anti-windup designs (e.g. [4, LMI (13)]). Although allowing W to assume a full block

structure may be considered a greater degree of freedom in the choice ofF , the recoveredF

from LMI (20) tends to place the poles of the anti-windup compensator far into the left half-

plane. This feature is characteristic of LMI-based dynamicanti-windup schemes (see [4], [40]

for details).

Remark 3: The main difference between Corollaries 1 and 2 is the explicit inclusion ofE

via T = H−1 in (19). LMI (20) is independent ofH. This may suggest thatH can be chosen

arbitrarily viaH = W−1U whereU is an arbitrary matrix. It is important to note that a naive

choice ofU may not preserve the structure of the directionality compensator. An alternative is

to restrictW in LMI (20) to be symmetric (i.eW = W T ) while U is chosen to be diagonal

positive definite. With this, anyH recovered fromH = W−1U (for W = W T satisfying (20))

is guaranteed to be symmetric positive definite (i.e.H = HT > 0). It follows that any such

H will preserve the structure of the directionality compensator. Similar conditions have earlier

been employed to guarantee the well-posedness of algebraicloops (e.g. [41], [25]).

In existing anti-windup literature (e.g. [2], [3], [4]),U is usually chosen such thatH = I. In

this case, LMI (19) reduces to a special case of (20) whereW is diagonal (compare with [4,

LMI (13)]). However, whenH is chosen as discussed in section III, LMI (19) allows for the

incorporation of the plant directional characteristics into the anti-windup optimization.
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Remark 4: Since theL2 performance channels in Corollary (1) are scaled versions ofthose

in Corollary (2), the attainedL2 gains are essentially the same (e.g. see [36, pg 95]).

Remark 5: Note that there is always a choice ofF such that LMIs (19) and (20) are feasible.

ChoosingF = 0 impliesM = I. In this instance, LMI (19) reduces to a version of the bounded

real lemma (e.g. [36]) and theL2 gain computed whenH = I corresponds to the infinity-norm

of the stable plantG. This case also recovers the conventional IMC anti-windup structure of

[9].

Since the solution of LMI (20) tends to produce fast dynamicswith large closed-loop poles, it is

common, for ease of implementation, to constrain the anti-windup poles to regions comparable to

the unconstrained closed-loop poles. In the spirit of [42],the anti-windup poles can be constrained

to a region formed by the intersection of the negative half s-plane and a disc of radiusr. This

can easily be achieved by solving in tandem with LMI (20) the following LMI region [42]


 −rP AP + BX

PAT +XTBT −rP


 < 0 (21)

wherer is the radius of the disk. Similarly, by incorporating robustness constraints [4] into LMI

(20), the anti-windup poles can be restricted to favorable regions for implementation.

V. SIMULATION EXAMPLE

In order to demonstrate the effectiveness of the proposed design procedure, we consider

an ill-conditioned example typical of distillation columncontrol [29]. This is a well-studied

problem because of the strong directionality and interaction that exist in the plant as well as

its high sensitivities to diagonal input nonlinearities and uncertainties. We compare three anti-

windup design approaches, namely the optimal directionality compensation scheme [12], the

dynamic anti-windup without directionality compensation[4] and the proposed anti-windup with

directionality compensation (Corollary 1).

The plant model is given by the transfer function matrix

G(s) =
1

75s+ 1


0.878 −0.864

1.082 −1.096


 (22)
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with both inputs constrained as|ui| ≤ 100, i = 1, 2. In the absence of control input satura-

tions, the linear controller is designed to achieve a completely decoupled closed-loop response

described by

GF (s) =
1

1.43s+ 1
I.

The unity feedback controller which achieves this decoupled response is given by [29]

K(s) =
75s+ 1

1.43s


45.38 −35.77

44.80 −36.23


 . (23)

The plant’s characteristic matrix is obtained as
1

75


0.878 −0.864

1.082 −1.096


 with condition number

141.732. For the directionality compensation scheme [12], we choseH = ETE with E as the

plant’s non-singular characteristic matrix. Fig. 5 shows the input and output responses of the plant

to a set-point changes from[0 0]T to [0.7 0]T at timet = 0 and from[0.7 0]T to [0.7 0.4]T

at timet = 50 for the different compensation schemes. Note that the unconstrained case requires

a very aggressive control action during transients to achieve the decoupled response. During the

transient periods following the two set-point changes, control actions due to the directionality

compensator never violate the saturation limits. During the first transient,u1 stays on the positive

saturation limit whileu2 gradually approaches it. This process is reversed during the second

transient whereu2 stays on the negative saturation limit whileu1 approaches it. For the saturated

case (without anti-windup and directionality compensations), the saturation limits are violated

during the two transient periods leading to clipping of bothcontrols at the saturation limits.

The effects of clipping are clear on the output response: sluggishness and inverse response. The

directionality scheme [12] results in an improved transient response as compared to the saturated

(uncompensated) response. Note that this scheme does not offer any stability guarantee. While

the problem of directionality is solved by incorporating directionality compensation, the proposed

scheme (Corollary 1) recovers linear performance faster andit is closest to the unconstrained

response. This superior performance confirms the benefit of combining the optimality of an on-

line optimization with the efficiency of convex off-line anti-windup synthesis while guaranteeing

closed-loop stability.

Finally, we compare the proposed scheme (Corollary 1) with that of [4, LMI 23]. Following

[4], we consider three different performance-robustness weight combinations, namelywp =
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Fig. 5: Responses of the unconstrained (solid), saturated (Dotted), directionality compensated

[12] (Dashed) and anti-windup with directionality compensation (Dashdotted) to a step reference.

The superior performance of the anti-windup with directionality compensation over [12] can

be attributed to its efficiency and swiftness in recovering linear performance after a period of

nonlinear operation.

0.01,Wr = 1 (case 1),wp = 1,Wr = 0.01 (case 2) andWp = 1,Wr = 1 (case 3). The feedback

gain recovered from LMI (19) is

FH =


162.1456 −308.6913

307.7003 −454.2451


 . (24)
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For the three different cases of [4], we have

FCase 1 =


 0.2623 −0.2635

−0.2635 0.2631


 ∗ 10−7, FCase 2 =


−20.1877 20.2183

20.7024 −20.7379




andFCase 3 =


−0.1539 0.1541

0.1541 −0.1543


 .

(25)

As discussed in Remark 5 (also in [4]), case 1 recovers the internal model control (IMC)

anti-windup sinceFCase 1 ≈ 0. It is well-known that the IMC anti-windup is robust to input-

multiplicative uncertainties but may result in a very poor performance ([9], [4], [8]). In case 2,

performance is emphasized over robustness while case 3 places equal emphasizes on robustness

and performance. The input and output responses of the threedifferent cases are compared to

those of the proposed scheme in Fig. 6. Note that for all the three cases considered, the dynamic

anti-windup [4] seeks to restore the plant inputs to the linear region as quickly as possible and

hence the initial sluggish and inverse (on the second channel) responses observed in Fig. 6. As

for the proposed scheme, only one of the control inputs is allowed to stay on the constraint

during each of the transient periods. This ensured that the plant is driven in the right direction

eliminating both the initial sluggish and inverse responses.

For completeness, we mention that Corollary 2 yields similarresponses to [4] when the closed-

loop poles are subjected to same restrictions. Note that forthis case we can chooseH as the

identity (i.e.H = I). Without restrictions, the feedback gainF recovered from LMI (20) is

given by

FI =


−1.4552 1.4575

0.2047 −0.2052


 ∗ 105. (26)

This results in a compensator with very fast poles requiringa very high sampling frequency

for implementation. These fast poles can be constrained to asuitable region either by solving

LMI (21) (e.g. with r = 0.05) in tandem with LMI (20) or by applying the robustness and

performance weights of [4].

VI. CONCLUSIONS

We have presented a multivariable optimizing anti-windup design which guarantees closed-

loop stability while compensating for the effects of both windup and directionality. Directionality
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Fig. 6: Responses of anti-windup schemes with (Corollary 1) and without [4] directionality

compensation: unconstrained (solid), [4, Case 1] (Dotted),[4, Case 2] (Dashdot), [4, Case 3]

(Point) and LMI-based anti-windup with directionality compensation 1 (Dashed) to set-point

changes from[0 0]T to [0.7 0]T at time t = 0 and from [0.7 0]T to [0.7 0.4]T at time

t = 50. The antiwindup with directionality compensation can be seen to have a significant

improvement over [4] in that it combines the optimality of directionality compensation with the

efficiency of model recovery anti-windup techniques.

compensation is achieved through an on-line optimization while windup is addressed through an

off-line convex dynamic anti-windup synthesis. The resulting synthesis problem is characterized

by two gain matricesF andE. In particular, we advocate thatE should not be used as a free-

design parameter but should be chosen based on the structural characteristics of the plant. Such

structural information can then be incorporated into the convex off-line anti-windup synthesis

to guarantee both closed-loop stability and performance. The simulated examples demonstrate

the benefits that ensue: both from introducing directionality compensation into an anti-windup
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structure and from applying our proposed design procedures. The results are especially beneficial

when the plant is ill-conditioned or has lightly damped modes. We have, however, restricted our

discussions to the nominal case where there are no model uncertainties. An area of further work

is to incorporate robustness into the optimizing anti-windup design (see [43]).

VII. A PPENDIX

To prove Theorem 1, we need to establish the relations between the nonlinearitiesψ and ξ.

This follows from the proofs of Lemmas 1 and 2 below.

Proof of Lemma 1: The necessary and sufficient KKT conditions [32] forξ are given by

Hw − LTλ = 0, Luψ − Lw − b+ s = 0, s � 0, λ � 0, andλT s = 0. (27)

If we substitutew = uψ − v into (27), we obtain

Hv −Huψ + LTλ = 0, Lv − b+ s = 0, s � 0, λ � 0, andλT s = 0. (28)

The conditions in (28) are exactly the KKT conditions forψ. It follows that if w is the unique

optimal solution of (8), then the optimal solution of (6) is uniquely determined byv = uψ−w.

Proof of Lemma 2: The necessary and sufficient KKT conditions [32] forφ are given by

v̄ − ū−RTλ = 0, Rv̄ − b+ s = 0, s � 0, λ � 0, andλT s = 0. (29)

Equivalence follows by substitutinḡv = Ev, ū = Euψ andL = RE into (29) and pre-multiplying

the first condition byET (sinceE is invertible) to obtain (28). Pre-multiplying the first KKT

condition in (29) byv̄T and substituting gives

v̄T v̄ − v̄T ū = −bTλ ≤ 0. (30)

Hence, we may sayφ(ū)T [φ(ū)− ū] ≤ 0 or analogouslyφ(ū) ∈ sector[0, I].

Proof of Theorem 1: From (30) and using the relationw = uψ − v, we have the following

generalized sector condition

wTHw − wTHuψ ≤ 0. (31)

For any diagonalΛ > 0, the inequalitywTΛH(w − uψ) ≤ 0 also holds. In IQC notation,

we can writeξ ∈ IQC(Πξ) with Πξ =


 0 HΛ

ΛH −(HΛ + ΛH)


 . Hence, IQC condition (16)
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holds for ξ. Also, theL2 gain performance requirement in terms of the fictitious operator ∆p

can be expressed in the IQC notation as∆p ∈ IQC(Π∆p
) whereΠ∆p

=


I 0

0 −γ2I


 . Then

∆ = diag(φ,∆p) ∈ IQC(Π) whereΠ is the diagonal augmentation ofΠφ andΠ∆p
given as

Π =




0 0 HΛ 0

0 I 0 0

ΛH 0 −(ΛH +HΛ) 0

0 0 0 −γ2I




(32)

with diagonalΛ > 0. From (2), the state space realization forM in (15) is derived as

M ∼




ẋ

uψ

yd


 =




A+ BF B 0

−F 0 I

−(C +DF ) −D 0







x

w

ulin


 . (33)

Using (32), (33) and the IQC frequency condition (14), the application of KYP lemma [44] leads

to the matrix inequality condition



PÃ+ ÃTP + C̃T C̃ PB − F THΛ + C̃TD 0

BTP +DT C̃ − ΛHF −ΛH −HΛ +DTD ΛH

0 HΛ −γ2I


 < 0 (34)

whereÃ = A+ BF and C̃ = C +DF and whereP = P T > 0. Rearranging (34) gives (18).

Proof of Corollary 1: SubstitutingX = FQ into (18) and followed by repeated congruence

transformations using diag(I, T−1, I, I) and diag(Q−1, U−1, I, I) gives



ÃTQ−1 +Q−1Ã Q−1B − F TT−1U−1 0 C̃T

BTQ−1 − U−1T−1F −U−1T−1 − T−1U−1 U−1T−1 DT

0 T−1U−1 −γI 0

C̃ D 0 −γI



< 0. (35)

Substituting forQ−1 = P , U−1 = Λ andT−1 = H in (35) followed by the application of Schur’s

complement gives (18). The result follows by applying Theorem 1.

Proof of Corollary 2: SubstitutingW = UT in LMI (20) gives LMI (19) and the result follows

by applying Theorem 1.
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