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Abstract

In this paper we address the problem of robust stability and set invariance of switched linear param-
eter varying (LPV) systems affected by bounded disturbances. A switched LPV system is a collection
of single LPV subsystems with a switching rule that decides which subsystem is active at each time.
This framework is useful for LPV systems with large parameter variation range for which it may be dif-
ficult to assess or guarantee stability over the whole parameter range. Our first contribution is to derive
a result for a single LPV system that extends and generalises previous work for switched systems. Our
second, and main, contribution is to apply this seed result in the derivation of dwell-time-type condi-
tions on the switched-LPV switching rule, which ensure robust closed-loop stability and set invariance
of the trajectories of the switched-LPV system across the whole parameter range. As an application of
the results, we consider the problem of reference tracking for LPV systems using switched LPV state
feedback and feedforward from an LPV reference system. Two examples are presented to illustrate the
results: a two-mass-spring system with a varying spring characteristic, and the nonlinear model of a
coupled-tank system which is embedded into a switched LPV system description.

1 Introduction
Linear parameter varying (LPV) systems are a class of linear systems whose state-space matrices are
function of time-varying parameters that are not known in advance, but can be measured upon operation
of the system. In recent years the LPV modelling approach has received major attention from the control
research community as a useful technique to obtain tractable mathematical descriptions for nonlinear sys-
tems. Indeed, a nonlinear model can be embedded in an LPV description by redefining the nonlinearities
in the model as varying parameters. This embedding technique is attractive since it allows the application
of powerful linear-like design tools to a wide range of complex nonlinear models.

Numerous techniques have been developed to assess robust stability of LPV systems, especially for
those systems that have a convex polytopic model description, that is, the system matrices can be ex-
pressed as a convex combination of a set of matrix vertices. Most of the available robust stability tech-
niques lend themselves to the application of efficient computational methods such as those based on linear
matrix inequalities, see, e.g., [6, 5]. In the present paper we employ an alternative robust stability tech-
nique, which is based on the work for switched linear systems developed in [9]. The key idea of this
method is to search for a common transformation defining a time-invariant positive system that bounds
the LPV system trajectories. Although not as general as the parameter dependent Lyapunov function
approach [5], the ‘common transformation’ technique has the advantage of simultaneously providing an
easily computable invariant set for the LPV system’s trajectories. Invariant sets have numerous applica-
tions such as in model predictive control [4], fault diagnosis [17], fault tolerant control [14], etc.
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For LPV systems with a large parameter variation range, however, it may be impossible, or very dif-
ficult, to assess or guarantee stability over the whole range by regarding it as a single parameter region.
Moreover, the use of a single parameter region may be conservative if it is required to attain different
performance goals in different parameter subregions, which may correspond to different operating condi-
tions of the system. An approach proposed in [13] to avoid these problems is to divide the parameter set
in several subregions and design different LPV controllers, each suitable for a specific parameter subre-
gion, and switch among them to be able to ensure stability and achieve better performance. LPV systems
of this type are called switched LPV systems. Two switching logics are considered in [13], hysteresis
switching and switching with average dwell time. The control synthesis conditions for both switching
logics are based on the multiple parameter-dependent Lyapunov function approach, and are formulated
as generally non-convex matrix optimisation problems, which can be convexified under some simplifying
assumptions. A simpler, yet more conservative, design based on a common parameter-dependent Lya-
punov function is employed in [10], where the induced L2-norm performance of switched LPV systems
is considered. In [15], the problem of trajectory tracking for an omnidirectional mobile robot application
is approached by modelling the system as a switched LPV system. The use of this modelling framework
in fault tolerant control has been reported in [16].

In this paper we address the problem of robust stability and set invariance of switched LPV systems
affected by bounded disturbances. We first derive a result for a single LPV system that extends and
generalises work originally presented in [9] for switched systems. We then use this seed result to derive
dwell-time-type conditions on the switched-LPV switching sequences, which ensure robust closed-loop
stability and set invariance of the trajectories of the switched-LPV system across the whole parameter
range. As an application of the results, we consider the problem of reference tracking for LPV systems
using switched LPV state feedback and feedforward from an LPV reference system. Two examples
are presented to illustrate the results. The first example considers a two-mass-spring system where the
varying parameter is the spring characteristic, assumed to be provided externally and independent of the
system dynamics. In the second example, the nonlinear model of a coupled-tank system is embedded into
an LPV system and overlapping subsets in a 2-dimensional parameter space are defined. This example
also illustrates the applicability of the results in fault diagnosis.

2 Problem Formulation
Consider the switched LPV discrete-time model

x(t+ 1) = Aσ(ρ)x(t) + Eσ(ρ)wσ(t), (1)

where x(t) ∈ Rn is the system state (at discrete-time t ≥ 0). The “parameter” ρ = ρ(t) ∈ P (where P ⊂
RL is a bounded closed convex set) is an a priori unknown time-varying parameter whose measurement
is available at each sample time. We consider the parameter set P divided into a finite number of closed
convex subsets {Pi}i∈M , where M , {1, 2, . . . ,M} is the index set and P =

⋃M
i=1 Pi. The subsets

may have overlapping or disjoint interiors. We define the ‘active’ set I(t) , {i ∈ M : ρ(t) ∈ Pi} as
the collection of indices of all subsets that contain the parameter ρ(t) at each time t ≥ 0. The switching
sequence σ = σ(t) then selects at each time an index within the active set, that is, it satisfies σ(t) ∈
I(t) ⊂ M . Which index in I(t), if there is more than one, is selected at each time is decided by the
switching logic to be devised later.

For each fixed i ∈M , system (1) is an LPV system with matrices that can be expressed in the convex
polytopic form

Ai(ρ) =

Ni∑
`=1

ξi`(ρ)Ai`, Ei(ρ) =

Ni∑
`=1

ξi`(ρ)Ei`, (2)
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for certain constant matrices Ai` ∈ Rn×n, Ei` ∈ Rn×ri and continuous functions ξi` : Pi → R that
satisfy

ξi`(ρ) ≥ 0 and
Ni∑
`=1

ξi`(ρ) = 1, for all ρ ∈ Pi. (3)

Also for each i ∈M , wi(t) ∈ Rri is a bounded process disturbance satisfying the componentwise bound1

|wi(t)| ≤ w̄i, (4)

where w̄i ∈ Rri is a nonnegative constant vector.
We consider the following problem. Suppose for each fixed i ∈ M subsystem (1) is robustly stable

(in a sense to be defined below) and attractive invariant sets can be derived for its trajectories. Derive a
switching logic that ensures robust stability and set invariance of the switched LPV system (1)–(4).

3 Robust Stability and Set Invariance for a Single LPV System
We assume that for each fixed i ∈ M system (1) is robustly stable according to the following theorem
(based on the work in [9] for switched systems).

Theorem 3.1. Consider the convex polytopic uncertain system (1)–(4) for each fixed i ∈M , that is,

x(t+ 1) = Ai(ρ)x(t) + Ei(ρ)wi(t). (5)

Suppose an invertible transformation Vi ∈ Cn×n exists such that the matrix

Λi , max
`∈{1,...,Ni}

|Vi−1Ai`Vi| is a Schur matrix,2 (6)

and define
bi , (I − Λi)

−1 max
`∈{1,...,Ni}

|V −1
i Ei`|wi. (7)

Then for any initial condition x(0) the trajectories of (5) are bounded and

(a) ultimately converge to the set

Si ,
{
x ∈ Rn : |Vi−1x| ≤ bi

}
, (8)

which is an invariant set for the dynamics of (5).

(b) converge in finite time ti = ti[x(0),Si(εi)] defined as

ti , min
{
t̄ ∈ {0, 1, . . . } : Λti|V −1

i x(0)| ≤ εi ∀t ≥ t̄
}
, (9)

to the invariant set
Si(εi) ,

{
x ∈ Rn : |Vi−1x| ≤ bi + εi

}
, (10)

where εi > 0 is a vector with (arbitrarily small) positive elements satisfying Λiεi ≤ εi.
1Here, and in the remainder of the paper, the bars |.| denote elementwise magnitude (absolute value) and the inequalities and

max operations are interpreted elementwise.
2A Schur matrix has all its eigenvalues with magnitude less than one.
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Proof. Define
ζ(t) , V −1

i x(t). (11)

Then, from (5) with initial condition x(0), we have

ζ(t+ 1) = Vi
−1Ai(ρ)Vi ζ(t) + Vi

−1Ei(ρ)wi(t), ζ(0) = V −1
i x(0). (12)

Taking magnitudes in (12) and using (2)–(4), (6) and (7), yields

|ζ(t+ 1)| ≤ |Vi−1Ai(ρ)Vi ||ζ(t)|+ |Vi−1Ei(ρ)||wi(t)|.

≤
Ni∑
`=1

ξi`(ρ)|Vi−1Ai`Vi ||ζ(t)|+
Ni∑
`=1

ξi`(ρ)|Vi−1Ei`||wi(t)|

≤
Ni∑
`=1

ξi`(ρ)︸ ︷︷ ︸
=1

max
`∈{1,...,Ni}

|Vi−1Ai`Vi|︸ ︷︷ ︸
Λi

|ζ(t)|+
Ni∑
`=1

ξi`(ρ)︸ ︷︷ ︸
=1

max
`∈{1,...,Ni}

|V −1
i Ei`|wi︸ ︷︷ ︸

(I−Λi)bi

= Λi |ζ(t)|+ (I − Λi)bi. (13)

(a) Define a new variable y such that

y(t+ 1) = Λi y(t) + (I − Λi)bi, y(0) ≥ |ζ(0)|. (14)

Since Λi is a Schur matrix by assumption then the trajectories of (14) asymptotically converge to
bi. Noticing, from (11) and (13)–(14), that

|V −1
i x(t)| = |ζ(t)| ≤ y(t), ∀t ≥ 0, (15)

it then follows that the trajectories of (5) ultimately converge to the set Si defined in (8). To see that
this set is invariant, let x(t) ∈ Si for some t ≥ 0. Hence, |V −1

i x(t)| = |ζ(t)| ≤ bi and using (13)
yields

|V −1
i x(t+ 1)| = |ζ(t+ 1)| ≤ Λi |ζ(t)|+ (I − Λi)bi ≤ Λi bi + (I − Λi)bi = bi.

(b) Define the ‘forced’ and ’initial condition’ responses of ζ, denoted by ζ̄ and ζ̃ respectively, satisfying

ζ̄(t+ 1) = Vi
−1Ai(ρ)Vi ζ̄(t) + Vi

−1Ei(ρ)wi(t), ζ̄(0) = 0, (16)

and
ζ̃(t+ 1) = Vi

−1Ai(ρ)Vi ζ̃(t), ζ̃(0) = ζ(0) = V −1
i x(0). (17)

Clearly, ζ(t) satisfying (12) is such that

ζ(t) = ζ̄(t) + ζ̃(t), ∀t ≥ 0. (18)

For ζ̄ in (16), noticing that Viζ̄(0) = 0 ∈ Si, and that Si defined in (8) is invariant, we have

|ζ̄(t)| = |V −1
i [Viζ̄(t)]| ≤ bi, ∀t ≥ 0. (19)

For ζ̃ in (17), proceeding as in (13) we obtain the bound

|ζ̃(t+ 1)| ≤ Λi|ζ̃(t)|,
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and defining ỹ such that ỹ(t+ 1) = Λiỹ(t), ỹ(0) = |ζ̃(0)| = |V −1
i x(0)|, we have

|ζ̃(t)| ≤ ỹ(t) = Λtiỹ(0) = Λti|ζ̃(0)| = Λti|V −1
i x(0)|, ∀t ≥ 0. (20)

Combining (18)–(20) and using (11) yields

|V −1
i x(t)| = |ζ(t)| ≤ bi + Λti|V −1

i x(0)|, ∀t ≥ 0. (21)

Since Λi is a Schur matrix, given εi > 0 and for each initial condition x(0) there exists a time
ti < ∞, defined as in (9), such that Λti|V −1

i x(0)| ≤ εi for all t ≥ ti. This shows convergence in
finite time of the trajectories of (5) to Si(εi) defined in (10). To see that this set is invariant, let
x(t) ∈ Si(εi) for some t ≥ 0. Hence, |V −1

i x(t)| = |ζ(t)| ≤ bi+εi and using (13) and the property
Λiεi ≤ εi yields

|V −1
i x(t+ 1)| = |ζ(t+ 1)| ≤ Λi |ζ(t)|+ (I − Λi)bi ≤ Λi (bi + εi) + (I − Λi)bi ≤ bi + εi.

Theorem 3.1 generalises to LPV systems some of the results of [9] for switched systems (specifically,
those that apply to switched systems with disturbances having constant bounds). Moreover, it extends
these results by deriving (in part (b)) invariant sets that attract the LPV system trajectories in finite time
and by providing an expression for the convergence time to these finite-time-attractive invariant sets.

The invariant sets derived in Theorem 3.1 are over-approximations of the minimal robust invariant set
for system (5) (see, e.g., [7]). Despite the possible conservatism, in this paper we use the invariant sets
of the form (10) due to its simple characterisation and the direct way to compute the convergence time to
the set via the formula (9). These tools will be useful to obtain conditions guaranteeing robust stability of
the switched LPV system (1), which we present in Section 4.

Remark 3.2. We show here that εi > 0 satisfying Λiεi ≤ εi, as required in part (b) of Theorem 3.1, can
always be found for a Schur nonnegative matrix Λi. Let Λ+ > 0 be a slight perturbation of Λi such that
Λ+ ≥ Λi and Λ+ is Schur. Then by the Perron-Frobenius Theorem (see e.g., [11]) there exists a positive
eigenvalue r (the Perron-Frobenius eigenvalue) and an eigenvector εi with positive elements such that
Λ+εi = rεi. Since Λ+ is Schur then r < 1 and we have

Λiεi ≤ Λ+εi = rεi < εi.

◦

Remark 3.3. As mentioned in [9], to find the transformation Vi required in Theorem 3.1 a numerical
search routine can be readily implemented, for example,

Minimise the spectral radius of Λi in (6) over Vi ∈ Cn×n invertible. (22)

In fact, any feasible solution Vi of the above optimisation problem such that the spectral radius of Λi is
less than one can be used. ◦

4 Robust Stability of the Switched LPV System
In this section we provide a sufficient condition for robust stability and boundedness of the trajectories
of the switched LPV system by ensuring that the switching sequences keep selecting subsystems for
sufficiently long ‘dwell times’, which can be computed using the techniques described above.
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Theorem 4.1. Consider the convex polytopic uncertain system (1)–(4) and suppose for each i ∈ M
the conditions of Theorem 3.1 hold and an invariant set of the form (10) can be obtained. Suppose
x(0) ∈ Si(εi) for some i ∈M . Let

Tij , max
x∈Si(εi)

tj [x,Sj(εj)], (23)

with tj as defined in part (b) of Theorem 3.1 (see eq. (9)). Then the trajectories of system (1)–(4) remain
bounded for all switching sequences σ(t) that are such that whenever σ(t∗ − 1) = i and σ(t∗) = j, then
x(t∗ − 1) ∈ Si(εi) and σ(t) = j for t ∈ [t∗, t◦] with t◦ ≥ t∗ + Tij . (Note that this implicitly requires j
to remain active, that is j ∈ I(t) for t ∈ [t∗, t◦].)

Proof. Suppose, without loss of generality, that x(t∗ − 1) ∈ Si(εi), i ∈ M and σ(t∗ − 1) = i. Then if
a switching sequence as described in the statement of the theorem is such that σ(t∗) = j, it will remain
selecting subsystem j for at least Tij time steps. By its definition in (23) (cf. (9)) Tij gives enough time
for all possible trajectories starting in Si(εi) to converge to Sj(εj). Hence any possible switch to another
subsystem k occurring from t∗ + Tij onwards has a well defined originating set of states, Sj(εj), from
which to evaluate the next dwell time Tjk that needs to elapse before the switch from subsystem k to
another subsystem is allowed to occur. Since all the invariant sets are bounded and the times during
which the trajectories transit between sets are finite, it follows that the trajectories are bounded at all
times, proving the result.

Note that Tij in (23) is a sufficiently long ‘dwell time’ for the switching sequence to remain on
subsystem j when coming from subsystem i. A (more conservative) dwell time for each subsystem
independent from the previously active subsystem can be considered by letting S ,

⋃
i∈M Si(εi) and

defining
Tj , max

x∈S
tj [x,Sj(εj)], (24)

with tj as defined in (9). Similar computations of dwell times have been reported in the literature for
systems that switch between linear time invariant (non LPV) subsystems, see, for example, [3, 8].

5 Application to Reference Tracking for a Single LPV System Using
Switched State Feedback

Consider the single LPV system

x(t+ 1) = Ao(ρ)x(t) +Bu(t) + Ew(t), (25)

where u is a control input and the parameter ρ = ρ(t) belongs to a bounded closed convex set P . The
matrix Ao(ρ) is assumed to depend affinely on the parameter ρ and the matrices B and E (as well as the
bounded disturbance signal w) are assumed parameter independent for simplicity (this assumption can be
easily relaxed at the expense of more intricate notation).

We want to design a parameter dependent, static state feedback controller such that the states of (25)
are ultimately bounded in a set centred at a desired bounded state reference signal xref (t) satisfying

xref (t+ 1) = Ao(ρ)xref (t) +Buref (t), (26)

where uref (t) is a bounded input reference signal. Different methodologies can be used to design the
above reference system, see, for example, [1] and [15].

When the parameter variations are large, it is usually difficult to design a single LPV controller that
achieves the control objective over the whole parameter range. A solution may then be found by dividing
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the parameter set P in closed convex subsets Pi, i ∈ M , {1, 2, . . . ,M}, as explained in Section 2,
designing an LPV controller for each region and then using an appropriate strategy to switch among
the controllers so that the conditions of Theorem 4.1 hold. To this end, for each convex subset Pi with
vertices {νi1, νi2, . . . , νiNi

}, consider the convex decomposition (see, for example, [2])

ρ =

Ni∑
`=1

ξi`(ρ) νi`, (27)

where the functions ξi` satisfy (3). Since Ao(ρ) is affine in ρ then the decomposition (27) can be directly
used for this matrix whenever ρ = ρ(t) ∈ Pi, that is,

Ao(ρ) = Aoi (ρ) =

Ni∑
`=1

ξi`(ρ)Aoi`, Aoi` , Ao(νi`), for ρ ∈ Pi. (28)

Considering the same parameterisation for the controller gains, define the switching state feedback control

u = uref +Kσ(ρ)(x− xref ), (29)

where σ = σ(t) ∈M is the switching sequence to be designed and, for i ∈M ,

Ki(ρ) =

Ni∑
`=1

ξi`(ρ)Ki`, Ki` , Ki(νi`), for ρ ∈ Pi. (30)

When ρ(t) belongs to the intersection of two or more parameter subsets then any of the parameterisations
corresponding to those subsets can be used. The switching sequence σ = σ(t) can then be designed to
appropriately select the active subset with index in the active set of indices I(t) , {i ∈M : ρ(t) ∈ Pi},
as we next discuss.

Define the tracking error z , x− xref , which satisfies, using (25), (26) and (29),

z(t+ 1) = [Ao(ρ) +BKσ(ρ)]z(t) + Ew(t). (31)

Using the parameterisations (28) and (30) we can define

Ai(ρ) , Aoi (ρ) +BKi(ρ) =

Ni∑
`=1

ξi`(ρ) (Aoi` +BKi`)︸ ︷︷ ︸
,Ai`

, (32)

and hence system (31)-(32) fits the formulation of Section 2 (cf. (1) and (5)), and thus invariant sets (10)
can be computed for each subsystem and the switching sequence σ = σ(t) can be devised to comply with
the requirements of Theorem 4.1.

Although we have presented the above derivations for single LPV systems (i.e., where the only
switched element is the state feedback controller), the technique can be applied with minor changes
to the case where both the plant and the reference systems are also switched LPV systems, in which case
the parameter space partition is usually determined by the plant.

6 Example: Two-Mass-Spring System
We consider the two-mass-spring system as described in [4] (see also [12]), consisting of two carts con-
nected through a spring that has a time-varying characteristic. The control input is a force applied to the
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Figure 1: Varying parameter ρ(t) and associated subintervals.

first cart and the objective is to make the position of the second cart follow a desired reference. Using
a first-order Euler approximation for the derivative and a sampling time Ts, the discrete-time state space
equations are

x(t+ 1) =


1 0 Ts 0
0 1 0 Ts

−Ts ρ/m1 Ts ρ/m1 1 0
Ts ρ/m2 −Ts ρ/m2 0 1


︸ ︷︷ ︸

Ao(ρ)

x(t) +


0
0

Ts/m1

0


︸ ︷︷ ︸

B=E

[u(t) + w(t)], (33)

where the first two states are the positions of the two carts, the last two states are their respective velocities,
m1 and m2 are the masses of the carts, u is the control input and w is an input disturbance. We let
m1 = m2 = 1, Ts = 0.1s, and |w(t)| ≤ w̄ = 0.001, for t ≥ 0. The spring parameter ρ = ρ(t) has the
following form:

ρ(t) = αtρ+ (1− αt)ρ, αt = | sin(0.01π t+ φ)|, (34)

where ρ = 0.25, ρ = 1, and φ is a phase shift. The parameter evolution over 100 samples (10s) is plotted
with a thick solid line in Figure 1.

To design a switched LPV controller, we divide the parameter interval P = [0.25, 1] into 4 subinter-
vals

Pi = [ρ
i
, ρi] = {ρ} ⊕∆[i− 1, i], i = 1, 2, 3, 4, (35)

of equal length ∆ , (ρ − ρ)/4 (the symbol ⊕ denotes Minkowski sum of sets). These subintervals
are shown in Figure 1 as the vertical edges of the shaded areas. Also shown as the horizontal edges of
the shaded areas are the times the parameter spends in each subinterval (except, possibly, at the start of
operation, depending on the phase shift φ). Note that some times are not explicitly shown since they can
be obtained by symmetry. By inspection we obtain (as multiples of Ts = 0.1s)

T1 = 46Ts, T2 = 11Ts, T3 = 9Ts, T4 = 16Ts. (36)
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The tracking objective is for the position of the second cart to track a ‘smoothened’ (low-pass fil-
tered) version of a square-wave signal r(t) that varies between 0.5 and 1. To achieve this objective, we
use the procedure of Section 5 and first design an LPV reference system of the form (26), where uref (t) =
K0[xref (t)−[1 1 0 0]T rf (t)], with the constant feedback gainK0 = −

[
75.75 164.25 14.50 269.50

]
designed to place the poles of the ‘central closed-loop system’ Ao(ρ0) + BK0, with ρ0 = (ρ + ρ)/2,
at (0.5, 0.6, 0.7, 0.75), and where rf (t) is a low-pass filtered version of the square wave r(t) through a
first order discrete transfer function with unity gain and a pole at 0.8. We observe that the above heuristic
design of the reference system has no a priori LPV stability guarantees; this, however, is not a problem
since the reference system is part of the controller and can be simulated off-line to test its performance
prior to implementation on the plant.

Next, to design a scheduled feedback controller of the form (29)–(30) using the subintervals (35), a
parameterisation of Ao(ρ) in (33) of the form (28) is obtained by defining Aoi1 = Ao(ρ

i
), Aoi2 = Ao(ρi),

and the functions ξi1(ρ) = (ρi − ρ)/(ρi − ρ
i
) = 4(αt − 1) + i, ξi2(ρ) = (ρ − ρ

i
)/(ρi − ρ

i
) =

4(1−αt) + 1− i. A parameterisation of the controller gains in each subinterval Pi as in (30) is obtained
by computingKi1 andKi2 via LQR design using the system matrices (Aoi1, B) and (Aoi2, B), and weights
Q1 = Q2 = diag{100, 100, 0.01, 0.01} and R1 = 0.009, R2 = 0.0085, respectively.

Having the closed-loop matrices Ai` = Aoi` + BKi`, for i = 1, 2, 3, 4 and ` = 1, 2, transformations
Vi, satisfying (6) are sought via the numerical search (22).3 We then compute the corresponding vectors
bi defined in (7) and the sets (10) using Remark 3.2 to find the required εi > 0 satisfying Λiεi ≤ εi.

To compute upper bounds on the convergence times Tij defined in (23), (9), we proceed as follows:

Tij = max
x∈Si(εi)

min
{
t̄ ∈ {0, 1, . . . } : Λtj |V −1

j x| ≤ εj ∀t ≥ t̄
}

≤ min
{
t̄ ∈ {0, 1, . . . } : Λtj

[
max

x∈Si(εi)
|V −1
j x|

]
≤ εj ∀t ≥ t̄

}
.

We first solve the maximisation inside the square brackets and then address the minimisation by numerical
iteration of the mapping Λtj for sufficiently long t to find the solution by inspection of the resulting
trajectories. Note that it is only relevant to compute the convergence times between adjacent subintervals
as the parameter variation has no jumps. This yields

T12 ≤ 11Ts, T21 ≤ 22Ts, T23 ≤ 3Ts, T32 ≤ 11Ts, T34 ≤ 5Ts, T43 ≤ 9Ts. (37)

For the above times to be feasible, the maximum time the system needs to ‘dwell’ in Sj(εj) has to be
smaller that Tj , the time the parameter spends in Pj , given in (36). That is, max{Tij , ∀i adjacent to j} ≤
Tj . This indeed holds, for example, max{T12, T32} ≤ T2, etc.

We simulated the closed-loop system over 700 samples (70s). The results are shown in Figure 2. The
first plot shows the position of the second cart, x2(t), in solid black line and the filtered reference signal
rf (t) in dashed blue line. We observe a good tracking performance and a slightly different shape of the
response at different times due to the effect of the varying parameter. (Note that the second state of the
state reference signal, xref,2(t), is not shown since the maximum difference |z2(t)| = |x2(t)−xref,2(t)|
is less than 0.01 and thus not discernible in the plot’s scale.) The second plot shows the variation of the
scheduling parameter ρ(t). The third plot shows the active index set I(t), which corresponds to the index
of the subinterval that contains ρ(t) at each time. The last plot shows a test signal that checks whether the
tracking error z(t) belongs to the corresponding set Si(εi) when the scheduling parameter is in Pi. The
test signal is computed as

µ(t) , max
[
|V −1
I(t)z(t)| − (bI(t) + εI(t))

]
,

3We observe that considering the two-mass-spring system as a single LPV system over the whole parameter range P = [0.25, 1],
and adopting an analogous LQR design at the vertex systems, the use of the same numerical search algorithm did not produce a
single transformation V and associated matrix Λ satisfying condition (6). This justifies the partitioning of the parameter space
within the proposed framework.
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Figure 2: Time domain simulation results.

which can be seen to be negative at all times, confirming that the tracking error always belongs to the
required sets.

7 Example: Coupled-Tank System
In this example we “stretch” the theory presented in this paper, as we consider the varying parameters to
depend on the system states through functions that are not globally bounded (i.e.,

√
x/x); hence bound-

edness of the variation of the parameter in a compact set P (as required in the developed theory) cannot
be guaranteed a priori and has to be verified a posteriori. Also, the reference system (26) requires mea-
surements of the parameter—a function of the state—and thus cannot be independently operated. Hence,
this example is strictly speaking not covered by the theory presented. However, it serves to illustrate that
the methodology is capable of dealing with more challenging applications.4 We also explain, by defining
a suitable “residual signal”, how the results can be used in fault diagnosis.

We consider the coupled-tank process described in [1], consisting of two equal cylindrical tanks
positioned one directly above the other. Water flows from the upper tank through the lower tank to a
water reservoir, and a pump is used to thrust water from the reservoir back up to the upper tank. The tank
water levels are measured through pressure sensors located at the bottom of each tank. The performance
objective is to control the pump so that the water level in the lower tank tracks the output of a reference
model.

The continuous-time dynamics of the water levels h1(τ) (upper tank) and h2(τ) (lower tank) can be

4These issues are outside the scope of the present paper, which is based on the standard LPV approach that the parameter is
a priori bounded, and will motivate theoretical supporting research to be reported in future work. Preliminary ideas to address
these issues include hypothesising a bound on the parameter variation that can be later certified by invariant sets that guarantee the
corresponding constraints on the system state.
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modelled as

ḣ1(τ) = −(s1/S1)
√

2g
√
h1(τ) + (kp/S1)u(τ) + w1(τ),

ḣ2(τ) = (s1/S2)
√

2g
√
h1(τ)− (s2/S2)

√
2g
√
h2(τ) + w2(τ),

(38)

where u(τ) is the voltage applied to the pump, w1(τ), w2(τ) are bounded state perturbations and the
parameters are as follows: S1 = S2 = S = 15.5179cm2 is the cross-section area of the tanks; s1 = s2 =
s = 0.1781cm2 the cross-section area of the tanks outflow orifice; kp = 3.3cm3/Vs the gain of the pump;
and g = 980cm/s2 the gravitational constant.

An LPV model is derived by defining the parameters ρi ,
√
hi/hi = 1/

√
hi for hi > 0 cm, i = 1, 2.

The use of this parameterisation leads to the continuous-time LPV model

ẋ(τ) =
s
√

2g

S

[
−ρ1 0
ρ1 −ρ2

]
x(τ) +

kp
S

[
1
0

]
u(τ) +

[
w1(τ)
w2(τ)

]
.

We discretise the above model using an Euler approximation with sampling period Ts = 1s, to obtain

x(t+ 1) =

[
1− a ρ1 0
a ρ1 1− a ρ2

]
︸ ︷︷ ︸

Ao(ρ1,ρ2)

x(t) +

[
b
0

]
︸︷︷︸
B

u(t) + Ts

[
w1(t)
w2(t)

]
︸ ︷︷ ︸

Ew(t)

, (39)

where a , s
√

2g Ts

S , b , kpTs

S , and where x(t+ 1) stands for x((t+ 1)Ts), x(t) for x(tTs) and similarly
for the remaining variables. Letting ρ , (ρ1, ρ2) we see that (39) has the form (25).

From the parameter definition, for 0.5cm ≤ h1, h2 ≤ 25cm (the range of water level variations that we
will design the tracking controller to operate on), ρ is bounded in the interval P = [1/

√
25, 1/

√
0.5] ×

[1/
√

25, 1/
√

0.5]. To approach the controller design as described in Section 5, we will consider two
overlapping subsetsP1 = [1/

√
25, 1/

√
3]×[1/

√
25, 1/

√
3] andP2 = [1/

√
8, 1/
√

0.5]×[1/
√

8, 1/
√

0.5],
as shown in Figure 3. These subsets do not cover the whole parameter set P but, as we will see later, for
the considered trajectory (shown in red in the figure) this division is sufficient to illustrate the proposed
switched LPV control technique.

Noting that each subset Pi has the form

Pi = [ρ
i
, ρi]× [ρ

i
, ρi],

a parameterisation of Ao(ρ1, ρ2) in (39) of the form (28) is obtained by defining

Aoi1 = Ao(ρ
i
, ρ
i
), Aoi2 = Ao(ρ

i
, ρi), A

o
i3 = Ao(ρi, ρi), A

o
i4 = Ao(ρi, ρi)

and the functions

ξi1(ρ) = αi(ρ1)[1− βi(ρ2)], ξi2(ρ) = αi(ρ1)βi(ρ2),

ξi3(ρ) = [1− αi(ρ1)][1− βi(ρ2)], ξi4(ρ) = [1− αi(ρ1)]βi(ρ2), (40)

where

αi(ρ1) =
ρi − ρ1

ρi − ρi
, βi(ρ2) =

ρ2 − ρi
ρi − ρi

. (41)

Accordingly, a parameterisation of the controller gains in each subset Pi as in (30) is obtained by letting

Ki1 = Ki(ρi, ρi), Ki2 = Ki(ρi, ρi), Ki3 = Ki(ρi, ρi), Ki4 = Ki(ρi, ρi).
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Here we propose to compute each gainKi` by Linear Quadratic Regulator (LQR) design using the system
matrices (Aoi`, B) and weights Q = diag{1, 10} and R = 0.1. Then, transformations Vi, for i = 1, 2,
satisfying (6) are sought via the numerical search (22).5 This procedure yields

V1 =

[
0.5425 + 1.8931j −0.8245− 0.5258j
0.2942− 1.0508j 0.5418 + 0.0085j

]
, V2 =

[
−1.3300− 0.1181j −1.0268− 0.1426j
1.0672− 1.0493j 0.6244 + 0.9799j

]
,

where j =
√
−1 is the imaginary unit, and

Λ1 =

[
0.6213 0.0699
0.2834 0.6213

]
, Λ2 =

[
0.6052 0.2234
0.3707 0.6052

]
.

Using the above matrices, E = I , and the bounds |w(t)| ≤ w̄ = [1 1]T × 10−3, for t ≥ 0, we compute
from (7)

b1 = [0.0057 0.0115]T , b2 = [0.0087 0.0112]T .

We next compute the sets (10) using Remark 3.2 to find the required εi > 0 satisfying Λiεi ≤ εi. Indeed,
since Λi > 0 for i = 1, 2, we compute εi > 0 as (a scaled version of) the eigenvector associated with the
Perron-Frobenius eigenvalue of Λi, obtaining

ε1 = [0.0148 0.0299]T , ε2 = [0.0204 0.0263]T .

The resulting sets of the form (10) are the ellipses S1(ε1) and S2(ε2) shown in Figure 4. (The figure also
shows the tracking error trajectory, this will be explained later.)

To compute upper bounds on the convergence times Tij defined in (23), (9), we proceed as follows:

Tij = max
x∈Si(εi)

min
{
t̄ ∈ {0, 1, . . . } : Λtj |V −1

j x| ≤ εj ∀t ≥ t̄
}

≤ min
{
t̄ ∈ {0, 1, . . . } : Λtj

[
max

x∈Si(εi)
|V −1
j x|

]
≤ εj ∀t ≥ t̄

}
.

5As in the previous example, when considering the coupled-tank system as a single LPV system over the whole parameter
range P in Figure 3, and adopting an analogous LQR design at the vertex systems, the use of the same numerical search algorithm
did not produce a single transformation V and associated matrix Λ satisfying condition (6). This justifies the partitioning of the
parameter space within the proposed framework.
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Figure 4: Invariant sets for the tracking error z(t) and its trajectory.

As for the previous example, we first solve the maximisation inside the square brackets and then address
the minimisation by numerical iteration of the mapping Λtj for sufficiently long t to find the solution by
inspection of the resulting trajectories. This yields T12 = 5s and T21 = 7s.

Since in this example the parameter ρ is a function of the system states, the time it spends in each
subset P1 and P2 depends on the control strategy and cannot be guaranteed independently. However,
since the above computed times T12 and T21 are small, it is reasonable to expect that for slowly varying
references the parameter will change subsets slowly enough so that the trajectories of the tracking error
after each change will converge to the corresponding set. For example, when tracking a piecewise constant
reference, the parameter can change sets during the transients but during the constant part of the reference
signal it is likely to remain in the same set. Also, due to the subset overlap, it is possible to design
switching sequences with different degrees of hysteresis; for example the switching between controller
gains can be delayed as much as possible by considering the following switching law:

If σ(t) = i ∈ I(t), then σ(t+ 1) = i if i ∈ I(t+ 1);

otherwise switch to (any, if more than 2 subsets) j ∈ I(t+ 1). (42)

The tracking objective is for the tank levels to approximately track a square-wave signal r(t) that
varies between 4 and 20. Towards this goal, we use the procedure of Section 5 and first design a reference
system of the form (26), where Ao(ρ) = Ao(ρ1, ρ2) is as in (39) (i.e., ρ1 and ρ2 are computed based on
the plant states and used in the reference system) and where uref (t) = [k0xref,1(t) + (1 − k0)r(t) −
(1 − aρ1)xref,1(t)]/b, with k0 = 0.5. Note that this control ‘linearises’ the xref,1-equation so that
xref,1 evolves as an LTI first order system; the response of xref,2, on the other hand, cannot be adjusted
separately but it can be simulated (with ρ1 and ρ2 computed based on the reference states) to have a
reasonable indication of its performance.

We simulated a realistic implementation using the continuous-time nonlinear model (38) as the “plant”.
The proposed discrete-time switched LPV controller is interfaced with the plant via a zero-order hold.
The results of the time simulation of the closed-loop system are shown in Figure 5. The top plot shows
the tank levels from the initial condition x(0) =

[
0.5 0.5

]T
, with x1(t) = h1(t) in solid black line and
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Figure 5: Time domain simulation results.

x2(t) = h2(t) in dashed blue line, both states displaying a good tracking performance of the square-wave
signal. At 300s we simulated a sensor fault by introducing a negative pulse f(t) of amplitude 1 and dura-
tion 1s in the measurement x̂2(t) = x2(t) + f(t) of the second tank level. Small perturbations due to the
faulty measurements can be seen in the responses, especially for the first state (see the zoomed area). The
second plot shows the variation of the measured scheduling parameter ρ(t), with ρ1 = 1/

√
x1 in black

solid line and ρ2 = 1/
√
x̂2 (note the use of the measured state, affected by the fault) in dashed blue line.

The zoomed area shows the small perturbations due to the fault. The corresponding plot of ρ2 versus ρ1

in the parameter space is the red trajectory shown in Figure 3. As seen in this figure, the parameter starts
in P2 (near the top right corner, corresponding to the plant initial condition) and then enters and remains
in P1 during the whole simulation, with parts of the trajectory lying in the intersection between the two
subsets. The switching signal is chosen as σ(t) = 2 if ρ(t) ∈ P2 and σ(t) = 1 otherwise, i.e., σ(t) = 2 is
used both in P2 and in P1 ∩P2. This is indicated in the bottom plot of Figure 5 through different shaded
sections: the first and third shaded sections (in green) correspond to σ(t) = 2 and the second and fourth
shaded sections (in magenta) correspond to σ(t) = 1. This plot also shows the signal

µ(t) , max
[
|V −1
σ(t)ẑ(t)| − (bσ(t) + εσ(t))

]
,

which checks whether the measured tracking error ẑ(t) belongs to the corresponding set Si(εi) when
σ(t) = i. Note that, except for a short lapse around 300s, µ(t) is negative, confirming that before and
a short while after the fault the measured tracking error always belongs to the ‘active’ invariant set. The
signal µ(t) can then serve as a ‘residual’ signal to indicate the presence of faults in an FDI scheme. The
corresponding tracking error trajectory is shown in blue dashed-starred line in Figure 4, where it can be
seen that z(t) experiences a ‘jump’ due to the fault and after a short transient returns to the intersection
of the attractive invariant sets.

14



8 Conclusions
We have considered the problem of robust stability and set invariance of switched LPV systems affected
by bounded disturbances. We have first derived a result for a single LPV system, which is a generalisation
of previous work for switched systems. We have then applied this seed result in the derivation of dwell-
time-type conditions on the switched-LPV switching rule to ensure robust closed-loop stability and set
invariance of the trajectories of the switched-LPV system across the whole parameter range. As an ap-
plication of the results, we considered the problem of reference tracking for LPV systems using switched
LPV state feedback and feedforward from an LPV reference system. The results were illustrated via an
example of a two-mass-spring system with a varying spring characteristic, and via the nonlinear model
of a coupled-tank system embedded into a switched LPV system description.
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