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CONVERGENCE OF DISCRETE TIME KALMAN FILTER
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bInria, Université Paris–Saclay, Palaiseau, France; MΞDISIM team

Abstract. This article is concerned with the convergence of the state
estimate obtained from the discrete time Kalman filter to the continuous
time estimate as the temporal discretization is refined. The convergence
follows from Martingale convergence theorem as demonstrated below
but, surprisingly, no results exist on the rate of convergence. We derive
convergence rate estimates for the discrete time Kalman filter estimate
for finite and infinite dimensional systems. The proofs are based on
applying the discrete time Kalman filter on a dense numerable subset of
a certain time interval [0, T ].

Keywords: Kalman filter, infinite dimensional systems, temporal dis-
cretization, sampled data

1. Introduction

It is well known that Kalman filter (or Kalman–Bucy filter) gives the
optimal solution to the state estimation problem for discrete (or continu-
ous) time linear systems with Gaussian initial state, and Gaussian input
and output noise processes. These filters have proven to be robust and they
have been widely used in practical applications since their introduction in
the 1960s. The implementation of the discrete time filter is straightforward
since it is readily formulated in an algorithmic manner. Thus, it may often
be tempting to use the discrete time filter on the temporally discretized con-
tinuous time system. The purpose of this article is to study the convergence
of a state estimate from discrete time Kalman filter to the continuous time
state estimate as the temporal discretization is refined. In particular, we
show convergence speed estimates for the quadratic error between the dis-
crete time and continuous time estimate first for finite dimensional systems
without input noise, then finite dimensional systems with input noise, and
finally, for infinite dimensional systems with a bounded observation opera-
tor.

The class of systems studied here is described by mappings (A,B,C)
where A : X → X, B : U → X, and C : X → Y, and the corresponding

*This is the accepted author’s version of the manuscript accepted for publica-
tion in International Journal of Control.
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dynamics equations

(1)





dz(t) = Az(t) dt+Bdu(t), t ∈ R
+,

dy(t) = Cz(t) dt+ dw(t),

z(0) = x.

Here X is called the state space, U = R
q is the input space, and Y = R

r

is the output space. The mapping A is the generator of a contractive C0-
semigroup eAt on X with domain D(A), B : Rq → X is the input operator,
and C : X → R

r is called the observation operator. The observation operator
can be bounded or not but it always maps to a finite dimensional space in
this article. The process y is called the output process. The input and
output noise processes u and w are assumed to be q- and r-dimensional
Brownian motions with incremental covariance matrices Q > 0 and R > 0,
respectively, and the initial state x is assumed to be an X-valued Gaussian
random variable, x ∼ N(m,P0). The noise processes u and w and the initial
state x are assumed to be mutually independent. Note that the system (1)
is written as a stochastic differential equation. For background of stochastic
equations and the formulation of the Kalman–Bucy filter in this framework,
we refer to [13] (in particular, Section 6.3 therein) and [6].

The discrete and continuous time state estimates are defined by
(2)

ẑT,n := E

(
z(T )

∣∣∣
{
y
(
iT
n

)}n
i=1

)
and ẑ(T ) := E

(
z(T )

∣∣{y(s), s ≤ T
})

,

respectively. That is, we are estimating the final state of the system (1).
These estimates are given by the discrete and continuous time Kalman filter,
respectively. The purpose of this article is to study the convergence ẑT,n →
ẑ(T ) as n → ∞.

In Section 2, we cover the necessary background concerning stochastics
and the Kalman filter. The proofs of the main results are based on using the
discrete time Kalman filter on a sequence that forms a dense subset of the
interval [0, T ]. In particular, in Section 2.1, it is shown that this procedure
in fact converges to ẑ(T ) strongly in X almost surely. Gaussian random
variables and the Kalman filter are introduced in Section 2.2. Section 3
contains the main result in the simplest case, namely namely an estimate of

the convergence speed of E
(
||ẑT,n − ẑ(T )||2

X

)
when n is increased for finite

dimensional system without input noise. The proofs of the other results
follow the same outline, and so this simplest case is shown in full detail
in order to convey the ideas as clearly as possible. In the beginning of the
section it is shown how to take into account an intermediate measurement in
Kalman filtering — an important tool in the proofs. The result for systems
with input noise is shown in Section 4 and for infinite dimensional systems
with bounded observation operator the result is generalized in Section 5.

The Kalman filter performance has been widely studied in literature.
Even though it was originally derived for state estimation for finite dimen-
sional linear systems with Gaussian input and output noise processes it has
proven to be very robust and thus applicable to a variety of other scenarios.
Variants for non-linear systems have been developed, such as the extended
Kalman filter and the unscented Kalman filter, see the book [16]. Kalman
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filter sensitivity to modelling errors has been studied by for example [17]
and [7, Chapter 7]. See also the recent work [12] for a study on the effect of
modelling errors in an infinite dimensional example case, namely the one di-
mensional wave equation. The effect of state space discretization to Kalman
filtering has been studied in, e.g., [3], [8], and in [1].

However, the error that stems from using the discrete time filter on the
temporally discretized continuous time system has not received much at-
tention. Two recent articles, [2] and [18], have studied different numerical
methods for approximating the matrix exponential eA∆t and the effect of this
approximation on the solution of the corresponding Lyapunov equations and
Kalman filtering. A convergence result of the discrete time Kalman filter
estimate in finite dimensional setting is shown by [15] without convergence
rate estimate. They use similar techniques that can also be used to (for-
mally) obtain the Kalman-Bucy filter as a limit of the discrete time Kalman
filter, as is done for example in [16, Section 8.2] and [7, Section 4.3].

Notation and standing assumptions.

◦ The space of bounded operators from a Hilbert space H1 to another
Hilbert space H2 is denoted by L(H1,H2), and L(H1) = L(H1,H1).

◦ We assume that the state space X is a separable Hilbert space. De-

note by {ek}
p/∞
k=1 ⊂ X an orthonormal basis for the p/∞-dimensional

state space.
◦ A is the generator of a C0-semigroup on X. The semigroup is de-
noted by eAt even though A is not bounded in general. We assume∣∣∣∣eAt

∣∣∣∣
L(X)

≤ µ for t ∈ [0, T ].

◦ The space D(A) is equipped with the graph norm ||x||2D(A) = ||x||2X +

||Ax||2X which makes D(A) a Hilbert space since A is closed.
◦ We assume that the observation operator is bounded, C ∈ L(X,Y),
and that the input operator is smooth, that is, B ∈ L(U,D(A)).
The input and output spaces are always finite dimensional, U = R

q

and Y = R
r.

◦ Ω is a probability space and L2(Ω;X) is the space of X-valued random

variables ξ satisfying E

(
||ξ||2X

)
< ∞.

◦ The sigma algebra generated by a random variable ξ is denoted by
σ{ξ}.

◦ To improve readability, we use index n only when referring to the
discretization level in the state estimate ẑT,n defined in (2), index k
only to denote different dimensions of the state space, and index j
only when referring to the martingale z̃j defined below in Section 2.1.

2. Background and preliminary results

As mentioned above, the proofs of this article are based on applying the
discrete time Kalman filter on a dense, numerable subset on the interval
[0, T ] — starting from the discrete time state estimate ẑT,n — and computing
an upper bound for the change in the estimate. In section 2.1, we establish
that the limit thus obtained is indeed ẑ(T ). Gaussian random variables and
the Kalman filter are discussed in Section 2.2.
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2.1. Stochastics. In the cases where the state space X is infinite dimen-
sional it is always assumed either that x ∈ D(A) almost surely or that
C ∈ L(X,Y). This guarantees that the stochastic process y given by (1) has
almost surely continuous sample paths. Let {ti}

∞
i=1 be a dense subset of the

interval [0, T ] and denote Tj := {ti}
j
i=1. Now let ξ be an integrable X-valued

random variable and y a stochastic process with almost surely continuous
sample paths. Then [ξ]k := 〈ξ, ek〉X is an integrable R-valued random vari-

able for each k. Define the martingales [ξ̃j]k := E(〈ξ, ek〉X |Fj) where Fj is
the sigma algebra generated by {y(t), t ∈ Tj}, that is, Fj = σ {y(t), t ∈ Tj}.

It holds that E
(
|[ξ̃j ]k|

)
≤ E(|〈ξ, ek〉X|) for all j and thus by Doob’s Martin-

gale convergence theorem (see [13, Appendix C], in particular, Theorem C.6

and Corollary C.9), [ξ̃j]k → [ξ̃∞]k almost surely. As y has continuous sample

paths, it holds that [ξ̃∞]k = E(〈ξ, ek〉X |{y(s), s ≤ T}) almost surely. Using

this componentwise implies that ξ̃j := E(ξ|Fj) =
∑∞

k=1[ξ̃j ]kek converges

strongly (in X) almost surely to ξ̃∞ =
∑∞

k=1[ξ̃∞]kek.
In general, the martingale convergence theorem is true for Banach spaces

that have the Radon–Nikodym property. All reflexive Banach spaces (and
therefore also Hilbert spaces) have the Radon–Nikodym property. The above
deduction follows essentially the proof of this fact in the special case of X
being a Hilbert space, see [14, Corollary 2.11].

In the proofs, we will need the following telescope identity for martingales.

Lemma 1. Let ξj be a square integrable X-valued martingale. Then for
L,N ∈ N with L ≥ N :

E

(
||ξL − ξN ||2X

)
=

L−1∑

j=N

E

(
||ξj+1 − ξj ||

2
X

)
.

Proof. The result follows directly from the fact that martingale increments
are orthogonal. Let us show this. Let k ≥ j and denote Fi = σ{ξ1, ..., ξi}.
Then (recalling that ξk−E(ξk|Fj) ⊥ ξi for i ≤ j and the martingale property
E(ξk|Fj) = ξj),

E
(
〈ξk, ξj〉X

)
= E

(
〈E(ξk|Fj) + (ξk − E(ξk|Fj)), ξj〉X

)
= E

(
〈ξj, ξj〉X

)
.

Using this, we have (let now k > j)

E(〈ξk+1 − ξk, ξj+1 − ξj〉) =E(〈ξk+1, ξj+1〉)− E(〈ξk+1, ξj〉)

− E(〈ξk, ξj+1〉) + E(〈ξk, ξj〉) = 0.

�

Below we sometimes need the assumption that x ∈ D(A) almost surely.
With Gaussian random variables this means that x is actually aD(A)-valued
random variable.

Proposition 1. Let ξ be an X-valued Gaussian random variable s.t. ξ ∈ X1

almost surely where X1 ⊂ X is another Hilbert space with continuous and
dense embedding. Then ξ is an X1-valued Gaussian random variable.

Proof. Pick h ∈ X1. We intend to show that 〈ξ, h〉X1
is a real-valued Gauss-

ian random variable. For h ∈ X1 there exists h′ ∈ X′
1, the dual space of X1,
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s.t. 〈ξ, h〉X1
= 〈ξ, h′〉(X1,X′

1)
and further, there exists a sequence {hi}

∞
i=1 ⊂ X

such that 〈ξ, h′〉(X1,X′

1)
= limi→∞ 〈ξ, hi〉X. Now 〈ξ, hi〉X is a pointwise con-

verging sequence of Gaussian random variables and so the limit is also Gauss-
ian. �

Fernique’s theorem [5, Theorem 2.6] can be applied to note that if ξ is an
X1-valued Gaussian random variable then ξ ∈ Lp(Ω;X1) for any p > 0.

In particular, E
(
||ξ||2X1

)
< ∞ and if A ∈ L(X1,X) then Aξ is an X-valued

Gaussian random variable.

2.2. Kalman filter. The discrete time Kalman filter was originally pre-
sented in [10]. The continuous time filter is known as the Kalman–Bucy fil-
ter, and it was presented in [11]. We also refer to the book [7] for a thorough
introduction to both discrete and continuous time Kalman filters as well as
the usual techniques needed in different scenarios. Of course, the original
presentations are in finite dimensional setting. The infinite dimensional gen-
eralization of the discrete time Kalman filter is rather straightforward, and
it can be found for example in [9]. The infinite dimensional Kalman–Bucy
filter is considered in [3] and [4, Chapter 6]. However, we do not need to
be concerned with the continuous time equations. Our approach is based
on using the discrete time Kalman filter on a numerable set {tj}

∞
j=1 that is

dense on an interval [0, T ], and bounding the L2(Ω;X)-norm of the estimate
increment when adding a new time point tj. In this section we thus review
the discrete time Kalman filter equations.

The Kalman filter is based on the fact that with linear systems with
Gaussian initial state and input and output noise processes, the state vec-
tor remains a Gaussian stochastic process. Also, the conditional expec-
tation of the state with respect to the measurements is a Gaussian pro-
cess. The statistical properties of the Gaussian X-valued random variable
ξ are completely characterized by the mean m = E(ξ) ∈ X and the covari-
ance operator P = Cov [ξ, ξ] ∈ L(X), defined for h ∈ X by Cov [ξ, ξ] h :=
E((ξ −m) 〈ξ −m,h〉X). Thus it is meaningful to write ξ ∼ N(m,P ) mean-
ing that ξ is a Gaussian random variable with mean m and covariance P .
The covariance operator is symmetric and nonnegative and, in addition, it

is a trace class operator with tr(P ) = E

(
||ξ −m||2X

)
, see [5, Lemma 2.14 &

Proposition 2.15]. In fact, by Fernique’s theorem, Gaussian random vari-
ables are p-integrable for every p > 0.

For square integrable random variables, the conditional expectation with
respect to a random variable ξ is a projection onto the subspace generated
by ξ. With jointly Gaussian random variables ξ1 ∈ X and finite dimensional

ξ2, this projection has an easy representation. That is, if ξ =

[
ξ1
ξ2

]
∼

N

([
m1

m2

]
,

[
P11 P12

P ∗
12 P22

])
then

E(ξ1|ξ2) = m1 + P12P
+
22(ξ2 −m2)
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where P+
22 denotes the (Moore-Penrose) pseudoinverse of P22. The error

covariance is

Cov [ξ1 − E(ξ1|ξ2) , ξ1 − E(ξ1|ξ2)] = P11 − P12P
+
22P

∗
12.

Now applying the above equations to a Gaussian random variable [ξ1, ξ2, ξ3]
where ξ2 and ξ3 are finite dimensional, and the 2-by-2 blockwise matrix

inversion formula to Cov
[[

ξ2
ξ3

]
,
[
ξ2
ξ3

]]
leads directly to

E(ξ1|[ξ2, ξ3]) =E(ξ1|ξ2) + Cov [ξ1 − E(ξ1|ξ2) , ξ3 − E(ξ3|ξ2)]×(3)

× Cov [ξ3 − E(ξ3|ξ2) , ξ3 − E(ξ3|ξ2)]
+ (ξ3 − E(ξ3|ξ2))

and

Cov [ξ1 − E(ξ1|[ξ2, ξ3]) , ξ1 − E(ξ1|[ξ2, ξ3])]

= Cov [ξ1 − E(ξ1|ξ2) , ξ1 − E(ξ1|ξ2)]− Cov [ξ1 − E(ξ1|ξ2) , ξ3 − E(ξ3|ξ2)]
(4)

× Cov [ξ3 − E(ξ3|ξ2) , ξ3 − E(ξ3|ξ2)]
+Cov [ξ3 − E(ξ3|ξ2) , ξ1 − E(ξ1|ξ2)] .

These equations make it possible to update the state estimate (here E(ξ1|ξ2))
recursively when a new measurement (here ξ3) is obtained from the system.

From (3) we get the covariance for the increment E(ξ1|[ξ2, ξ3])−E(ξ1|ξ2),

Cov [E(ξ1|[ξ2, ξ3])− E(ξ1|ξ2) ,E(ξ1|[ξ2, ξ3])− E(ξ1|ξ2)]

= Cov [ξ1 − E(ξ1|ξ2) , ξ3 − E(ξ3|ξ2)] Cov [ξ3 − E(ξ3|ξ2) , ξ3 − E(ξ3|ξ2)]
+

× Cov [ξ3 − E(ξ3|ξ2) , ξ1 − E(ξ1|ξ2)] ,

and further, the L2(Ω;X)-norm of the increment is given by

E

(
||E(ξ1|[ξ2, ξ3])− E(ξ1|ξ2)||

2
X

)

= tr
(
Cov [ξ1 − E(ξ1|ξ2) , ξ3 − E(ξ3|ξ2)] Cov [ξ3 − E(ξ3|ξ2) , ξ3 − E(ξ3|ξ2)]

+

(5)

× Cov [ξ3 − E(ξ3|ξ2) , ξ1 − E(ξ1|ξ2)]
)
.

This fact will be used multiple times in the proofs below.
The familiar discrete time Kalman filter equations follow directly from

(3) and (4) if ξ1 is chosen to be the current state xi that is to be estimated,
ξ2 consists of the old outputs [y1, . . . , yi−1], and ξ3 is the new output yi.

3. The case without input noise

For simplicity of presentation, let us first go through the case without
input noise. In this case the solution to (1) is simply z(t) = eAtx.

The convergence rate estimates are based on computing how much ẑT,n
can change at most (measured with the L2(Ω;X)-norm) when more and
more output values y(t) are taken into account from the intervals t ∈ ((i −
1)T/n, iT/n) for i = 1, . . . , n. In this section, it is first shown how an
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intermediate measurement is taken into account. Consider the output of
the system (1), dy(t) = CeAtx dt+ dw(t), which is a shortened notation for

(6) y(t) = C

∫ t

0
eAsx ds+ w(t)

where A and C are operators from X to X and Y = R
r, respectively, and

w is an r-dimensional Brownian motion with incremental covariance matrix
R.

Assume we have a state estimate x̃j := E(x|{y(t1), y(t2), . . . , y(tj)}) for
the initial state x, and the corresponding error covariance Pj := Cov [x− x̃j , x− x̃j ].
Now the next measurement to be taken into account in state estimation is
y(tj+1). Say tj+1 ∈ (ta, tb) for some a, b ∈ {1, . . . , j} and that this inter-
val does not contain any earlier included measurements, that is ti /∈ (ta, tb)
for i = 1, . . . , j. The new state estimate x̃j+1 and the corresponding er-
ror covariance Pj+1 := Cov [x− x̃j+1, x− x̃j+1] are given by (3) and (4),
respectively, if we set ξ1 = x, ξ2 = [y(t1), y(t2), . . . , y(tj)], and ξ3 = y(tj+1).

To get a simple representation for the covariances in (3) and (4), define a
new output

ỹ := y(tj+1)−
tb − tj+1

tb − ta
y(ta)−

tj+1 − ta
tb − ta

y(tb).

That is, ỹ is y(tj+1) from which the linear interpolant between y(ta) and
y(tb) has been removed. By plugging (6) here, this can be written in the

form ỹ = C̃x+ w̃ where

C̃ = C

∫ tj+1

0
eAs ds− C

tb − tj+1

tb − ta

∫ ta

0
eAs ds− C

tj+1 − ta
tb − ta

∫ tb

0
eAs ds

= C

(
tb − tj+1

tb − ta

∫ tj+1

ta

eAs ds−
tj+1 − ta
tb − ta

∫ tb

tj+1

eAs ds

)

and

w̃ = w(tj+1)−
tb − tj+1

tb − ta
w(ta)−

tj+1 − ta
tb − ta

w(tb).

Since w is Brownian motion, it holds that w̃ ∼ N
(
0,

(tj+1−ta)(tb−tj+1)
tb−ta

R
)

and w̃ is independent of the already included measurements (that is, of ξ2)

and hence of x̃j, as well. Thus E(ỹ|ξ2) = C̃x̃j,

Cov
[
x− x̃j, ỹ − C̃x̃j

]
= PC̃∗,

and

Cov
[
ỹ − C̃x̃j , ỹ − C̃x̃j

]
= C̃P C̃∗ +

(tj+1 − ta)(tb − tj+1)

tb − ta
R.

By (3), the new estimate x̃j+1 := E(x|{y(t1), y(t2), . . . , y(tj+1)}) is given
by

(7) x̃j+1 = x̃j + PjC̃
∗
(
C̃PjC̃

∗ +
(tj+1 − ta)(tb − tj+1)

tb − ta
R

)−1 (
ỹ − C̃x̃j

)
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and by (4), the new error covariance Pj+1 := Cov [x− x̃j+1, x− x̃j+1] by

(8) Pj+1 = Pj − PjC̃
∗
(
C̃PjC̃

∗ +
(tj+1 − ta)(tb − tj+1)

tb − ta
R

)−1

C̃Pj .

This will be used with tb − tj+1 = tj+1 − ta = h, and we define

(9) Ch(t)x :=
C

2

(∫ t

t−h
eAsx ds −

∫ t+h

t
eAsx ds

)
, for t ≥ h > 0.

Lemma 2. If C ∈ L(X,Y) then for t ∈ [h, T − h] it holds that

(i) ||Ch(t)||L(X,Y) ≤ hµ ||C||L(X,Y) and

(ii) ||Ch(t)||L(D(A),Y) ≤
h2

2
µ ||A||L(D(A),X) ||C||L(X,Y).

In the finite dimensional case ||A||L(D(A),X) means plainly the matrix norm

of A. In the infinite dimensional case ||A||L(D(A),X) = 1 because D(A) is

equipped with the graph norm of A.

This could also be shown for more general C̃ with tb − ta replacing h in (i)

and
(tj+1−ta)2

2 +
(tb−tj+1)2

2 replacing h2 in (ii) but that is not needed. Also,

part (ii) can be made a bit better. In fact, ||Ch(t)x||Y ≤ h2

2 µ ||C||L(X,Y) ||Ax||X.

Proof. Part (i) of the Lemma is clear from the definition (9) since
∣∣∣∣eAt

∣∣∣∣
L(X)

≤

µ. For part (ii), note that CeAtx ∈ C1(R+;Y) with d
dtCeAtx = CAeAtx and∣∣∣∣CAeAtx

∣∣∣∣
Y
≤ µ ||C||L(X,Y) ||A||L(D(A),X) ||x||D(A). Then by Bochner integral

properties, C can be taken inside the integral and thus
∫ t

t−h
CeAsx ds−

∫ t+h

t
CeAsx ds

=

∫ t

t−h

(
CeAtx−

∫ t

s
CAeArx dr

)
ds−

∫ t+h

t

(
CeAtx+

∫ s

t
CAeArx dr

)
ds

=−

∫ t

t−h

∫ t

s
CAeArx dr ds−

∫ t+h

t

∫ s

t
CAeArx dr ds.

This together with the bound for
∣∣∣∣CAeAtx

∣∣∣∣
Y
imply (ii). �

We are now ready to proceed to the actual convergence result which we
shall first show in finite dimensional context, namely X = R

p. The infinite
dimensional generalisation will be treated below.

Theorem 1. Let now X = R
p and A ∈ R

p×p and C ∈ R
r×p (with r ≤ p)

and let ẑT,n and ẑ(T ) be as defined above in (2), with u = 0 in (1). Then

E

(
||ẑT,n − ẑ(T )||2

X

)
≤

MT 3

n2

where M =
µ2tr(P0)E

(

||ẑT,n−z(T )||
2

X

)

||C||2||A||2

12min(eig(R)) .

The constant M depends on n through E

(
||ẑT,n − z(T )||2

X

)
which is the trace

of the error covariance of the discrete time state estimate ẑT,n. In order to get
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a strict a priori result, this term can be bounded by E

(
||ẑT,n − z(T )||2

X

)
≤

µ2tr(P0).

Proof. In the beginning of this section, the output (6) is considered as a
signal parameterized by the initial state x and corrupted by noise w. There-
fore, it seems beneficial to consider E(x|Fj) from which estimates for z(T )

can be obtained through E(z(T )|Fj) = eAT
E(x|Fj).

The outline of the proof is as follows. First, we define the martingale z̃j =
eAT x̃j where x̃j is the martingale x̃j := E(x|Fj), where Fj = σ{y(t), t ∈ Tj}

and Tj = {ti}
j
i=1 — as explained in Section 2.1. The time points {ti}

n
i=1 are

ti = iT/n but {ti}
∞
i=n+1 will be defined later. The martingales are Gaussian

and hence square integrable, and so by Lemma 1, we have the following
telescope identity for L,N ∈ N with L ≥ N :

(10) E

(
||z̃L − z̃N ||2X

)
=

L−1∑

j=N

E

(
||z̃j+1 − z̃j ||

2
X

)
.

Second, we find an upper bound for E

(
||z̃j+1 − z̃j ||

2
X

)
using the results of

Section 2.2 and the beginning of this section. Third, we prove that the sum
in (10) converges as L → ∞ and thus z̃j is a Cauchy sequence in L2(Ω;X).
It has a limit in this space by completeness and the limit must be ẑ(T ) by
the considerations in Section 2.1. Also, setting N = n (we have z̃n = ẑT,n)

and letting L → ∞ in (10) gives E
(
||ẑT,n − ẑ(T )||2

X

)
.

(I) Martingale z̃j: Let ti = iT/n for i = 1, . . . , n. Then z̃j for j =
1, . . . , n are the state estimates from the discrete time Kalman filter and, in
particular, z̃n = ẑT,n defined in (2). The idea is to then halve the intervals
((l − 1)T/n, lT/n) for l = 1, . . . , n between the already included measure-
ments. That is, we include measurements y(ti) where i = n+ 1, ..., 2n, and

ti =
(i−n−1/2)T

n . Then we halve the new intervals ((l − 1)T/2n, lT/2n) for
l = 1, . . . , 2n by including 2n measurements y(ti) for i = 2n + 1, ..., 4n and

ti =
(i−2n−1/2)T

2n and so on. This addition of new time points is illustrated
in Fig. 1.

(II) Increment z̃j+1 − z̃j: Assume that the current state estimate is
z̃j = eAT x̃j with j ≥ n, the corresponding error covariance matrices are

r r r

r r r

r r r r r r

r r r r r r r r r r r r

j = 1, ..., n

j = n+ 1, ..., 2n

j = 2n+ 1, ..., 4n

j = 4n+ 1, ..., 8n

K = 1

K = 2

K = 3
0 T ...

...

Figure 1. Illustration of the time point addition scheme in
the construction of the martingales x̃j and z̃j.
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eATPje
A∗T and Pj , respectively, and the next measurement being included

is y(tj+1) with j+1 ∈ {2K−1n+1, ..., 2Kn} for some K = 1, 2, ... (see Fig. 1).

Then tj+1 = (2(j − 2K−1n) + 1)h with h = T
2Kn

. The new initial state

estimate x̃j+1 is then given by (7) with C̃ = Ch

(
(2(j − 2K−1n) + 1)h

)
—

denoted below simply by Ch — and h = T
2Kn

. We are only interested in the

L2(Ω;X)-norm of the z̃-process increment, and as discussed in Section 2.2,
it is obtained from the covariance increment given in (8):

E

(
||z̃j+1 − z̃j ||

2
X

)
= tr

(
eATPjC

∗
h(ChPjC

∗
h + h/2R)−1ChPje

A∗T
)
.

Now we wish to establish a bound for this trace. To this end, recall that the
norm of the inverse of a positive definite matrix is

∣∣∣∣Q−1
∣∣∣∣ = 1

min(eig(Q)) , and

thus,

(11)

∣∣∣∣∣

∣∣∣∣∣

(
ChPjC

∗
h +

h

2
R

)−1
∣∣∣∣∣

∣∣∣∣∣ ≤
2

hmin(eig(R))
=:

CR

h
.

Using this and part (ii) of Lemma 2 gives

tr

(
eATPjC

∗
h

(
ChPjC

∗
h +

h

2
R

)−1

ChPje
A∗T

)

=

p∑

k=1

〈
ChPje

A∗T ek,

(
ChPjC

∗
h +

h

2
R

)−1

ChPje
A∗T ek

〉

≤
CR

h

p∑

k=1

∣∣∣
∣∣∣ChPje

A∗T ek

∣∣∣
∣∣∣
2

Y
=

CR

h

p∑

k=1

∣∣∣∣E
(
Ch(x̃j − x)

〈
eAT (x̃j − x), ek

〉
X

)∣∣∣∣2
Y

≤
CR

h
E

(
||Ch(x̃j − x)||2

Y

) p∑

k=1

E

(〈
eAT (x̃j − x), ek

〉2
X

)

≤
CR

h
tr(ChPjC

∗
h)E
(
||z̃j − z(T )||2

X

)(12)

≤
h3

2min(eig(R))
µ2 ||C||2 ||A||2 tr(Pj)E

(
||z̃j − z(T )||2

X

)
.

(13)

(III) Convergence: It holds that tr(Pj) ≤ tr(P0) and E

(
||z̃j − z(T )||2

X

)
≤

E

(
||ẑT,n − z(T )||2

X

)
. In part (II) of the proof we had h = 2−KT/n and that

bound is used for all 2K−1n new measurements corresponding to this h. Fi-
nally, setting N = n and L → ∞ in (10) and using (13) to bound the terms
of the sum yields

E

(
||ẑT,n − ẑ(T )||2

X

)
≤

∞∑

K=1

2K−1n

(
T

2Kn

)3 µ2tr(P0)E
(
||ẑT,n − z(T )||2

X

)
||C||2 ||A||2

2min(eig(R))

=
µ2tr(P0)E

(
||ẑT,n − z(T )||2

X

)
||C||2 ||A||2 T 3

12min(eig(R))n2
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completing the proof. �

4. Input noise

The case with input noise follows exactly the same outline as the case
without input noise. The solution to (1) is given by the Wiener integral

z(t) = eAtx+

∫ t

0
eA(t−s)Bdu(s).

The idea now is to consider the output y(t) as a process that is parameterized
by the initial state x and the input noise process u. To this end, let us define
the solution operator S(t) through

(14) S(t) : [x, u] 7→ eAtx+

∫ t

0
eA(t−s)Bdu(s)

and so z(t) = S(t)[x, u]. Then the state estimate over a given sigma algebra
σ is given by

E(z(T )|σ) = S(T )E([x, u]|σ) .

Hence, we shall virtually consider the estimate of the combined initial state
x and the noise process u and then the actual state estimate is obtained
through S(T ).

Theorem 2. Let now X = R
p and A ∈ R

p×p and C ∈ R
r×p (with r ≤ p)

and let ẑT,n and ẑ(T ) be as defined in (2). Then

E

(
||ẑT,n − ẑ(T )||2

X

)
≤

M1T
2

n
+

M2T
3

n2
+

M3T
4

n2

where M1 =
||C||2tr(BQB∗)E

(

||ẑT,n−z(T )||
2

X

)

min(eig(R)) , M2 =
µ2||A||2||C||2tr(P0)E

(

||ẑT,n−z(T )||
2

X

)

12min(eig(R)) ,

and M3 =
µ2||C||2tr(ABQB∗A∗)E

(

||ẑT,n−z(T )||
2

X

)

2min(eig(R)) .

As in Theorem 1, an a priori result is obtained by bounding

E

(
||ẑT,n − z(T )||2

X

)
≤ µ2tr(P0) + Tµ2tr(BQB∗).

In the bound of this theorem, the second term originates from the error
in the initial state. From the proof below (after (16)) it can be seen that
in fact, the different error components can be treated separately (compare
(16) with (12)).

Proof. The proof follows exactly the same outline as the proof of Theo-
rem 1. Say we are estimating [x, u] and we have x̃j := E([x, u]|Fj) and the
corresponding error covariance Pj . Then the state estimate and the corre-
sponding error covariance are given by z̃j = S(T )x̃j and S(T )PjS(T )

∗ —
although in the last equation the formal adjoint S(T )∗ is only defined in
connection with the covariance Pj, namely
PjS(T )

∗h = E
(
(x̃j − [x, u]) 〈S(T )(x̃j − [x, u]), h〉

X

)
.

Say we are including measurement y(tj+1) which can be written as

y(tj+1) = C

∫ tj+1

0
eAsx ds+ C

∫ tj+1

0

∫ s

0
eA(s−r)B du(r) ds + w(tj+1).
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As in the previous section, to get an output with output noise that is un-
correlated with the already included outputs, we shall subtract the linear
interpolant from y(tj+1), namely define

ỹ = y(tj+1)−
1

2
y(ta)−

1

2
y(tb)

where ta = tj+1 − h and tb = tj+1 + h for proper h. Now this output can be
written as

ỹ = C�[x, u]
T + w̃

where w̃ ∼ N(0, h/2R) and C� = [Ch(tj+1), Ch,u(tj+1)] with Ch(tj+1) de-
fined in (9) and
(15)

Ch,u(t)u :=
C

2

(∫ t

t−h

∫ s

0
eA(s−r)Bdu(r) ds−

∫ t+h

t

∫ s

0
eA(s−r)Bdu(r) ds

)

for t ≥ h. Now the error covariance increment is as before in (4) and (8)
(but with this new output operator C�) and the L2(Ω;X)-norm increment

E

(
||z̃j+1 − z̃j ||

2
X

)
is given by

E

(
||z̃j+1 − z̃j ||

2
X

)
= tr

(
S(T )PjC

∗
�

(
C�PjC

∗
� +

h

2
R

)−1

C�PjS(T )
∗
)

=

p∑

k=1

〈
C�PjS(T )

∗ek,

(
C�PjC

∗
� +

h

2
R

)−1

C�PjS(T )
∗ek

〉

Y

≤
CR

h

p∑

k=1

||C�PjS(T )
∗ek||

2
Y

=
CR

h

p∑

k=1

∣∣∣∣E
(
C�(x̃j − [x, u]) 〈S(T )(x̃j − [x, u]), ek〉X

)∣∣∣∣2
Y

≤
CR

h
E

(
||C�(x̃j − [x, u])||2

Y

) p∑

k=1

E

(
〈S(T )(x̃j − [x, u]), ek〉

2
X

)

≤
CR

h
E

(
||C�[x, u]||

2
Y

)
E

(
||ẑT,n − z(T )||2

X

)
.(16)

In order to get a suitable bound for the increment, we must find a bound

for the term E

(
||C�[x, u]||

2
Y

)
≤ E

(
||Chx||

2
Y

)
+E

(
||Ch,uu||

2
Y

)
(recall that x and

u are independent). As in the proof of Theorem 1, by Lemma 2, the first
part is bounded by

(17) E

(
||Chx||

2
Y

)
≤

h4

4
µ2 ||A||2 ||C||2 tr(P0)

so then remains the input noise induced term. To evaluate Ch,u(tj+1)u, note
that
∫ t

0
eA(t−s)Bdu(s) =

∫ tj+1

0
eA(t−s)Bdu(s)+

∫ t

tj+1

A

∫ s

0
eA(s−r)Bdu(r) ds+

∫ t

tj+1

Bdu(s)

for t ≥ tj+1 — for t < tj+1, just change tj+1 ↔ t in the bounds of the last
two integrals and put minus signs in front of them. Of course the last term
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is just
∫ t
tj+1

Bdu(s) = B(u(t)− u(tj+1)). Applying this to (15) gives

Ch,u(tj+1)u =−
C

2

[∫ tj+1

tj+1−h

(∫ tj+1

t
A

∫ s

0
eA(s−r)Bdu(r) ds+B

(
u(t)− u(tj+1)

))
dt

+

∫ tj+1+h

tj+1

(∫ t

tj+1

A

∫ s

0
eA(s−r)Bdu(r) ds +B

(
u(t)− u(tj+1)

)
)
dt

]
.

(18)

These two terms are very similar by nature so it suffices to find a bound for
one of them and use the same bound for both terms. Thus, let us consider
the first part of the latter term, namely

C

2

∫ tj+1+h

tj+1

∫ t

tj+1

A

∫ s

0
eA(s−r)Bdu(r) ds dt

=
C

2

∫ tj+1+h

tj+1

∫ t

tj+1

A

∫ tj+1

0
eA(s−r)Bdu(r) ds dt+

C

2

∫ tj+1+h

tj+1

∫ t

tj+1

A

∫ s

tj+1

eA(s−r)Bdu(r) ds dt

=
C

2

∫ tj+1

0

∫ tj+1+h

tj+1

(tj+1 + h− s)AeA(s−r)Bds du(r)

+
C

2

∫ tj+1+h

tj+1

∫ tj+1+h

r
(tj+1 + h− s)AeA(s−r)Bds du(r)

= (I) + (II).

Then

Cov [(I), (I)] =
1

4

∫ tj+1

0

∫ tj+1+h

tj+1

∫ tj+1+h

tj+1

(tj+1 + h− s)(tj+1 + h− r)

CeA(s−t)ABQB∗A∗eA
∗(r−t)C∗dr ds dt

and from this, using the bound
∣∣∣∣eAt

∣∣∣∣
L(X)

≤ µ,

E

(
||(I)||2Y

)
= tr

(
Cov [(I), (I)]

)
≤

tj+1h
4

8
µ2 ||C||2 tr(ABQB∗A∗).

For the second term we have

Cov [(II), (II)] =
1

4

∫ tj+1+h

tj+1

∫ tj+1+h

t

∫ tj+1+h

t
(tj+1 + h− s)(tj+1 + h− r)

CAeA(t−s)ABQB∗A∗eA
∗(t−r)C∗dr ds dt

and, again,

E

(
||(II)||2Y

)
= tr

(
Cov [(II), (II)]

)
≤

h5

8
µ2 ||C||2 tr(ABQB∗A∗).

In (I), r ∈ [0, tj+1] and in (II), r ∈ [tj+1, tj+1 + h], and thus they are
independent. Using this and the fact that tj+1 + h ≤ T , gives

E

(
||(I) + (II)||2Y

)
≤

Th4

8
µ2 ||C||2 tr(ABQB∗A∗).
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It is well known that

Cov

[∫ h

0
Bu(t) dt,

∫ h

0
Bu(t) dt

]
=

h3

3
BQB∗

and so

E



∣∣∣∣∣

∣∣∣∣∣
C

2

∫ tj+1+h

tj+1

B(u(t)− u(tj+1))dt

∣∣∣∣∣

∣∣∣∣∣

2

Y


 ≤

h3

12
||C||2 tr(BQB∗).

In (18), the two B(u(t) − u(tj+1))-terms are independent (because in the
first one, t ≤ tj+1 and in the second, t ≥ tj+1) and by utilizing this and
gathering the above bounds, we get

E

(
||Ch,u(tj+1)u||

2
Y

)
≤ 6E

(
||(I) + (II)||2Y

)
+ 6

h3

12
||C||2 tr(BQB∗)

≤
3Th4

4
µ2 ||C||2 tr(ABQB∗A∗) +

h3

2
||C||2 tr(BQB∗).

Combining this with (16) and (17) gives

E

(
||z̃j+1 − z̃j ||

2
X

)
≤
h3

4
µ2CR ||A||2 ||C||2 tr(P0)E

(
||ẑT,n − z(T )||2

X

)

+
3Th3

4
µ2CR ||C||2 tr(ABQB∗A∗)E

(
||ẑT,n − z(T )||2

X

)

+
h2

2
CR ||C||2 tr(BQB∗)E

(
||ẑT,n − z(T )||2

X

)

=:C3h
3 + C2h

2.

Using this bound as in the end of the proof of Theorem 1 gives

E

(
||ẑT,n − ẑ(T )||2

X

)
≤

C2T
2

2n
+

C3T
3

6n2

completing the proof. �

5. Generalization to infinite dimensional systems

We move on to infinite dimensional state space X. Compared to the finite
dimensional case, the main difficulty arises from that the bound for Ch in
part (ii) of Lemma 2 utilizes the differentiability of CeAtx and thus it holds
for x ∈ D(A). A natural assumption that would make it possible to use this
bound is that x is a D(A)-valued random variable. This is exactly what
is done in Theorem 4. Before that, in Theorem 3 we shall see, however,
that a reasonable convergence estimate can be obtained with slightly less
smooth initial state x. Before tackling this problem, we present an example
illuminating the necessity of some additional assumptions.

Example 1. This example shows that there is a system with C ∈ L(X,R)

such that E

(
||ẑT,n − ẑ(T )||2

X

)
converges arbitrarily slowly where ẑT,n and
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ẑ(T ) are defined in (2). Consider the one-dimensional wave equation (with-
out input noise) with augmented state vector,

(19)





d

dt

[
z1(s, t)

z2(s, t)

]
=

[
0 I
∂2

∂s2
0

][
z1(s, t)

z2(s, t)

]
, s ∈ [0, 1], t ∈ R

+,

z1(s, 0) = 0, z2(s, 0) = x(s),

dy(t) = Cz(t) dt+ dw(t)

in state space X = H1
0 [0, 1] × L2(0, 1) and D(A) =

(
H2[0, 1] ∩H1

0 [0, 1]
)
×

H1
0 [0, 1]. The state is z(t) = [z1(t) z2(t)]

T . The output operator C ∈ L(X,R)

is given by Cz =
∫ 1
0 c(s)z1(s) ds where c(s) =

∑∞
k=1 ckek(s) with some

{ck} ∈ l2 and {ek} is the orthonormal basis in L2(0, 1) formed by the sine
functions, that is ek(s) =

1√
2
sin(kπs). The initial velocity is x =

∑∞
k=1 ake2k

where ak ∼ N(0, σ2
k) and ak ⊥ ai for k 6= i. It holds that E

(
||x||2X

)
=

∑∞
k=1 σ

2
k and thus this sum is assumed to converge. Then the solution to

(19) and the corresponding output are




z1(s, t) =
1√
2

∑∞
k=1 ak sin(2

kπs) sin(2kπt),

z2(s, t) =
1√
2

∑∞
k=1 ak sin(2

kπs) cos(2kπt),

dy(t) = 1√
2

∑∞
k=1 akc2k sin(2

kπt) dt+ dw(t).

Now set T = 1 and consider the subsequence ẑT,2l of the discrete time
estimates, defined in (2). As noted in the proof of Thm. 1, it holds that

E

(∣∣∣∣ẑT,2l − ẑ(T )
∣∣∣∣2
X

)
=
∑∞

i=l E

(∣∣∣∣ẑT,2i+1 − ẑT,2i
∣∣∣∣2
X

)
. The estimate ẑT,2l+1

is obtained from the previous estimate ẑT,2l by including measurements

y
(
2i−1
2l+1

)
for i = 1, . . . , 2l as described in the beginning of Section 3. In order

to obtain a lower bound for E

(∣∣∣∣ẑT,2l+1 − ẑT,2l
∣∣∣∣2
X

)
, define

Ĉ := [Ch(h), Ch(3h), . . . , Ch(1 − h)]T : X → R
2l where h = 1

2l+1 . That

is, Ĉ gives the whole batch of the measurements needed for the update.
For the wave equation it holds that ||z(t)||X = ||x||X and so the increments

E

(∣∣∣∣ẑT,2l+1 − ẑT,2l
∣∣∣∣2
X

)
are the same as the corresponding increments for x̃2l =

E
(
x|{y(t), t = j/2l, j = 1, ..., 2l}

)
. Then denoting Pl = Cov [x̃2l − x, x̃2l − x],

it holds that

E

(∣∣∣∣ẑT,2l+1 − ẑT,2l
∣∣∣∣2
X

)
= tr

(
PlĈ

∗
(
ĈPlĈ

∗ +
h

2
RI

)−1

ĈPl

)

≥

〈
ĈPle2l+1 ,

(
ĈPlĈ

∗+
h

2
RI

)−1

ĈPle2l+1

〉

R2l

≥

∣∣∣
∣∣∣ĈPle2l+1

∣∣∣
∣∣∣
2

R2l

max
(
eig
(
ĈPlĈ∗+ h

2RI
)) .

For h = 2−l it holds that Ch(ih)e2k = 0 when l < k and i = 1, . . . , 2l − 1
because when computing Ch(ih)e2k by (9), the integrals are always over full
periods of the sine function sin(2kπt). When l = k it holds that Ch(ih)e2k =√

2h
π c2k for every i = 1, 3, . . . , 2k − 1. So, loosely speaking, the already

included output values y
(
2i−1
2l

)
do not carry any information on ak for k > l.
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Thus Ple2l+1 = σ2
l+1e2l+1 and

∣∣∣
∣∣∣ĈPle2l+1

∣∣∣
∣∣∣
2

R2l
= 2lσ2

l+1

(√
2h
π c2l+1

)2
. For the

denominator it holds by part (i) of Lemma 2 that

max

(
eig

(
ĈPlĈ

∗+
h

2
RI

))
≤

h

2
R+E

(∣∣∣
∣∣∣Ĉx

∣∣∣
∣∣∣
2

R2l

)
≤

h

2
R+2lh2 ||C||2L(X,R) tr(P0).

Recalling h = 1
2l+1 , we finally get E

(∣∣∣∣ẑT,2l+1− ẑT,2l
∣∣∣∣2
X

)
≥

8σ2
l+1c

2
2l+1

π2R+4π2||C||2L(X,R)tr(P0)

and further

E

(∣∣∣∣ẑT,2l − ẑ(T )
∣∣∣∣2
X

)
≥

8
∑∞

i=l+1 σ
2
i c

2
2i

π2R+ 4π2 ||C||2L(X,R) tr(P0)

where there is no h-dependence and the variances {σ2
k} can be chosen so

that the convergence is arbitrarily slow, concluding the example.

Clearly some additional assumptions are needed for getting any conver-
gence rate estimates. In the following theorem, the initial state is assumed
to be so smooth that the covariance operator satisfies P0 ∈ L(X,D(A)).
As noted after Theorem 1, the error components stemming from the initial
state and the input noise can be treated separately. Therefore, the follow-
ing two theorems treat the noiseless case and the input noise is treated in
Corollary 1.

Theorem 3. Let ẑT,n and ẑ(T ) be as defined in (2) with u = 0 in (1), and
assume C ∈ L(X,Y). Assume x ∼ N(m,P0) where the covariance operator
satisfies P0 ∈ L(X,D(A)). Then

E

(
||ẑT,n − ẑ(T )||2

X

)
≤

MT 2

n

where M =
r ||P0||L(X,D(A))||C||2L(X,Y)E

(

||ẑT,n−z(T )||
2

X

)

2min(eig(R)) . Recall that

E

(
||ẑT,n − z(T )||2

X

)
≤ µ2tr(P0).

Proof. The main idea of the proof is the same as in the proof of Theorem 1
and we note that every step taken until equation (12) in that proof can be
taken in the infinite dimensional setting as well — p just has to be replaced
by ∞ in the sums but this does not cause any problems.

So we pick up from (12) and note first that

tr (ChPjC
∗
h) ≤ r ||ChPjC

∗
h||L(Y) = r sup

||y||Y=1
〈y,ChPjC

∗
hy〉Y

=r sup
||y||Y=1

〈C∗
hy, PjC

∗
hy〉X ≤ r sup

||y||Y=1
〈C∗

hy, P0C
∗
hy〉X = r ||ChP0C

∗
h||L(Y)

where r = dim(Y). The inequality Pj ≤ P0 was used in X, but now the
L(X,D(A))-norm can be used for P0. Then using both parts (i) and (ii) of
Lemma 2 gives

||ChP0C
∗
h||L(Y) ≤

h3

2
µ2 ||C||2L(X,Y) ||P0||L(X,D(A)) .
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As before, this leads to an estimate

E

(
||ẑT,n − ẑ(T )||2

X

)
≤

rµ2 ||P0||L(X,D(A)) ||C||2L(X,Y)E
(
||ẑT,n − z(T )||2

X

)
T 2

2min(eig(R))n
=:

MT 2

n

completing the proof. �

Checking the assumption P0 ∈ L(X,D(A)) might be difficult. Under the
stronger smoothness assumption x ∈ D(A) almost surely, we get the same
convergence rate as in the finite dimensional case:

Theorem 4. Make the same assumptions as in Theorem 3. Assume, in
addition, that x ∈ D(A) almost surely. Then

E

(
||ẑT,n − ẑ(T )||2

X

)
≤

MT 3

n2

where M =
µ2tr(AP0A∗)||C||2L(X,Y)E

(

||ẑT,n−z(T )||
2

X

)

12min(eig(R)) .

Proof. The proof is the same as that of Theorem 1 but from Eq. (12) we
proceed differently. It holds that

tr (ChPjC
∗
h) ≤ tr (ChP0C

∗
h) = E

(
||Chx||

2
Y

)
≤

h4

4
µ2 ||C||2L(X,Y) E

(
||Ax||2X

)

where the last inequality holds by part (ii) of Lemma 2. The term is finite by

Proposition 1 and Fernique’s theorem. Further, it holds that E
(
||Ax||2X

)
=

tr(AP0A
∗). Now the result follows as above. �

As discussed after Theorem 2, the error components stemming from the
initial state error and the input noise can be treated separately. Therefore,
as an almost direct corollary of Theorems 2,3, and 4, we obtain the following
result:

Corollary 1. Let ẑT,n and ẑ(T ) be as defined in (2) and assume C ∈ L(X,Y)
and B ∈ L(U,D(A)). Assume also either (i): P0 ∈ L(X,D(A)), or (ii):
x ∈ D(A) almost surely. Then

E

(
||ẑT,n − ẑ(T )||2

X

)
≤

M1T
2

n
+

M3T
4

n2
+ errx

where M1 and M3 are as in Theorem 2 end errx is as in Theorem 3 in the
case of assumption (i), or as in Theorem 4 in the case of assumption (ii).

The proof is the same as the proof of Theorem 2, with the modifications of
Theorems 3 or 4. Note that tr(ABQB∗A∗) ≤ ||A||2L(D(A),X) ||B||2L(U,D(A)) tr(Q)

and tr(BQB∗) ≤ ||B||2L(U,X) tr(Q).

6. Discussion

Since the implementation of the discrete time Kalman filter is straight-
forward, it is a tempting choice for state estimation for discretized contin-
uous time systems. As the temporal discretization is refined, the discrete
time state estimate converges pointwise to the continuous time estimate in
L2(Ω;X). In this article, we derived convergence speed estimates at which
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the discrete time Kalman filter estimate converges to the continuous time es-
timate as the temporal discretization is refined. The result was achieved for
both finite and infinite dimensional systems with bounded observation oper-
ator and smooth input operator. In the case of infinite dimensional systems,
some smoothness assumption on the initial state is needed for obtaining any
convergence speed estimates. This was demonstrated in Example 1. Possi-
ble additional assumptions are (i): for the initial state covariance it holds
that P0 ∈ L(X,D(A)); or (ii): for the initial state it holds that x ∈ D(A)
almost surely. In the latter case we obtained the same convergence speed
estimate as for finite dimensional systems.

A topic that would require further work are systems with infinite di-
mensional output space. The output space dimension r does not appear
explicitly in the convergence speed estimates, except for Thm. 3. However,

in the proofs we need an upper bound for
∣∣∣
∣∣∣
(
ChPjC

∗
h + h

2R
)−1
∣∣∣
∣∣∣
L(Y)

and thus,

in order to obtain (11), we made a coercivity assumption R ≥ ǫI > 0 which
excludes infinite dimensional output space since R is required to be a trace
class operator. In the beginning, we also assumed that the input space U

is finite dimensional. This is merely an assumption by which tedious defini-
tions of infinite dimensional Wiener processes are avoided. For more on this
subject, we refer to [5].

Two more topics that are not covered by this article are the long time
behaviour as T → ∞, and using some approximate time integration scheme
for taking the time step. When T grows, the error covariance converges
under some assumptions on the observability of the system. Of course, the
observability of the continuous time system does not imply the observability
of the discretized system. In the case where there is input noise affecting the
system, the error covariance limits are obtained as the solutions Pd and Pc

of the corresponding discrete or continuous time algebraic Riccati equations,

respectively. Then it holds that limn→∞ E

(
||x̂n∆t,n − x̂(n∆t)||2

X

)
= tr(Pd −

Pc) where x̂n∆t,n and x̂(n∆t) are defined in (2). Finally, further research
would be needed to study the error caused to the state estimate if some
numerical time integration scheme is used for computing the discrete time
update, that is, eA∆t is not computed accurately. A similar problem is
addressed in [2] and [18], but they are mainly concerned with the stability
of the resulting filter.
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