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This paper endows the second-order sliding mode control (2-SMC) approach with additional capabilities
of learning and control adaptation. We present a 2-SMC scheme that estimates and compensates for
the uncertainties affecting the system dynamics. It also adjusts the discontinuous control effort on-line,
so that it can be reduced to arbitrarily small values. The proposed scheme is particularly useful when
the available information regarding the uncertainties is conservative, and the classical “fixed-gain” SMC
would inevitably lead to largely oversized discontinuous control effort. Benefits from the viewpoint of
chattering reduction are obtained, as confirmed by computer simulations.
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1. Introduction

In this paper we consider the problem of controlling single-input nonlinear uncertain systems, which
are minimum phase and of relative degree one with respect to the sliding output, by modulating
the discontinuous time derivative of the control input. Sliding Mode Control (SMC) proves to
be capable to cope with complex characteristics such as nonlinear uncertain dynamics, model
uncertainties and unmodeled perturbations. Since its origins, SMC has evolved into a robust and
powerful control design technique for a wide range of applications (Bartolini et al. (2008); Shtessel et
al. (2013)). The peculiar aspect of conventional SMC is the discontinuous nature of the underlying
control action, providing excellent system performance, which includes insensitivity to matching
uncertainties and finite-time convergence.

In spite of the excellent theoretical properties, direct practical application of such discontinuous
effort can generate undesirable output chattering. To attenuate this problem, the concept of higher
order sliding modes was introduced and, specifically, several second-order sliding mode (Bartolini
et al. (1999b); Levant (1993, 2007); Orlov et al. (2003)) and higher order sliding mode (HOSM)
(Levant (2003, 2005)) algorithms were presented. Lyapunov-based convergence analysis of the
Twisting second-order sliding mode control (2-SMC) algorithm, which plays a major role in the
present treatment, were presented in (Orlov (2004); Polyakov (2009))

Since then, the number of publications on HOSM theory and applications has grown exponentially
(see e.g. (Pisano et al. (2011)) and the references therein).

The chattering phenomenon is particularly felt when the a-priori known bounds on the un-
certainties are very conservative. The overestimation of the uncertainties to cope with, indeed,
implies unnecessary large control effort and a corresponding degradation of accuracy in practical
implementation.

To counteract the conservatism in the prior evaluation of the system’s uncertainties bounds, a
number of interesting adaptive 2-SMC solutions relying on Lyapunov-based adaptation mechanisms
were presented (see, for instance, Gonzalez et al. (2012); Kochalummoottil et al. (2012); Plestan et
al. (2010a); Plestan et al. (2010b); Shtessel et al. (2010); Taleb et al. (2013)). On-line inspection of
the sliding accuracy was also recently used in Bartolini et al. (2013) to detect 2-SM existence and
consequently adapt the parameters of the twisting controller. A different adaptation philosophy,
originally introduced in Bartolini et al. (1999a), has led to a readily implementable and straightfor-
ward adaptive 2-SMC strategy. Instead of a Lyapunov-based or accuracy-based gain adaptation (as
in the aforementioned works), this adaptation mechanism takes advantage of the inherent nature
of real (non ideal) sliding modes, existing in actual variable structure systems operating at finite
switching frequency. Its adaptation policy depends on counting the zero-crossings of the sliding
variable during appropriate receding-horizon adaptation time windows. Then, the occurrence of
real sliding mode is verified by checking whether such count is large enough in accordance with a
sliding mode existence criterion. The resulting adaptive controller is endowed with the capability of
adjusting on-line the discontinuous control gain bidirectionally, maintaining the control magnitude
at the minimum admissible level (rather than the worst-case conservative level, as in fixed-gains
SMC). This adaptive 2-SMC algorithm has been previously applied in Capisani et al. (2011) and
Pisano et al. (2012) to adjust the parameters of the Twisting 2-SMC algorithm Bartolini et al.
(1999b) in robotic and automotive applications, respectively. Remarkably, the method was exper-
imentally verified in Capisani et al. (2011) by means of an industrial manipulator. More recently
(Evangelista et al. (2014); Pisano et al. (2013)) a similar logic was applied to adjust the parameters
of the Suboptimal 2-SMC algorithm (Bartolini et al. (1999b)), in the framework of wind-energy
conversion systems (Evangelista et al. (2014)) and by combining it with a switched adaptation
algorithm (varying gains depending on the current operating region in the state space), see Pisano
et al. (2013).

The contribution of this note consists in identifying a new scheme, embedding the aforemen-
tioned adaptation mechanism and combining it with a disturbance identification and compensa-
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tion method. This modified architecture allows to reduce the discontinuous switching component
of the Twisting 2-SMC law to an arbitrarily small value. In order to give some globality properties
to the treatment, we refer to some additional input-state stability (ISS) conditions (Sontag et al.
(1995)) guaranteeing the boundedness of the system motion when confined to a boundary layer of
the sliding manifold. Summarizing, the main contribution of the present work against the related
literature, (Bartolini et al. (1999a); Capisani et al. (2011); Pisano et al. (2012)) in particular, is
that of integrating the adaptation logic, based on detecting the enforcement of a real sliding mode,
with a novel scheme that estimates and compensates for the uncertainties appearing in the system
dynamics. Additionally, we allow the uncertain nonlinearities entering the system’s dynamics to
possess state-dependent upper bounds with arbitrary growth rate, thereby including in the treat-
ment systems possibly featuring the finite escape time phenomenon, a class of systems that was
not treated in the above quoted literature.

After the problem formulation, and the list of the assumptions regarding the class of systems
considered in this note (Section IT), the description of the proposed methodology is split in two steps
that are dealt with in Sections III and IV. In Section III it is presented the adaptation algorithm.
The idea is to decrease or increase the control input stepwise, at the end of any observation time
interval of length T, if the number of “switchings” (i.e. zero crossings) of the sliding output during
the previous observation interval is greater or lower, respectively, than a prescribed threshold. Then
it is shown that due to this machinery the system trajectories remain confined into a boundary layer
of the sliding manifold of size O(T?). In Section IV we add a bounded component to the original
switching control signal. This additional component, that can be seen as an artificial disturbance,
is produced by a suitable nonlinear filter driven by the plant control input. The actual control
signal, which is the derivative of the plant control input, is therefore made up of two components,
one of which is continuous, the artificial disturbance, and the other one being discontinuous with
time varying magnitude provided by the adaptation algorithm described in Section ITI. The overall
uncertain system behavior can be described by an homogeneous differential inclusion, and this
special structure is exploited to prove that after a finite time process the boundary layer size
reduces to O(T?) and, at the same time, the discontinuous part of the control signal contracts
from a finite, possibly large, value to an arbitrarily small infinitesimal O(T') quantity. In Section V
several simulation examples are provided to validate the theory.

2. The uncertain control system and relevant assumptions

We consider the nonlinear single-input dynamics

x = a(x) + b(x)[u(t) + d(t)] (1)
X(to) = X
where x € R” is the state vector, t € [ty,c0) is the time variable, u(t) € R is the control input,
d(t) € R is an unknown disturbance and a,b : R" — R"™ are smooth uncertain vector ficlds.
Particularly, b(x) is required to be a complete vector field (Isidori (1995)).

Assumption 1 It can be found an algebraic constraint

o(x) =0, o:R" =R (2)

such that:
la) The “constraint variable” o has a globally defined relative degree one
1b) The state trajectories solutions of the differential-algebraic equation (DAE) (1)-(2) are
bounded and satisfy the design specifications.

The control task is that of finding a continuous control action wu(t), with discontinuous time
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derivative, capable of steering the system output o as close as possible to zero in spite of hard
model uncertainty while counteracting the chattering phenomenon.

Under the conditions of the Assumption 1, it is possible (see Isidori (1995)) to define a vector
w € R"! and, correspondingly, a diffeomorphic map

x="T(w,o), YT:R"—>R" (3)

preserving the origin. The w dynamics, generally referred to as the “internal dynamics” (Isidori
(1995)), can be expressed as

w = g(w,0). (4)

Assumption 2. The internal dynamics (4) are input-state stable (ISS) (Sontag et al. (1995))

According to Sontag et al. (1995), Assumption 2 implies that there exist a K-£ function « :
Rt x RT — R* and a K function ¢ : Rt — R such that for every wy € R"! and every o € R
the unique maximal solution of the initial value problem (4), w(ty) = wy, has interval of existence
R* and

[wil < a(lwoll,#) +&(llollee) V€ [to, 0) ()

Assumption 3. There exist known K-function v : Rt — R™ such that
Wil < ~(lIxll) (6)

Functions «, £ and v will be explicitly used in the parametrization of the proposed control laws
and are therefore required to be known.

Consider the first total derivative of o(x) in the transformed (w, o) coordinates

o(t) = pi(w,o,t)+ K(w,0)u (7)
where
K(w,0) = a(gg{)b(x) (8)
x="(w,o)
o1(w,o,t) = a(g—g{)a(x) + K(w,o0)d(t) (9)
x="(w,o)

Assumption 4 There exist known positive constants K,,, Kp;, Kp such that

0< K, < K(w,o)<Kuy (10)
|K(W707u7t)| < Kp (11)

Consider also the second total derivative of o(x), which takes the form

g(t) = po(w,o,t,u)+ K(w,0)u (12)
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where
po(w,o,t,u) = @o(W,0) + [paa(w,0) + K(w,a,u,t)][u +d(t)] + K(W,J)d(t) (13)

Assumption 5. There exist known positive constants Dq, Do such that

|d(t)] < Dy |d(t)] < Do (14)
Define the following functions
_ ¥1 (W7 g, t)
dwot) = Tt (15)
_ _@2(W7U7t7u)

After lengthy but straightforward computations it can be shown that gb and A can be expressed
as follows

é = ¢1 (W7 g, t) + ¢2 (W7 g, t)u + ¢3(W7 g, t)u2 + ¢4(W7 g, t)u

. 17
B = Bi(w,o,t) + Ba(w,0,t)u + Bs(w, 0, t)u® + Ba(w, o, t)ud + B5(w, 0, )i (17)
for some implicitly defined functions ¢; (i = 1,2,...,4) and f; (i =1,2,...,5) .
Assumption 6. There exist known non-decreasing functions @1, @91, Poo, O1,....,04,'1,...; Ty :
R* x RT — R" such that for all ¢ € [ty,00) the following inequalities hold
‘gOl(W,U, t)l < (I)l(”w”7 |U|) )
‘SOQi(WvO')l < (I)QZ(”W”v ’U’) Z =1,2 (18)
Bulw,0 )| < Ou([Wll Jo]) i =1..0.5
[¢i(w,o,t)| <Ti([wl,[o]) i=1,...4

Note that due to relations (18) the growth rate of the underlying uncertain functions with
respect to ||w| and |o] is arbitrary. Thus, the open-loop system may exhibit the finite escape-time
phenomenon.

3. The properties of a control adaptation mechanism
Let tg be the initial time, and let k > 0 be an arbitrary constant. The initializing control strategy

= —U;(x,u,0)sign(o) to <t <t. (19)

Ui(x,u,0) = Kim (@21 (v (Ix[]), [o]) + [@22(y ([%[1), lo]) + Kp] (Jul + D1) + KnD2 + k], k>0

(20)
is applied in the initial transient to globally steer in finite time ¢. > ¢y the variable ¢ to zero.

At t = t., a constant ® is evaluated to subsequently be used for setting the parameters of
the adaptive control law to be applied in the successive time interval ¢ > t-. The procedure of
computing the constant ®, which is based on certain measurements to be taken on-line at ¢t = ¢,
is outlined in the following Subsection.
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3.1 On-line computation of the control coefficients

Define
W™ = aly(x()l), te) + (o (te)| +a), a>0 (21)
1 2
— 149K S n>1 29
P +n MmaX{Km’OLKm—KM}7 n> ( )

where ¢ > 0 and > 1 are arbitrary constants. Find the unique positive root X7, of the equation

Sh = \/20F(Sh) (o (te) | + q) (23)
where
F(ED) = @alwl" lo(t)]+q) + Kim [@a2([[w ", o (te)] + q) + K]
x [ @i(Iwl*, lo(te)l +q) + Zh + K D1l + Ky D2 (24)

Now consider any ¥p > X7, and define
* 1 *
ut = o [Ep+ Culw]" Jo(te)] + )] (25)

Finally, compute the constant ® according to

o = Cu(lwl"lote) + ) + [Paa(Wl[*; [o(te)| + ¢) + Kp] [u” + Di] + Ky Ds.
(26)

The meaning of constant ® is that under the action of the adaptive control law applied at ¢t > t.,
the following inequality holds

’@Z(anvtv U)| < (I)v t >t (27)
Furthermore, the quantities ||w||, |o| and |u| will never exceed, at any t > t., the constant upper

bounds [|w||*, |o(t.)| + ¢ and u*. These statements are demonstrated in the proof of Theorem 1.

3.2 The adaptive algorithm

In the time interval ¢ > t., the following adaptive version of the “Twisting” algorithm (see Levant
(1993)) is applied

uw(t) = Up,S(o,0), telte+(j— DT, t.+5T), j=12,... (28)
K]W . .
L —NEE - signo c-0>0
5(0,6) { —signo o-0<0 (29)

The adaptation procedure is defined as follows. Starting from ¢ = t., consider the sequence of
adjacent time intervals

teTi=te+ (G —1)T,te+4T) j=1,2,... (30)
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of width 7', and modify the control amplitude Uy, in (28) at the end of the time interval 7;
according to

Ur, = n® maX{KLm, —aKmQ—KM}
U _J max(Un, — M T,0) if Nsy; > N* (31)
Mier = min(Unr, + AoT,Unr,)  if Ny j < N*

where Ny, ; is the number of sign commutations (zero-crossings) of o in the interval 7; and N* is
an integer number to be properly chosen.

Definition 1 The number Ny, ; of sign commutations of o(t) in the time interval T; is defined
as the cardinality of the set S; = {t € T; : o(t) =0, &(t) # 0}.

Roughly speaking, we decrement the control magnitude stepwise by AT while the number of
zero-crossings of ¢ is large enough, otherwise we increment the control magnitude stepwise by AsT.
Parameter A; > 0 is free to be chosen whereas As must be computed on line at t = ¢, on the basis
of available state information, and it must fulfill the following inequality (33)

A > 0 (32)
Ao > A 42 |01(lw]* [o(te)] + a) + Oa([lw]*s [o(te)| + g)u™ + O3([[wl*, |o(te)] + ) (u*)?

+O4([wl*, lo(te)] + a)(w)® + Os(|wl*, lo(te)] + a)(® + KMaUM)] (33)

Parameter N* in (31) can be selected by taking advantage of the following Lemma.

Lemma 1 Consider the second-order sliding variable dynamics (12) and let Ny, j be the number
of zero crossings of o during the time interval T; of length T'. If condition

Nsy; > N*, N*>2 (34)
is satisfied, and |G| < ay for some ay > 0, then the inequalities
lo] < a;T? lo| < ayT (35)

hold in the whole time interval T;.

Proof of Lemma 1. If function o has at least two zero crossings within the interval 7}, then,
by virtue of the Rolle theorem, its first derivative & has at lest one zero crossing within the same
interval. Since |§| < a; by assumption, simple time-integration yields (35). O

Clearly, Lemma 1 offers the rule for choosing the parameter N* of the adaptation algorithm.

The performance guaranteed by the application of the proposed adaptive control algorithm is
established in the following Theorem.

Theorem 1. Consider system (1) satisfying Assumptions 1-6. Choose the control input as

. UZ'(X,U,J) to <t <t
“{ Ur,S(0,6)  teT; (j=12...) (36)

where functions U;(x,u,0) and S(o,¢) are defined in (20) and (29), the adaptation of Uyy, is
governed by (81), where ® is the constant evaluated as explained in the Subsection IIILA, N* > 2,
and A1, Ay are evaluated according to (32)-(33).
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If the period T of the adaptation process is such that

1 S+ KpaU)y
T< — te by = (P + KyaU 1 37
then the following inequalities are achieved after a finite-time transient process
< b T?
o(0) < br 9

()] < /201 (® + KnaUpm)T

Proof See the Appendix.

Remark 1. The existence of a diffeomorphic map bringing system (1), along with the sliding
output o = o(x) into the normal form (4), (7) is guaranteed by the properties 1a) and 1b) (see, e.g.
(khalil , 2002, Th. 13.1)). It appears complicated to devise formal conditions on the vector fields of
the original system (1) ensuring that the Assumptions 2, 3 and 6 hold for the transformed system’s
dynamics. However, the required boundedness restrictions of (5), (6) and (18), appear to be general
enough and not particularly restrictive. Systems expressed in the Brunowsky form, for instance,
certainly fulfill all the given requirements when a linear sliding manifold is considered (as it is
shown in the Simulation section). Furthermore, at the price of certain geometric extra-conditions
supporting the diffeomorphic transformation (3), the approach can be extended to the time-varying
scenario where the vector fields a(x), b(x) and the sliding manifold o(x) depend explicitly on the
time variable (i.e., a = a(x,t), b = b(x,t) and 0 = o(x,t)). This generalization, however, does
not affect the main purpose of the paper of presenting a novel combined adaptation/uncertainty
compensation policy, and it is skipped for simplicity’s sake. O

Theorem 1 does not guarantee the convergence of Uy, towards some attracting set vanishing
with 7', but just the fact that the proposed adaptation globally steers the systems towards an
invariant boundary layer depending on, and vanishing with, the T" parameter. In order to reach a
more effective result (particularly, convergence of Uy, towards an O(T) vicinity of zero) we need
a further modification of the control scheme, that is discussed in the following section.

4. Main result

In this section we present a modified version of the adaptive controller providing some enhanced
features. Particularly, we modify the second row of (36) as follows

. Uix,u,0) to <t<t,
“_{ Un,S(0,6) +v(t) teT; j=1,2,... (39)
where v(t) is the output of the following non linear filter driven by the plant control u
z(te) = u(te) ; w(te) =0 ; v(0)=0
v] = %= —Xo|z — u|'/?sign(z — u) +w (40)
w = —Asign(z — u)
R if lvi| > A3
U= { —Agsign(v —vy1) if |vi] < A3 (41)
in which A1, ..., A4 are constant tuning parameters. Roughly speaking, we add a continuous
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component v(t) whose aim is to estimate the uncertain term J(w,o,t,u) defined in (16). Indeed,
considering the second row of (39) into (12) yields the closed-loop dynamics

5(t) =K [(v—B) + U, S(0,6)] (42)

so that as the “estimation error” eg = v — 3 tends to zero, the discontinuous control magnitude
Uy, may tend to zero as well. Note that by construction (and considering the tuning inequalities
(48) to subsequently be specified) the following conditions hold

EEST W (43)

The uniformly bounded and Lipschitz signal v can be seen as an additive disturbance matching 1,
yielding the “perturbed” dynamics (42) having the uncertain drift term K (v— /) = Kv+s. Since,
by (43) and Assumption 4, the term Kwv is uniformly bounded and globally Lipschitz, then all the
conditions of Theorem 1 are satisfied and accuracy (38), in particular, is thus preserved provided
that the procedure of computing the ® parameter is slightly modified. The on-line computation of
the controller parameters, to be made at the time instant ¢ = ¢., is outlined and commented in the
following subsection.

4.1 On-line computation of the control coefficients

In the previous section, the motivation for computing the constant ® was that of deriving an upper
bound to the magnitude of function yo (the drift term of & in eq. (12)), according to (27). Now,
the 6 dynamics (42) has the drift term K (v — ) = Kv + 2 , which is why we now aim instead to
compute a constant ® such that

[K(w,0)u(t) — p2(w,0,t,u)| <@, &=t (44)
The underlying procedure is outlined a follows, which straightforwardly derives from that of the
Subsection III.A and takes advantage of relation (43) and Assumption 4. Define ||w||* and p as in

(21), (22), where ¢ > 0 and 1 > 1 are arbitrary constants. Find the unique positive root X7}, of the
equation (23), where

FE) = Kaks + an(wl',o(to)| +0) + = el lotto)| + o) + Ko
< @r(Iwl™, lo(te)l +q) + Xp + Km D1l + Ky D2 (45)
Now consider any ¥p > ¥7,, define u* as in (25), and compute the constant ¢ according to
® = KyAs + Par([wl* lo(te)| + q) + [Paa([[wl*, [o(te)| + ¢) + Kp] [u™ + Di] + Ky Dy (46)
Additionally, compute the parameter

Ay =Ti(Iwl*, lo(te)l +q) + Ta(wl*, o (te)] + g)u”

47
(Wl o (o) + @) () + Pallwl (i) |+ 0)(® + Kyralas) )

which overestimates the magnitude of signal d) in (17), choose A1, ..., Ay according to
AL > A, A3 > oAt As > @, As > max{A, Az},  (48)

10



February 18, 2016 International Journal of Control TCON-2015-0368.R1

and, finally, set A; > 0 and Ay such that (33) holds.

4.2 Convergence analysis

Exploiting the homogeneity property of the closed-loop dynamics we prove (see Theorem 2) that
controller (39)-(41) along with the adaptation rule (31) guarantee that the estimation error eg =
v — 3 and the discontinuous magnitude Uy, reduce to O(T) after a finite transient and, at the
same time, that the sliding accuracy improves to |o| < O(T?).

Theorem 2. Consider system (1) satisfying Assumptions 1-6. Compute the control parameters
as specified in the subsection IV.A. Choose the control input as in (39)-(41), (20), (29)-(31).

Then, if the period of the adaptation process meets the restriction (37), the following inequalities
are achieved after a finite-time transient process

o] <aT? 6| <eT? 6] <esT  |Unmy| < el (49)

with c1, ..., ¢4 positive constants independent of T'.

Proof. The proof shall exploit some homogeneity properties of the obtained closed-loop system,
which can be expressed in a more convenient form as

& = KI[64UnmS(0,0)] (50)

. _ . K | . KK-2K? K

0 = —Mgsign [0 —w— ﬁO’] — ¢+ —%3 0 + 720 (51)

w o= —A|w-— —a sign [ - —a] (52)

£ = —¢—A ~ 1 (53)
= 1sign |w KU

where signals §, w and £ are defined as

5:%0—#@—@5 w=2z—20¢ E=w—0¢ (54)

Define the vector 7 = [0, 5,0,w,&]T. Since, according to (43), signal v and its time derivative
are bounded, Theorem 1 can be invoked to assess that o and ¢ converge in finite-time towards the
invariant bounded domain (38). By virtue of this, and taking into account assumptions (10)-(11),
(14), (18), to the uncertain differential equation (50)-(53) can be associated a differential inclusion

of the type
_ R )
(K, Kar) [0+ Uni, S(0,6)]
€ F(m, Uy, T) = —Agsign(d — & + [—k1, 1] T) + [~ k2, 2] (55)
-2 |lw— md‘lﬂ sign (w — m ) +¢
I —¢ — Apsign(w — [KTlKM]d) |

11
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where k1 and kg are positive constants. The differential inclusion (55) is understood here in the
Filippov sense (Filippov (1988)), i.e. its right-hand side is enlarged up to the minimal closed convex
upper-semicontinuous vector-set function.

Recall that Uy, obeys the discrete dynamics (31). Here T' is the system parameter. Fix some
value T' = Tj. Convergence to the invariant bounded domain (38) assures, by (7), that u differs
from ¢ by a small “measurement error” related to the actual size of the invariant boundary layer.

According to Levant (1998), conditions (48), where A; is straightforwardly shown to represent
an upperbound to |q5| at any t > t., guarantee that after a finite transient signals v; and v differ
from ¢ by a bounded quantity. Thus, w and £ converge to a bounded domain containing the origin,
and moreover w and § are bounded. As a result, the solutions of (55) enter in finite time the
invariant set

L:{lo| <di,|o] < do,|0] < ds,|w| < da,|é] < ds} = L(dy,da, ds,da,ds) (56)

where d; = d;(Tp), i = 1,2,...,5, are proper positive constants.
Let us now evaluate the attracting set for the system (31), (55) with the parameter T' = vTy,
where v is a positive scaling parameter. Define the following linear transformations

dy : (0,0,0,w,&Un,) — — (V30,1%6, v0, vw € vUn,),

Gy : (t,ﬂ', UMjaT) — (Vtﬂd'/ e UM ) ) (57)

Obviously the transformation G, yields a one-to-one correspondence between the solutions of the
hybrid systems (31), (55) with parameters 7" and vT. In other words, the system is homogeneous
with the homogeneity degree equal to —1.

Taking into account that v = T /T, and applying the transformation G, obtain that for the
arbitrary adaptation period T the trajectories of the closed loop hybrid system (31), (55) in finite
time enter the invariant set L* = L (%T‘g, %Tz, %T’ %‘;TQ, %T) and stay there forever, which

0 0 0

provides for the needed asymptotics. Theorem 2 is proven. [

5. Simulations

Consider the nonlinear system

T = Tiy1 1=1,2

{ i3 = 23 — xox3 + 5sin(t) +u (58)
with the initial conditions x1(0) = z2(0) = x3(0) = 1. and let 0 = x5 + 4x9 + 4x1 be the chosen
sliding variable, which clearly possesses a globally defined relative degree one. The trajectories of
the DAE (1)-(2) are governed by the reduced-order asymptotically stable linear system

{ 1= 22 (59)

To = —4.%'1 — 4.%'2
along with the linear relation x3 = —4x; — 49, thereby fulfilling both the requirements la) and

1b) of Assumption 1.
In the present scenario, a diffecomorphic map (3) fulfilling all the given assumptions 2-6 takes the

12
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simple form of the nonsingular linear mapping

1 0 0 w1
—4 —4 1 o

with the internal dynamics state vector being thus specified to w = [x1, 23]7. The dynamics of the
transformed state is straightforwardly derived as follows

’Li)l = W2
’li)g = —4'LU1 — 4’LU2 +o (61)
o = —16w; — 12wy + 40 + w? + w3 + dwwe — weo + 5sin(t) + u

The internal dynamics, given by the first two lines of (61), are linear and asymptotically stable
when o = 0, therefore three constants af, o and " can be found such that relation (5) specifies
to

[w(t)|] < afflw(0)[le " +¢* sup, lo(T)] vt €]0,00) (62)
T€|0,

Also, assumption 3 is straightforwardly satisfied due to (60). Function K (w, o) takes the constant
unit value, hence the constants in Assumption 4 are K,, = Ky = 1 and Kp = 0. Similarly, due
to the chosen matching disturbance d(t) = 5sin(t) the Assumption 5 is in force with the constants
Dy = Dy = 5. The derivation of the expressions in (17), as well as the verification of Assumption
6, are straightforward but yield extremely lengthy developments which are skipped for the brevity
sake.

The proposed strategy has been simulated using the parameters A1 = 1, Ay = 4, N* = 30,
Unr1 = 500, A1 = 100, A9 = 25, A3 = 200, Ay = 500, and two tests using different values of T have
been performed: TEST 1 (7' =T = 25ms) and TEST 2 (T = T, = 2.5ms).

Fig. 1 shows the time profiles of o and Uy, corresponding to TEST 1 (note that the Uy, reduction
process activates only after a boundary layer of the sliding manifold o = 0 has been attained within
which the zero crossings of o take place fast enough).

TEST 1. The time profile of c. TEST 1. The time profile of UM
500
5 1 400
0 300r
2001
_5 4
100¢
1% 5 10 15 % 2 4 6 8 10
Time [sec] Time [sec]

Figure 1. TEST 1 (T = 25 ms). Time evolutions of o (left) and Uny; (right).

Fig. 2 and 3 are devoted to check the attainment of (49) by comparing the steady-state behavior
of o and Uy, in the two tests. It is expected that in the steady state of TEST 2 the variables
o and Uy, contract by a factor 1000 and 10, respectively, compared to the magnitudes achieved
during TEST 1. The comparison between the plots of figures 2 and 3 confirm the expected accuracy
thereby supporting the theory.

13
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Figure 2. TEST 1 and TEST 2. Zoom on the steady-state behavior of o
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Figure 3. TEST 1 and TEST 2. Zoom on the steady-state behavior of UMJ.

SUP¢el5,10] o] SUD¢el5,10] ’UMj’
Algorithm (36) | 3.12-107* 26.2
Algorithm (39) | 1.45-107° 4.4

Table 1. Comparative analysis between Algorithms (36) and (39)

Finally, in Table 1, the results of a comparative analysis between the algorithms (36) and (39) is
presented. The two algorithms are implemented using the same parameters of TEST 1. The table
compares the steady state accuracy of |o| and |Upy, |, highlighting that the proposed algorithm (39)
provides both higher sliding accuracy and chattering attenuation as compared to the algorithm
(36) which does not implement the uncertainty estimation and compensation.

6. Conclusions

An adaptation mechanism, capable of adjusting on-line the discontinuous control magnitude in
a second-order sliding mode control system, has been integrated with a method to estimate and
compensate for the uncertainty affecting the system’s dynamics. The combined scheme is capable
of reducing the discontinuous control effort to an arbitrarily small quantity. Next activities will be
devoted to analyzing the discrete-time version of the proposed adaptive controller. Validation of
the proposed scheme on experimental platforms is another interesting task of future research.

14
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Proof of Theorem 1.

It follows from (10)-(14) and the second row of (18) that in the transient interval [to,t.] the
initializing control appearing in the first row of (36) enforces the differential inequality 6o < —k?|o],
thereby ensuring that for any initial condition (o(¢p), o (to)) the axis & = 0 will be hit after a finite
transient t. > t..

To analyze the system trajectory in the phase plane o — ¢ (see Bartolini et al. (1999b)), let us
refer to the Figure 4, which shows the piece-wise parabolic limiting trajectories (continuous lines)
and a possible actual trajectory (dashed line) starting from the point P, = (o(t.),0) = (01,0).
From ¢ = t. the adaptive Twisting Algorithm, appearing in the second row of (36), is applied.

Figure 4. Limit and actual trajectories in the o — ¢ plane.

Define the set
Q={(0,0):|o| <|o(t)l+q, |o]<Ep} (63)

where q and X p are the parameters already introduced in the Subsection III.A. Particularly, q is
an arbitrary positive parameter, and Xp is any value such that Xp > X7, , where X7, is the unique
positive root of the equation (23)-(24). We will show that the set €2 is invariant for the closed-loop
trajectories from t = t. on.

Let, without loss of generality, o(t.) = o1 > 0. Clearly, at ¢t = t. the o — ¢ trajectory belongs to
Q. As long as the 0 — & trajectory does not leave the set, the following estimations are in force.
First, by Assumptions 2 and 3 one gets

[wil < flw]* (64)
where ||w||* was defined in (21). Secondly, by (7) one concludes that

1

u = Kw.o) [0(t) — p1(w,0,1)] (65)

Therefore, by the Assumption 6, coupled to (64), one concludes that into the set Q the following
estimation

uf <’ (66)

holds, where u* is the constant that was defined in (25). As a result, by (13), and by considering
relations (64), (66) and the Assumptions 4-6, one concludes that into the set € the function
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pa(w, o, u,t) fulfills the inequality

lp2()] < @ (67)

where ® is the constant that was defined in (26).

From now on, by considering the limit solutions of the differential inclusion § € [-®,®] +
(K., Ky)t, and referring to their graphical representation of Figure 4, it can be concluded (refer
to the similar analysis of Bartolini et al. (1999b)) that &), the lower intersection of the limit
trajectories with the vertical axis, satisfies the following relationships

611 = V2001 (t)[(® + KnUnin) = V2p@lon ()] < v/2p@ (|01 ()] + q) (68)

where p is the constant that was defined in (22). To derive (68), it is considered that the adaptive
gain Uy, keeps constant to its initial value Ups, while the system trajectory is approaching the
vicinity of the origin of the o — ¢ plane. Note that &, overcomes any possible value of |&| over the
whole considered trajectory between the points P; and P, = (02,0).

To ensure the invariance of set €, it suffices to show that

61| < Zp (69)

and then notice that the convergence properties of the Twisting algorithm guarantee that |o2| < |o1|
(see Levant (1993)). The inequality (69), whose left and right hand sides both depend on ¥ admits
a non-empty solution interval ¥p € (37,,00) since the left hand-side of (69) asymptotically grows
like O(v/Zp). It is easy to check that the computation of X%, yields the nonlinear equation (23)-(24)
that was previously introduced. Thus, the set () turns out to be invariant at any t > ¢..

From this point on, the convergence properties of the Twisting algorithm yield a sequence of
contractive rotations of the trajectories around the origin of the o — ¢ plane, thereby leading to the
establishment of a practical second-order sliding mode after a finite transient (see Levant (1993)).

As soon as condition (34) is achieved at some j = M;, the stepwise reduction of Uy, is activated.

The dominance over the uncertainties (formalized by condition (29)) will be lost after a finite
number of intervals, and at some j = My > M; the sliding mode existence criterion (34) will be
violated. By Lemma 1, at the end of the time interval Tjs,—1 the variables ¢ and ¢ are bounded
as in (35) with a1 = sup|6| = ® + KpraUyy;.

If parameter As is such that

Ay > Ay + 2sup| | (70)

then condition (29) is already restored during the interval Ty, 11, i.e. one interval after the violation
of the 2-sliding criterion (34). It can be verified that (33) is equivalent to (70), the term sup|f|
being explicitly evaluated on the basis of (17), (18) and (6).

The maximal deviation undergone by |o| and |&| can be evaluated by studying the limit tra-
jectories obtained starting from the initial condition (35). The resulting algebraic computations,
skipped for the sake of brevity, yield conditions (38). While Uy, continues to grow, contractive
rotations of the system trajectories around the origin of the o — ¢ plane preserve the inequalities
(38).

To conclude the proof it must be included a constraint on T' guaranteeing that the limit set (38)
is entirely contained into the invariant rectangle (63). From the inequality

WT? < |o(t.)|+q (71)
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it readily follows condition (37) (the arbitrary positive parameter ¢ allows us to enlarge as desired
the admissible range for T'). This concludes the proof of Theorem 1. O

References

Bartolini, G., Levant, A., Pisano, A., Usai, E. (1999). 2-sliding mode with adaptation. In 7th IEEE Mediter-
ranean Conference on Control and Systems, Haifa, Israel, 28—-30 June 1999.

Bartolini, G., Ferrara, A., Levant, A., Usai, E. (1999). On second order sliding mode controllers. In K.D.
Young & U. zgner (Eds.), Variable Structure Systems, Sliding Mode and Nonlinear Control, Lecture Notes
in Control and Information Series, (vol. 247, pp. 329-350). London, UK: Springer-Verlag.

Bartolini, G., Ferrara, A., Pisano, A., Usai, E. (2001). On the convergence properties of a 2-sliding control
algorithm for nonlinear uncertain systems. Int. J. Contr., 74(7), 718-731.

Bartolini, G., Fridman, L., Pisano, A., Usai, E. (Eds.). (2008). Modern Sliding Mode Control Theory: New
Perspectives and Applications. Lecture Notes in Control and Information Series, (vol. 375). Berlin Heidel-
berg: Springer-Verlag.

Bartolini, G., Levant, A., Plestan, F., Taleb, M., Punta, E. (2013). Adaptation of sliding modes. IMA J.
Math. Contr. Informat., 80(8), 285-300.

Capisani, L., Ferrara, A., Pisano, A. (1999). Second-order sliding mode control with adaptive control au-
thority for the tracking control of robotic manipulators. In 18th IFAC World Congress, Milan, Italy, 28
August—2 September 2011 (pp. 10319-10324).

Filippov, A.F. (1988). Differential Equations with Discontinuous Right-Hand Side. Dordrecht, The Nether-
lands: Kluwer.

Evangelista, C., Pisano, A., Puleston, P., Usai, E. (2014). Time-based adaptive second order sliding mode
controller for wind energy conversion optimization. In 53rd IEEE Conference on Decision and Control,
Los Angeles, US, 15-17 December 2014 (pp. 2038-2043).

Gonzalez, T., Moreno, J., Fridman, L. (2012). Variable gain super-twisting sliding mode control. IEEFE
Trans. Automat. Contr., 57(8), 2100-2105.

Khalil, H. (2002). Nonlinear Systems. Third Edition. Prentice Hall.

Isidori, A. (1995). Nonlinear Control Systems. Third Edition. Berlin: Springer Verlag.

Kochalummoottil, J., Shtessel, Y., Moreno, J., Fridman, L. (2012). Output feedback adaptive twisting con-
trol: A Lyapunov design. In 2012 American Control Conference, Montreal, Canada, 27-29 June 2012 (pp.
6172-6177).

Levant, A. (1993). Sliding order and sliding accuracy in sliding mode control. Int. J. Contr., 58(6), 1247—
1263.

Levant, A. (1998). Robust Exact Differentiation via Sliding Mode Technique. Automatica, 34 (3), 379-384.

Levant, A. (2003). Higher-order sliding modes, differentiation and output-feedback control. Int. J. Contr.,
76(9/10), 924-941.

Levant, A. (2005). Quasi-continuous high-order sliding mode controllers. IEEE Trans. Aut. Control, 50(11),
1812-1816.

Levant, A. (2007). Principles of 2-sliding mode design. Automatica, 43(4), 576-586.

Orlov, Y., Aguilar, L., Cadiou, J.-C. (2003). Switched chattering control vs. backlash/friction phenomena
in electrical servo-motors. Int. J. Contr., 76(9/10), 959-967.

Orlov, Y. (2004). Finite-time stability and robust control synthesis of uncertain switched systems. STAM J.
Contr. Optimizat., 43(4), 1253-1271.

Pisano, A., Usai, E. (2011). Sliding Mode Control: a Survey with Applications in Math. Mathematics and
Computers in Simulation, 81(5), 954-979.

Pisano, A., Tanelli, M., Ferrara, A. (2012). Time-based switched sliding mode control for yaw rate regulation
in two-wheeled vehicles. In 51st IEEE Conference on Decision and Control, Maui, US, 10-13 December
2012 (pp. 5028-5033).

Pisano, A., Tanelli, M., Ferrara, A. (2013). Combined switched /time-based adaptation in second order sliding
mode control. In 52nd IEEE Conference on Decision and Control, Florence, Italy, 10-13 December 2012
(pp. 4272-4277).

Polyakov, A., Poznyak, A. (2009). Lyapunov Function Design for Finite-Time Convergence Analysis: ” T'wist-
ing” Controller for Second Order Sliding Mode Realization. Automatica, 45(2), 444-448.

17



February 18, 2016 International Journal of Control TCON-2015-0368.R1

Plestan, F., Glumineau, A. (2010). A new differentiator based on a second order sliding mode output
feedback control. In 49th IEEE Conference on Decision and Control, Atlanta, US, 15-17 December 2010
(pp. 5098-5102).

Plestan, F., Shtessel, Y., Brgeault, V., Poznyak, A. (2010). New methodologies for adaptive sliding mode
control. Int. J. Contr., 83(9), 1907-1919.

Sontag, E., Wang, Y. (1995). On characterizations of the input-to-state stability property. Syst. Contr. Lett.,
24 (5), 351-359.

Shtessel, Y., Shkolnikov, I.A., Brown, M.D.J. (2003). An asymptotic second-order smooth sliding mode
control. Asian J. Contr., 5(4), 498-504.

Shtessel, Y., Moreno, J., Plestan, F., Fridman, L., Poznyak, A. (2010). A new differentiator based on a
second order sliding mode output feedback control. In 49th IEEE Conference on Decision and Control,
Atlanta, US, 15-17 December 2010 (pp. 5109-5113).

Shtessel, Y., Edwards, C., Fridman, L., Levant, A. (2013). Sliding Mode Control and Observation. New York:
Springer Verlag.

Taleb, M., Plestan, F., Bououlid, B. (2013). High order integral sliding mode control with gain adaptation.
In 2018 Furopean Control Conference, Zurich, Switzerland, 17-19 July 2013 (pp. 890-895).

18



