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1 Introduction

The research area of piecewise-affine (PWA) systems (Sontag 1981), has received a lot of attention dur-

ing the last fifteen years. Different techniques have been recently studied for their stability analysis,

mostly based on the computation, through semi-definite programming, of common quadratic or piece-

wise quadratic Lyapunov functions (Feng 2002, Ferrari Trecate et al. 2002, Sun 2010, Mason et al. 2012,

Eghbal et al. 2013). Other methods are based on piecewise-polynomial Lyapunov functions (Prajna and

Papachristodoulou 2003), and on PWA Lyapunov functions (Grieder et al. 2005). Is spite of their simple

formulation, PWA Lyapunov functions can in some cases find a solution where higher-order piecewise-

smooth functions fail to succeed. This is due to the non-conservative nature of the computational scheme

employed for determining PWA Lyapunov functions: if such a function exists on a given partition, then

the associated optimization problem will be able to find it (this property is no longer valid for higher-

order functions).

In particular, PWA Lyapunov functions are obtained through linear programming (LP), imposing

positive-definiteness and decay conditions at the vertices of the polytopes that compose the (bounded)

domain, therefore enforcing the same properties for all the points of interest. Usually, the set (henceforth

referred to as X ) where the PWA dynamics is defined is a known positively invariant set, because the no-

tion of stability has no practical relevance if the state trajectory can exit the domain where the dynamics

is defined (Biswas et al. 2005). However, there are many cases when the PWA system to be analyzed is

not defined in a positively invariant set. A typical example is when an explicit model predictive control

(MPC) control law (Bemporad et al. 2002) is synthesized for a linear system without a-priori guarantees

of stability and/or positive invariance of some suitable set for the closed-loop system. This can occur,

for instance, when approximations of the optimal control law are introduced to obtain low-complexity

solutions (see, e.g., Grieder et al. (2005), Jones and Morari (2010), Bemporad et al. (2011)).

In case of a non-invariant domain, a possible approach is to perform an extensive reachability analysis

to find, through a recursive procedure, the maximum positively invariant (MPI) set included in X (see

Rakovic et al. (2006), (Blanchini and Miani 2008, Ch 4-5) and references therein). Then, the Lyapunov
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stability analysis can be carried out in the MPI set. However, it often happens that this latter one is

not a domain of attraction for the origin, because the domain of attraction is a proper subset of it. The

domain of attraction (or a positively invariant subset of it) must then be determined in order to get a

feasible solution applying one of the previously-mentioned methods (Feng 2002, Ferrari Trecate et al.

2002, Prajna and Papachristodoulou 2003, Grieder et al. 2005). However, this procedure, when applied

to PWA systems, can lead to computationally intractable solutions due to the exponential complexity of

reachability analysis. Moreover, in many cases, searching for the MPI set is an undecidable problem.

An alternative solution is proposed in Rubagotti et al. (2011), where an invariant set is determined

a-posteriori by defining a fictitious dynamics that extends the actual dynamics of the system defined on

X . In this way, a larger domain Xe is considered, which is positively invariant for the extended system

(i.e., the system including the regions where the fictitious dynamics is defined). If a PWA Lyapunov

function can be determined for the extended system, a positively invariant (not necessarily maximal)

set Pe included in X is determined for the actual system. This solution would avoid performing an

extensive reachability analysis. However, its main drawback arises from the arbitrariness in the definition

of the fictitious dynamics. This can lead, for instance, to the artificial introduction of limit cycles on the

extended dynamics, which would make it impossible to find a PWA Lyapunov function.

This paper proposes a method based on PWA Lyapunov functions to assess exponential stability of

the origin of a PWA system defined on a possibly non-invariant domain X , and determines an estimate

P of the region of attraction contained in X . Even though the goal is the same as that of Rubagotti

et al. (2011), no fictitious dynamics is required, and the PWA Lyapunov function (directly defined in

P) and the set P itself are found simultaneously. Discontinuities at the boundaries of the polytopic sets

are allowed for both the system dynamics and the PWA Lyapunov function. In particular, the system

dynamics on the regions boundaries can assume any of the neighboring values, and the presence of

a finite number of affine dynamics is allowed within each polytopic region, aspects not considered in

Rubagotti et al. (2011).

It is proven that the proposed method leads to a feasible solution whenever there exists a fictitious
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dynamics leading to a feasible solution by applying a generalization of the method in Rubagotti et al.

(2011). The focus of the present paper is on (possibly multiple) nominal dynamics: the reader interested

in the direct analysis of systems with parametric uncertainties or additive disturbances is referred to

Trimboli et al. (2011), Rubagotti et al. (2013), respectively, and the references therein. A preliminary

version of the theory here developed for the construction of the PWA Lyapunov function was described

in Rubagotti et al. (2012). As compared to Rubagotti et al. (2012), this paper analyzes the presence of

overlapping dynamics on the boundaries, uses a different construction of the LP which enlarges the

domain of application of the proposed technique, and tests the new method on different examples. It will

be shown that the complexity of the proposed LP (i.e., number of variables and constraints) increases

only linearly with the order of the system. However, since typically the number of regions increases

as well if more state variables come into play, the proposed method (like all the mentioned methods)

is suitable to analyze small-sized systems (realistically up to 5-6 state variables) if a standard desktop

computer is used.

After introducing the main notation, definitions, and background results in Section 2, the stability

problem is formulated in Section 3. The proposed LP-based PWA Lyapunov function construction is

introduced in Section 4, and the related theoretical results are proven. Section 5 shows the broader

applicability of the proposed method with respect to the method based on fictitious dynamics proposed

in Rubagotti et al. (2011). Numerical results are discussed in Section 6, and conclusions are finally drawn

in Section 7.

2 Notation, definitions, and background

Let R, R>0, Z>0 and Z≥0 denote the sets of reals, strictly positive reals, strictly positive integers and

non-negative integers, respectively. Given a vector v ∈ Rn, let |v| denote any vector norm. Given a

discrete-time signal w : Z≥0 → Rp, the sequence of the values of w from the zero instant to the k-th

instant is denoted by w[k]. The norm of a sequence is defined as ‖w[k]‖ , supi∈{0,...,k} |w(i)|. Given a

set D ⊆ Rn, its interior is denoted by int(D), its closure by D̄, its boundary by ∂D, and its convex hull
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by conv(D). Given a finite number of sets Di, i ∈ Id = {1, . . . , nd}, we say that {Di} is a partition of

D if int(Di) 6= ∅, int(Di) ∩ int(Dj) = ∅, ∀i, j ∈ with i 6= j, and
⋃nd

i=1Di = D. A polyhedron is a set

given by the intersection of a finite number of (closed or open) half-spaces. A polytope D is a bounded

polyhedron, and the set of the vertices of its closure D̄ is denoted by vert(D̄). With respect to a given

vector norm, we define the norm ball of radius χ ∈ R>0 as Bχ , {a ∈ Rn : |a| ≤ χ}. Given two

sets D1,D2 ∈ Rn, their Minkowski sum is D1 ⊕ D2 , {d1 + d2 : d1 ∈ D1, d2 ∈ D2}. A function

γ : R≥0 → R≥0 of class K (γ ∈ K) is continuous, positive definite, and strictly increasing. A function

γ : R≥0 × Z≥0 → R≥0 is of class KL (γ ∈ KL) if ∀k ∈ Z≥0, γ(·, k) ∈ K, and ∀c ∈ R≥0, γ(c, ·) is

decreasing, and limk→∞ γ(c, k) = 0.

Consider a discrete-time nonlinear difference inclusion

x+ ∈ ϕ(x), x ∈ X (1)

where X ⊂ Rn, and x ∈ Rn is the state vector, X being a compact set that contains the origin in its

interior. The notation x+ ∈ ϕ(x) is a shorthand for x(k + 1) ∈ ϕ(x(k)), k ∈ Z≥0, and will be always

used in the following. Function ϕ(·) is a locally bounded and outer semi-continuous set-valued mapping

whose domain contains X . According to (Goebel et al. 2012, Ch 6), these properties of ϕ ensure well

posedness of (1) and suitable existence properties for solutions to (1).

The following ones are standard definitions for difference equations/inclusions. Due to the generality

of inclusion (1), we characterize positive invariance as “strong”, in the first definition below, to emphasize

the fact that all solutions starting in D remain in D for all forward times.

Definition 2.1: A set D ⊆ X is called strongly positively invariant (SPI) for dynamics (1) if all

solutions starting in D remain in D for all times.

Definition 2.2: For system (1), the one-step reachable set from D ⊆ X is R(D) , {y ∈ Rn : y ∈

ϕ(x) for some x ∈ D}.

Remark 1 : Note that set X is not assumed to be SPI for (1), so that some solutions can leave X and

are therefore defined only on a bounded time domain.
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Definition 2.3: Consider dynamics (1) and an SPI set D ⊆ X with 0 ∈ int(D). The origin is expo-

nentially stable in D (ES(D)) if there exist c, ρ ∈ R>0 such that all solutions to (1) satisfy

x(0) ∈ D ⇒ |x(k)| ≤ c|x(0)|e−ρk, ∀k ∈ Z≥0.

Theorem 2.4 : Assume that system (1) is defined in the SPI set D ⊆ X with 0 ∈ int(D), and admits a

(possibly discontinuous) function U : D → R, such that, for all x ∈ X ,

α1|x|η ≤ U(x) ≤ α2|x|η (2a)

U(g)− U(x) ≤ −α3|x|η, ∀g ∈ ϕ(x), (2b)

where η, αi ∈ R>0, i = 1, 2, 3. Then, the origin is ES(D) for (1).

Proof: The proof follows from (Teel et al. 2013, Thm 1), by only concentrating on the jump dynamics

(namely selecting the flow set to be empty). Note that (Teel et al. 2013, Thm 1) assumes continuous

differentiability of U but this property is never used in the discrete-time part of the proof. Therefore the

same proof technique can be used to prove our Theorem 2.4. �

Note that Theorem 2.4 allows U(·) (called uniformly strict Lyapunov (USL) function, cf. Lazar et al.

(2009)) to be a discontinuous function. Continuity at the origin is implied by condition (2a), but the

continuity on a neighborhood of the origin is not required. In the remainder of the paper, discontinuous

USL functions will be exploited to obtain theoretical results that avoid the conservativity possibly arising

from enforcing continuity conditions.

3 Stability analysis problem and basic definitions

Let X ⊂ Rn be a compact polytope that includes the origin in its interior. Consider a partition {Xi} of

X that consists of a finite number s of polytopes

Xi , {x : Hix ≤ hi}, i ∈ I , {1, ..., s} (3)
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where Hi ∈ Rn×qi , and hi ∈ Rqi are constant vectors, and the inequality should be understood

component-wise. The number of vertices of Xi is denoted by mi. The subset of indices I0 is defined

as I0 , {i ∈ I : 0 ∈ Xi}, and it is assumed without loss of generality that, for all i ∈ I0, 0 ∈ vert(Xi).

The system dynamics can be defined by different affine functions gj(x) = Ajx+aj , withAj ∈ Rn×n,

aj ∈ Rn, j ∈ S , {1, . . . , ng}. We denote Si ⊆ S as the subset of indices of functions gj associated

to region Xi: for example, if S4 = {1, 5, 8}, it means that, if x ∈ X4, the state update can be defined

according to g1, g5, or g8. The autonomous discrete-time PWA system is formally defined as

x+ ∈ ϕ(x) =
⋃
j∈Si

gj(x), x ∈ Xi, i ∈ I. (4)

Note that, being allXi defined as closed sets, (4) allows x to evolve according to any of the neighboring

dynamics when x is on a boundary shared by more regions. For instance, if x ∈ ∂X1 and x ∈ ∂X2, then

x+ can be determined according to any gj with j ∈ S1 ∪ S2. The idea of taking into account PWA

systems with overlapping dynamics on the boundaries has already been considered by Hovd and Olaru

(2013).

Given the PWA system (4), for which X is not necessarily an SPI set, our goal is to prove the expo-

nential stability of the origin and provide an SPI set P ⊆ X contained in its region of attraction. In order

to introduce the Lyapunov stability analysis framework, suitable sets related to the possible transitions

between regions are defined, as follows. We define the polytope

Xe , conv (X ∪R(X )) (5)

withR(X ) =
⋃
i∈I Ri, and whereRi is the set of points reachable in one step from region Xi, that can

be computed (Blanchini and Miani 2008) as

Ri(X ) =
⋃
j∈Si

conv
h=1,...,mi

(Ajvi,h + aj),

being vi,h ∈ vert(Xi). The closure of the set Xout , Xe \ X , namely X̄out, is in general a non connected

set, that can always be expressed as X̄out =
⋃s̃
i=s+1Xi, where Xi are closed polytopes with (possibly)
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overlapping boundaries, but with disjoint interiors. An extended set of indices is also defined as Ĩ ,

{1, . . . , s̃}. In this way, new regions Xi, i = s + 1, . . . , s̃, are defined outside X , but no dynamics

is associated with them. Notice that, in the particular case when X is an SPI set, then Xe ≡ X , and

Xout = ∅. For each pair (i, k) ∈ I × Ĩ, and each dynamics gj ∈ Si, we define the closed transition sets

X jik , {x ∈ Xi : Ajx+ aj ∈ Xk} (6)

of states that may be mapped into the polytope Xk in one step from the polytope Xi under dynamics gj .

The number of vertices of each regionX jik is denoted bymj
ik. The setsX jik can be conveniently expressed

as

X jik = {x ∈ Rn : Hix ≤ hi, Hk(Ajx+ aj) ≤ hk}.

4 PWA Lyapunov analysis

To the end of synthesizing a USL function for system (4), define Vi : Xi → R, i ∈ I as

Vi(x) , Fix+ fi (7a)

where in (7a) Fi ∈ R1×n and fi ∈ R are free variables to be determined by the optimizer. Then, define

V : X → R as

V (x) = max
i∈N (x)

Vi(x), N (x) , {i ∈ I : x ∈ Xi}. (7b)

Note that Vi(x) and Vj(x) may be different on points x ∈ Xi ∩Xj . Therefore, for the values of x on the

intersections, the required conditions on Vi are imposed for all i ∈ N (x), although only the maximum

value is taken in (7b), as V (x) must be single valued. The constraints

Fivi,h + fi ≥ α1|vi,h|, α1 ≥ ε, (8a)

are imposed for all the mi vertices vi,h ∈ vert(Xi), i ∈ I, h = 1, . . . ,mi, where α1 is a free parameter,

while 0 < ε � 1 is a fixed parameter. The use of ε arises from the fact that strict inequalities cannot be
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imposed in standard LPs. Condition (8a) will lead to V (x) ≥ α1|x| in X , as will be formally shown in

the remainder of the paper. The value of V (·) at the vertices of each region Xi is limited by imposing

Fivi,h + fi ≤Mi, Mi ≥ ε (8b)

for all the mi vertices vi,h ∈ vert(Xi), i ∈ I, h = 1, . . . ,mi, where Mi for i ∈ I are free variables used

by the optimizer. In order to obtain V (0) = 0, it is also required that

fi = 0, ∀i ∈ I0. (8c)

Due to the boundedness of V (x), (8c) will make it possible to prove that there exists α2 ≥ ε such that

V (x) ≤ α2|x| for all x ∈ X .

Also, it is required that, for all X jik 6= ∅, with (i, j, k) ∈ I × Si × I,

Fk(Ajv
j
ik,h + aj) + fk − Fivjik,h − fi ≤ −α3|vjik,h|, α3 ≥ ε, (8d)

for all vjij,h ∈ vert(X jik), with h = 1, . . . ,mj
ik, while α3 is a free variable. A last set of constraints is

introduced as

Fiv
j
ik,h + fi ≥ 1 (8e)

for all vertices vjik,h ∈ vert(X jik), with h = 1, . . . ,mj
ik, (i, j, k) ∈ I × Si × (Ĩ \ I). With constraints (8)

in place, the vector of variables to be determined via a suitable optimization is composed of α1, α3, and

the terms Mi, Fi and fi, for all i ∈ I.

A procedure is now proposed so as to determine a choice for such variables by means of linear pro-

gramming, as follows

minimize
∑
i∈I

Mi (9a)

subj. to (8) (9b)

Once (9) has been solved, the function V (x) is defined for all x ∈ X , based on (7). The following main
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result holds for the set

P , {x ∈ X : V (x) < 1}. (10)

Theorem 4.1 : Consider system (4), whose dynamics is defined on X , and assume that a bounded

solution to problem (9) exists. Then, with reference to dynamics (4), P in (10) is an SPI set, and the

origin is ES(P).

Proof: Given x ∈ Xi, for any i ∈ N (x) (see (7b)), define γi,h ≥ 0, such that
∑mi

h=1 γi,h = 1, as a

set of coefficients defining x as a convex combination of the vertices of Xi. We obtain from (8a) that

α1|x| = α1 |
∑mi

h=1 γi,hvi,h| ≤
∑mi

h=1 γi,hα1|vi,h| ≤
∑mi

h=1 γi,h(Fivi,h + fi) = Fix + fi = Vi(x). This

means that Vi(x) ≥ α1|x|, for all i ∈ N (x). As a consequence, α1|x| ≤ maxi∈N (x){Fix+ fi} = V (x).

Since X =
⋃
i∈I Xi, this implies that, for all x ∈ X , V (x) ≥ α1|x|. With a similar argument one can

show that (8b) implies V (x) ≤ Mi for all x ∈ Xi, with i ∈ I, and that (8e) implies Fix + fi ≥ 1 for

all x ∈ X jik, with (i, k) ∈ I × (Ĩ \ I). Considering that (8c) implies Vi(0) = 0 for all i ∈ I0, and that

V (x) is upper bounded by maxi∈IMi < +∞, there exists a scalar α2 ≥ ε such that V (x) ≤ α2|x| for

all x ∈ X . We conclude that

α1|x| ≤ V (x) ≤ α2|x|, ∀x ∈ X . (11)

Consider any x ∈ XI ,
⋃

(i,j,k)∈I×Si×I X
j
ik ⊆ X . Using again a convex combination by expressing
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x =
∑mj

ik

h=1 γ
j
ik,hv

j
ik,h such that

∑mj
ik

h=1 γ
j
ik,h = 1 for all admissible values of i, j, and k, we get from (8d)

Vk(gj(x)) = fk + Fk

Aj
mj

ik∑
h=1

γjik,hv
j
ik,h

+ aj


= fk +

mj
ik∑

h=1

γjik,h

(
Fk

(
Ajv

j
ik,h + aj

))

≤ fk +

mj
ik∑

h=1

γjik,h

(
−fk + Fiv

k
ik,h + fi − α3|vjik,h|

)

= Fi

mj
ik∑

h=1

γjik,hv
j
ik,h +

mj
ik∑

h=1

γjik,hfi − α3

mj
ik∑

h=1

γjik,h|v
j
ik,h|

≤ Fix+ fi − α3|x| = Vi(x)− α3|x| (12)

which proves that Vk(gj(x))− Vi(x) ≤ −α3|x| for all x ∈ X jik, with (i, j, k) ∈ I × Si × I. This allows

us to state that, for all (i, j, k) ∈ I × Si × I,

max
k∈N (gj(x))

(
Fkgj(x) + fk

)
≤ max

i∈N (x)
(Fix+ fi)− α3|x|.

Since {X jik}, with (i, j, k) ∈ I × Si × I, is a partition of XI , we obtain

V (g)− V (x) ≤ −α3|x|, ∀ x ∈ XI , ∀ g ∈ ϕ(x). (13)

Note that, after defining P as in (10), one has P ⊆ XI . The reason why is that, from (8e), one can easily

obtain that Fix+ gi ≥ 1 for all x contained in the closure of X \XI . Therefore, conditions (11) and (13)

hold for all x ∈ P ⊆ XI ⊆ X . This fact leads to two conclusions: first, since P is a sublevel set of V (x),

then from (13), P is an SPI set; second, from (11)-(13), applying Theorem 2.4, system (4) is ES(P). �

Remark 2 : Even if the formulation of the LP (9) will not lead to an explicit maximization of the

domain of attraction, the minimization of the sum of the Mi leads to values of the Lyapunov function as

close as possible to zero, preventing them to be assigned large values. Intuitively, if more values of the

PWA Lyapunov function on the vertices of the partition are below 1, then the set P is larger.

Remark 3 : The preliminary version of the algorithm here proposed (presented in Rubagotti et al.
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(2012)), apart from considering a single affine dynamics for each region Xi, would produce an un-

bounded LP solution in the special case in which X were already SPI. Therefore, in Rubagotti et al.

(2012) it had to be assumed that X was not an SPI set. This assumption is not needed in this revised

algorithm, since, in that special case, conditions (8e) do not appear in the LP, and the proof of Theorem

4.1 is still valid.

Remark 4 : It can be inferred from the description of the LP (9) that the total number of vari-

ables is nv = 2 + s(n + 2), while the total number of inequality constraints is nc = 2 + s +∑s
i=1

(
2mi +

∑
j∈Si

∑s̃
k=1m

j
ik

)
.

Remark 5 : In case (8) is infeasible, a possibility is to increase the number of regions Xi, therefore

providing more flexibility in synthesizing the PWA Lyapunov function (7). A possible way is to to

consider the sets X jik as the new sets Xi and restart the one-step reachability analysis. As an alternative,

one can employ a grid of the set X , which, redefining the partition together with the old sets Xi, defines

the new sets Xi.

Remark 6 : In order to make the proposed approach more general, one might want to consider the

case in which affine dynamics, additional with to those defined in the full-dimensional regions Xi, are

present defined only on given facets of dimension 1, . . . , n − 1 of one ore more region Xi (a thorough

definition of the concept of facet can be found, for instance, in Spjøtvold et al. (2006)). In this way,

specific (possibly multiple) dynamics can be defined on the lower-dimensional intersections between

regions Xi, including the case of dynamics defined only on one vertex. By considering each facet as a

new and independent region, the results proved in Theorem 4.1 still hold.

5 Comparison with a previous approach

In Rubagotti et al. (2011), an analogous problem has been addressed by proposing a different solution.

Since the approach of Rubagotti et al. (2011) considered the case of a single dynamics for each region

Xi, in order to make a comparison we will consider a particular sub-case of our approach in which
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Si = {i}, i.e., the i− th dynamics is associated with the i− th region only. Therefore, we can omit the

index j from the subsequent formulation of this section. In Rubagotti et al. (2011), a contractive PWA

fictitious dynamics Γ(x) is defined a priori in the polytopic regions Xi, i = s+ 1, . . . , s̃, as

x+ = Γ(x) = Γi(x), x ∈ Xi, i = s+ 1, . . . , s̃ (14)

such that Xe is an SPI set for the so-called extended system, defined as

x+ =


ϕ(x), x ∈ X

Γ(x), x ∈ X̄out.
(15)

In Rubagotti et al. (2011), due to the difficulty of defining the function Γ(x), it was suggested to define

it as a contractive dynamics of type Γ(x) = ρx, ρ ∈ R[0,1), which was noticed to give good results

in practice. In the following we generalize such an approach, by assuming that Γ(x) can be any PWA

dynamics. Then, a PWA Lyapunov function V e : Xe → R is determined by linear programming, in order

to satisfy equations (2) with η = 1 for all x ∈ Xe. More precisely, we have

V e
i (x) , F ei x+ fei , i ∈ Ĩ (16a)

with F ei ∈ R1×n and fei ∈ R, and then we define V e as

V e(x) = max
i∈Ne(x)

V e
i (x), Ne(x) , {i ∈ Ĩ : x ∈ Xi}. (16b)

If a feasible realization of function V e(x) can be determined, the set Pe is defined as

Pe ,
{
x : V e(x) ≤ inf

x∈Xe\X
V e(x)

}
(17)

and system (4) is proven to be exponentially stable in Pe. The fictitious dynamics provides an additional

degree of freedom, but it is in general very hard if not impossible to know (except perhaps for very

simple examples) what choice of the fictitious dynamics would lead to a larger set Pe, or even if there

exists a realization of Γ(x) such that a set Pe 6= ∅ can be determined. Therefore, in some cases, a wrong

choice of the fictitious dynamics can prevent the extended system from converging to the origin. The
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approach of the present paper overcomes this problem, since no dynamics is defined out of the set X ,

and the Lyapunov function is defined only for x ∈ X .

The next result on the comparison between the two methods is now introduced:

Theorem 5.1 : Given a PWA system in form (4), whose dynamics is defined on X , define the extended

set Xe as in (5), such that Xe is an SPI set for the extended system (15). Assume that there exists a

fictitious dynamics Γ(x), x ∈ X̄out, such that a PWA USL function V e(x) is determined for all x ∈ Xe.

Then, for system (4) defined on X , there exists a feasible solution of problem (9) and a scalar β ∈ R>0

such that V (x) = βV e(x) for all x ∈ X .

Proof: According to the assumptions, for system (15), V e(x) is defined as a PWA function on Xe.

Moreover, there exist αe1, α
e
2, α

e
3 ∈ R>0 such that

αe1|x| ≤ V e(x) ≤ αe2|x| (18)

V e(x+)− V e(x) ≤ −αe3|x|. (19)

We will show that, starting from V e(x), we can always find another USL function Ṽ e(x) defined for

x ∈ X , which is a feasible solution of (9).

First of all, define

V e
inf , inf

x∈Xe\X
V e(x), (20)

β , 1/V e
inf, (21)

Mi , βmax
x∈Xi

{V e(x)} , i ∈ I. (22)

Then, define Ṽ e(x) , βV e(x), x ∈ X . It is now possible to state that Ṽ e(x) = maxi∈N (x) Ṽ
e
i (x), with

Ṽ e
i (x) , F̃ ei x+ f̃ei , being F̃ ei , βF

e
i and f̃ei , βf

e
i .
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Note that V e(x) for x ∈ X satisfies, by construction,

F̃ ei x+ f̃ei ≥ βαe1|x|, ∀x ∈ Xi, i ∈ I, (23a)

F̃ ei x+ f̃ei ≤Mi, ∀x ∈ Xi, i ∈ I, (23b)

f̃ei = 0, i ∈ I0, (23c)

F̃ ek (Aix + ai) + f̃ek − F̃ ei x − f̃ei ≤ −βαe3|x|, ∀x ∈ X iik, (i, k) ∈ I × I, (23d)

F̃ ei x+ f̃ei ≥ βV e
inf = 1, ∀x ∈ X iik, i ∈ I, k ∈ Ĩ \ I. (23e)

If any of the conditions (23) is satisfied for all x in a given compact set, it is automatically satisfied

also on its vertices. Therefore, conditions (23) imply conditions (8), which means that Ṽ e is a feasible

solution of problem (9). �

Remark 7 : Notice that the existence of a feasible solution of problem (9) does not necessarily imply

that, once Γ(x) is fixed, there exists a PWA USL function V e(x) in Xe. For example, consider the

following PWA system defined in X = [−1, 2]: f(x) = −0.5x for x ∈ X1 , [−1, 0]; f(x) = −0.3x

for x ∈ X2 , [0, 1]; f(x) = 3x for x ∈ X3 , [1, 2]. Since R(X3) = [3, 6], a new region is defined

as X4 = [2, 6] such that Xe ,
⋃4
i=1Xi = conv{X ∪ R(X)}. The fictitious dynamics in X4 would

be defined a priori as a contractive one. We assume that x+ = 0.5x, leading to a positively invariant

set Xe = [−1, 4]. For any initial condition x(0) ∈ (1, 4], the state evolution will exhibit a limit cycle,

therefore preventing to prove the (in this simple case, apparent) fact that the origin is an exponentially

stable equilibrium point with domain of attraction X1 ∪ X2. This result is instead obtained with the

approach presented in this paper: both X1 and X2 are SPI sets, while x+ /∈ X , ∀x ∈ X3. The transition

sets would be X 1
11 = X1, X 2

22 = X2, and X34 = X3. An optimal solution for (9) would be given by the
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PWA Lyapunov function

V (x) =



−εx, x ∈ X1

εx, x ∈ X2

1, x ∈ X3

In conclusion, it is always possible to obtain P solving (9) when Pe can be found with the method

based on fictitious dynamics. On the other hand, there are systems for which this latter gives no solution

(mainly because of the difficulty, in an n-dimensional case, of understanding what a reasonable choice

for Γ(x) can be), while it is possible to find a set P by using the method proposed in this paper.

6 Numerical examples

6.1 Example 1

As a first example, a simple first-order piecewise-linear system is considered, which allows one to in-

tuitively understand the possible advantages of the application of the proposed method. The system is

defined as follows:

x+ =



−2x, x ∈ X1 , [−2,−1]

0.1x, x ∈ X2 , [−1, 0]

0.5x, x ∈ X3 , [0, 5]

2x, x ∈ X4 , [5, 6]

One can immediately see that, because of the dynamics in X4, the set X =
⋃4
i=1Xi is not SPI, and

therefore classical methods for numerically determining a Lyapunov function cannot be directly applied.

The method proposed in this paper, instead, would determine the SPI set P = [−2, 5) and the Lyapunov

function shown in Fig. 1. In this latter, notice that V (x) = 1 for x ∈ X4, while values smaller than 1 are

achieved or the other 3 regions. The computation of the transition sets X jik (in this example, with j = k)

and the other preliminary calculations took 0.36 s on a 2.4 GHz processor with 8Gb RAM. The LP for
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determining V (x) consists of 32 constraints and 14 variables, and is solved using CVX (Grant et al.

2008) in 0.62 s on the previously-mentioned machine. In this simple case, the set P coincides with the

maximal positively invariant set, which can be determined intuitively, and for which an efficient com-

putational algorithm is in general provided in the MPT toolbox (Herceg et al. 2013). After determining

the MPI set, classical methods (based on PWA or piecewise-quadratic Lyapunov functions implemented

for instance in the MPT toolbox) can be successfully employed to prove the exponential stability of

the origin. Notice that a common quadratic Lyapunov function does not exist in P for the considered

example.

6.2 Example 2

In order to show a more complex example of the proposed approach, we consider the application of the

PWA control law of Bemporad et al. (2002) to a discretized double integrator

x+ = Ax+Bu (24)

where

A =

1 1

0 1

 , B =

 1

0.5


and where the goal is to optimally stabilize the origin satisfying the input constraints u(k) ∈ U for all

k ∈ Z≥0, with U , {u ∈ R : |u| ≤ 1}. In particular, following Bemporad et al. (2002), we seek for an

optimal LQ stabilizer over a prediction horizon N = 5, with weight matrices

Q =

1 0

0 1

 , R = 1

on the state and input variables, respectively. No terminal weight or terminal constraints are defined,

and no state constraints are imposed (as a consequence, no set-invariance or closed-loop stability prop-

erties are guaranteed a priori). The arising explicit MPC control law, determined by using the MPT

toolbox, is defined as a PWA function for all x ∈ R2. If we consider the closed-loop dynamics in
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X ,
{
x ∈ R2 : |x|∞ ≤ 10

}
, we obtain a partitioning of X into 31 regions, to which 31 different affine

dynamics are associated. In order to use a finer partition, we increase the number of regions Xi by adding

a rectangular partitioning, obtaining a total number of s = 148 regions. The closed-loop dynamics (4) is

x+ = (A+BKi)x+Bki, x ∈ Xi.

Since state constraints were not imposed a priori, X is not an SPI set. Therefore, we are interested in

finding a set P ⊂ X which is SPI and contained in the region of attraction. As a first step, we find the

set Xe defined in (5), and the the transition sets X jik. Notice that, in this case, the closed-loop dynamics

defined by the MPC controller is continuous, and j = k, since the dynamics is uniquely defined at each

x ∈ X . We are then ready to formulate the LP (9), setting ε = 10−5. The resulting LP is infeasible.

Therefore, we decide, as suggested in Remark 5, to grid the set X as it an be clearly seen in Fig. 2 (a

coarser grid would again lead to an infeasible LP). The LP is successfully solved, which proves that

the origin of the closed-loop system is ES(P) for the set P shown in Fig. 2. Also, the PWA Lyapunov

function V (x) is shown in Fig. 3. The LP comprises 3108 constraints and 594 variables, and is solved

using CVX in 1.15 s on a 2.4 GHz processor with 8GB RAM. The computation of the sets X jik, together

with all the other required operations apart from the LP, took about 75 s on the same computer.

The same stability analysis problem was considered also using the method proposed in Rubagotti et al.

(2011), but no feasible solution was found, meaning that this example falls into the cases considered in

Section 5. In this case, P does not necessarily coincide with the MPI set for the closed-loop system. The

MPI set could not be numerically determined using the MPT Toolbox, but an over-estimation of it can be

determined using the same toolbox by computing the maximum control-invariant set for the open-loop

system (24) with respect to the given state and input constraints. The result is shown in Fig. 1, where the

maximum control-invariant set is depicted in black. This shows that the area of set P is close to that of

the MPI set.
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7 Conclusions

This paper proposes a convex optimization-based method for the analysis of stability and invariance

of PWA systems, which is based on the construction of a suitable PWA Lyapunov function defined

through linear programming. Multiple affine dynamics are allowed in each region of the PWA system,

and discontinuities are taken into account for both the system dynamics and the Lyapunov function at

the regions boundaries. The method is of particular interest when the set of definition of the system

dynamics is not positively invariant, but the case of positively invariant sets can be analyzed with the

same procedure, as a particular case. The method can find a feasible solution in a broader range of

cases with respect to a previously-proposed approach, being independent from the definition of fictitious

dynamics. Future work comprises extending our approach from mere analysis to controller synthesis.

The main difficulty of this resides in preserving the convexity of the proposed optimization.

References

Bemporad, A., Morari, M., Dua, V., and Pistikopoulos, E.N. (2002), “The explicit linear quadratic regu-

lator for constrained systems,” Automatica, 38, 3–20.

Bemporad, A., Oliveri, A., Poggi, T., and Storace, M. (2011), “Ultra-Fast Stabilizing Model Predictive

Control via Canonical Piecewise Affine Approximations,” IEEE Transactions on Automatic Control,

56, 2883–2897.
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List of captions

Figure 1 The PWA Lyapunov function V (x) associated to the LP (9) for the first-order example. Given

the small values of the function for x ∈ [−2, 5], a zoomed plot is provided.

Figure 2 The PI set P for the considered example.

Figure 3 The PWA Lyapunov function V (x) associated to the LP (9) for the considered example.
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Figure 1. The PWA Lyapunov function V (x) associated to the LP (9) for the first-order example. Given the small values of the function for

x ∈ [−2, 5], a zoomed plot is provided.
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Figure 2. The PI set P for the second-order example (in color) and the maximum control-invariant set for the open-loop system (in black).
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Figure 3. The PWA Lyapunov function V (x) associated to the LP (9) for the second-order example


