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Directionality Compensation for Linear Multivariable
Anti-windup Synthesis.

Ambrose A. Adegbegeand William P. Heattt

Abstract

We develop new synthesis procedures for optimizing antidwp control applicable to open-loop
exponentially stable multivariable plants subject to hbhodinds on the inputs. The optimizing anti-
windup control falls into a class of compensator commonlyned directionality compensation. The
computation of the control involves the on-line solution aflow-order quadratic program in place
of simple saturation. We exploit the structure of the quidrprogram to incorporate directionality
information into the off-line anti-windup synthesis usiaglecoupled architecture similar to that proposed
in the literature for anti-windup schemes with simple sation. We demonstrate the effectiveness of

the design compared to several schemes using a simulatetpkxa

. INTRODUCTION

Most practical control problems must deal with constraintposed by equipment limitations
such as actuator nonlinearities. One approach that hasedcmuch attention in dealing with
such problems is the anti-windup technique [2], [3], [4]}, [B], [7], [8]. It is also a common
practice to incorporate an additional artificial non-linsa(directionality compensator) in mul-
tivariable anti-windup designs to address the problem @atiionality [9], [10], [11], [12], [13],
[14]. In general, the design of a directionality compens&ocarried out independently of the

linear control design and with the assumption that the tiegubptimizing structure inherits the
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stability of the unsaturated loop (e.g. [10], [12]). Suchedtionality compensators often take
the form of solutions to some convex optimization problethgse are solved either implicitly

([15]) or explicitly ([10], [11], [12]) on-line during combl computation. When the control policy

is obtained by an explicit solution of an on-line optimipatiproblem at each time step, the
resulting scheme is termed optimizing (e.g. [16], [17])this paper, we distinguish such on-line
optimization from the off-line synthesis required befomglementation. We assume the control
action is available instantaneously, as the underlyingmopation is low-order, independent of

state, piecewise affine in the solution space and can bedaolger of magnitude faster than

the plant bandwidth [18].

The main contribution of this paper is the synthesis of amtidup with both stability and
performance guarantees for systems incorporating dimeaity compensation in the form of
a quadratic program (QP). In particular, we note that th@rmhtion from the directional
compensator that is resolved on-line can be incorporatedtine off-line anti-windup synthesis
to guarantee closed-loop stability as well as improvedgoerénce.

This paper extends the preliminary results of [1], whereettgyment was restricted to the
internal model control (IMC) structure of [9], [15] and it is rsatural generalization of [4]
to cases where the control non-linearity is coupled andfyad generalized sector condition.
The resulting off-line synthesis is characterized by twdrioes: /' from the linear anti-windup
conditioning andr from the directionality compensation. We desigrio minimize some integral
squared error performance objective and then synthésiza a convex search over linear matrix
inequalities (LMIs).

Other related works include [17], [19], [20] where suffidieonditions for closed-loop stability
were derived in terms of the Karoush-Kuhn-Tucker (KKT) cibiodds associated with the input
non-linearity. These approaches allow only &posteriori stability checks when the anti-windup
compensator has already been designed using an existiiggndeshnique (e.g. [15]). Others are
[21], [22] where non-diagonal stability multipliers are ployed in the analysis of systems with
decoupled and repeated nonlinearities. Synthesis usengah-diagonal multipliers of ([21], [22])
may be problematic [23, Remark 3]. In [2], an algebraic loos waliberately introduced into
the static anti-windup configuration for improved performoa. Under certain conditions ([24]),
the algebraic loop leads to a QP whose solution may be caesidedirectionality compensator.

However, the well-posedness and practical implementatminsuch algebraic loops are non-
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trivial [25]. The synthesizing LMI of [2] is also not alwaygdsible (see e.g.[3]) and the choice
of performance specification do not relate directly to thes tgoal of anti-windup design which

is the swift recovery of linear performance ([4], [26]). leewe exploit an extra design freedom
for incorporating the system’s directional charactescsstas well as stability and performance
requirements for a dynamic anti-windup synthesis whichlvgags feasible. This extra design

freedom has previously been exploited in [27] but only ton@tiate algebraic loop in the anti-

windup construction.

Notations: Let £ be the Hilbert space oR™ valued functionsf on [0,00) such that
I |f(t)]dt is finite. The expressionf, g) stands for the inner product of signafsg € £}
defined by/;* f(t)"g(t)dt. For a general operatdf : L5 — L£3', IT* denotes the adjoint. Léi
be a bounded self-adjoint operator satisfyiig= 11*; then a bounded operataor: £J* — L}
is said to satisfy the Integral Quadratic Constraint (IQC)rafibyII or simply ¢» € 1QC(II)
if the following inequality holds [28]

(]

[

> >0 for all v =1(u), ue LY. (1)
The signs= and > denote element by element inequalities.

Il. PROBLEM SETUP

Compensation Plant

d
L»ﬁ—K“K Yo |y B j}C G—i——y»

Fig. 1: Configuration for anti-windup and directionality cpemsation.

We consider the optimizing structure of Fig. 1. The plantiieg by y = Gu + d with only
boundedu admissible and wheré’ represents the plant dynamics which are assumed to be

perfectly known. To avoid confusion, we discriminate bedwe, w;;, andu, as follows:ux
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is the output of controlles” for the compensated closed-loap;, is the output of controlleé’
when the closed-loop is in the linear range i.e. the inpustramts are not active ang, is the
input to the directionality compensator defined {py ). We denote the state space realizations

of G and its right co-prime factorizatio® = N M ~! respectively as

A+ BF | B
Al B M
G~ and ~ F I (2)
C|D N
C+DF|D

whereF' is such thatd + BF' is Hurwitz. The linear controller denoted &Sis assumed to have
been designed to meet some acceptable linear stability arfdrmance criteria. This implies

that the unconstrained closed-loop system

Yin = (I + GK)'GKr + (I + GK)™'d
(3)
U = K(I + GK) ™' (r — d)

is internally stable [29]. Usually, the linear controllér is designed such that the closed loop
system (3) is decoupled. The signgl, is the unconstrained (linear) plant output. The exogenous
signalsr andd represent the reference and the disturbance signals teghecrhe control input

bound is modeled using a saturation function block as fatow

satu;) T
u = salu) = : where safu;) = ¢ «, UMt <y < U (4)
Sa(um) ulmin w; < u;’mn

denotes the saturation non-linearity associated with e&ate manipulated input;(¢) for some
u™m <0 andu"® = 0.

Since the multivariable saturation non-linearity (4) agksment by element, the direction of
the actual plant input vectoi necessarily differs from that of the controller output oect
[9], [13]. Such directional change may be unduly amplifiepeesally for plants with strong
structural couplings [9]. For such class of systems, a napglication of the classical anti-
windup techniques has been shown to result in significarfopeance deterioration or even
instability [30], [9]. This performance loss is generallyriduted to the effects of directionality
(e.g. [31], [10], [11], [12]). The artificial non-linearityepresented asg(.), is introduced in Fig. 1

such that the difference between the unconstrained respgnsand the constrained responge
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is minimized in some sense. Lét € R™*™ be a non-singular structural matrix that represents
the plant’s directional characteristics; the directioc@inpensator is such that its optimal solution
v minimizes the Euclidean norm of the difference betwégnand Fu,, while not violating the
constraints imposed by the actuator limits. This constrdiweighted least distance problem can

be stated as

1 , ;
minﬁ(v —uy) H(v —uy,), subject tou"" < v; < u"™ i=1,---,m (5)

v

or in the following standard form
1 . .
P(uy) = arg min§vTHv — v Huy, subject toLv < b with b = 0 (6)

where H = ETE = HT > 0 € R™™, The fixed termsL € R*™*™ andb € R?" in the

inequality constraints are obtained from (4) as

T

I [_[m’ Im}T andb — [_(umm)T7 (umax)Ti| (7)

R cee R s

where ™" = [ un umn }T =< 0 and y™*® = [ ue uma }T = 0 are the
lower and upper bounds on the control inputs respectively.important to note that = sau,)
solves (6) when£ is diagonal or the identity and thatis admissible for any choice of (i.e.

v = safv)). Sincewv is always admissible, we can safely ignore the saturationkbpreceding
the plant mode(~ in Fig. 1. The objective function of (6) is strictly convex kytue of H being
positive definite. Since the constraints describe a box hwhantains the origin, the feasible set

is not empty [17], the quadratic program always has a uniglgien [32].

[Il. EQUIVALENT REPRESENTATIONS

We take advantage of the structure of the non-linearity to obtain equivalent representations
of the optimizing anti-windup framework of Fig. 1. Theseealtative representations are directly
linked to the two design variable and E, and hence provide insights on their design or
synthesis. First, we transform(.) into related nonlinearities satisfying some sector coialit

Lemma 1: Let v = ¢ (uy) be the quadratic program defined by (6) anduet £(u,,) be the

guadratic program

1 .
E(uy) = arg mininHw, subject toLu, — Lw < b, (8)
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with H = ETE = HT > 0 and whereL andb are defined as in (7). The interconnection of
w = &(uy) With v = u, — w is equivalent tov = ¢)(uy). B
Lemma 2: Let the quadratic program (6) be set@as= ¢ (uy) with H = ETE = HT > 0

and L andb are defined as in (7). Let = ¢(u) be the quadratic program

1 .
¢@U==mgngn§ﬁfﬁ—iﬂﬂ,suMedtoR@:ﬁb (9)

Supposep(u) = Ev(uy), u = Euy, and R = LE™!, then by input-output scaling)(u) and
¢(u) are equivalent. Furthermore(u) belongs to the sectfor1|. m

Remark 1: If F is chosen to be diagonal or the identity(.) and{(.) reduce to the decentral-
ized saturation and dead-zone non-linearities respégt{gee e.g. [19], [20]). This is the case
in most existing anti-windup formulations where is used to eliminate algebraic loops (e.qg.
[27], [4])

Antiwindup and Directionality Compensations

M—-1
i

r K Wlin G _i Ylin > Y

Linear (Unconstrained) System

Fig. 2: Equivalent Structure 1.

Using the transformation in Lemma 1 and the relationship&jn the optimizing structure in

Fig. 1 can be represented in the decoupled structure of Fithi& decoupled structure is attrac-
tive for anti-windup synthesis (e.g. [4], [33]) and allowsr feasy incorporation of information
from the directionality compensatafr(.) or £(.) into the offline synthesis. Alternatively, using
the linear transformations in Lemma 2, the optimizing awvitidup structure in Fig. 1 can be

re-arranged as shown in Fig. 3 where and N are given by:

. A+BF\BE—1
Y
|~ F Bl . (10)

N
C+ DF | DE™!
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Compensation

d
_>2_T KK e e0) MY ¢ ii

Fig. 3: Equivalent Structure II.

with F" and E' being design variables ard is invertible. The co-prime factorization (10) is more
general than (2) as it offers an extra degree of freedom \gasthtic matrixZ which can be
exploited in the anti-windup design. The anti-windup dadigen reduces to finding appropriate
parameterst” and £ which ensure both the stability and the performance of tlesed-loop
system. This interpretation is similar to the co-primetdagparametrization in [27], [33], but
here the optimizing framework provides some additionaljimis as to the role and the choice of
E. We also advocate thdt should not be used as a free design parameter but should bercho
based on some structural characteristics of the plant. Enenequivalent structure of Fig. 3, the
block E~! may be considered a static pre-compensator for the plantnaiycbe chosen such that
the response is decoupled either in the transient period steady states (e.g. [12], [17], [34]).
Similarly, the blockE may be considered a static post-compensator for the ctertiaxid may
be chosen such thdt £ is decoupled (e.g. [10]). Existing directionality compatisn schemes
[10], [12], [17] correspond to particular choices Bf We highlight some specific choices here

and refer readers to [35] for detailed derivations.

1. Optimization based Conditioning Technique [10]

E = lim [K(s)]". (11)

2. Optimal Directionality Compensation [12]
E = lim [diag(s"")G(s)]. (12)

S§—00

May 21, 2015 DRAFT



wherer; = min(ri1, s, . . ., Timy) @ndryj is the relative degree of outpyt with respect to
manipulated inputy; [12]. In this case, it is usual to call the characteristic or decoupling
matrix of G(s) as it captures the structural couplings between its inpdtanput channels
[34].

3. Steady State Directionality Compensation [17], [34]

E =lim [G(s)]. (13)

s—0

Thus, it is possible to choode such that during saturation, the map between the admisaijtle

v and the plant outpuy is decoupled at certain frequencies. Suppose tha chosen based
on the above structural considerations such that perfaren@eterioration due to the effects
of directionality is minimized in some sense. Then,can be chosen based on convex search
such that the anti-windup system is guaranteed stable atddbovery of linear performance is
hastened. For the special case wheres diagonal, the directionality compensation (6) reduces
to the repeated saturation non-linearity (4) (see Remarknlthis instancep = satu,) is the
optimal solution to (6) and the inclusion &f in the anti-windup synthesis is of no use (see [27]
and also Corollary 2). We discuss in the next section a twp-gtecedure for the synthesis of

F and E and also comment on the procedure for the simultaneous essistbf /" and E.

IV. ANTI-WINDUP COMPENSATORSYNTHESIS

We use the machinery of integral quadratic constraints (1@Cynthesize appropriate anti-
windup compensator while incorporating information frohe tdirectionality compensator. We
only consider static IQCs, since it is our intention to empdoigh 1QCs in the convex synthesis

of a suitable anti-windup compensator. Consider the feddbtracture of Fig. 4. Standard 1QC

A

A

M

Fig. 4: Interconnections for Synthesis

theory [28] gives sufficient conditions for the stabilitysafch interconnection if foA € IQC(II),
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10

the following inequality is satisfied

{M(jw)] il {M(jw)] <0 VweR (14)
I I

Suppose we defing; = y — v, a fictitious blockA, satisfying theL, gain condition
liin]|* = 25 [lyall* < 0 with v > 0 (e.g. [36]) and the nonlinear map = ¢(u,) satisfying
w” H(w —uy) <0 with w =u, —vandH = H" > 0. The closed-loop structure Fig. 2 can be

transformed into the feedback interconnection of Fig. /wit= diag¢, A,) and

I—-M I
M = (15)
-N 0
u w
wherep = v andq = . The performance requirement that the gain of the map
Yd Ulin

from wu;;,, to y4 be less than > 0'is equivalent to checking the interconnection of Fig. 4 &bk
for all A, which is norm bounded by/~. This is a well-known convention (see [37, section 4.3]
and [21, comment after Theorem 2]). Also, such a performapeeification has been observed
to be central to the anti-windup design problem (e.g. [4B]]Jor the saturated case. Using
appropriate IQCs satisfied by the input-output mapg ahd A, we state the following result.

Theorem 1: Given a stable linear time invariant pla@t with co-prime factorization (2). Let
M be given by (15) and\ = diagl{, A,) be a bounded operator such tifaand A, satisfy
respectively the IQCs conditions

| 0 HA
v ; o >0V w=~E(uy), uy € L5 and (16)
w AH —(HA+AH)| |w
1 0
o TN S 0 g = Ay, € L2 a7
Ulin 0 _72] Ulin

Suppose there exigt = PT > 0, diagonalA > 0 anda = 4% > 0 satisfying matrix inequality
(18)

T

ATpP 4+ PAT PB_FTHA 0 cT| |CT
BTP _AHF —AH—-HA AH|+ |DT| |DT| <0 (18)
0 HA —al 0 0

May 21, 2015 DRAFT



11

with A = A+ BF, C = C + DF. Then, the feedback interconnection.t and A is stable
for all u,,yq € L5 and theLy-gain fromuwy;, to y, is less thany. m

Theorem 1 is not suitable for synthesis but allows foragosteriori stability check when both
the anti-windup and the directionality compensations halveady been designed (ife and £
are both fixed). The 1QC condition (16) is a generalizatiorth&f multivariable circle criterion
for sector-bounded nonlinearities [39]. In what followse wnodify (18) for convex synthesis.

We first consider the two-step design procedure.

A. Two-step design procedure for F' and £

The following corollary provides an anti-windup synthegiscedure for a given directionality
compensation parametér.

Corollary 1: Consider the optimizing structure of Fig. 2 with a stable dinéime invariant
plantG described by (2) and non-linearity described by the quadpabgram (8). Supposeg' is
fixed with H = ETE andT = H~'. Further Suppose there exi§t= Q7 > 0, v > 0, diagonal
U > 0 and X satisfying the linear matrix inequality (19)

(AQ + QAT + BX + XTBT BUT-XT 0 QCT+ XTDT]
TUBT — X ~UT-TU I TUDT
<0 (29)
0 I —vI 0
CQ+ DX DUT 0 I

Then, there exists a plant-order anti-windup compensatociwrenders the interconnection of
Fig. 2 stable with anC, gain fromu,;, to y, less thany. The design parametét characterizing
the co-prime factorization (2) is recovered using = XQ~! where X and @ are feasible
solutions of LMI (19)m

After E has been chosen based on some structural consideratiomghéighted in section llI,

the design parameter can be synthesized using (19) which is linear in its varigble

B. Smultaneous Synthesis of F' and F

Corollary 2: Consider the optimizing structure of Fig. 2 with a stable dnéme invariant
plant G described by (2) and non-linearity described by the quadmbgram (8). Suppose
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12

there existQ = Q7 > 0, v > 0, W and X satisfying the linear matrix inequality (20)

(AQ + QAT + BX + XTBT BW —XT 0 QCT+ XTDT]
WBT — X W -wT T W DT
<0 (20)
0 I —vI 0
CQ+ DX DW 0 I

Then, there exists a plant-order anti-windup compensatociwrenders the interconnection of
Fig. 2 stable with anZ, gain from v, to y, less thany. The design parameterS and E
characterizing the co-prime factorization (10) are recedeusing F = XQ ' , E = VWU
where X, Q and W are feasible solutions of LMI (20) and > 0 is arbitrary.m

Note that the feasibility of LMI (20) guarantees the inveitity of 1/. From the (2,2) element
of LMI (20), we have that-W — W7 < 0. It follows that W > 0 and hencéV ! exists.

Remark 2: Note that matrixit” in LMI (20) is not restricted to be diagonal as in other LMI-
based anti-windup designs (e.g. [4, LMI (13)]). Althoughoaling W to assume a full block
structure may be considered a greater degree of freedoneichbice ofF’, the recovered”
from LMI (20) tends to place the poles of the anti-windup cemgator far into the left half-
plane. This feature is characteristic of LMI-based dynaemt-windup schemes (see [4], [40]
for details).[]

Remark 3: The main difference between Corollaries 1 and 2 is the exphciusion of £
viaT = H~! in (19). LMI (20) is independent of/. This may suggest thall can be chosen
arbitrarily via H = WU whereU is an arbitrary matrix. It is important to note that a naive
choice of U may not preserve the structure of the directionality consp&r. An alternative is
to restrict’V in LMI (20) to be symmetric (i.e// = WT) while U is chosen to be diagonal
positive definite. With this, anyd recovered fromH = WU (for W = W7 satisfying (20))
is guaranteed to be symmetric positive definite (fe= H? > 0). It follows that any such
H will preserve the structure of the directionality compeaosaSimilar conditions have earlier
been employed to guarantee the well-posedness of algdbos (e.g. [41], [25])0
In existing anti-windup literature (e.g. [2], [3], [4])/ is usually chosen such th&f = I. In
this case, LMI (19) reduces to a special case of (20) whe&rés diagonal (compare with [4,
LMI (13)]). However, whenH is chosen as discussed in section Ill, LMI (19) allows for the

incorporation of the plant directional characteristicithe anti-windup optimization.
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Remark 4: Since thel, performance channels in Corollary (1) are scaled versiorthase
in Corollary (2), the attained’, gains are essentially the same (e.g. see [36, pgl95]).
Remark 5: Note that there is always a choice Bfsuch that LMIs (19) and (20) are feasible.
ChoosingF’ = 0 implies M = I. In this instance, LMI (19) reduces to a version of the bounde
real lemma (e.g. [36]) and th&, gain computed wheii/ = I corresponds to the infinity-norm
of the stable plantz. This case also recovers the conventional IMC anti-windupcture of
[9].C0
Since the solution of LMI (20) tends to produce fast dynamiis large closed-loop poles, it is
common, for ease of implementation, to constrain the amdup poles to regions comparable to
the unconstrained closed-loop poles. In the spirit of [##,anti-windup poles can be constrained
to a region formed by the intersection of the negative haifasie and a disc of radius This

can easily be achieved by solving in tandem with LMI (20) tbkoiving LMI region [42]

—rP AP + BX
<0 (21)
PAT + XTBT —rP
wherer is the radius of the disk. Similarly, by incorporating rotness constraints [4] into LMI

(20), the anti-windup poles can be restricted to favorabtgans for implementation.

V. SIMULATION EXAMPLE

In order to demonstrate the effectiveness of the proposetjmgrocedure, we consider
an ill-conditioned example typical of distillation colunwgontrol [29]. This is a well-studied
problem because of the strong directionality and inteoacthat exist in the plant as well as
its high sensitivities to diagonal input nonlinearitiesdaimcertainties. We compare three anti-
windup design approaches, namely the optimal directipnalbompensation scheme [12], the
dynamic anti-windup without directionality compensatidhand the proposed anti-windup with
directionality compensation (Corollary 1).

The plant model is given by the transfer function matrix

1 0.878 —0.864

G(s) =
s+1 11082 —1.096

(22)
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with both inputs constrained ds;| < 100, ¢ = 1,2. In the absence of control input satura-
tions, the linear controller is designed to achieve a cotepjledecoupled closed-loop response

described by
1

Gp(s) = —— T
r(8) = 1B i1

The unity feedback controller which achieves this decalipisponse is given by [29]

_ Ths+1 |45.38 —35.77

K(s)
1.43s 144.80 —36.23

(23)

L L , 1 10.878 —0.864 , .
The plant’s characteristic matrix is obtained -as— with condition number

75 [1.082 —1.096
141.732. For the directionality compensation scheme [12], we chidse ETE with E as the

plant’s non-singular characteristic matrix. Fig. 5 sholes input and output responses of the plant
to a set-point changes frofa 0] to [0.7 0]” at timet = 0 and from[0.7 0]7 to [0.7 0.4]"
at timet¢ = 50 for the different compensation schemes. Note that the wsiined case requires
a very aggressive control action during transients to &ehilee decoupled response. During the
transient periods following the two set-point changes,trmractions due to the directionality
compensator never violate the saturation limits. Durirgyfttst transienty;; stays on the positive
saturation limit whileu, gradually approaches it. This process is reversed duriagsétond
transient wheres, stays on the negative saturation limit while approaches it. For the saturated
case (without anti-windup and directionality compensa)o the saturation limits are violated
during the two transient periods leading to clipping of batintrols at the saturation limits.
The effects of clipping are clear on the output responsggsélnness and inverse response. The
directionality scheme [12] results in an improved transresponse as compared to the saturated
(uncompensated) response. Note that this scheme doesfeotny stability guarantee. While
the problem of directionality is solved by incorporatingetitionality compensation, the proposed
scheme (Corollary 1) recovers linear performance fasteriigdclosest to the unconstrained
response. This superior performance confirms the benefibrabming the optimality of an on-
line optimization with the efficiency of convex off-line awindup synthesis while guaranteeing
closed-loop stability.

Finally, we compare the proposed scheme (Corollary 1) with ¢ [4, LMI 23]. Following

[4], we consider three different performance-robustnessgit combinations, namelw, =
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Fig. 5: Responses of the unconstrained (solid), saturatedtgd), directionality compensated
[12] (Dashed) and anti-windup with directionality compatisn (Dashdotted) to a step reference.
The superior performance of the anti-windup with direcéilly compensation over [12] can
be attributed to its efficiency and swiftness in recoverimgar performance after a period of

nonlinear operation.

0.01,W, =1 (case 1)w, = 1,W, = 0.01 (case 2) andV, = 1, W, =1 (case 3). The feedback

gain recovered from LMI (19) is
162.1456 —308.6913

Fy = . (24)
307.7003 —454.2451
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For the three different cases of [4], we have

0.2623 —0.2635 e —20.1877  20.2183

FCaselz * 10 7FCa562:

—0.2635 0.2631 20.7024 —20.7379

. . (25)

—0.1539 0.1541

and Frgse 3 = )
0.1541 —0.1543

As discussed in Remark 5 (also in [4]), case 1 recovers thenmtenodel control (IMC)
anti-windup sincefg.,. 1 ~ 0. It is well-known that the IMC anti-windup is robust to input
multiplicative uncertainties but may result in a very poerfprmance ([9], [4], [8]). In case 2,
performance is emphasized over robustness while case 8spdapial emphasizes on robustness
and performance. The input and output responses of the tliffeeent cases are compared to
those of the proposed scheme in Fig. 6. Note that for all treetbhases considered, the dynamic
anti-windup [4] seeks to restore the plant inputs to thedinegion as quickly as possible and
hence the initial sluggish and inverse (on the second charesponses observed in Fig. 6. As
for the proposed scheme, only one of the control inputs mwatl to stay on the constraint
during each of the transient periods. This ensured that & s driven in the right direction
eliminating both the initial sluggish and inverse respanse

For completeness, we mention that Corollary 2 yields simmédaponses to [4] when the closed-
loop poles are subjected to same restrictions. Note thathfercase we can choodé as the
identity (i.e. H = I). Without restrictions, the feedback gain recovered from LMI (20) is
given by

~1.4552  1.4575 .
0.2047 —0.2052

This results in a compensator with very fast poles requiangery high sampling frequency
for implementation. These fast poles can be constraineddoitable region either by solving
LMI (21) (e.g. with » = 0.05) in tandem with LMI (20) or by applying the robustness and

performance weights of [4].

VI. CONCLUSIONS

We have presented a multivariable optimizing anti-wind@sign which guarantees closed-

loop stability while compensating for the effects of botmdup and directionality. Directionality
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Fig. 6: Responses of anti-windup schemes with (Corollary 1) aithout [4] directionality
compensation: unconstrained (solid), [4, Case 1] (Dottgf)Case 2] (Dashdot), [4, Case 3]
(Point) and LMI-based anti-windup with directionality cpensation 1 (Dashed) to set-point
changes from0 0]” to [0.7 0] at timet = 0 and from[0.7 0]T to [0.7 0.4]7 at time
t = 50. The antiwindup with directionality compensation can berséo have a significant
improvement over [4] in that it combines the optimality ofetitionality compensation with the

efficiency of model recovery anti-windup techniques.

compensation is achieved through an on-line optimizatibieawindup is addressed through an
off-line convex dynamic anti-windup synthesis. The raagltsynthesis problem is characterized
by two gain matriced” and E. In particular, we advocate thdt should not be used as a free-
design parameter but should be chosen based on the stiwttaracteristics of the plant. Such
structural information can then be incorporated into thavea off-line anti-windup synthesis
to guarantee both closed-loop stability and performant® Jimulated examples demonstrate

the benefits that ensue: both from introducing directitpalompensation into an anti-windup
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structure and from applying our proposed design procediitesresults are especially beneficial
when the plant is ill-conditioned or has lightly damped m@dé&/e have, however, restricted our
discussions to the nominal case where there are no modettamtes. An area of further work

is to incorporate robustness into the optimizing anti-windlesign (see [43]).

VII. APPENDIX

To prove Theorem 1, we need to establish the relations betwe nonlinearities) and¢.
This follows from the proofs of Lemmas 1 and 2 below.

Proof of Lemma 1: The necessary and sufficient KKT conditions [32] foare given by
Hw—L"\=0, Luy — Lw—b+s=0, s =0, A =0, and\"s = 0. (27)
If we substitutew = u,, — v into (27), we obtain
Hv— Huy+L"A =0, Lv—b+s=0, s =0, A =0, and\"s = 0. (28)

The conditions in (28) are exactly the KKT conditions for It follows that if w is the unique
optimal solution of (8), then the optimal solution of (6) isiquely determined by = u,;, —w.m

Proof of Lemma 2: The necessary and sufficient KKT conditions [32] foare given by
0—u—R'A=0, Ro—b+s=0, s>=0, A>=0, and\Ts =0. (29)

Equivalence follows by substituting= Ev, « = Eu, andL = RE into (29) and pre-multiplying
the first condition byE” (since £ is invertible) to obtain (28). Pre-multiplying the first KKT

condition in (29) bys” and substituting gives
o' —ola=—-b"'A<0. (30)

Hence, we may say(u)” [¢p(u) — u] < 0 or analogouslys(u) € sectofo, I]. m

Proof of Theorem 1: From (30) and using the relatiom = «,, — v, we have the following
generalized sector condition
w! Hw — w' Huy, < 0. (31)
For any diagonalA > 0, the inequalityw” AH(w — u,) < 0 also holds. In IQC notation,
0 HA

we can write¢ € 1QC(Il¢) with II, = . Hence, 1QC condition (16)
AH —(HA+ AH)
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holds for&. Also, the £, gain performance requirement in terms of the fictitious afmrA,

can be expressed in the IQC notation As € 1QC(I15,) wherells, =

. Then

21
A = diag(¢, A,) € IQC(II) wherell is the diagonal augmentation oif, andOHAp 7given as
[0 0 HA 0 ]
a0 0 0 (32)
AH 0 —(AH+HA) 0
0 0 0 —21|
with diagonalA > 0. From (2), the state space realization fot in (15) is derived as
7 A+BF | B o]
M~ | = ~F 0 I||w (33)
Yd —(C+DF)|-=D 0 Ulin

Using (32), (33) and the 1QC frequency condition (14), thpligation of KYP lemma [44] leads
to the matrix inequality condition
PA4+ ATP+CTC PB-FTHA+C™D 0
BTP+DT'C —AHF —AH—-HA+D'D AH | <0
0 HA —2I

(34)

whereA = A+ BF andC = C + DF and whereP = PT > (. Rearranging (34) gives (18).

Proof of Corollary 1. SubstitutingX = F'Q) into (18) and followed by repeated congruence
transformations using diag, 7', I, I) and diagQ—!, U~!, I, I) gives

ATQA + QflA Qle — FTp-1p-1 0 C«T
BTQ_l _ U—lT—lF _U—lT—l _ T—lU—l U—lT—l DT
< 0. (35)
0 T-1U-! —I 0
i C D 0 -1

Substituting forQ~! = P, U~! = A andT~! = H in (35) followed by the application of Schur’s
complement gives (18). The result follows by applying Tiezorl.m

Proof of Corollary 2: SubstitutinglV = UT in LMI (20) gives LMI (19) and the result follows
by applying Theorem 1m
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