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Arbitrary pole placement with the extended Kautsky-Nichols-van Dooren parametric form
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We consider the classic problem of pole placement by state feedback. The well-known eigenstructure assignment algorithm of
Kautsky, Nichols and van Dooren (1985) is extended to obtain a parametric formula for the pole-placing feedback matrix that
can deliver any desired closed-loop eigenvalues, with any desired multiplicities.

Introduction
We consider the classic problem of arbitrary pole placement for linear time-invariant (LTI) systems in state space form
x(t) =Ax(t)+Bu(t),

where, for all 7 € R, x(t) € R” is the state and u(r) € R™ is the control input. We assume that the rank of B is m, and that the
pair (A, B) is completely reachable. We let £ = {A;,...,Ay } be a set of distinct v < n complex numbers, closed under complex
conjugation. For every i € {1,..., v}, we denote by m; the multiplicity of A;, so that m +--- +my = n, and m; = m; whenever
A=A j- Let Abe an n x n Jordan matrix obtained from the eigenvalues of ., including multiplicities. The problem of arbitrary
exact pole placement (EPP) by state feedback is to find a real feedback matrix F such that

(A+BF)X =XA,

for some real non-singular n x n matrix X.

The EPP problem has an extensive history. In (Rosenbrock, 1970) it was established that for completely reachable pairs (A, B),
the EPP can be solved for any self-conjugate set of eigenvalues with any desired multiplicities, but the possible mini-block
orders of the Jordan structure of A+ BF are constrained by the controllability indices of (A,B). When m > 2, the EPP admits
many solutions for F, and a further problem is to parameterise all the gain matrices F that deliver the desired Jordan structure
for A+ BF. A notable early method for obtaining the required gain matrix F was Ackermann’s formula (Ackermann, 1972) —
see also (Ogata, 1997) and (Kailath, 1980) — which is applicable to single-input single-output (SISO) systems, and was often
found to be numerically inaccurate. In (Varga, 1981) a numerically reliable method was proposed to obtain F for multiple-input
multiple-output (MIMO) systems. The classic eigenstructure assignment algorithm of (Moore, 1976) quantified the freedom to
simultaneously assign both the closed-loop eigenvalues, and also select the associated eigenvectors.

Early parametric forms for ' were given in (Bhattacharyya and de Souza, 1982) and (Fahmy and O’Reilly, 1983); however
these methods did not solve the EPP in full generality, as they require the closed-loop eigenvalues to all be distinct from the
open-loop ones. The classic pole placement paper of (Kautsky et al, 1985) gave a method for obtaining F' by employing a
QR-factorisation for B and a Sylvester equation for X. In (Byers and Nash, 1989) the method of (Kautsky et al, 1985) was
adopted to provide a parametric formula for F that was applicable to any desired set of eigenvalues .Z’; this method also did not
solve the EPP in full generality, as the algebraic multiplicities of each eigenvalue was limited to at most m, the rank of the B
matrix. This corresponds to the case where A is a diagonal matrix. The general case where .Z’ contains any desired closed-loop
eigenvalues and multiplicities was considered in (Liu and Patton, 1998), (Ait Rami ez al , 2009) and (Schmid et al, 2014a). The
main task of this paper is to extend the method of (Kautsky er al, 1985) to handle the case of arbitrary multiplicities, thereby
placing it on an equal footing, with respect to its generality of application, to the methods of (Liu and Patton, 1998), (Ait Rami
et al ,2009) and (Schmid ez al, 2014a).

Such parametric formulae are valuable as they may be used to address optimal control problems, such as the problem of robust
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exact pole placement, (REPP) which involves obtaining F that solves the EPP and also renders the eigenvalues of A +BF as
insensitive to perturbations in A, B and F as possible. The minimum gain exact pole placement (MGEPP) problem involves
solving the EPP problem and also obtaining the feedback matrix F' that has the smallest gain (matrix norm).

The robust pole placement problem was addressed in (Kautsky et al, 1985), using the method of pole-placement developed
therein. This method is of particular interest as it is the basis of the widely-used MATLAB® place command, and is also the
basis of MATHEMATICA® s KNVD command. The pole-placing method was also employed by (Tits and Yang, 1996) in their
method for robust pole placement, and incorporated it their MATLAB® toolbox known as robpole. It has also been employed
in the robust pole placement methods of (Byers and Nash, 1989) and (Guo et al, 2015). Consequently, all these methods inherit
the limitation of the method of (Kautsky et al, 1985) that the maximum multiplicity that can be assigned to any eigenvalue is at
most m.

Thus, generalising the method of (Kautsky et al, 1985) to accommodate any assignable Jordan structure opens the possibility
of extending the robust pole placement methods of (Kautsky er a/, 1985), (Byers and Nash, 1989), (Tits and Yang, 1996) and
(Guo et al, 2015) to those cases where a defective eigenstructure is desired. In this paper we shall use the pole-placing method
of (Kautsky et al, 1985) together with the gradient search methods of (Byers and Nash, 1989) to address the problem of robust
pole placement for a defective eigenstructure. We shall also consider the MGEPP problem for a defective eigenstructure.
Closing this gap is not only important from a theoretical viewpoint. For discrete-time systems, it is often desirable to assign
the closed-loop poles at the origin of the complex plane, so that the closed-loop system will exhibit deadbeat characteristics, in
which the zero-input response of the system vanishes within a finite number of time steps. This problem has been traced back
to (Kalman, 1964) and has an extensive literature, see for example (Tam and Lam, 1997) and the references therein. Clearly, the
deadbeat pole placement problem cannot be solved by the method of (Kautsky ez al, 1985) and hence this limitation is inherited
by the place, robpole and KNVD toolboxes.

We begin with some definitions and notation. We assume the matrix A in (2) can be expressed in the Jordan (complex) block
diagonal canonical form A = blkdiag{J(2),---,J(Ay)}, where each J(4;) is a Jordan matrix for A; of order m;, and may be
composed of up to g; mini-blocks J(4;) = blkdiag{J;(A;), -+ ,Jg,(A;)}, where 1 < g; < m. We use & &ef {pigli=1,...v,k=
1,...g} to denote the order of each Jordan mini-block Ji(A;); then p;; = p; whenever A; = A If £ and 2 satisfy the
conditions of the Rosenbrock theorem, we say that the pair (.%, &7) defines an assignable Jordan structure for (A, B).

Given a self-conjugate set of v complex numbers {A;,...,Ay} containing 6 complex conjugate pairs, we say that the set is o-
conformably indexed if the first 2 ¢ values are complex while the remaining are real, and for all odd i < 2 ¢ we have 4,41 = Ai.
We shall assume in the following that .’ is -conformably indexed. If M is a complex matrix partitioned into v column matrices
M=[ M, ... M, ], wesay that M is 6-conformably indexed if the first 20 column matrices of M are complex while the
remaining are real, and for all odd i < 20 we have M;,| = M;. For any matrix X, we denote by X (¢) the ¢-th column of X.
We denote by I, the n-dimensional identity matrix. We say that an mn-dimensional parameter matrix K défdiag{[(l ,o.,Ky}is
compatible with (£, 2) if: (i) for each 1 <i < v, K; is a matrix of dimension m X m;; (ii) for all odd 1 < i < 20, the matrix K;
is complex, and such that K; = EH 1, while K; is a real matrix for each i > 2 o; and (iii) each K; matrix can be partitioned as

Ki=[ K1 Kip ... Kig |

where, for 1 < k < g;, each K; ; has dimension m X p; x.

2. Pole placement methods

2.1

The method of Kautsky, Nichols and van Dooren

We firstly revisit the algorithm of (Kautsky ez al, 1985) for the EPP, which requires that A in (2) be a diagonal matrix.

(3)

Theorem 2.1: [(KAUTSKY et al, 1985), THEOREM 3] Given A = diag{A,As,..., Ay} and a non-singular matrix X, then there exists a
solution F to (2) if and only if

Ul (AX—XA)=0,

where B= Uy U | [ﬂ with U = [Uy Uy ] orthogonal and Z non-singular. Then, F is given by

F=7"'U) (XAX'-A).

This formulation uses a QR factorisation for B; in (Byers and Nash, 1989) it was pointed out that F may also be obtained
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from the singular value decomposition for B. For the case where the desired closed-loop poles in .# are real and distinct, this
result was used in (Byers and Nash, 1989) to obtain a parametric form for X and F' solving (2), in terms of an mn-dimensional

parameter matrix as follows: define, for each i € {1,...,n}, the subspace
7 S ker[U] (A= Aily)). 6)
Since the pair (A,B) is completely reachable, the dimension of .#; is equal to m. For i € {1,...,n}, let £; be an n x m basis
matrix for .#;. Then, in (Byers and Nash, 1989) matrices X and F are parameterised as follows:
éi.l
Theorem 2.2: Let E = [§; jlnxn be a real m x n matrix, and for each i € {1,...,n}, let (i) = |: :| be the i-th column of E. Define
&im
X=[% .. ZX,]|diag{E(),...,E(n)}, (7)
where diag{Z(1),...,E(n)} is an nm x n block diagonal matrix with m x 1 blocks. Assume X is non-singular and define
def 7—17,T -1
F=7'U) (xAXx ' -A). (®)
Then X and F satisfy (2).

Since E is arbitrary, (7)-(8) give a parametrisation of the eigenvector matrices X and feedback matrices F that solve (2). We shall
refer to (7)-(8) as the Kautsky-Nichols-van Dooren parametric form for X and F. Extending it to the case of any (real or complex)
diagonal matrix A is straightforward, and thus the parameterisation can accommodate any non-defective eigenstructure.

2.2 Extending the (Kautsky et al, 1985) pole placement method to defective eigenstructures

The first result of this paper shows how to generalise the Kautsky-Nichols-van Dooren parametric form to accommodate any
assignable Jordan structure (£, &) for any reachable pair (4, B).

Theorem 2.3: Let (£, 2?) be an assignable Jordan structure for (A,B) and let K be a compatible parameter matrix. For each i €
{1,2,...,v}, let N; and M; be full rank matrices satisfying

Ul (A=XL)N; =0, U (A= AL)M; =1, p. )

Foreachpairie{l,...,vlandk e {1,..., gi}, define the sequence

xik(1) = NiKi(1), (10)
xix(2) = MU\ x;x(1) +NiK;i i (2), an
Xik(pig) = MU xig(pix—1) +NiKix(pig), (12)
as well as the matrices
Xik = [ xip(1) x%(2) ... xixpig) 1s (13)
Xi = [ X,-71 Xi72 X,',g,. L (14)
X=[X X .. X ] (15)

Then, for almost all choices of K, the matrix X in (15) is invertible, i.e., X is invertible for every choice of K except those lying in a set of
measure zero. The set of all real feedback matrices F such that the closed-loop matrix A+ BF has Jordan structure given by (£, ) is
parameterised in K by

F=z"'U) (XAX~'-A). (16)
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Proof: The proof will be carried out in three steps. First, we show that if X and F are given by (15) and (16), respectively,
then (2) is satisfied, provided X is invertible. Second, we show that the parameterisation given in (16) is comprehensive, i.e., for
every feedback matrix F and non-singular square matrix X satisfying (2), there exists a compatible parameter matrix K such
that X and F' can be recovered from (15) and (16), respectively. Finally, we prove that for almost every compatible parameter
matrix K, the matrix X in (15) is non-singular.

Firstly, let K be a compatible input parameter matrix as in (3). By (9), for each i € {1,...,v}, k € {1,...,g;}, the vectors
Xk (1), ... xi 1 (pig) satisfy

Ul (A= NiLy)xi (1) = 0,
Ul (A= LiL)xix(2) = U} xi(1),

Ul (A= Ailn)xig(pig) = Ul xip(pig—1),

and hence form a chain of generalised eigenvectors for the matrix U;" (A — A;1,,). Thus U;" (AX; s — X; 1 Jx(;)) = 0. Hence
U, (AX; —X;J(%)) =0, and finally we have

U/ (AX—XA)=0.

Assume X is non-singular and let F be computed from (16). We note that F is a real matrix because for eachoddi € {1,...,20},
we have A, = Ajand X;+1 = X;. Multiplying through by B = UyZ we obtain BF = X AX~! — A, and hence X and F satisfy
2).

Next, we show that the above parameterisation is exhaustive. We let X and F be any pair of matrices satisfying (2)
such that the eigenstructure of A + BF is described by (.Z,<?). Then we can decompose X into block matrices X =
[ X1 X» ... Xy ] where forie{l,....v}, X;=[X;1 Xi» ... Xy ] and for k € {l,...,g;} we also define
Xig =1 xix(1) x%(2) ... xx(pig) I; the vectors x;x(1), x;x(2), ..., x;x(pix — 1) form a chain of generalised eigen-
vectors for A+ BF with respect to A;. Thus

(A+BF — Aily)xi (1) = 0,
A BE A a2) = 1),

(A4+BF — i) % (Pix) = Xig(pig—1).
Multiplying (21) by U;", we obtain
Ui (A= Ail)xi 1 (1) = Uy BFx; (1) =0,

as UlT B = 0. Hence there exists a compatible parameter matrix K; (1) of dimension m x 1 such that (10) holds with respect
to N; and M;. Multiplying (22) by U;", we have U, (A — A;l,) x;x(2) = U, x; x(1), and hence (11) holds for some parameter
matrix K; ;(2). Similarly, we can use (23) to obtain the parameter K; x(p; x) such that (12) holds. Combining these parameters
we obtain an m x p; ,-dimensional parameter matrix K; ;; combining these for all k € {1,...,g;} we obtain a parameter matrix
K; of dimension m x m;, and finally combining these for all i € {1,..., v} we obtain an mn-dimensional parameter matrix K. It
is clear that K constructed in this manner is a compatible parameter matrix for (%, Z?). Applying the procedure in (10)-(16)
with this K, we recover X and F.

Lastly, we show that X is invertible for almost all choices of the parameter matrix K. Let N; = n;; ... n;, ]and for each
Siandie{l,...,v}andk € {l1,...,g;}, we introduce the chain

vik(1) = nig,
vik(2) = MU vig(1),

vik(pig) = MU vig(pix —1).

Combining these vectors, we obtain Vix = [ vix(1) vix(2) ... vig(pix) ] Lastly, we obtain V; and V as in (14)-(15).

a7
(18)

19)

(20)

@n

(22)

(23)

(24)

(25)
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Then, rank(V) = n, else no parameter matrix K exists to construct F in (16) that will deliver the desired closed-loop eigenstruc-
ture. This contradicts the assumption the pair (A, B) is completely reachable.

Next, let K be any compatible parameter matrix for (£, &), let X =V K and assume X is singular, i.e. rank(X) < n — 1. This
means that one column of the matrix

[viaWE (D) o v (pa) K (i) |- | v (D Kvg, (1) oo vy, (Prigy) Kvigy (Prigy) |

is linearly dependent upon the remaining ones. For simplicity, let us assume this is the last column. This means that there exist
coefficients {ot,-‘kJ 1<i<v,1<k<g,1<I< Pi,k}7 not all equal to zero, for which

=

v— ik gv—1Dvik Pvgy -1

1 gi
Ve (Pv.e, )Kvg, (Pv.g,) Y ¥ aimicD+ Y Y ovpvvkD+ Y, oy, ovvg, (6).
=== =1 i=1 =1

This implies that rank(VK) = n may fail only when Ky g, (pvg,) lies on an (m — 1)-dimensional hyperplane in the m-
dimensional parameter space. Thus the set of compatible parameter matrices K that can lead to a loss of rank in X is given
by the union of a finite number of hyperplanes of dimension at most nm — 1 within the nm-dimensional parameter space.
Since hyperplanes have Lebesgue measure zero on the nm-dimensional parameter space (Rudin, 1987), we conclude the set of
parameter matrices K leading to singular X has zero Lebesgue measure. |
For the case of real and distinct eigenvalues in ., we have v = n and m; = 1 for all i, and hence (15)-(16) reduce to (7)-(8).
Hence we shall refer to the parametric formulae (15)-(16) as the extended Kautsky-Nichols-van Dooren parametric form for X
and F. Theorem 2.3 should be compared with Theorem 2.1 of (Schmid et al, 2014a), which also provides a parametric form for
all F solving the arbitrary EPP. Both methods can accommodate any assignable eigenstructure and utilise an nm-dimensional
parameter matrix.

2.3 Implementation of the pole placement method

To implement the above pole placement method on any reachable pair (A,B), for any desired assignable Jordan structure
(Z,2), we proceed as follows:

Algorithm 2.1:

(i) Sort £ so that it is 6-conformably indexed. Choose any parameter matrix K that is compatible with (£, ).
(ii) Foreachic {1,...,v}, compute full rank matrices M; and N; satisfying (9). For computational reliability, an orthonormal choice is
to be preferred.
(iii) Use K, M; and N; to compute (10)-(14) and hence obtain X in (15).
(iv) If X is singular then it cannot be used, and an alternative parameter matrix must be obtained in Step (i).
(v) For a non-singular X, obtain the feedback matrix F using (16).

Theorem 2.3 then assures that F' and X satisfy (2) with respect to the matrix A with Jordan structure defined by (£, 2).
The utility of parametric forms such as (15)-(16) is that they naturally lend themselves to the consideration of optimal pole
placement problems, which we next consider.

3. Optimal Pole placement Problems

For systems with multiple inputs (m > 2), solutions to the EPP problem (2) are non-unique and this invites the consideration
of optimal pole placement problems in which one seeks F and X to solve the EPP while also possessing some other desirable
properties. Among many possible optimal control problems, we shall consider the robust exact pole placement problem (REPP)
and also minimum gain exact pole placement problem (MGEPP). Both problems have an extensive literature; see (Schmid
et al, 2014a) for a recent survey. Numerical experiments offering performance comparisons of several methods for these two
problems appeared in (Pandey et al, 2014) and (Pandey e al, 2015).
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Robustness measures

For a square matrix M with simple eigenvalues, the first order sensitivity of each individual A; to uncertainty in M is given by
the eigenvalue condition number (Williamson, 1965)

oy Ll
|yi xil

l )

where y; and x; are the left and right eigenvectors of M associated with A; and X is the matrix of right eigenvectors; ¢;(X) is the
Frobenius norm of the gradient of A;(M) with respect to M under the (natural) trace inner product. We use

Coo(X) défm.ax ¢i(X)
1

to denote the worst-case eigenvalue condition number. In (Bauer and Fike, 1960) it is established that c..(X) is upper-bounded
by the spectral condition number i, (X) & 1X112/1X ~Y|2. The Frobenius condition number Ko (X) &f 11X [] o || X~ || 1o is also
used as a robustness measure. Minimising the measures ¢« (X), k(X ) and K, (X) corresponds to superior robustness, with
perfect robustness being achieved only when the eigenvector matrix is unitary, i.e., when M is normal. Finally, in (Tits and

Yang, 1996) the orthogonality measure

|det(X)| = +/det(XX*),

was considered, which represents the volume of the box spanned by the (unit length) column vectors of X, and was used as the
robustness measure.

Robust Pole placement methods for non-defective eigenstructures

For the case of a non-defective eigenstructure, two heuristic methods were proposed in (Kautsky et al, 1985) to iteratively
select sets of closed-loop eigenvectors from the corresponding matrices N; in (9) so as to increase their mutual orthogonality.
The first of these methods (known as Method 0) has been implemented within MATLAB® as the place command. In (Tits
and Yang, 1996) it was pointed out that these methods are equivalent up to a sequential maximisation of |det(X)|, and offered
some improvements, which were implemented in their robpole toolbox.

As noted earlier, in (Byers and Nash, 1989) the pole placement method of (Kautsky ez al, 1985) was developed into a parametric
formula, given here as Theorem 2.2; this method was used to address the robust pole placement problem. Noting that &, (X) >
K2 (X), the authors of (Byers and Nash, 1989) considered the unconstrained optimisation problem

() n}gn Kero (XK ),

where K is any compatible parameter matrix, and Xy is the matrix obtained from using K in the pole placement procedure. The
Frobenius matrix norm enjoys the virtue of being differentiable with respect to the parameter matrix K, and (Byers and Nash,
1989) solved () by gradient search methods. Recently (Schmid et al, 2014d) developed a MATLAB® toolbox known as
byersnash, to implement the method of (Byers and Nash, 1989). Performance comparisons conducted on large collections of
sample systems with non-defective eigenstructures showed that the byersnash toolbox gave consistently superior robustness
performance than the MATLAB® place command, when K, (X) was used as the robustness measure. However, further
performance comparisons in (Pandey et al, 2014) showed that both place and robpole outperformed byersnash when
|det(X)| was used as the robustness measure.

Extending the (Byers and Nash, 1989) robust pole placement method to defective eigenstructures

Having extended the pole placement of (Kautsky et al, 1985) for the EPP to the case of a defective eigenstructure, it is natural to
consider whether the method can also be employed to achieve a robust eigenstructure in the defective case. It is well-known that
closed-loop eigenvalues corresponding to large Jordan blocks may be highly sensitive to parameter uncertainty. In (Chatelin,
1993), the following result was presented on eigenvalue sensitivity for matrices with a defective eigenstructure: let A and X be
such that A = X JX !, where J is the Jordan form of A, and let A’ = A + H, where H represents a perturbation in the entries of

(26)

27

(28)

(29)
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A. Then, for each eigenvalue A’ of A’, there exists an eigenvalue A of A such that

A=)
W < R (X)[H])2, (30)

where / is the size of the largest Jordan mini-block associated with A.

The bound (30) suggests that the robustness of the closed-loop eigenvalues depends upon the spectral condition number of X,
and thus to obtain a more robust eigenstructure, we should seek F that minimises this condition number. It should be noted,
however, that the measure (30) is only useful as a local sensitivity measure, as it relies on the first order expression of the
perturbation of the eigenvalues with respect to H and the second order terms are neglected. Consequently, it is only a good
criterion when the perturbation is not too large.

In order to simultaneously consider the REPP and MGEPP problems, we introduce the unconstrained optimisation problem

(#2): min o X[l |+ (1= @) | el €3]

where K is any compatible parameter matrix, and Xy and Fy are the matrices obtained from using K in the pole placement
procedure of Algorithm 2.1. Also || - || is any suitable matrix norm, and ¢ is a weighting factor, with 0 < o < 1.

The particular case & = 0 corresponds to the minimum gain pole placement problem, while & = 1 corresponds to the robust
pole placement problem. In seeking to address the robust pole placement problem with a defective eigenstructure, we decided
to employ the gradient search method of (Byers and Nash, 1989), rather than seek to extend the heuristic methods of (Kautsky
et al, 1985). While the spectral norm || - || might be a natural first choice for the matrix norm in (31), it has the drawback
of not being differentiable with respect to the matrix K. Since we shall seek to solve (4?;) via gradient search methods, we
instead employ the Frobenius matrix norm. Moreover, the Frobenius condition number Kz (X) = || X ||ro||X -1 |lro satisfies
K2(X) < Ko (X), and this offers an upper bound for the sensitivity measure in (30). Gradient methods require computation of
the first and second order derivatives of K., (X) with respect to K, and from these the gradient and Hessian matrices are easily
obtained. Unconstrained nonlinear optimisation methods can then be used to seek local minima. Computation of the matrix
derivatives required for k.., (X) appeared in (Schmid ef al, 2014b), and the matrix derivatives required for ||F¢||> appeared in
(Schmid et al, 2014c).

4. Example

The following pair (A, B) appeared as Example 5 in (Byers and Nash, 1989):

—0.1290 0 0.3960 0.2500 0.0019 0 0.1390
0.0329 0 —0.0078 0.0122 —0.6210 0 0.0359
A= 00072 0 -0.1000 0.0009 —0.0385|, B= 0 —0.0989
0.0041 0 0-0.0822 0 0.0249 0
0.0035 0 0.0035 0.0043 —0.0743 0 —0.0053

We seek to solve a deadbeat pole placement problem, in which all the closed-loop poles are to be located at zero by a suitable
feedback matrix. The controllability indices of the pair (A,B) are 3,2. We seek to obtain a feedback matrix F that assigns a
Jordan 3-block and a Jordan 2-block for A in (2). Thus, for a deadbeat pole placement, we choose ¢ = {0} and &| = {3,2}.
We consider problem (27| ) above with the values (i) & = 0, (ii) &« = 0.1 and (iii) @ = 1. We obtain the feedback matrices

F o [ —2.540687212462339 —0.000000000000003  5.487493841163132  8.586630902936868 —2.853030947488984 ]
= 0.325963828864331 0 —1.162961250550408 —0.254554054443773 —2.128661165785518 | ’
F _ —2.553915367684512  —0.000000000000001  5.498853573068885  8.602766525170175 —2.778402259766297
2= 0.324382385896125  —0.000000000000000 —1.161603179992470 —0.252625020055386 —2.119739210195851 | *
F - 100 0.271552650427021 —0.000000000000000 —0.200140255044157 —0.276363086831048 —1.703873477329505
3= 0.038761531099346 —0.000000000000000 —0.042117006832431 —0.045850530646197 —0.221576041864537 | *

To establish a comparison with the performance of MATLAB®’s place command, which cannot handle this example as the
desired multiplicity exceeds the rank of B, we consider the set 45 = {0,&,—€}, where € > 0, and seek to assign these poles
with multiplicities 2, 2 and 1, respectively, within a non-defective eigenstructure. Progressively reducing the value of €, we
observe that the smallest value for which place can assign these poles is £ = 1.9 x 1077, as any further reduction in & leads to
error messages. The matrix given by place is

F o= [72‘348710003776051 0.000000000000001  —1.289569095518355 —2.623566456109491 30.444406414898477]
P —0.910497545855925 0.000000000000000 1.664828571992231  0.967446078653003  5.427245473038826 | ©

7
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To compare the performance of these for feedback matrices, we computed several performance indices. Firstly, the closed-loop
spectral radius is given by

p(A+BF) € max{|eig;(A +BF)|:i € {1,...,n}}
where, for any square matrix Z, eig;(Z) denotes the i-th eigenvalue. Thus, the smaller the closed-loop spectral radius, the closer

the feedback matrix comes to achieving the deadbeat control objective. We also computed ||F||, and x»(X) from each closed
loop eigenstructure. The results are shown in Table 1.

Table 1. Performance comparisons

p(A+BF) 1 (X) LF ]2
Fi (0 =0) || 7.8x 1077 | 852.0533 | 10.89

F(a=0.1) || 85x1077 | 487176 | 10.9
Fs(e=1) | 52x1077 | 23.0818 | 177.4
F,(place) || 1.9x 107> || 4.2x 103 || 31.1

We observe that the use of the extended Kautsky-Nichols-van Dooren algorithm allows us to obtain a closed-loop spectral radius
that is 24 times smaller than that obtainable with the original Kautsky-Nichols-van Dooren algorithm. Moreover, by employing
the gradient search methods introduced in (Byers and Nash, 1989), the deadbeat pole placement was achieved with substantially
smaller gain and greatly improved robustness.

5. Conclusion

We have extended the classic pole placement method of Kautsky, Nichols and van Dooren to address the problem of exact
pole placement for any desired eigenstructure with arbitrary multiplicities. The parametric form was shown to include all the
matrices X and F satisfying (2), for any given assignable Jordan eigenstructure (£, &) for (A, B). The set of parameter matrices
leading to singular X, for which the algorithm does not yield a pole-placing F', has been shown to have measure zero within
the parameter space. These aspects of the parameterisation were not considered by (Byers and Nash, 1989). The algorithm has
been shown to be readily amenable to problems of optimal pole placement. The method provides an interesting parallel to the
parametric formula given in the recent paper (Schmid et al, 2014a) that also achieved arbitrary pole placement, but was derived
from the Klein-Moore parametric form.
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