
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Original citation: 
Tong, X., Zhao, X. and Zhao, S. (2017) Load reduction of a monopile wind turbine tower using 
optimal tuned mass dampers. International Journal of Control, 90 (7). pp. 1283-1298. 
 

Permanent WRAP URL: 
http://wrap.warwick.ac.uk/77868                 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for profit 
purposes without prior permission or charge.  Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
“This is an Accepted Manuscript of an article published by Taylor & Francis in International 
Journal of Control on 21/12/2015 available online: 
http://www.tandfonline.com/doi/full/10.1080/00207179.2015.1124143  

 
A note on versions: 
The version presented here may differ from the published version or, version of record, if 
you wish to cite this item you are advised to consult the publisher’s version.  Please see the 
‘permanent WRAP URL’ above for details on accessing the published version and note that 
access may require a subscription. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk 

 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/77868
http://www.tandfonline.com/doi/full/10.1080/00207179.2015.1124143
mailto:wrap@warwick.ac.uk


1

Load reduction of a monopile wind turbine tower using optimal tuned mass2

dampers3
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We investigate to apply tuned mass dampers (TMDs) (one in the fore-aft direction, one in the side-side7

direction) to suppress the vibration of a monopile wind turbine tower. Using the spectral element method,8

we derive a finite-dimensional state space model Σd from an infinite-dimensional model Σ of a monopile9

wind turbine tower stabilized by a TMD located in the nacelle. Σ and Σd can be used to represent10

the dynamics of the tower and TMD in either the fore-aft direction or the side-side direction. The wind11

turbine tower subsystem of Σ is modelled as a non-uniform SCOLE (NASA Spacecraft Control Laboratory12

Experiment) system consisting of an Euler-Bernoulli beam equation describing the dynamics of the13

flexible tower and the Newton-Euler rigid body equations describing the dynamics of the heavy rotor-14

nacelle assembly (RNA) by neglecting any coupling with blade motions. Σd can be used for fast & accurate15

simulation for the dynamics of the wind turbine tower as well as for optimal TMD designs. We show16

that Σd agrees very well with the FAST (Fatigue, Aerodynamics, Structures, and Turbulence) simulation17

of the NREL 5-MW wind turbine model. We optimize the parameters of the TMD by minimizing the18

frequency-limited H2-norm of the transfer function matrix of Σd which has input of force and torque19

acting on the RNA, and output of tower-top displacement. The performances of the optimal TMDs in the20

fore-aft and side-side directions are tested through FAST simulations, which achieve substantial fatigue21

load reductions. This research also demonstrates how to optimally tune TMDs to reduce vibrations of22

flexible structures described by partial differential equations.23

Keywords: monopile wind turbine tower; SCOLE model; tuned mass damper; spectral element24

method; frequency-limited H2-norm; FAST code25

1. Introduction26

Wind power has become an important source of green energy with continued substantial increases in27

investments. The proportion of global wind power capacity in the total energy generation capacity28

is expected to increase to 9.1% by 2020 (see BTM Consult, 2011) from about 2.5% in 2010 (see29

World Wind Energy Association [WWEA], 2011). To capture higher-quality wind resource, large30

wind turbines are being further constructed offshore. For example offshore wind power contributed31

14.04% of total wind power capacity installed in Europe in 2013 (see The European Wind Energy32

Association [EWEA], 2014), and the European offshore wind power capacity is expected to increase33

to 40 GW, accounting for 4% of the European Union’s electrical demand, by 2020 (see Teena,34

2010). However, due to severe weather, turbulence and wave conditions, offshore wind turbines35

bear significant fluctuating loads and vibrations leading to structural fatigue. Therefore, it is of36

critical importance to develop control techniques to reduce vibration loads acting on the wind37

turbine towers to increase their life expectancy and enable the construction of lighter and cheaper38

wind turbine towers. Nowadays, offshore wind turbines are principally fixed-bottom substructures.39

Most of fixed-bottom offshore turbines are monopiles (see Stewart & Lackner, 2013), which is the40

type investigated in this paper. We call this monopile-tower assembly as the monopile wind turbine41
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tower.1

1.1 Active control of wind turbine towers2

A lot of research has proposed approaches to mitigate loads on the wind turbine towers. The con-3

ventional method is the blade pitch control. Leithead, Dominguez, and Spruce (2004) tuned the4

blade pitch angles based on the measurement of tower accelerations to cancel the tower fore-aft5

mode. Darrow (2010) added a new tower velocity feedback loop into the CART3 (Controls Ad-6

vanced Research Turbine) baseline collective pitch control loop to damp the tower fore-aft motion.7

Soltani, Wisniewski, Brath, and Boyd (2011) employed receding horizon control to calculate the8

optimal collective pitch angles based on the estimated mean wind speed from LiDAR (Light Detec-9

tion and Ranging), which reduced structural loads and power fluctuations significantly. However10

blade pitch control is effective at the expense of interfering with power generation and increasing11

blade pitch actuator usage (thus leading to fatigue). Zhao and Weiss (2011a, 2014) and Zhang,12

Neilsen, Blaabjerg, and Zhou (2014) proposed to suppress the side-side vibration of the wind tur-13

bine towers by modulating the generator torque. But this type of control action is likely to interfere14

with the proper functioning of the wind turbines.15

1.2 Passive structural control of wind turbine towers16

Structural control, which is initially used in civil engineering to protect structures from dynamic17

loadings due to earthquakes, stout winds, waves and other sources (see Soong & Spencer, 2002),18

might offer a good alternative solution. There are three major categories of structural control meth-19

ods - passive, semi-active and active control (see Spencer & Nagarajaiah, 2003). Passive structural20

control, such as tuned mass damper (TMD), is the simplest among these three approaches since21

its controller has constant parameters. TMD consists of a large mass, springs and dampers, among22

which the mass is linked to the structure to be stabilized via the springs and the dampers. The23

mechanism is that the TMD is tuned to a particular structural frequency and thus will resonate and24

dissipate input energy via the dampers when the structure is excited at that particular frequency.25

TMDs have been successfully used in the vibration reduction of tall buildings such as the John26

Hancock Tower in Boston and the Citicorp Center in Manhattan (see Sadek, Mohraz, Taylor, &27

Chung, 1997), which can normally decrease the worst-case wind-induced motion of the building28

by about 50%.29

1.2.1 Previous work30

Lackner and Rotea (2011) added structural control capacity to the famous wind turbine simulation31

code FAST (Fatigue, Aerodynamics, Structures, and Turbulence) by incorporating two independent32

TMDs into the nacelle which translate in the side-side and fore-aft directions, as shown in Figure33

1. This modified version of FAST is called FAST-SC. The NREL (National Renewable Energy34

Laboratory) 5-MW wind turbine model was used for simulation. A brief introduction on the NREL35

5-MW baseline wind turbine model and the FAST will be given in Section 2. Lackner and Rotea36

(2011) chose an optimal passive TMD in the fore-aft direction to reduce structural loads acting on37

the wind turbine tower with only the first tower fore-aft bending mode being considered. The mass38

of the TMD was set to be about 2% of the total turbine mass. The spring constant of the TMD39

was chosen such that the natural frequency of the TMD equaled the first fore-aft modal frequency40

of the tower. The damping constant was determined by trial and error to minimize the standard41

deviation of tower-top fore-aft translational deflections. The results commentated the effectiveness42

of TMD in improving the wind turbine tower’s structural response.43

Stewart and Lackner (2013) advanced the results in Lackner and Rotea (2011) with the similar44

TMD setup but more advanced optimizing method based on limited DOF control design models45

(for four types of turbine platforms), which were obtained by only considering the specific degrees46
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Figure 1. Configuration of fore-aft and side-side TMDs in a nacelle showing their moving directions. Both TMDs share the
same mass component m1 but have different spring and damping constants (kf vs ks and df vs ds). While this is not shown
in the figure, the mass component can be either put on the floor of the nacelle through wheels/racks like the cases of John
Hancock Tower in Boston and the Citicorp Center in Manhattan, or hanged above the floor through cables like the case of
Taipei 101 skyscraper in Taipei.

of freedom that contributed most of the loading. In this paper we only consider the monopile1

wind turbine tower, for which the limited DOF model in Stewart and Lackner (2013) was a TMD-2

stabilized rigid inverted pendulum with the base stiffness and damping modelled as rotational3

spring and damper. The spring and damping constants of the rigid inverted pendulumwere obtained4

through a non-linear least square algorithm based on a FAST-SC simulation. Then the optimization5

of the spring and damping constants of the TMD was through dynamic simulations of the TMD-6

stabilized rigid inverted pendulum under a specific exciting loading with different combinations of7

spring and damping constants of the TMD. The optimal TMD was the one which minimized the8

standard deviation of the displacement of the top of the inverted pendulum (which denotes the9

top of the wind turbine tower). The exciting loading was a combination of a deflection step input,10

and a constant thrust moment which was obtained through FAST-SC simulation at rated wind11

speed. Finally they conducted a simulation in the FAST-SC using the optimal TMD, which showed12

substantial fatigue load reduction.13

We did a simulation for the fore-aft and side-side deflections of the NREL 5-MW monopile wind14

turbine tower at a certain time instant using FAST, which was shown in Figure 2, from which15

one can see clearly that the wind turbine tower is not a rigid inverted pendulum as in Stewart16

and Lackner (2013) but a flexible beam. Because the first tower bending mode dominates the
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Figure 2. Deflections of the NREL 5-MW monopile wind turbine tower at a certain time instant by FAST simulation.

17

dynamic response of a typical monopile wind turbine tower subject to wind and wave loads (see18

Lackner & Rotea, 2011), and the largest deflection for this first mode occurs at the tower top19

as shown in Figure 2 of this paper and Figure 10 of J. Jonkman, Marshall, and Buhl (2005), it is20
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acceptable to use an inverted pendulum as control design model to only control the first mode. But1

apparently the inverted pendulum cannot be used to simulate the dynamics of the wind turbine2

tower. Stewart and Lackner (2013) mentioned that desirably the parameter optimization of the3

TMD should be based on the FAST-SC simulation which was unfortunately an overkill because4

a 10-min simulation time approximately took a computation of 10-30 minutes. So a rigid rod in5

Stewart and Lackner (2013) was used to model the turbine tower (with a big mass at its top as6

the heavy rotor-nacelle assembly (RNA)) because fortunately there was usually only one degree7

of freedom accounting for most fatigue load for the types of wind turbine towers considered in8

Stewart and Lackner (2013). But a rigid rod might not be able to model other types of wind9

turbine towers or more generally other flexible beams (which have more modes dominating the10

vibrations) even only for control design purpose. Thus it is more sensible to use a type of beam11

equations to model the wind turbine tower, which can be used to conduct both control design12

and fast & accurate simulation, whose TMD design method should also be easily extended to13

other types of flexible structures. In addition, in Stewart and Lackner (2013) the parameters of14

the inverted pendulum had to be obtained through identification procedure from the NREL 5-MW15

monopile wind turbine model using FAST simulation under a step input of the tower deflection16

without wind or wave loading applied. In practice this kind of identification will be very difficult17

to conduct on a real wind turbine. Desirably the parameters of the control design model should18

be obtained directly or through simple computations from the tower specifications provided by the19

manufacturers. Furthermore, the optimization of the TMD system in Stewart and Lackner (2013)20

was conducted based on a specific loading excitation obtained from FAST-SC simulation. It will be21

nice to have a proper mathematical formulation and systematic design method for the optimization22

procedure, which can take account of more general wind and wave excitations and can be extended23

to the vibration control of other types of flexible structures.24

1.2.2 Modelling, simulation and optimal TMD design of a monopile wind turbine tower based on25

the SCOLE beam system and H2 optimization26

Zhao and Weiss (2011a, 2011b) used a non-uniform NASA SCOLE (Spacecraft Control Laboratory27

Experiment) system to model the monopile wind turbine tower in either the fore-aft plane or28

the side-side plane. The SCOLE system is a well known model for a flexible beam with one end29

clamped and the other end connected to a rigid body. Originally it has been developed to model a30

flexible mast carrying an antenna on a satellite (see Littman & Markus, 1988a, 1988b). For more31

details about the SCOLE model, we refer to these four papers which contain many references for32

previous work (controllability, observability, stabilization by static feedback etc) in the framework33

of infinite-dimensional systems which are systems described by partial differential equations34

(PDEs). As you will see in Section 3.1, the flexible beam in the SCOLE model is described by a35

PDE. This SCOLE system is very suitable to model the monopile wind turbine tower, which has36

the bottom end clamped in the ocean floor and the upper end linked to the RNA.37

38

Zhao and Weiss (2015) incorporated a TMD into the SCOLE model denoted by Σ, and showed39

its strong stability. The mass component of the TMD can be either put on the floor of the nacelle40

through wheels/racks (reducing friction) or hanged above the floor through cables. In the present41

paper we discretize this infinite-dimensional SCOLE-TMD system Σ into a finite-dimensional model42

Σd using the spectral element method and then verify Σd against the FAST-SC simulation of the43

NREL 5-MW wind turbine model. Σd is able to describe the dynamics of the tower and TMD in44

either the fore-aft direction or the side-side direction with corresponding parameter choices. Finally45

we derive the fore-aft and side-side optimal TMDs by minimizing the H2-norm of Σd with external46

force and torque as input and the tower-top displacement as output, which means to minimize47

the standard deviation of the tower-top displacement under external excitation. We get similar48

vibration suppression performance as Stewart and Lackner (2013). But our model and optimization49

method satisfy all the desirable improvements mentioned in Section 1.2.1. More generally, our paper50
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also demonstrates how to optimally tune TMDs to reduce vibrations of flexible structures described1

by PDEs.2

1.3 Structure of the paper3

The structure of the paper is as follows. In Section 2, we introduce our simulation environment of4

the NREL 5-MW baseline monopile wind turbine model within the FAST code and its modified5

version FAST-SC which accommodated structural control. First, we introduce the structure of6

the FAST simulation code consisting of FAST, AeroDyn, HydroDyn, and MATLAB/Simulink�7

interface through which one can simulate the wind turbine dynamics. Then we introduce FAST-SC.8

Finally, we talk about the NREL 5-MW baseline wind turbine model. In Section 3, we introduce9

the infinite-dimensional model of a monopile wind turbine tower stabilized by a TMD system10

located in the nacelle, denoted by Σ. We then reformulate it to state space format. Subsequently we11

discretize Σ along the tower span using the spectral element method to derive its finite-dimensional12

version Σd. Finally we verify Σd against the FAST/FAST-SC simulation of the NREL 5-MW wind13

turbine model. In Section 4, we conduct optimal design for the TMDs based on Σd. The spring14

and damping constants of the TMD are the design parameters with a fixed mass component being15

2% of the total structural mass of the turbine. The design parameters are obtained by minimizing16

the H2-norm of the transfer function matrix of Σd with force and torque input and tower-top17

displacement output. Here we use the frequency-limited version of the H2-norm which means to18

compute the H2-norm over a small interval around the first modal frequency of the monopile wind19

turbine tower. Finally, an optimal fore-aft TMD and an optimal side-side TMD are obtained. In20

Section 5, we carry out simulations using the NREL 5-MW monopile wind turbine model within21

FAST/FAST-SC to test the effectiveness of our optimal TMDs. Section 6 concludes this paper.22

23

2. Introduction to the NREL 5-MW baseline monopile wind turbine model within24

FAST simulation environment25

In this section we briefly introduce our simulation platform – the NREL 5-MW baseline monopile26

wind turbine model within FAST simulation environment as shown in Figure 3. The FAST code27

written by NREL models the wind turbine comprising rigid and flexible bodies coupled using several28

degrees of freedom (DOFs). There are four DOFs accounting for tower bending – two originating29

from the fore-aft modes and two from the side-side modes.

Figure 3. Block diagram of the structure of the NREL FAST simulation environment.

30
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AeroDyn is a subroutine, developed by NREL, to compute aerodynamic forces along the blades,1

which are used to solve equations of motion in FAST. AeroDyn requires instant turbine information2

obtained from FAST to model aerodynamics (see NWTC, 2014a). Full-field turbulence required3

by AeroDyn can be created by TurbSim, whose details can be found in NWTC (2014b). Hydro-4

Dyn is coupled to FAST for the aero-hydro-servo-elastic simulations of offshore wind turbines. It5

receives the position, orientation, velocities, and accelerations of the substructure from FAST at6

each coupling time step and then calculates hydrodynamic loads and sends them back to FAST7

(see J. M. Jonkman, Robertson, & Hayman, to appear). The FAST subroutines have been linked8

with a MATLAB standard gateway subroutine so that Matlab/Simulink is able to encapsulate9

FAST’s structural dynamic routines, AeroDyn’s aerodynamic routines, HydroDyn’s hydrodynamic10

routines, and the interfaces to MATLAB/Simulink into an S-Function block (see J. Jonkman et al.,11

2005). This feature enables flexible control design of the wind turbine in the Simulink environment.12

To equip FAST code with structural control, Lackner and Rotea (2011) developed FAST-SC. It13

includes two independent TMDs located in the nacelle, one in the fore-aft direction and the other14

in the side-side direction, as shown in Figure 1. The NREL offshore 5-MW baseline wind turbine15

model represents the current typical offshore turbines, whose properties are given in J. Jonkman16

(2006). The model has three operation regions with the cut-in wind speed of 3m/s, rated wind17

speed of 11.4m/s, and cut-out wind speed of 25m/s. More information can be found in J. Jonkman,18

Butterfield, Musial, and Scott (2009).19

3. System modelling20

3.1 An infinite-dimensional model of the monopile wind turbine tower stabilized by21

a TMD located in the nacelle22

The SCOLE system is a well known model for a flexible beam with one end clamped and the other23

end connected to a rigid body. Like in Zhao and Weiss (2011a, 2011b), here we use it to model a24

monopile wind turbine tower that has the bottom end clamped in the ocean floor and the upper25

end linked to the heavy rigid RNA by neglecting any coupling with blade motions. We mention26

that the SCOLE system can be used to represent the tower dynamics in the fore-aft plane and27

in the side-side plane respectively with corresponding parameter choices. In this paper, we design28

a TMD in each plane respectively to reduce vibration loads of the whole monopile wind turbine29

tower because all vibrations can be decomposed into these two orthogonal planes. The two TMDs30

share the same mass component, but have different springs and dampers as shown in Figure 1.31

The spring and damper components of the TMD system in each plane connect at one end to the32

nacelle and link at the other end to its mass component in parallel. The mass component of the33

TMD is put on the floor of the nacelle through wheels/racks or hanged above the floor through34

cables. The mathematical model Σ of the monopile wind turbine tower stabilized by a TMD, in35

either the fore-aft plane or the side-side plane, is shown below (see Zhao & Weiss, 2015).36

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρ(x)wtt(x, t) + (EI(x)wxx(x, t))xx = 0, (x, t) ∈ (0, l) × [0,∞), (3.1)

w(0, t) = 0, wx(0, t) = 0, (3.2)

mwtt(l, t)− (EIwxx)x(l, t) = Fe(t) + k1(p(t)− w(l, t)) + d1(pt(t)− wt(l, t)), (3.3)

Jwxtt(l, t) + EI(l)wxx(l, t) = Te(t), (3.4)

m1ptt(t) = k1(w(l, t) − p(t)) + d1(wt(l, t)− pt(t)), (3.5)

37

where the subscripts t and x denote derivatives with respect to the time t and the position x.38

The equations (3.1)-(3.4) are the non-uniform monopile wind turbine tower subsystem while the39

equation (3.5) is the TMD subsystem. We introduce the tower subsystem (3.1)-(3.4) first. (3.1)40

is Euler-Bernoulli beam equation which represents the dynamics of the flexible tower while (3.2)41

6



means that the tower is clamped. (3.3)-(3.4) are the Newton-Euler rigid body equations which1

represent the dynamics of the RNA. l, ρ and EI denote the tower’s height, mass density function2

and flexural rigidity function while w denotes the translational displacement of the tower. ρ,EI ∈3

C4[0, l] are assumed to be strictly positive functions. The parameters m > 0 and J > 0 are the4

mass and the moment of inertia of the RNA. Fe and Te denote the aerodynamic force and the5

aerodynamic torque acting on the RNA. In the TMD system (3.5), m1 > 0, k1 > 0 and d1 > 0 are6

the mass, spring constant and damping coefficient of the TMD. Both subsystems are interconnected7

through the translational velocity of the RNA (tower-top translational velocity) wt(l, t) and the8

force (k1(p(t)− w(l, t)) + d1(pt(t)− wt(l, t))) generated by the TMD system.9

The state of Σ at the time t is10

z(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

z1(t)
z2(t)
z3(t)
z4(t)
z5(t)
z6(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

w(·, t)
wt(·, t)
wt(l, t)
wxt(l, t)

p(t)− w(l, t)
pt(t)

⎤
⎥⎥⎥⎥⎥⎥⎦
, (3.6)

where z1 and z2 are the translational displacement and velocity of the tower. z3 and z4 are the11

translational velocity and angular velocity of the nacelle. z5 and z6 are the position and translational12

velocity of the mass component of the TMD. The natural energy state space of Σ is13

X = H2
l (0, l)× L2[0, l]×C

4 , (3.7)

where14

H2
l (0, l) = {h ∈ H2(0, l) | h(0) = 0, hx(0) = 0}. (3.8)

Here Hn (n ∈ N) denotes the usual Sobolev spaces. Zhao and Weiss (2015) proved that Σ is15

strongly stable on X.16

3.2 Discretizing the TMD-stabilized monopile wind turbine tower model Σ17

In this section we use the spectral element method to discretize the infinite-dimensional TMD-18

stabilized monopile wind turbine tower model Σ (3.1)-(3.5) in spatial domain to achieve our purpose19

for fast simulation and TMD optimization. For this purpose, we normalize the spatial domain20

x ∈ (0, l) of Σ to the standard domain x ∈ (−1, 1).21

The first step is to obtain the weak form of the governing equation. Multiplying both sides of22

the equation (3.1) with a weight function u(x) and integrating over the domain x ∈ (−1, 1) yield23

∫ 1

−1
{ρwttu+ (EIwxx)xxu}dx = 0. (3.9)

Using integration by parts, we have24

∫ 1

−1
{ρwttu+ EIwxxuxx}dx+ [(EIwxx)xu− EIwxxux]

x=1
x=−1 = 0. (3.10)

As in the finite element method, the weight function here is required to satisfy the essential bound-25

ary conditions (3.2), that is26

u(x = −1) = ux(x = −1) = 0. (3.11)

7



Substituting equations (3.3)-(3.4) and (3.11) into (3.10), we get the weak form1

∫ 1

−1
{ρwttu+ EIwxxuxx}dx = [−mwtt + Fe + k1(p− w) + d1(pt − wt)]u|x=1

+ (Te − Jwxtt) ux|x=1 . (3.12)

Moving all the terms containing time derivatives to the left-hand side of the equation and all other2

terms to the right-hand side, we have3

∫ 1

−1
{ρwttu}dx+ [mwttu− d1(pt − wt)u]x=1 + [Jwxttux]x=1 = −

∫ 1

−1
{EIwxxuxx}dx

+ [Feu+ k1(p− w)u]x=1 + Teux|x=1 . (3.13)

Now we introduce two new variables4

v(x, t) = wt(x, t), (3.14)

and5

r(t) = pt(t) (3.15)

which represents the translational velocity of the mass component of the TMD. Then equation6

(3.13) can be written as7

∫ 1

−1
{ρvtu}dx+ [mvtu− d1(r − v)u]x=1 + [Jvxtux]x=1 = −

∫ 1

−1
{EIwxxuxx}dx

+ [Feu+ k1(p− w)u]x=1 + Teux|x=1 . (3.16)

The second step is to approximate the solution using high-order basis functions. Specifically,8

w(x, t) is approximated by9

w(x, t) =
N∑

n=0

ŵn(t)ψn(x), (3.17)

where the basis function ψn(x) needs to satisfy the essential boundary conditions10

ψn(x = −1) =
dψn

dx
(x = −1) = 0. (3.18)

A convenient choice is11

ψn(x) = (1 + x)2Tn(x) (3.19)

where Tn(x) is the nth Chebyshev polynomial (see Boyd, 2001).12

Similarly,13

v(x, t) =

N∑
n=0

v̂n(t)ψn(x) (3.20)

8



and it is obvious that1

v̂n =
dŵn

dt
∀ n ∈ {0, 1, · · · , N} . (3.21)

Substitute (3.20) for v(x, t), (3.17) for w(x, t) and ψn(x) for u(x) into (3.16) for n ∈ {0, 1, · · · , N}.2

The resulting N + 1 linear equations can be written in matrix form3

E˙̂v = A21ŵ +A22v̂ +A23p+A24r +B21Fe +B22Te (3.22)

where4

ŵ = [ŵ0, ŵ1, · · · , ŵN ]T (3.23)

v̂ = [v̂0, v̂1, · · · , v̂N ]T (3.24)

and each element of the matrices is given by5

E(i, j) =

∫ 1

−1
ρψiψjdx+

[
mψiψj + J

dψi

dx

dψj

dx

]
x=1

(3.25)

A21(i, j) = −
∫ 1

−1
EI

d2ψi

dx2
d2ψj

dx2
dx− [k1ψiψj ]x=1 (3.26)

A22(i, j) = −[d1ψiψj ]x=1 (3.27)

A23(i) = k1ψi|x=1 (3.28)

A24(i) = d1ψi|x=1 (3.29)

B21(i) = ψi|x=1 (3.30)

B22(i) =
dψi

dx

∣∣∣∣
x=1

. (3.31)

Note that E,A21,A22 ∈ R(N+1)×(N+1) and A23,A24,B21,B22 ∈ R(N+1)×1.6

Equation (3.5) can be written as7

m1rt(t) = k1(w(1, t) − p(t)) + d1(v(1, t) − r(t)). (3.32)

Substituting (3.20) for v(x, t) and (3.17) for w(x, t) into (3.32), we get8

m1rt = A41ŵ +A42v̂ − k1p− d1r (3.33)

where A41,A42 ∈ R1×(N+1) and9

A41(j) = k1ψj|x=1, (3.34)

A42(j) = d1ψj|x=1. (3.35)

By the relations (3.15) and (3.21), the finite-dimensional model can be formulated as10

M1

⎡
⎢⎢⎣
˙̂w
˙̂v
ṗ
ṙ

⎤
⎥⎥⎦ = M2

⎡
⎢⎢⎣
ŵ
v̂
p
r

⎤
⎥⎥⎦+M3

[
Fe

Te

]
(3.36)

9



where1

M1 =

⎡
⎢⎢⎣
I 0 0 0
0 E 0 0
0 0 1 0
0 0 0 m1

⎤
⎥⎥⎦ , (3.37)

M2 =

⎡
⎢⎢⎣

0 I 0 0
A21 A22 A23 A24

0 0 0 1
A41 A42 −k1 −d1

⎤
⎥⎥⎦ , (3.38)

M3 =

⎡
⎢⎢⎣

0 0
B21 B22

0 0
0 0

⎤
⎥⎥⎦ (3.39)

and I is the identity matrix of appropriate size.2

Note that the states ŵ and v̂ are spectral coefficients, rather than the values of w(x, t) and v(x, t)3

in the physical space. Thus we need to transform between the spectral space and the physical space.4

For example, to simulate tower movements and derive the tower deflection w(x, t), we need to spec-5

ify the initial conditions first. Suppose we have the initial conditions w(x, 0) and v(x, 0), we cannot6

assign these values to the ODE solver directly. Instead, we need to calculate the corresponding7

ŵ(0) and v̂(0). It follows from (3.17) that8

⎡
⎢⎣
w(x0, 0)

...
w(xN , 0)

⎤
⎥⎦ = Tŵ(0) (3.40)

where the matrix T ∈ R(N+1)×(N+1) is given by9

T(i, j) = ψj |x=xi
(3.41)

and xi, i = 0, 1, . . . , N are the collocation points10

xi =

{
cos( iπN ), i = 0, 1, . . . , N − 1

cos( (N−0.5)π
N ), i = N

. (3.42)

Note that the last collocation point is xN = cos( (N−0.5)π
N ) instead of xN = cosπ = −1. That is11

because ψj(x = −1) = 0 (see equation (3.18)), the last row of T would be a zero vector if xN = −1.12

Such a T is guaranteed to be nonsingular. Now it is evident that13

ŵ(0) = T−1

⎡
⎢⎣
w(x0, 0)

...
w(xN , 0)

⎤
⎥⎦ (3.43)

and v̂(0) can be obtained in the same manner.14

With the initial conditions, the model can be simulated easily, whose outputs ŵ(t) and v̂(t) can15

10



be transformed to physical domain variables1

w(x, t) = Tŵ(t), (3.44)

v(x, t) = Tv̂(t), (3.45)

where2

w(x, t) = [w(x0, t), . . . , w(xN , t)]
T , (3.46)

v(x, t) = [v(x0, t), . . . , v(xN , t)]
T . (3.47)

Thus the state space formulation of the spatially discretized monopile wind turbine tower - TMD
system Σd is

{
Ẋ = AX+Bu (3.48)

Y = CX (3.49)

where the state X = [ŵ, v̂, p, r]T , input u = [Fe, Te]
T , state matrix A = M1

−1M2, input matrix3

B = M1
−1M3. If Y = w(x, t) (the whole tower deflection), output matrix C = [T 0 0 0] while4

if Y = w(l, t) (tower-top translational displacement), C = [T(1, :) 0 0 0]. Based on Σd, we are5

not only able to conduct TMD designs using H2 optimization, but also able to simulate the tower6

dynamics (for example using the MATLAB built-in function lsim).7

3.3 Model verification8

We now verify our monopile wind turbine tower model Σd (3.48) - (3.49) against the NREL 5-MW9

monopile wind turbine tower model within FAST/FAST-SC simulation. Σd can be used to represent10

the dynamics of the tower and TMD in the fore-aft direction and in the side-side direction respec-11

tively with corresponding parameter choices. We choose the mass of the TMD m1 to be 20000 kg12

because it is about 2% of the total structural mass of the turbine, which is a mass percentage nor-13

mally used in civil structures (see Stewart & Lackner, 2013). The spring and damping constants of14

the TMDs are chosen to be 51320.72 N/m and 5427.46 N·s/m respectively in the fore-aft direction,15

and to be 51136.47 N/m and 5220.53 N·s/m respectively in the side-side direction. The parameters16

of tower part in Σd (3.48) - (3.49) can be obtained directly or through simple computations from17

the distributed properties of the NREL 5-MW monopile wind turbine tower, which are available18

in the table of page 12 in J. Jonkman (2006). The height l of the tower is 107.6m. The mass of the19

RNA is 35005 kg whiles its moment of inertia is 4.5050443961×107 kg·m2 in the side-side plane and20

is 2.4940615741 × 107 kg·m2 in the fore-aft plane. The junction between the tower and monopile21

is not continuous and we smooth it by setting a 1-meter smooth transition region at the position22

x ∈ [29.5m, 30.5m] (half from monopile region and the other half from the tower region) because23

our mathematical model Σ (3.1)-(3.5) requires that mass density function ρ ∈ C4(0, l) and flexural24

rigidity function EI ∈ C4(0, l). When x ≤ 29.5m, i.e, at the monopile region, ρ = 9517.14 kg/m;25

when x > 30.5m, i.e., at the tower region, we use a 2nd-order polynomial to fit the discrete den-26

sity data of the NREL 5-MW wind turbine tower by the least squares method. Then we fit the27

transitional region x ∈ [29.5m, 30.5m] with a 9th-order polynomial to make ρ ∈ C4(0, l) for the28

whole monopile wind turbine tower. The flexural rigidity function EI is fitted in the same way.29

The fitted curves of ρ and EI are shown in Figure 4.30

We use the same loading data for our model Σd (3.48) - (3.49) (i.e. its force Fe and torque Te31

inputs) and the FAST-SC code, which is generated by TurbSim using IEC von Karman turbulence32

model with mean wind speed of 10 m/s and turbulence intensity of 15%. We compare the whole33

tower deflections and tower-top displacements of the NREL 5-MW baseline monopile wind turbine34

11
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Figure 4. Comparisons between the distributed properties of mass density and flexural rigidity of the NREL 5-MWwind turbine
tower and their corresponding fitted functions ρ(x) and EI(x). The blue triangles represent distributed tower properties given
in the table of page 12 of J. Jonkman (2006) while the red solid lines are their corresponding fitted functions.

tower, computed from Σd (3.48) - (3.49) and FAST-SC simulations respectively, as shown in Figures1

5 - 8. These figures clearly indicate that the dynamic outputs of Σd (3.48) - (3.49) are extremely2

close to the outputs of the FAST-SC simulations, which verifies our model. We have also conducted3

simulations for the case of a sole wind turbine tower using Σd (3.48) - (3.49) (excluding TMD) and4

FAST, which got similar agreements as Figures 5 - 8, thus omitted.5
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Figure 5. Time simulation (in seconds) of the fore-aft tower-top translational displacement (in meters) of the NREL 5-MW
baseline monopile wind turbine tower stabilized by a fore-aft TMD under a wind input with mean speed of 10 m/s and
turbulence intensity of 15%, obtained from Σd (3.48) - (3.49) (red dotted line) and FAST-SC (blue dash line) respectively.

Finally we compare the power spectral densities (PSDs) of the tower-top displacements for the6

case of a sole NREL 5MW wind turbine tower and the case of the tower stabilized by a TMD,7

computed from our model Σd (3.48) - (3.49) and FAST-SC simulations. As shown in Figures 9 and8

10, the results obtained by our model agree perfectly with the ones obtained using the FASC-SC9

simulations in both cases with and without TMD.10
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Figure 6. Simulation of the fore-aft translational deflections of the NREL 5-MW baseline monopile wind turbine tower stabilized
by a fore-aft TMD under a wind input with mean speed of 10 m/s and turbulence intensity of 15%, obtained from Σd (3.48)
- (3.49) (red dotted lines) and FAST-SC (blue dash lines) respectively. The upper, middle and lower diagrams show results
at 100 s, 200 s and 300 s, respectively. The horizontal axis denotes the translational tower deflections (in meters) with positive
value meaning “right” and negative value meaning “left”, while the vertical axis describes the height of the tower (in meters).
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Figure 7. Time simulation (in seconds) of the side-side tower-top translational displacement (in meters) of the NREL 5-MW
baseline monopile wind turbine tower stabilized by a side-side TMD under a wind input with mean speed of 10 m/s and
turbulence intensity of 15%, obtained from Σd (3.48) - (3.49) (red dotted line) and FAST-SC (blue dash line) respectively.

4. Optimization of TMDs for load reduction of a monopile wind turbine tower1

In this section, we employ H2 optimization to design optimal TMD for the monopile wind turbine2

tower - TMD model Σd (3.48) - (3.49). Recall that Σd can be used to represent the dynamics of3

the tower and TMD in the fore-aft direction and in the side-side direction respectively with corre-4

sponding parameter choices. We consider external force and torque [Fe, Te]
T as input (excitation5

sources) and the translational displacement w(l, ·) of the tower top as output. As mentioned earlier,6

the largest deflection occurs at the tower top when the first mode is excited, which is the dominant7

mode of monopile wind turbine towers. Thus, to achieve optimal suppression of the vibrations of8

the wind turbine tower, we can choose optimal TMD parameters to minimize the H2-norm of the9

transfer function matrix H of Σd (3.48) - (3.49) with force and torque inputs and tower-top dis-10

placement output, as H2-norm serves to minimize the output variance under stochastic excitation11

13
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Figure 8. Simulation of the side-side translational deflections of the NREL 5-MW baseline monopile wind turbine tower
stabilized by a side-side TMD under a wind input with mean speed of 10 m/s and turbulence intensity of 15%, obtained from
Σd (3.48) - (3.49) (red dotted lines) and FAST-SC (blue dash lines) respectively. The upper, middle and lower diagrams show
results at 100 s, 200 s and 300 s, respectively. The horizontal axis denotes the translational tower deflections (in meters) with
positive value meaning “right” and negative value meaning “left”, while the vertical axis describes the height of the tower (in
meters).
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Figure 9. Power spectral density (PSD) of tower-top fore-aft translational displacement of the NREL 5-MW baseline monopile
wind turbine tower under a wind input with mean speed of 10 m/s and turbulence intensity of 15%, obtained from Σd (3.48) -
(3.49) (red dotted and yellow dash-dotted lines denoting cases of sole tower and tower stabilized by a fore-aft TMD, respectively)
and FAST-SC (blue solid and green dash lines denoting cases of sole tower and tower stabilized by a fore-aft TMD, respectively).

(see Zuo & Nayfeh, 2002). Here we use the frequency-limited version of the H2-norm (4.50)1

‖H‖H2,[ω1,ω2]
=

1√
2π

(∫ −ω1

−ω2

trace [H∗ (jν)H (jν)] dν +

∫ ω2

ω1

trace [H∗ (jν)H (jν)] dν
) 1

2

, (4.50)

where H(s) = C (sI−A)−1 B, ω2 > ω1 ∈ R+, and the superscript ∗ denotes complex conjugate2

transpose. A, B and C are as in (3.48)-(3.49). This means to compute the H2-norm over a limited3

frequency range around the first modal frequency because the first bending mode dominates the4

dynamic response of monopile wind turbine towers.5

To determine the frequency interval [ω1, ω2], we need the first modal frequency of the monopile6

wind turbine tower, which is the smallest absolute value of the imaginary parts of eigenvalues of7

A in Σd (3.48) - (3.49) excluding TMD. Through simple computations, we get that the first tower8

fore-aft and side-side modal frequencies are 0.290Hz (1.822 rad/s) and 0.287Hz (1.806 rad/s) re-9

spectively, while they are both 0.28Hz in the FAST (see Passon et al., 2007). Here we use frequency10
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Figure 10. Power spectral density (PSD) of tower-top side-side translational displacement of the NREL 5-MW baseline
monopile wind turbine tower under a wind input with mean speed of 10 m/s and turbulence intensity of 15%, obtained
from Σd (3.48) - (3.49) (red dotted and yellow dash-dotted lines denoting cases of sole tower and tower stabilized by a side-side
TMD, respectively) and FAST-SC (blue solid and green dash lines denoting cases of sole tower and tower stabilized by a
side-side TMD, respectively).

Table 1. Values of the H2-norm (4.50) of Σd with N increasing from 9 to 17.

N 9 10 11 12 13 14 15 16 17

H2-norm (×10−6) 1.891 1.890 1.893 1.893 1.892 1.895 1.894 1.895 1.893

intervals [1.458 rad/s, 2.186 rad/s] with the central frequency at 1.822 rad/s for the optimization of1

the fore-aft TMD and [1.445 rad/s, 2.167 rad/s] with the central frequency at 1.806 rad/s for the2

optimization of the side-side TMD, which can also be obtained through the PSD Figures 9 and 10.3

We employ fmincon function of MATLAB to minimize the frequency-limited H2-norm (4.50)4

with spring and damping constants of TMD as design variables. All the other parameters of Σd5

are as in Section 3.3. Recall that the mass of the TMD is chosen to be 20000 kg (about 2% of6

the total structural mass of the turbine). We get that the optimal spring and damping constants7

are 61514.97 N/m and 7518.93 N·s/m respectively in the fore-aft TMD, and are 60565.20 N/m and8

7405.66 N·s/m respectively in the side-side TMD. It is noticeable that the natural frequencies of9

the fore-aft TMD (0.279Hz) and side-side TMD (0.277 Hz) are both approximately equal to their10

corresponding first modal frequencies of the monopile wind turbine tower.11

We mention that the discretization resolution (i.e., the number of collocation points) we used12

for conducting model verification in Section 3.3 as well as for optimizing TMD above is N = 13.13

Ideally, the value of N should be independent of the H2-norm (4.50), which implies that as N14

increases, the H2-norm of H should converge to a small range. Table 1 lists its values in the fore-aft15

direction with N increasing from 9 to 17. Clearly, it converges to a small narrow range between16

between 1.890 × 10−6 and 1.895 × 10−6, which means that the relative error is less than 0.27%.17

The result for the H2-norm of H in the side-side direction is similar and thus omitted.18

5. Simulation tests19

We now test our optimal TMD designs based on the simulations of the NREL 5-MW baseline20

monopile wind turbine model within FAST-SC. First we measure and compare the average damage21

equivalent loads (DEQL) at the monopile base of the NREL 5-MW baseline monopile wind turbine22

model for the cases with and without TMD(s) under wind and wave excitations. Note that the23

monopile base of the monopile wind turbine tower has the largest bending moment (maximum24

15



Table 2. Simulation results of the average damage equivalent loads (DEQL) at the monopile
base of the NREL 5-MW baseline monopile wind turbine model for the cases of sole tower (no
TMD), tower stabilized by a fore-aft TMD, tower stabilized by a side-side TMD, tower stabilized
by both (the fore-aft and side-side) TMDs. The data outside the brackets are obtained using
our optimal TMDs while the ones in the brackets are obtained using TMDs designed in Stewart
and Lackner (2013). “Load A” denotes a wind input with mean speed of 10m/s and turbulence
intensity of 15%, and a wave input with significant wave height of 2m. It’s generated twice by
two different random seeds with DEQL being averaged values under both excitations. “Load B”
denotes a wind input with mean speed of 18m/s and turbulence intensity of 15%, and a wave
input with significant wave height of 3.5m. It’s generated twice by two different random seeds
with DEQL being averaged values under both excitations as well.

No TMD Fore-aft TMD Side-side TMD Both TMDs

Fore-aft DEQL (kN·m), load A 15275 12628 (12442) 15507 (15496) 12948 (12737)
Reduction from no TMD case N/A 17.3% (18.5%) -1.52% (-1.45%) 15.2% (16.6%)

Side-side DEQL (kN·m), load A 3871 3831 (3752) 1214 (1205) 1182 (1150)
Reduction from no TMD case N/A 1.03% (3.07%) 68.6% (68.9%) 69.5% (70.3%)

Fore-aft DEQL (kN·m), load B 28011 22272 (22368) 28402 (28396) 22140 (22448)
Reduction from no TMD case N/A 20.5% (20.1%) -1.40% (-1.37%) 21.0% (19.9%)

Side-side DEQL (kN·m), load B 7263 7090 (6806) 2271 (2249) 2199 (1946)
Reduction from no TMD case N/A 2.38% (6.29%) 68.7% (69.0%) 69.7% (73.2%)

stress) (see Chen, Huang, Bretel, & Hou, 2013). We verify our results against Stewart and Lackner1

(2013). As obtained in Section 4, our optimal spring and damping constants are 61514.97 N/m2

and 7518.93 N·s/m respectively in the fore-aft TMD, and are 60565.20 N/m and 7405.66 N·s/m3

respectively in the side-side TMD. In Stewart and Lackner (2013) the optimal spring and damping4

constants of the TMDs in the fore-aft and the side-side directions are the same, i.e., 54274N/m5

and 7414N·s/m respectively. The mass of the TMD is chosen to be 20000 kg in all the cases.6

The wind inputs are generated by TurbSim using IEC von Karman turbulence model with7

turbulence intensity of 15%. The power law exponent is set to be 0.14. The waves are irregularly8

(stochastically) generated based on the JONSWAP/Pierson-Moskowitz frequency spectrum. We9

use Wheeler model for stretching incident wave kinematics to instantaneous free surface. The peak10

spectral period of incident waves is set to be 12.4 seconds. Here we assume that the wave and11

wind are both in the fore-aft direction. Four types of wind and wave inputs are generated for12

simulations. Two inputs are generated by different random seeds based on the same mean wind13

speed of 10m/s (below the rated value 11.4m/s, in control region 2) and same significant wave14

height of 2m. We take averages for the DEQL simulation results with these two types of inputs.15

The other two inputs are also generated by different random seeds based on the same mean wind16

speed of 18m/s (above-rated, in control region 3) and same significant wave height of 3.5m. We17

take averages for the DEQL simulation results with these two types of inputs as well. We simulate18

three cases: the sole tower case (i.e., without TMDs), the case using the optimal TMDs obtained19

in Section 4, and the case using TMDs designed in Stewart and Lackner (2013). For the cases with20

TMDs, we consider three kinds of TMD configurations: only the fore-aft TMD, only the side-side21

TMD, and both (the fore-aft and side-side) TMDs.22

We use the MLife code provided by NREL to compute DEQL, which employs a rainflow counting23

algorithm to post-process results from wind turbine simulations for this computation. The frequency24

of DEQL is set to be 1Hz. The Wohler exponent is set to be 3. For details about MLife, we refer25

to Hayman (2012). Table 2 lists the DEQL at the monopile base of the NREL 5-MW baseline26

monopile wind turbine model and load reduction ratios with TMDs designed by us and Stewart27

16



and Lackner (2013) under the wind and wave inputs mentioned above. It is noticeable from Table 21

that we get similar vibration control results as Stewart and Lackner (2013). But our control design2

model can simulate the dynamics of the wind turbine tower very accurately as shown in Figures 53

- 8.4

Finally we compare the PSDs of the tower-top translational deflections of the sole tower and of5

the tower stabilized by our optimal fore-aft and side-side TMDs based on FAST-SC simulations6

under a wind input with mean speed of 18m/s and turbulence intensity of 15%, and a wave input7

with significant wave height of 3.5m. As shown in Figures 11 and 12, our optimal TMDs have8

achieved substantial vibration reductions.9
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Figure 11. Power spectral density (PSD) of the tower-top fore-aft translational deflections of the NREL 5-MW monopile wind
turbine tower based on FAST-SC simulations under a wind input with mean speed of 18m/s and turbulence intensity of 15%,
and a wave input with significant wave height of 3.5m. Blue solid and red dotted lines denote cases of sole tower and tower
stabilized by optimal fore-aft and side-side TMDs designed by us, respectively.

6. Conclusions10

We have successfully used a TMD system to suppress the vibration of monopile wind turbine11

tower. There are a TMD in the fore-aft direction and a TMD in the side-side direction respectively,12

which share the same mass component. The mass component of the TMD is put on the floor of13

the nacelle through wheels/racks (reducing friction). The spring and damper components of each14

TMD are connected at one end to the nacelle of the wind turbine and linked at the other end to its15

mass component in parallel. Similar TMD systems have been used in the John Hancock Tower in16

Boston and the Citicorp Center in Manhattan which reduced worst-case wind-induced motion up17

to 50%. It can also be hanged above the floor through cables like the case of Taipei 101 skyscraper18

in Taipei.19

We made infinite-dimensional model Σ (3.1)-(3.5) of the monopile wind turbine tower-TMD20

system applicable to our optimization scheme by discretizing its PDE formulation along the tower’s21

span to derive its finite-dimensional version Σd (3.48) - (3.49) using the spectral element method.22

Σd can be used to represent the dynamics of the tower and TMD in the fore-aft direction and in23

the side-side direction respectively with corresponding parameter choices. We verified Σd against24

the NREL 5-MW wind turbine model. Then we derived the transfer function matrix of Σd with25

force and torque acting on the RNA as the input and tower-top translational displacement as the26

output, based on which we performed H2 optimization. Since the motion of the monopile wind27
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Figure 12. Power spectral density (PSD) of the tower-top side-side translational deflections of the NREL 5-MW monopile
wind turbine tower based on FAST-SC simulations under a wind input with mean speed of 18m/s and turbulence intensity
of 15%, and a wave input with significant wave height of 3.5m. Blue solid and red dotted lines denote cases of sole tower and
tower stabilized by optimal fore-aft and side-side TMDs designed by us, respectively.

turbine tower is dominated by its first mode, we used frequency-limited H2 optimization to save1

computation time, based on which we obtained optimal fore-aft and side-side TMDs for the NREL2

5-MW monopile wind turbine tower.3

We verified the performance of our optimal TMD(s) against Stewart and Lackner (2013), which4

got similar results. But our model is more realistic, which contains many vibration modes and5

thus can simulate the dynamics of the tower more precisely than a rigid inverted pendulum model6

with only one mode. Besides, our model can also be easily extended to floating wind turbine7

towers or a more general flexible structure, which might have more than one modes dominating the8

vibration dynamics. The extended model can allow the design of multiple TMDs to suppress more9

vibration modes. Furthermore, all parameters required by our model can be obtained directly or10

through simple computations from parameters provided by manufacturers, which does not need11

system identification which is very difficult to conduct on a real wind turbine tower. In addition12

the H2 optimization scheme employed by our design is more systematic than optimization through13

simulation under specific loading excitation. Furthermore our work has successfully demonstrated14

how to optimally tune a TMD to reduce vibrations of flexible structures described by partial15

differential equations.16

We would like to mention that the control design method of this paper can be extended to17

vibration reductions of flexible structures with more dominant modes, where multiple TMDs will18

be employed with each TMD being placed at the antinode of the mode shape of a dominant mode.19

We use an non-uniform SCOLE beam as an illustrative example and consider the trade-off between20

effectiveness and robustness of multiple TMDs under harmonic and random excitations. The results21

will be reported elsewhere. Here we provide a brief glimpse. The SCOLE beam used for analysis22

has the following parameters: l = 1, ρ(x) = EI(x) = −0.1x + 0.2, m = 0.05, J = 0.1. It has two23

dominant vibration modes with modal frequencies ω1 = 1.1203 rad/s and ω2 = 4.6184 rad/s. Their24

corresponding mode shapes are shown in Figure 13. The antinodes of the first and second mode25

shapes are located at x = 1 (beam top) and x = 0.95, respectively. Figure 14 summarizes the26

standard deviations (STDs) of the transverse displacements of the SCOLE beam system at x = 127

and x = 0.95 for the uncontrolled case (black solid lines) and the case stabilized by two TMDs28

optimized by our scheme with each TMD being tuned for a dominant mode (blue dotted lines),29

under harmonic excitations with the excitation frequencies varying from ω1 to ω2. It’s clear from30

this figure that the two TMDs have effectively damped the vibrations caused by the two dominant31

18
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Figure 13. Mode shapes of the first two modes of a SCOLE beam. The left-hand diagram shows the mode shape of the first
mode while the right-hand one is the mode shape of the second mode.
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Figure 14. STD of the transverse displacements of a SCOEL beam at the x = 1 (beam top) and at x = 0.95 versus the
excitation frequency. Black solid and blue dotted lines are for the uncontrolled case and the case stabilized by two optimal
TMDs with each one being placed at the antinode of the mode shape of a dominant mode, respectively.
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