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Abstract

In many “smart city” applications, congestion arises in part due to the
nature of signals received by individuals from a central authority. In the
model of Mareček et al. [Int. J. Control 88(10), 2015], each agent uses
one out of multiple resources at each time instant. The per-use cost of a
resource depends on the number of concurrent users. A central authority
has up-to-date knowledge of the congestion across all resources and uses
randomisation to provide a scalar or an interval for each resource at each
time. In this paper, the interval to broadcast per resource is obtained by
taking the minima and maxima of costs observed within a time window
of length r, rather than by randomisation. We show that the resulting
distribution of agents across resources also converges in distribution, under
plausible assumptions about the evolution of the population over time.

1 Introduction

In many applications [38], a number of agents need to use one out of a number
of resources, whose cost of use, per-agent, depends on the number of agents
using the resource, concurrently. In addition to the agents, there is often also a
central authority in charge of all the resources, with a complete and up-to-date
information about their use. The central authority may or may not provide
information to the agents. If no information is provided, the agents may choose
the resources randomly, or using some simple policies [25]. If the central au-
thority provides one scalar for each resource at each time instant, all agents
may compare the scalars across the resources available to them in the same
way, and make the same choice. Thereby, the usage of resources with the lowest
announced scalar may increase sharply, while the usage of resources with the
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highest announced scalar may drop sharply, ultimately leading to a cyclic out-
come. As an alternative, Mareček et al. [38] studied the use of randomisation in
information provision, including the use of randomisation in deriving an interval
to be broadcast for each resource at each time instant. Many challenges remain,
though. For one, the use of randomisation, or obfuscation, may be difficult to
justify in practice. The challenges are intimately related to control, but little
studied, so far.

Let us motivate our study by illustrating the cyclic outcome on the example of
roads during the rush hour. Travel times are influenced by the number of people
on the roads. Congestion arises, when too many people want to use a particular
road at the same time. This is not necessarily due to the inherent capacity
limits of the road, but often due to the “synchronised” manner of travel, and
the lack of foresight into the choices of other people. Imagine that there are two
roads of similar capacity from one section of a ring-road to the city center, and
a central authority announces the travel times on the radial roads as 10 and
20 minutes, respectively. This may cause congestion on the first radial road, in
the short term, and lead to the congestion alternating between the two radial
roads, subsequently. In Appendix A, we show that under simplistic assumptions,
a similar limit-cycle behaviour could be observed for any approach that picks a
scalar to broadcast for each resource, as long as the scalars are distinct across
resources, and that it can lead to an arbitrarily bad behavior. In practice, the
differences due to signalling are bounded, but the example suggests why we aim
to reduce the synchronisation.

In this paper, we hence study the problem of information provision, which
is:

• non-stationary, inasmuch the costs associated with resources are not sta-
tionary, but rather influenced by the agents’ actions

• populational, inasmuch the agents come in a variety of types, with a pop-
ulation described by a distribution over the types

• limited in terms of feedback, inasmuch the agent has access only to aggre-
gate information about the state of each resource, provided by the central
authority

• limited in terms of the agents’ memory, inasmuch the agents pick the
resource based on the most recently provided piece of information for
each resource.

The paper is structured as follows. Section 2 formalises the problem of infor-
mation provision and suggests how a central authority can “de-synchronise”
actions of people on the roads by providing them with signals. In particular,
it suggests a signalling scheme, where one interval is broadcast for each route,
with the additional constraint that each interval remains consistent with past
observations. Our main theorem in Section 3 shows that if the population com-
prises of agents risk-averse to varying degrees over time, we can improve the
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Figure 1: Block diagram of our model: Central authority sends signal st to each
agent 1 . . . N . Each agent i picks an action ait. Numbers nmt of agents picking
actions Am at time t, summarise the state of the system at time t. There is a
social cost corresponding to the state of the system, which the central authority
uses to generate its signal.

social outcome using interval signaling with the intervals formed by extremes
of the values encountered so far. In Section 4, we demonstrate the considerable
impact in simulations. We conclude with an overview of related and potential
future work in Sections 5 and 6, respectively.

2 Model

We consider a dynamic discrete-time model of congestion, suggested above and
illustrated in Figure 1. First, we describe the actions, then the signals, and
finally the response of the population to the signals, which can be seen as a
mapping from signals to actions.

2.1 Actions and their Costs

A finite population of N agents is confronted with M alternative choices at
every time step. The alternative actions are denoted by {A1, . . . , AM} and time
is discretised into periods t = 1, 2, . . .. Let ait denote the choice of agent i at
time t and nmt =

∑
i 1[ait=Am] be the number of agents choosing action Am at
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Figure 2: A trivial example with N = 2. Left: Cost functions c1(x) , 2(1 +
3.6x4) and c2(y) , 5(1 + 0.8y2). Notice that c1 is increasing in x (solid line),
but decreasing in y = 2−x (dashed). The structure of the cost functions, albeit
seemingly arbitrary, is customary in transportation engineering, as explained in
Section 4. Right: The corresponding social cost. Notice that the minimum is at
0.86 (dashed vertical line), which renders policies picking the action uniformly
at random suboptimal.

time t. Throughout the paper, we assume that each agent has to pick one of
the M actions at every time t.

The alternative actions {A1, . . . , AM} are perfectly substitutable, i.e., each
agent decides only based on the cost. The cost of action Am at time t is a
function of the number nmt of agents that pick Am at time t. We let nt denote
the vector (n1

t , . . . , n
M
t ). Let cm : N→ R+ denote the so-called cost function for

action Am. If nmt agents choose action Am at time t, the cost of action Am at
time t to any single of them is cm(nmt ). We assume that all {cm} are continuous.
Figure 2 gives an example of two cost functions.

The social cost C(nt) weights the costs of the two actions at time t with the
proportions of agents taking the two actions, i.e.,

C(nt) ,
M∑
m=1

nmt
N
· cm(nmt ). (1)

The social cost corresponding to the example cost functions is shown in Figure 2.
Of further interest is the time-averaged social cost:

ĈT ,
1

T

T∑
t=1

C(nt). (2)

We study a number of signaling schemes and responses from agents.

2.2 Signaling Schemes

We introduce signaling schemes, which communicate information about the past
cost of the M actions. Let Ht denote the history of congestion costs up to time
t:

Ht , {cm(nmj ) : m = 1, . . . ,M, j = 1, . . . , t}.
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Let Ht denote the set of all possible histories at time t. For a fixed integer d,
a signaling scheme is a set of mappings {st : Ht → Rd | t = 1, 2, . . .}, where
st denotes the signal that the central authority broadcasts to all agents at time
t.

In scalar signaling schemes, we have d = M , one scalar value for each action.
In interval signaling schemes, d = 2M , and st = (umt , u

m
t : m = 1, . . . ,M),

with umt ≤ umt . Notice that scalar signaling schemes are equivalent to interval
signaling schemes with umt = umt , but may perform worse, by an arbitrary
amount, as per Appendix A. Notice that these signaling schemes summarise the
history of observations Ht.

In a signaling scheme that we call r-extreme, for any fixed positive integer r, the
central authority broadcasts the same signal st,r = (umt,r, u

m
t,r : m = 1, . . . ,M)

to all agents at time t, where

umt,r = min
j=t−r,...,t−1

{cm(nmj )},

umt,r = max
j=t−r,...,t−1

{cm(nmj )} for all m.

In a signaling scheme that we call r-subinterval, for any fixed positive integer r,
the central authority broadcasts a signal st,r = (wmt,r, w

m
t,r : m = 1, . . . ,M) to

all agents at time t, such that

max
j=t−r,...,t−1

{cm(nmj )} > wmt,r > wmt,r > min
j=t−r,...,t−1

{cm(nmj )}, (3)

for all m. Notice that extreme signaling is a special case of subinterval signal-
ing.

2.3 Agent Population and Policies

In response to the history of signals received prior to time t and including it,
every agent i takes action ait. For example, this action can be a function of
only the signal at a single time step t. We assume that every agent acts based
only on the signals, without considering the response of other agents to its own
action. This is a reasonable assumption for three reasons. First, it is hard
for the agent to obtain more information than the signal sent by the central
authority. Second, the agents know that the signals received are consistent with
past observations. Finally, when there is a large number of agents, each has a
very limited effect on the population as a whole.

Formally, let St denote the history of signals broadcast up to time t:

St , {s1, . . . , st−1}.

Let St denote the set of possible realisations of signal histories up to time t. A
mapping of a signal history to an action, St → {A1, . . . , AM}, is called a policy.

5



We assume that the number of agents N is fixed over time. We let Ω denote the
set of all possible types of agents. Each type ω ∈ Ω is associated with a policy,
and every agent of type ω follows the policy πω : St → {A1, . . . , AM}.
We model the evolution of the number of agents of each type as follows. Let
{ηk : Ω → R | k = 1, . . . ,K} denote a finite set of probability measures over
Ω. For instance, for each subset O ⊆ Ω, ηk(O) can be interpreted as a fraction
of agents with policy πω, except that, for simplicity of analysis, the product
ηk(O)N does not have to be an integer. We let (d1, . . . , dK) denote a probability
measure over (η1, . . . , ηK), i.e., a probability measure over a set of probability
measures over Ω. The distribution of agents among types Ω over time steps
t = 1, 2, . . . is an i.i.d. sequence of random variables {µt}, where the distribution
of µt is defined as P(µt = ηk) , dk for all k. This allows us to model a population
of agents that changes over time, e.g., one driver leaves the road network and is
replaced by another driver, with another policy. For simplicity, we call µt the
population profile at time t.

2.4 πω-policies

In the case of r-extreme signaling, we consider a set of agent types Ω, which is
a finite set of numbers, each of which is within [0, 1]. Recall that every agent
i receives the interval signal st := (umt , u

m
t : m = 1, . . . ,M). In response, we

assume that each agent i of type ω follows the policy πω:

ait = πω(St) ∈
{

arg min
m∈{1,...,M}

ωumt + (1− ω)umt

}
, (4)

with the minimiser chosen uniformly at random, if non-unique. This policy is a
greedy heuristic, which seems natural, when one considers the following special
cases:

• Risk-seeking ω = 1, i.e., acts based only on the best-case elements (umt :
m = 1, . . . ,M)

• Risk-averse ω = 0, i.e., acts based only on the worst-case elements (umt :
m = 1, . . . ,M)

• Risk-neutral ω = 0.5, i.e., acts based on the midpoints
(
(umt + umt )/2 :

m = 1, . . . ,M
)
.

Notice that this policy (4) could also model convexifying “multi-objective”
agents, e.g., 90% risk-seeking and 10% risk-averse.

3 A Stability Analysis

In this section, we analyze the impact of r-extreme signaling. We show that it
is stable in the sense that the population profile converges in distribution under
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mild assumptions. In particular, we study the case, where the parameter r is
the function r(t) = t of the time step t.
Assumption 1 (i.i.d. µt, “Population Renewal”).
The distribution µt is an i.i.d. sequence of random variables with P(µt = ηk) =
dk, 0 < dk < 1 for all t and k,

∑
k dk = 1.

Notice that the population renewal assumption does not entail the elements of
the random vector µt being independent. We show that under the population
renewal assumption, the congestion profile (n1

t , n
2
t ) converges for `-Lipschitz

continuous cost functions for ` < 1/(Nk′). Observe that, for example, the
function cm(x) = x/N is (1/N)-Lipschitz.
Theorem 1 (“Asymptotic Stability”). There exists a constant k′, such that
under Assumption 1, if the functions {cm : m = 1, . . . ,M} are `-Lipschitz
continuous for ` < 1/(Nk′), there exists a unique limit, an M -dimensional
random variable Z such that the congestion profile (n1

t/N, n
2
t/N, . . . , n

M
t /N)

converges to Z in distribution as t→∞.

The proof relies on the following result from iterated function systems, only
trivially adapted from Barnsley et al. [13, 14]:
Proposition 2. Let us have an index set K, a family H of functions R2M →
R2M indexed by K, and a family of real numbers d indexed by K,

∑
k∈K dk = 1.

Let us have another infinite family w, where for all in, winR2M → R2M be i.i.d.
such that P(win = Hk) = dk for all k. If, for all x, y ∈ R2M , x 6= y,∑

k∈K
dk log

(‖Hk(x)−Hk(y)‖1
‖x− y‖1)

)
< 0,

then the limit limn win(· · ·wi1(x) · · · ) exists and is independent of x.

Proof. The proof proceeds in two steps. First, we show that the signal process st
is an iterated function system. Then, we show that it converges in distribution.

(Step 1)
In order to apply Proposition 2, we construct an iterated function system in
R2M . First, let us recall the definitions introduced previously:

st+1 , (u1
t+1, u

1
t+1, u

2
t+1, u

2
t+1, . . . , u

M
t+1, u

M
t+1) (5)

where for all m:

umt+1 , min
j
{cm(nmj ) : j = 1, . . . , t} (6)

= min{umt , cm(nmt )},
umt+1 = max{umt , cm(nmt )}.
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Next, let us see that nmt is a random variable:

nmt =
∑
i

1(ait=Am) (7)

=
∑
i

∑
ω∈Ω

1(ait=Am| agent i is of type ω)µt(ω)

= N
∑
ω∈Ω

1∧
s 6=r(ωum

t +(1−ω)um
t <ωu

s
t+(1−ω)us

t )µt(ω). (8)

Observe that by Assumption 1, the sequence {µt} is i.i.d. . Hence, (nmt | 1 ≤
m ≤M) is a random variable.

Recall that Ω is finite and the support of the random variable µt is a finite set
{η1, . . . , ηK} of probability measures, where each

ηk = (ηk(1), . . . , ηk(|Ω|)) (9)

is such that

ηk(j) ∈ {i/N : i = 0, . . . , N}, (10)∑
j

ηk(j) = 1.

Plugging (8) into (6), it follows that there exists a set of functionsH = {H1, . . . ,HK}
(as many as possible values of µt) and a sequence of i.i.d. random variables
{Ft ∈ H : t = 1, 2, . . .} such that

st = Ft(st−1), for all t, (11)

Ft = Hk w.p. dk, for all t, k.

where each Hk corresponds to a realisation ηk of the random variable µt. Hence,
the process {st} is generated by an iterated function system.

(Step 2)
In order to apply Proposition 2, let us consider two signals x, y ∈ R2M , as defined
in (5). We want to show that for all ηk, we have ‖Hk(x)−Hk(y)‖1 ≤ ‖x− y‖1.
and for some ηk, we have ‖Hk(x)−Hk(y)‖1 < ‖x− y‖1. The former is clear,
whereas to show the latter, we need to establish that there exists m such that,
for all t, the event

{x2m−1 > cm(nmt (x)) and y2m−1 > cm(nmt (y)))}

has positive probability. The above event corresponds to the event

{umt+1(x) = cm(nmt (x)) and umt+1(y) = cm(nmt (y))},

which has positive probability for all finite t.

8



We have, by definition (6),

‖Hk(x)−Hk(y)‖1 6
∑
m

|min(x2m−1, cm(nmt (x)))−min(y2m−1, cm(nmt (y)))|

(12)

+ |max(x2m, cm(nmt (x)))−max(y2m, cm(nmt (y)))| ,

where nmt (x) denotes the congestion profile at time t when the signal x is broad-
cast to all agents. We denote the two summands on the right-hand side by
R1, R2. First, we bound R1; the other summand R2 can be bounded by a
similar argument. We have four cases:

1. x1 < cm(nmt (x)) and y1 < cm(nmt (y))

2. x1 > cm(nmt (x)) and y1 > cm(nmt (y))

3. x1 < cm(nmt (x)) and y1 > cm(nmt (y))

4. x1 > cm(nmt (x)) and y1 < cm(nmt (y)).

We only need to consider Case 2, which occurs with probability bounded away
from zero by the above argument.

Under Case 2, we have

R1 = |min(x1, cm(nmt (x)))−min(y1, cm(nmt (y)))|
= |cm(nmt (x))− cm(nmt (y))| ,

Observe that

|nmt (x)− nmt (y)| = N
∣∣∣∑
ω∈Ω

(1∧
s 6=m(ωx2m−1+(1−ω)x2m<ωx2s−1+(1−ω)x2s)

− 1∧
s 6=m(ωy2m−1+(1−ω)y2m<ωy2s−1+(1−ω)y2s))µt(ω)

∣∣∣
6 N

∑
ω∈Ω

µt(ω)
∣∣∣(1∧

s 6=m(ωx2m−1+(1−ω)x2m<ωx2s−1+(1−ω)x2s)

− 1∧
s 6=m(ωy2m−1+(1−ω)y2m<ωy2s−1+(1−ω)y2s))

∣∣∣
= N

∑
ω∈W

µt(ω), (13)

where W is an interval obtained by solving the system of inequalities:

ωx2m−1 + (1− ω)x2m < ωx2s−1 + (1− ω)x2s, (14)

ωy2m−1 + (1− ω)y2m < ωy2s−1 + (1− ω)y2s, for all s 6= m.

Hence, there exists a constant κ such that

|W | 6 κ ‖x− y‖1 .

9



In turn, we obtain

|nmt (x)− nmt (y)| 6 N
∑
ω∈W

µt(ω) (15)

6 Nκ ‖x− y‖1 max
ω

µt(ω).

Since cm is `-Lipschitz by assumption, it follows that

|cm(nmt (x))− cm(nmt (y))| 6 ` |nmt (x)− nmt (y)|
< ‖x− y‖1 , (16)

where the last inequality follow from assumption. Finally, this allows us to
verify that ∑

k

dk log

(‖Hk(x)−Hk(y)‖1
‖x− y‖1

)
< 0. (17)

Having verified (17), the process st converges in distribution to a unique limit
by Proposition 2. In turn, the outcome nmt converges likewise by (8).

4 Simulations

Although the case of infinite recall, r(t) = t, is amenable to analysis, the case
of finite recall is more realistic. We hence simulate the finite recall case on
a benchmark [12] for the traffic assignment problem, where the cost function
captures the travel time and each action corresponds to one path between two
vertices. The travel time for path P (i) of agent i is a sum of travel times det over
edges e ∈ P (i) at time t, where the travel time is the Bureau of Public Roads
(BPR) function of the number xet of agents passing over e:

det = F e · (1 +Be · (xet/χe)p
e

), (18)

where χe is the capacity of e, F e is the free-flow time of e, Be and pe are
constants, again particular to e, often Be = 0.15, pe = 4.

For simplicity, we send out signals (uet , u
e
t ) specific to each edge e, rather than

for each possible path. We also replace the social cost by the agent- and edge-
wise sum

∑N
i=1

∑
e∈P (i) d

e
t . Although this set-up may seem rather arbitrary, a

similar set-up has been used throughout hundreds of papers [43] on the traffic
assignment problem in transportation science.

On two instances, we show that the interval signaling we propose results in a
regret, i.e. the distance to the social cost at the stochastic user equilibrium,
which is convergent. On an artificial instance, which we call Diamond, the
regret goes to 0 after a small number of iterations. On the well-known Sioux
Falls instance of LeBlanc et al. [36], we improve the social cost considerably,
when compared to the best known stochastic user equilibrium, as reported by
Hillel Bar-Gera [12].
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4.1 The Procedural Details

Let us now clarify a number of procedural details. First, notice that without
knowing the congestion profile nt+1 at time t, it is difficult to enforce the ca-
pacity constraint xet < χet . Consequently, the term (xet/χ

e)p
e

tends to produce
outliers in terms of uet across all e, t, which are just modeling artifacts. In most
of our simulations, we hence apply a cap on the travel time:

cet = F e · (1 +Be · (min{xet/χe, 1})p
e

). (19)

This eliminates the outliers, but makes it necessary to track the violation of
capacity constraints by other means. To that end, we introduce the capacity
excess:

Ee =

{
xe − χe if xe > 1

0 otherwise
(20)

which captures the aggregate amount of violation of the constraint xet < χet .

We have disregarded tolls and distances, discretised time, and proceeded as
follows in each period:

1. Generate the population with size N in |Ω| types, where we assume the
Ω = (0, 1

|Ω|−1 ,
2

|Ω|−1 , . . . , 1) throughout. The proportion of each type in

the population is sampled from the uniform distribution U( 1
|Ω| − ε, 1

|Ω| + ε)

for the first |Ω|−1 types, with the remainder for the final one. Specifically,
we use |Ω| = 5 and ε = 0.15.

2. Generate signals (uet , u
e
t ) for each e, depending on whether we cap the

travel time, using the history of congestion cost up to t. If the history
contains n = 2 or more per-link costs recorded, we use the minimum and
maximum within the min{r, n} most recent travel times (possibly capped)
for the edge. Otherwise, we use signal (0, 0) for each path to initialise the
simulation.

3. Compute the the number xet of agents passing over each edge e. For each
ω ∈ Ω and each origin-destination pair (o, d) we pick acyclic paths

M = arg min
p∈P ((o,d))

∑
e∈p

ωuet + (1− ω)uet . (21)

where, with some abuse of notation, P ((o, d)) are all acyclic paths between
origin o and destination d. If there are multiple such paths, |M | > 1, we
subdivide the number of agents of the given type that travel between the
given o and d into |M | equal parts r, which need not be a whole number.
For each edge e ∈ p on each path p ∈ M , we then add the part r to the
traffic to xet .

4. Generate generalised per-link costs cet using (19) or det using (18). Add
those to the history for future use.
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1 2 25900 6 6 0.15 4
2 3 15 0 2 1 2
2 4 15 0 2 10 6
3 5 99900 6 1 0.15 1
4 5 99900 6 1 0.15 1

<NUMBER OF ZONES> 5

<TOTAL OD FLOW> 30

<END OF METADATA>

Origin 1

5 : 30;

Table 1: Left: net.txt of the diamond instance, except for columns Speed, Toll,
and Type, whose values are uniformly 0, 0, 1. Right: trips.txt of the diamond
instance.

5. Generate per-path costs. For each origin-destination pair (o, d), we again
consider paths M as in (21) and sum up the per-edge travel times.

6. Compute the social cost, by summing up across all origin-destination pairs
(o, d) and all paths m ∈ M as in (21), the product of the per-path cost,
the proportion of the population corresponding to the path, and the car-
dinality of the population.

7. Move to the next period, t = t+ 1.

This makes it possible to plot the evolution of the social cost C over time
and the evolution of the sum of the excesses E (20) across all links over time
for scalar signaling using the most recent travel time (NOW), means of values
seen so far (MEAN), and r-extreme signaling r = 5, 10, 20. In plots of the
social cost and excess, we also plot the corresponding value of the stochastic
user equilibrium not considering information provision, either for the global
optimum, where known, or for the best known equilibrium as reported by Hillel
Bar-Gera [12].

4.2 The Diamond Instance

First, we present experiments on an instance on five nodes, 1, 2, . . . , 5, with
five links 1-2, 2-3, 2-4, 3-5, and 4-5, which form a “diamond shape”. There,
links 3-5 and and 4-5 have high very high capacity and identical cost functions.
Each of the links 2-3 and 2-4 can carry half of the total traffic, but their cost
functions differ markedly, as suggested columns 3 and 5–7 in Table 1. These
two files presented in Table 1 can be provided as an input to a variety of tools
developed in transportation engineering, and hence allow for cross-comparison
and cross-validation of our results.

The diamond instance illustrates the phenomenon of flapping well. The split of
the traffic across links 2-3 and 2-4 is illustrated in the upper half of Figure 3,
where for scalar signaling (NOW, MEAN), the traffic oscillate between paths 1-
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Figure 3: The evolution of traffic on links 2-3 and 2-4 and the corresponding
social cost and capacity excesses using capped travel times cet over time for
scalar signaling using the most recent travel time (NOW) and means over all
travel times (MEAN), compared with r-extreme signaling r = 5, 10, 20 on the
diamond instance. The red dashed line corresponds to the best-known stochastic
user equilibrium.

2-3-5 and 1-2-4-5, whereas the higher the r, the smaller are the period-to-period
changes for r-extreme signaling. This corresponds to much lower social cost and
capacity excesses for r-extreme signaling, compared to scalar signaling using
means or most recent values, as suggested in the bottom half of Figure 3.

Further, notice that the social cost approaches that of the best-possible stochas-
tic user equilibrium, highlighted by the red dashed line in Figure 3. The unique
minimum of the un-capped cost at the stochastic user equilibrium, without con-
sidering information provision, of approx. 621.229 can be found by minimising
(2 − x)(1 + (2 − x)2) + x(10 + x6)) over the interval [0, 2]. The corresponding
capped cost is 322.307 and excess 15.985. Hence, the regret approaches 0, in
this particular case.

In Figure 3, we have capped the value of the travel time at the value given
by the travel time at capacity and counter the excess separately. When we do
not cap the travel time at capacity, the behavior in terms of the proportions
of traffic going either way is similar, as can be seen by comparing Figures 3
and 4, while the absolute difference between the social costs of using the most
recent time and r-extreme signaling increases with the number of agents on the
road.

4.3 Sioux Falls

Next, we have tested the signaling on the well-known Sioux Falls instance of
LeBlanc et al. [36], displayed in Figure 6. Since 1970s, this instance has at-
tracted much attention in the transportation engineering community [40, 36, 1,
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Figure 5: The social cost and capacity excess using capped travel times cet
over time for scalar signaling using the most recent travel time (NOW) and
means over all travel times (MEAN), compared with r-extreme signaling for
r = 5, 10, 20 on Sioux Falls.

24], serving as a benchmark for the traffic assignment problem. In particular,
we have used the variant distributed by Bar-Gera [12], which corresponds to
360,600 agents moving through a network of 76 road segments with 24 junc-
tions.

The best-known stochastic user equilibrium, as available from Bar-Gera [12]
has capped cost of 3853754.650 with excess of 265068.520 and un-capped cost
of 7480225.345 with the same excess. (Notice that these numbers vary from
those reported by Bar-Gera, considering our objective functions differ.) With
cap on the travel time given by the capacity, as above (19), the use of r-extreme
signaling leads to lower social cost with lower excess, as suggested in Figure 5.
Without cap on the travel time, the results are more varied, and heavily skewed
by a small number of enormous values. Consequently, r-Extreme signaling seems
to perform the best for r = 2, although this surprising behavior merits further
study.

5 Related Work

There is related work being done in applied probability, control, operations
research, theoretical computer science, and traffic theory. There are number of
excellent surveys [52, 32, 55, 43, 25] available, although it may be difficult even
for a book-length survey to be fully comprehensive.

Within applied probability, the rich history of work on the multi-action restless
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bandits problem, e.g., [57, 56, 17], has been summarised by Gittins et al. [25].
See the work of Glazebrook [27, 26] for some of the present-best results. The
replacement of a single scalar of feedback per arm played has been suggested
[37, 4, 3] in the bandits literature, often in connection to revealing the outcome
of further arms as well. We are not aware of any bi-level extensions, e.g., seeing
the problem from the point of view of the owner of the bandit.

Within game theory, the social cost is the metric of a number of studies [48,
46, 22, 19], which show that, even when agents have full information, a natural
equilibrium outcome can incur much higher total congestion than a socially
optimal outcome. This is known as the price of anarchy. Particularly interesting
are studies of the Nash equilibria in connection with ignorance [9, 5, 10], often
concerning the number of players [7, 8, 6], failures of agents [39], failures of
resources [44, 45], or stratified and risk-averse populations [31, 47]. Indeed,
our work can be seen as showing the benefits of ignorance to a stratified and
risk-averse population, albeit over the long run. We can hence describe the
attractor, whose existence is often moot in the studies of Nash equilibria. See
[21] for further well-developed arguments why considering the fixed-points of a
dynamical system is preferable to the study of the Nash equilibrium.

Within economics, our work is reminiscent of the equilibrium outcome of So-
bel [11] in the context of signaling games. See [54] for an up-to-date survey.
Our work is also reminiscent of large bodies of work on follow-the-perturbed-
Leader [28], trembling-hand equilibrium [51], and stochastic fictitious play [29],
inasmuch we also study repeated decisions and that the decisions are random
variables. However, our scheme separates the decision making of the central au-
thority from the decision making of the agents, and uses non-trivial procedures
for the former decisions.

In the transportation literature, Daganzo and Sheffi [23] have introduced the
concept of stochastic user equilibrium, where users have considerable amounts
of information, and perhaps surprising analytical powers. Subsequently, a num-
ber of variants have been proposed, e.g., [18] consider robust variants and [2]
consider the stochastic user equilibrium with distributional uncertainty over the
travel times. [35] consider a stratified and risk-averse population, but only as
much as a link failure is concerned. There are a number of other notions of
stability, perhaps closer to our notion, inasmuch they capture the repeated na-
ture of the problem. For example, [53] introduces the notion of equilibrium as
the limit of the congestion distribution if it exists. [30] considers a number of
notions of noisy signals and studies greedy policies and equilibria. Our approach
is different from those that assign actions to agents, instead of presenting them
with information and letting them make the decisions.

On the interface of transportation and control theory, there has been a recent
interest in load balancing [50, 49]. These schemes, however, rely on simple
randomisation, without modelling heterogenous agent behaviour and actions
and without allowing for the same information to be provided to all agents. On
the interface of transportation and behavioral science, Ben-Akiva et al. [16] have
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studied the effects of information on drivers. In a number of subsequent papers
[34, 15] and the dissertation of Bottom [20], fixed points have been used to study
deterministic scalar signaling with deterministic response of the population. See
[42] for an extensive survey. In contrast, our analysis can be seen as a study of
a probabilistic counter-part of fixed points, which allows for the uncertainty in
the response of the population.

Throughout, we are not aware of any theoretical guarantees on the behavior
of policies similar to ours, as described in this paper and [38]. Specifically,
we are not aware of any other paper, which would study the broadcasting of
intervals, instead of scalars, show its superiority, or study the behaviour of
systems, where such signals are being provided. Compared to this paper, the
set-up of [38] is much simpler, and so are the proofs and simulations. Unlike [38],
the approach presented in this paper does not employ randomisation, whose use
may be unacceptable to the general public, allows for the same signal to be
broadcast to all agents, such as at road-side displays, and considers a more
elaborate model of the populational response, with risk-aware agents. Both
this paper and [38] suggest the importance of the control-theoretic aspects of
information provision.

6 Conclusion and Future Work

We have introduced a novel interval signaling scheme. As opposed to scalar sig-
naling schemes, interval signaling schemes have tremendous potential in reduc-
ing the social cost of congestion and present a major step forwards in a number
of applications, which allow for agent-based models. This includes transporta-
tion and congestion management more broadly. These applications also open
a number of questions throughout the possible applications of the approach as
well as within cognitive science and control theory.

Key questions in cognitive science include: To what extent do human popula-
tions react to any signals? How do human populations react to interval signals?
What are the factors to consider in modelling the populational response, outside
of the risk-aversion? What incentives would be most appropriate in improving
the response? Answers to such questions should be of considerable interest to
the optimisation and control communities.

Key questions in control theory include: Can our stability result be extended to
other non-scalar signals, e.g., histograms? Can our stability result be extended
to more general stochastic populations, e.g., µt evolving as a Markovian process?
How to reason about policies, where the intervals are obtained by optimisation
over the interval signals to send in the following period, subject to the signals
being truthful in some sense? Perhaps most importantly: the model could be
seen as a bi-level optimisation problem, with the information provision at the
upper level and the choice of action at the lower level. For bi-level optimisation
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problems, even solving the first-order optimality conditions [33, 41] presents a
major challenge, whereas our approach provides certain guarantees for a certain
solution to a certain bi-level optimisation problem. Could this be generalised?
We hope to answer some of these questions in due course.

Finally, one could consider further applications. What is the performance of
interval signaling schemes beyond transport applications, e.g., in ad keyword
auctions, electricity consumption time slots, and emergency evacuation routes?
Some could, indeed, be of considerable independent interest.
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A An Analysis of Flapping

The following proposition motivates the introduction of interval signaling. Specif-
ically, it shows that interval signaling schemes make it possible to all but get
rid of a particularly bad cyclical outcome, sometimes known as “flapping” in
networking literature.
Proposition 3 (The Price of Flapping). For every number J > 0, M = 2,
and an odd integer N ≥ 3, there exist functions c1, c2, a set Ω, a population
profile µ, and an interval signaling scheme ρ with social cost C(nρt+1) at at t+1
such that for every scalar signaling scheme σ with social cost C(nσt+1), we have
C(nρt+1) 6 C(nσt+1)− J .

The example used in the proof of Proposition 3 may seem extreme, but exten-
sive simulations, which we have conducted, do suggest that the cyclic behavior
encountered in scalar signaling is indeed reduced to a large extent, when one
applies interval signaling.

Proof. For an arbitrary constant J , let us construct cost functions c1, c2, for
two actions, where the difference in the social cost of the resulting congestion
profiles

(n1
t , n

2
t ) ∈O1 , {(0, N), (N, 0)}

(n1
t , n

2
t ) ∈O2 , {bN/2c, dN/2e, dN/2e, bN/2c}

is J . Consider

c1(n) = c2(n) =

{
1 for n < N+1

2

(J + 1)(2n−N)/N for n ≥ N+1
2 .

The optimum of the social cost C is clearly achieved for congestion profiles such
that {n1

t , n
2
t} = {bN/2c, dN/2e}.

Let µ , µt be deterministic for all t. For interval signaling, observe that:

n1
t =

∑
ω∈Ω

1[πω(st)=Am]Nµ(ω)

=
∑
ω∈Ω

1[ωu1
t+(1−ω)u1

t<ωu
2
t−(1−ω)u2

t ]Nµ(ω),

which is possible to solve for Ω, u1
t , u

1
t , u

2
t , u

2
t such that, e.g., n1

t = dN/2e, even
considering that the interval signaling is r-subinterval (3) and r-extreme interval
signaling ρ with r = 2. We can hence find a singleton Ω and an initial signal
s1 ∈ R4 such that (n1

1, n
2
1) ∈ O2 by the argument above. This means we do

observe a cyclic behavior, but that is limited to elements of O2, i.e. the best
possible congestion profile, up to the rounding.

In contrast, recall that the scalar signaling scheme is equivalent to interval
signaling scheme with umt = umt ∀m, when the agents follow the policies πω for
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any ω. For all ω, ω′, we have πω = πω
′
, ω thus becomes irrelevant, and hence

we have:

n1
t =

∑
ω∈Ω

1[u1
t<u

2
t ]Nµ(ω) ∈ {0, N}.

For any scalar signaling scheme σ, the congestion profile (n1
t , n

2
t ) will hence

alternate between “all-or-nothing” elements of O1. We call this cyclic behavior
“flapping”.

Hence, C(nσt+1) = J + 1, C(nρt+1) = 1, and C(nσt+1)− C(nρt+1) = J .
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Figure 6: A sketch of the Sioux Falls network.
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