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Abstract

The objective of this paper is to study detectability, oleability and related Lyapunov-type theorems of
linear discrete-time time-varying stochastic systemé wiultiplicative noise. Some new concepts such as uniform
detectability C>°-exact detectability (respC"’ F'7-exact detectabilityiC 7 -exact detectabilitylC™" -exact detectabil-
ity) and K>°-exact observability (respC"’ T -exact observabilityCF' 7 -exact observabilityC™Y -exact observability)
are introduced, respectively, and nice properties assatiaith uniform detectability, exact detectability andaek
observability are also obtained. Moreover, some Lyapuype-theorems associated with generalized Lyapunov
equations and exponential stability in mean square serserasented under uniform detectabilitg)y -exact

observability andC"-exact detectability, respectively.
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1. INTRODUCTION
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It is well-known that observability and detectability arenflamental concepts in system analysis and

synthesis; see, e.gl,[1],/[6].][8]._[14]=[16]. [19], [2adR5]-[27], |34], [3€]. In the linear system theory,

detectability is a weaker concept than observability, sihcescribes the fact that all unobservable states

are asymptotically stable. Over the last two decades, @msidal detectability in the linear system theory
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has been extended to stochastic systems in different wayse¥ample, the definition of stochastic
detectability for time-invariant 1td stochastic systeaan be found in[]7],[[8], which is dual to mean
square stabilization. In_[6], [33]/ [36], the notions of ekabbservability and exact detectability were
presented for 1td stochastic systems, which led to thehsistec Popov-Belevitch-Hautus (PBH) criteria
like those for deterministic systems. Another natural emtoof detectability for Itd stochastic systems
was given in[[6] based on the idea that any non-observedsstateesponded to stable models of the
system. In[[19], the exact detectability in [36] and detbiity in [6] were proved to be equivalent, and
a unified treatment was proposed for detectability and ebbdity of Itd stochastic systems. Based on
the standard notions of detectability and observabilitytime-varying linear systems|[1],_[23], studied
in [20] were detectability and observability of discretmé-invariant stochastic systems as well as the
properties of Lyapunov equations. Recently, the exactctiddity and observability were extended to
stochastic systems with Markov jumps and multiplicativésedn [5], [22], [27], [37].

As it is well known that the classical Lyapunov theorem ispmessential in stability theory, which asserts
that if a matrix /' is Schur stable, then for any > 0, the classical Lyapunov equationP + FTPF +
@ = 0 admits a unique solutio®® > 0; Conversely, if(F, Q) is detectable) > 0, and the Lyapunov
equation—P + FTPF 4+ (Q = 0 admits a unique solutio® > 0, then F' is Schur stable. The classical
Lyapunov theorem was generalized to deterministic timgiag systems in[]1] and will be extended to
stochastic time-varying systems in this paper under anyassamption of uniform detectabilit{;" -exact
detectability andC? -exact observability.

Recently it has become known that discrete-time stochagtems with multiplicative noise are ideal
models in the fields of investment portfolio optimizatior2]1system biology[[31] and so on. So the
discrete-time stochastil,/ H., control and filtering design have been extensively studie@cent years;
see, e.g.,[[2],[18],[110],113],([32],[[34] and the referenctherein. As it is well-known, time-varying
systems may be utilized to model more realistic systems amdn@are challenging in mathematics than
time-invariant ones. So far, the majority of the existinguiés is focused on detectability of time-invariant
systems only, except for a few about time-varying systeres;[4], [9]-[11], [14], [17], [26], [29], [30],
[35]. Because linear time-invariant systems are not sefiicto describe many practical phenomena, this
motivates researchers to study time-varying systems. éncthssical work([l1], uniform detectability of

the deterministic linear discrete-time time-varying (LYD)Tsystem

Thy1 = Fkl‘k, X € R™
1)
yk:Hkxkyk:07172v'”



was defined and discussed. By the duality of stochasticliztatility, another definition called “stochastic
detectability” was introduced in_[8] for LDTV Markov systesnwhich is not equivalent to uniform
detectability in time-varying case.

Mainly motivated by the preceding discussion and the astlrsmries works[[33]+[36], this paper will
study detectability, observability and Lyapunov-type &tipn related to LDTV stochastic systems with
multiplicative noise. Firstly, the classical uniform detiability of [1] for such systems is extended, and
some properties on uniform detectability are obtained. Bans of our Lemmia 2.2 given later, we obtain
the observability Gramian matri©,, ., and the state transition matrix ,, which are deterministic
matrices and easy to be applied in practice. Specificallyproaxe an important theorem that uniform
detectability preserves invariance under an output feddbantrol law, which is expected to be useful in
stochasticH,/H., control. As an application, under the assumption of unifalatectability, Lyapunov-
type theorems on stochastic stability are also presented.

Secondly, we extend exact detectability of linear contimitime stochastic It systems [6], [33] to
LDTV systems. We introduce four concepts calléti-exact detectabilitylC’ 7 -exact detectabilitylC"" #7 -
exact detectability an#L>°-exact detectability, and they in turn become weaker in #mss that the former

implies the latter in a sequence. Although in linear timeamant system

Tpr1 = Fag, 19 € R"
2)
yr=Hxp, k=0,1,2,---

these four concepts are equivalent wkh= n—1, but they are different from the others in the time-varying
case, which reveals the essential difference betweenitivaeiant and time-varying systems. It is shown
that uniform detectability implie&>°-exact detectability (see Lemrha 3]1.3), and stochastiectkhility
[8] implies the above four types of exact detectability ($&®position[3.1]1 and Remafk 311.3). It
seems that there is no inclusion relation among uniformatigidity, XV -exact detectabilitylC*”-exact
detectability andC"" 7 -exact detectability, although they can be unified in thedindiscrete time-invariant
systems[[20]. Two important Lyapunov-type theorems uridé€rexact detectability for periodic systems
are obtained (see Theorems 3.2.1-3.2.2), which revealnipertant relation between the exponential
stability and the existence of positive definite solutiohgeneralized Lyapunov equations (GLES).

Parallel to various definitions on exact detectability, visoantroduceX " -exact observability/C* -
exact observabilitylC" 77 -exact observability andl>°-exact observability, which are respectively stronger
than " -exact detectabilitylC*” -exact detectabilitylC'" 7 -exact detectability ani>°-exact detectability.

For the linear time-invariant system (& ~!-, Kf'7-, KWIT- and K>°-exact observability are equivalent,



but they are different definitions for the linear time-vanyisystem[(l1). We present a rank criterion for
IC>- and a criterion forC"-exact observability based on the Gramian madix, v ;.. Finally, under the
assumption ofC"-exact observability, a Lyapunov-type theorem is deriveanf Theoreni 3.211.

The rest of the paper is organized as follows. In Se¢tion 2efime uniform detectability and discuss its
properties. Lyapunov-type theorems are given under umifdetectability. Sectionl 3 introduces some new
concepts about exact detectability and exposes nice firegerhis section also presents Lyapunov-type
stability theorems based ofi"¥-exact detectability. Moreover, the relation among umifadetectability,
exact detectability and stochastic detectability is §iledivia some examples. Sectioh 4 introduces various
definitions for exact observability, which are strongemtliaose of Sectioh-3.1. Sectidh 5 provides some
comments on this study. Finally, Sectioh 6 concludes thepajith some remarks.

Notation: R™: the set of all real-dimensional vectorsS,,: the set of alln x n symmetric matrices
whose entries may be complex numbeéisthe set of all complex number&™*": the set of allm x n
real matrices||z||: the norm of a vector or matrixA > 0 (resp.A > 0): A is a real symmetric positive
definite (resp. positive semi-definite) matrik.the identity matrixo(L): the spectrum set of the operator
or matrix L. A the transpose of matrix. Ny, := {ko, ko+1, ko+2,--- , }, especiallyN; = {1,2,--- .},
No={0,1,2,--- , }. I% = {z(w) : x is Fr — measurableF||z|* < oo}.

2. UNIFORM DETECTABILITY AND RELATED LYAPUNOV-TYPE THEOREMS

In this section, we will define one important concept for LDBYochastic systems, called “uniform
detectability”. And then, we will obtain Lyapunov-type tirems under uniform detectability, which are

extensions of classical Lyapunov theorem.

2.1 Uniform Detectability

Consider the following LDTV stochastic system

Try1 = Frrp + Grrpwy, x9g € R" 2
yr = Hyxp, k=0,1,2,--+ ©
where z; is the n-dimensional state vectoy is the m-dimensional measurement outpytyy }x>o
represents a one-dimensional independent white noiseeggodefined on the filtered probability space
(Q, F, Fi, P) with F, = o(w(0),---,w(k)). Assume thatEw, = 0, Elwyw;] = dx;, Whered; is
a Kronecker function defined by,; = 0 for & # j while §,; = 1 for & = j. x, is assumed to

be deterministic for simplicity purposes, aid, G, and H, are time-varying matrices of appropriate



dimension. In practice, one is more concerned aboutl%pfsolution {zk }ren, Of stochastic difference
equation

Try1 = Frrp + Grapwy, x9 € R™. 4)

Definition 2.1. The stochastic vector-valued sequeRag }cn; is called a solution of systernl(4) if (i)
Ty = xo; (i) 7, solves[() fork = 1,2,---; (i) 7, € I3 _, where F_; = {¢,Q} is assumed to be a
trivial sigma algebra. Systerl(4) is said to have a uniquetsah if for any two of its solution$zy. } xen;

and {fk}ke/\fou P(i’k = Ty, ke ./\/E)) = 1.

Remark 2.1. It can be found that, in most present literature, the comulifiii) in Definition[2.1 is not
particularly pointed out when defining solutions of syst&j (vhich is in fact an essential requirement
as done in stochastic differential equatiofs! [21]. This esakn fundamental difference df] (4) from

deterministic difference equations, as will be seen in tewing examples.
Example 2.1. It is easy to see that the following forward difference edrat
Tpr1 = Frrp, 0 € R", k=0,1,--- /N

always admits a unique solution oty N + 1]. In addition, if Fi,k = 0,1,---, N are nonsingular, then

the backward difference equation
Tpy1 = Flay, TN+1 € Rn, k= 0,1,--- ,N
also has a unique solution @&, N + 1].

Example 2.2. Obviously, the linear stochastic difference equatldn (#jags has a uniqu%kfl-solution
x on any interval[0, N + 1]. However, even iff}, k = 0,1,---, N, are nonsingular, the following

stochastic difference equation
1 = Frop + Grrpwy, T4 € l?;N (5)

with terminal state given does not always admiilﬁcrll-solution. For example, if we takB, = 1, G}, = 0,

and the terminal state, = w, in (§), thenz, = wy ¢ 1%, zo = wy ¢ 7 .

Remark 2.2. A class of backward stochastic difference equations ayisiom the study of discrete

stochastic maximum principle can be found [in/[18].

To define and better understand the uniform detectabilitys§stem [(B), we first give some lemmas.



Lemma 2.1. (i) For systeml[(B).E||z;||* = E||¢yrxx||* for I > k, where it is assumed thaf, , = I, and
o1, 1S given by the following iterative relation

I
up = P e+1L% Is ke (6)

1 k+1G
(i) 2 € I%_ if F; and G; are bounded foO <i <k — 1.

Proof: (i) can be shown by induction. Fdr=1[ — 1, we have
Elz|? = E[(Fo1m1 + Gram w1 (Fyoyjz g + Gy wyq)]

= E[xljll(ﬂji1ﬂ—1 + G1T_1Gl—1)$l—1]

= EH¢1,1—1$1—1H2-

Hence, [(6) holds fok = [ — 1. Assume that fok = m < [ — 1, E||z;||* = E||¢1.mxnm|*>. Next, we prove

El|lx||* = E||¢rm—12m-1|*. It can be seen that
Elz|* = Elwném@tmn]

- E[(Fm—lxm—l + Gm—lxm—lwm—l)T¢Zm¢l,m(Fm—lxm—l + Gm—lxm—lwm—l)]

= E[xzr;—l(Fg;—lgﬁmeSl,mFm—l + Gzr;—lqﬁl:,:mqﬁl,me—l)xm—l]

= Bl dym-17m-1*.
This completes the proof of (i). And (ii) is obvious. The pfad this lemma is complete. [ ]
Lemma 2.2. For system[(B), there holds.'_, F|y||> = E| Hzzx|? for I > k > 0, where
_ 1 -
(Io ® Hiy1) Ptk
Hip = | (12 ® Hyi2)Prton (7)
(Ly-r @ Hy) oy,

with Hy , = Hy and ¢, ,(j = k+1,--- 1) given by [(6).

Proof: We prove this lemma by induction. First, by a straight andg@tomputation, the conclusion

holds in the case of = I,/ — 1. Next, we assume that far=m <1 —1, >\ El|jy||> = E|Hymzm|?



l
i=m—1

holds, then it only needs to prove E\lyill* = E||H;m-17m-1]]*. It can be verified that

)

l l
Y Elyill® =Y Ellyl® + Ellym-ll”

1 i=m

= EHHl,mme2 + EHym—lH2
= BlaL H Hy) + Elal,  HEY  Hyyo1 1]
—_ E[(Fm—lxm—l _l_ Gm—lzm—lwm—l)THgmHl7m(Fm_1xm_1 ‘l‘ Gm_lxm—lwm—l)]

+ E[xfm—ngz—le—lxm—l]

T
Hm—l Hm—l
=EQal i | HpnFo HipFry | Tme1 - 8
Hl,me—l Hl,me—l

By (@), it follows that
Hm—l
HmFm—l
(I2 ® Hm+1)¢m+1,mFm—l

Hm—l
Hl,mFm—l = (12'5*’” ® Hl)¢t,mFm—1 . (9)
Hl,me—l Hme_1

(]2 ® Hm+1)¢m+l,me—1

i (]2t*7” ® Hl)¢l,me—l
On the other hand, it can be deduced frér (6) &id (7) that

Hm—l

m—1

Gm—l

(I2 ® Hm)

¢m+l,mFm—l
Hipm1= | (I32 ® Hpyr) : (10)

¢m+1,me— 1

¢l,mFm—1
¢l,me—1

(12t7m+1 & Hl)




Combining [9) and[(10) together results in

T
Hm—l Hm—l
Hl,mFm—l Hl,mFm—l = Hl?m—lHlym—l' (11)
Hl,me—l Hl,me—l
Hence,>'_ | Ellyll? = E||Hjm-12m-1]?. This lemma is shown.

Based on Lemmds 2[I=2.2, we are now in a position to definertifieron detectability for systenil3).

Definition 2.2. System[(33) of F}, G| H},) is said to be uniformly detectable if there exist integers> 0,

and positive constantd, b with 0 < d < 1 and0 < b < oo such that whenever

Elzel? = Ellppsparl]” = Bz, (12)
there holds

k+s

> Ellyill* = El| Hesopar|* > VE||zi |, (13)

i=k

wherek € Ny, and ¢y, and Hy. ., are the same as defined in Lemmal 2.2.

Obviously, without loss of generality, in Definitidn 2.2 warcassume that< s. By Lemmag 2.11=2]2,
the uniform detectability of 7, G| Hx) implies, roughly speaking, that the state trajectory dedagter
than the output energy does. In what follow, ;. := H,€T+S,ka+57k is called an observability Gramian
matrix, and¢, , a state transition matrix from, to x; of stochastic systen(3). Sb (13) can be written as
B[zl Oy s ] > V2E|xi |2 If Gy, =0 for k > 0, then system{3) reduces to the following deterministic

system
Tpp1 = Frag, 19 € R,
(14)
yr = Hyy,
which was discussed inl[1], [23].

Similarly, uniform observability can be defined as follows:

Definition 2.3. System[{3) or F}, Gix|Hy) is said to be uniformly observable if there exist an integer

s > 0 and a positive constarit > 0 such that
E||Hyyspxi|? > 0Bl

holds for each initial condition:;, € I, k € N.



Remark 2.3. Different from the uniform detectability concept, uniforabservability needs that any
models (unstable and stable) should be reflected by the oUthis section concentrates on the uniform
detectability of systeni{3), since it is weaker than unifabservability. Uniform observability is also an

important concept, which will be further studied in the figtu

Definition 2.4. System[(3) is said to be exponentially stable in mean sqiEBME) if there exist > 1
and A € (0,1) such that for any < ky < k < +o0, there holds

Ellayl* < BEan, |PA*). (15)

Proposition 2.1. If system[(B) is ESMS, then for any bounded matrix sequéfgé.o, system[(3) is

uniformly detectable.
Proof: By Definition[2.4, for anyk,t > 0, we always have
Ellziel® = Ellorsepael® < BE[zilPA, B>1, 0 <A< 1. (16)

By (I8), B\ — 0 ast — oo. Set a largg, > 0 such that) < ¢? := g\ < 1. Then, for any fixed > ¢,
(@2) holds only forz;, = 0, which makes[(13) valid for any > t > ¢, andb > 0 with an equality. So

system [(B) is uniformly detectable. [ |

Remark 2.4. For system[(14), Definitioh 2.2 reduces to Definition 2.1[ifj [Lis easy to prove that

uniform detectability coincides with classical deteclipiof the linear time-invariant systeni|(2).
The following lemma will be used throughout this paper.

Lemma 2.3 (see [14]) For a nonnegative real sequende;};>x,, if there exist constantd/, > 1,

do € (0,1), and an integerh, > 0 such thats,; < Mys, and ming1<j<kin, Si < doSk, then
si < [MIos, 7Y (8h0)rRos,  VE > k.
The following proposition extends Lemma 2.2 In [1].

Proposition 2.2. Suppose thatF},, Gi|H}) is uniformly detectable, anfl, and G, are uniformly bounded,
e, ||Ful| < M, ||Gil| < M, M > 0. Thenlimy,_,, E||yx||*> = 0 implieslimy_,o, E|zx]|* = 0.

Proof: If there exists some integér, such that for allk > ko, E||ze®> = Eloreeparl? <
d2E||l‘k
GTG) ;] < 2M?E||x||* < MyE)| ;)% where My = max{2M? 1} > 1. By Lemmal2.B, not only does

2, thenmink+1§i§k+t E'||I‘Z||2 < dzEHl‘kHz Moreover,E||xi+1||2 = E||¢i+1,ixi||2 = E[ZL’ZT(F’ZTE—I—
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limy_ Fllz||* = 0, but also is systen{{3) ESMS. Otherwise, there exists a gubsee{k;};>o such

that £||én, 1.k, 75, | > d>F||x, ||>. Now, for k € (k;, kiy1), we writek = k; + 1 +ta+ 8 with 3 < ¢, then

B|zr1racl® < d*Bllag %,
Ellzk1rarssl? < M) Bl 1 pall®,
Blzy|® < 2M*E|, |,
Therefore, we have

Bllanl? = Ellansirarsl? < (2M?)d Bz

< (2M2)TH ||y, |1*. (17)

Obviously, in order to showimy, ., E||zx||* = 0, we only need to showimy, ., F||z,||* = 0. If it is not

so, then there are a subsequefieg};>o of {k;}i>0 ands > 0, such thatt||z,,,||? > <, E||¢n,+tm,Tn, ||* >
d*E||x,,||*. By Definition[2.2,

n;+s

Y Elyill® = Ele} Onsonin] = VP E|n,|* > bs. (18)

Takingn; — oo in (@8), we have) > b*¢ > 0, which is a contradiction. Hence, the proof is complese.
In the remainder of this section, we will prove the outpuidiesck invariance for uniform detectability.

Consider the following LDTV stochastic control system

Trpr = (Fray + Myuy) + (Gray, + Nyug)wy, (19)
yr = Hygzy, k=0,1,2,---.
Applying an output feedback control law, = K}y, to (I9) yields the following closed-loop system

yk:Hkxky k:071727"' .

Theorem 2.1. If (F}, Gi|Hy) is uniformly detectable, then so (¢}, + My Ky Hy, Gy + Ny Ky Hy|Hy,).

Proof: By Lemmal2.2, the observability Gramian for systéml (200js . x = H[, , ; Hitsr, Where

Hj,
(Iy ® Hyi1)Prr1k _ _
7 - - i1 ,
Hitsk = | (T2 @ Hygo) Oy | o Phtik = | _ o, i=1, s,
: Orrik+1Gr
L (125 ® Hk—i—s)&k—i—s,k i
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F}':Fj“—MjKjHj, Gj:Gj+NjKjHj, ]:k’,k’“—]., ,k+8.

To prove that(F,, G| H;) is uniformly detectable, it suffices to show that there arastantsb > 0,

0<d<1,s,t>0such that forg € I3, k € Ny, whenever

Elay Opyspr] < U E|zi?, (21)
we have
B||¢preprrl® < @Bl (22)
It is easy to show i i
I 0 0
x [ - 0

Hk—i—s,k - Qk—i—s,ka—i-s,ka Qk+s,k -

x ok ..o ]
where * represents terms involving;, M;, K; andN;, 1 =k, k+1,--- ,k+s. Hence, for anyr, € Z%H,
pE[x} Oy s i) < B[] Opyspar] < 0B} Opyspr], (23)

where p = Auin(Qf 4o 1 Qrtsi) > 0, 0 = Amax(Qf s xQrrsk) > 0. In addition, by observation, for any
[>k>0,

Gr = G + RipHy g,
whereR, ;, is a matrix involvingH;, M;, K; andN;, i =k, k+1,--- |1 —1. If we take0 < b < \/pb, then

it follows from (23) that B} Oy pwr] < By Oprepar] < %EHmkHQ < V?E||z|*. By the uniform

observability of(F}, Gi|Hg), it follows that
E|orrinzrl]* = Bl rrentr + RirorHyrrnr]?
< 2B||¢prenvill* + 207 E|| Hyro pon||?
< 2d°E||xy||” + 24 B[, Opges ]

52
< (2d° + 2M25)E||gg,g||2

= dE|a?, (24)

wherep = supy, || Riioxll, d = 2d> +2u2%. If we takeb to be sufficiently small, thed < 1, which yields
the uniform detectability of 7}, G| H,). Hence, the proof of this theorem is complete. [ ]

Theoren{ 2.1 reveals that the output feedback does not charfggm detectability.



12
Example 2.3. For simplicity, we sets = 1. Then it can be computed that

Hy,
_ H;,
Hyp = = | Hy(Fp + MKy Hy) |

(Lo @ Hiy1)Prsrk
Hy 1 (Gy + N K Hy,)

Hy,
Hy,
Hyy1 = = | Hpply
(I ® Hyq1) Prr1k
Hy1Gy,
Obviously,
I 00
Q1 = | Hut MK, I 0
Hy  N.K, 0 I
Example 2.4. By definition, we have
_ Fk + MkKka Fk
Prt1,k = y Okylk =
G + N, K, H;, G
Hence,¢ri1k = Gry1p + Rir1 e Hiy10 WIth Ry =
N, K, 0 0

2.2 Lyapunov-Type Theorems under Uniform Detectability
In the following, we will further study the following timearying GLE
— P+ F' P P+ G PG+ HEH, =0, k=0,1,2,---, (25)
under uniform detectability. The aim of this subsectiondsektend the classical Lyapunov theorem to
GLE (28). To study[(Z5), we first introduce the following fmitime backward difference equation
—Pyr+ FlPoirFy + GE Poyr7Gr + HE Hy, = 0,

PT’TIO, /{Z:O,l, ,T—l; T€N1.
Obviously, equation(26) has nonnegative definite solstiBp, > 0.

(26)

Proposition 2.2.1. P, r is monotonically increasing with respect1g i.e., for anyk, < 77 <75 < +o0,
Pk07T1 < Pko,Tza kO € {07 17 te 7T1}-
Proof: Obviously, P, 1, and Py, 1, solve

—Pur, + FlPosyn Fr + Gi Poyyn G+ HiPHy, = 0,
PTl,Tl 207 k:O717 7T1_17

(27)
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and
—Pyr, + P Fy + GE P 1, Gy + HEHy, = 0,

(28)
Prp,=0,k=01,--- T -1,
respectively. Consider the following LDTV stochastic gystwith a deterministic initial statey,:
Th1 = Frap + Grapwy, (29)
Tk €ERY, k=ko,ko+1,---
Associated with[(29), in view of(27), we have
T —1 T —1
Z E[:L';;FH,?Hkxk] = Z E[l’gHngl’k + 1'£+1Pk+1,T137k+1 - ZL’%P]C7T1£L'/€]
k=ko k=ko
+ Jjgoplfo,Tlxko - E[*T% PT17T1IT1]
T —1
= Bl (—Pug, + Ff Py Fy + Gf P Gy, + Hi Hy)ay
k=ko
+ ‘T%:)Pko,Tl Lo
= :L{OP]Q(LTlZL'kO. (30)
Similarly,
To—1
Z E[ZL’ZH,?HkI’k] = ZL’ZOP]QO7T2ZL']€O. (31)
k=ko
From [30)4{31), it follows that
T —1 To—1
0 S Z E[fo,?Hkxk] = JJ%OP]CO’TlJIkO S Z E[fo,?Hkxk] = *Tgopko,szkO' (32)
k=ko k=ko

The above expression holds for any, € R", which yields Py, r, < Py, 1,- Thus, the proof is complete.

Proposition 2.2.2. If system[(B) is ESMS, and; is uniformly bounded (i.e., there exist¢ > 0 such
that || Hy|| < M, Vk € Np), then the solutionP,  of (28) is uniformly bounded for any € A; and
ke [0,T].

Proof: By (30), for any deterministia;, € R", we have

T-1 00
x;;FPthk = Z ElalH Hiz;) < Z [l H Hya;)
i=k i=k
< M2 2 )\(z—k) _ M2 2
< M2 52 a6

which leads to that < P, < ﬁTMjI sincex;, is arbitrary. Hence, the proof is complete. [ |
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Combining Propositioh 2.2.1 with Propositibn 212.2 yietdat P, := limy_, ., P, eXists, which is a

solution of [25). Hence, we obtain the following Lyapungye theorem.

Theorem 2.2.1(Lyapunov-Type Theorem) If system[(B) is ESMS an{dH} } e, is uniformly bounded,

then [25) admits a unique nonnegative definite solu{iBh} ten, -
The converse of Theorem 2.2.1 still holds.

Theorem 2.2.2 (Lyapunov-Type Theorem) Suppose thatF}., Gi|Hy) is uniformly detectable and,
and GG, are uniformly bounded with an upper boudd > 0. If there is a bounded nonnegative definite

symmetric matrix sequendg’; },>o solving GLE [(2b), then systernl (3) is ESMS.
Proof: For system[(3), we take a Lyapunov function as
Vi(x) = 27 (P, + eI,
wheree > 0 is to be determined. For simplicity, in the sequel, wellgt= V,(x;). It is easy to compute
EVj — EViy = E[z] (P, + eD)ay] — Elzf 1 (Peyr + D) Tp41)
= E[xg(Pk +el)xy) — E(Fray + Greywi) " (Pogy + eI)(Fray, + Grrrwy)]
= B[z} (P, — FF P Fr, — G P Gr)ay] +eEla (I — FYF, — GEGy)xy]
= Ellypll? + e Eley (I = B Fy — G Gr)xy]

= Ellyull* + eElla|l* — e Ellwpall*. (33)

Identity (33) yields

EVk - EVk+S+1 == [EVk - EVk+1] + [EVk+1 - EVk+2] + ct _'_ [EVk+s - EVk+S+1]
k+s

=Y Ellyl® + eBllawl* — eEllwprll*. (34)

i=k
When 321 Elly|)? > 02E|z

(2

2 we first note that

Bllzgssnll® = B{aip s (FilsFrrs + Gy Gras)This)
< 2MPE||zpss|® < @M E|tppsn | < -
< (2MP) Bz (35)
Then, by [(34), we still have
EVi — EViron 2 VE|z|* + e Bl ||* — e(2M?)* B ||

= [b? + & — c(2M?)* T B2y || (36)
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From (36), it readily follows that

EVitsn1 < BV — {0 + e[l — (2M*) '} B |||

[0 4 e[1 — (2M?)*]]
= {1 T APt el) } G 37)

Considering tha{ P, > 0}xen;, is uniformly bounded, ife is taken to be sufficiently small, then there

must exist & < (0, 1) such that
EViisy1 < O0EV;. (38)

When S5 B|y||> < b*E||z ||, by uniform detectability we havé||z.||> < d*E||z;||>. From [33),

7

it follows that
EVi, — EViyy > eB||zi||* — ed?E||z1]|? = e(1 — d*) E||x||2. (39)
Similarly, we can show that there exists a constant (0, 1) such that
EViy < 5, EVj. (40)

Setd, := max{d, 4, }, in view of (38) and[(4D), we have

min BV, < 6,EV,, Vk > 0. (41)
k+1<i<k+s+1
From identity [3B), we know
EVk+1 S EVk + €E||xk+1||2 S EVk + 5EVk+1. (42)

Taking0 < e < 1 in (2), it is easy to derive that there exists a positive tamts\/, > 1 satisfying
EVii1 < MyEVy, Yk > 0. (43)
Applying Lemma 2B withs, = EVj, hg = s + 1, 8 = [M}°8 '], A = 600, it follows that
EVi < BAERI BV < N (P, + e D) BAE R B[, | 2,

which implies that systeni]3) is ESMS due to the fact th&t} .o is uniformly bounded. [ |

The above theorem directly yields the following result.

Corollary 2.2.1. Suppose that there exists> 0 such thatH H,, > €I for k € N,. Additionally, if there
is a uniformly bounded symmetric matrix sequekég > 0},>o solving GLE [(2b), then systerl (3) is
ESMS.
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3. BEXACT DETECTABILITY AND RELATED LYAPUNOV-TYPE THEOREMS
We recall that for the linear time-invariant system

Tpy1 = Fx, + kawk, o € R"
(44)
yk:H.Tk, k:071727“'

its exact observability was defined [n [20], [34], while trearse definition for linear continuous-time time-
invariant Itd systems was given in [36]. For the LDTV stostia system[(3), the complete observability
that is different from the uniform observability![8] was defd in [35]. In this section, we will study
exact detectability of the stochastic systérm (3), from Whtoccan be found that there are some essential
differences between the time-varying and time-invarigstems. In addition, Lyapunov-type theorems are

also presented.

3.1 Exact Detectability

We first give several definitions.

Definition 3.1.1. For system[(B),zx, € lfrkofl is called akg°-unobservable state if, = 0 a.s. for

k € [ko,00), and zy, € lkaOi1 is called ak;°-unobservable state i, = 0 a.s. fork € [ko, ko + so|.

Remark 3.1.1. From Definition[3.1.1l, we point out the following obvious feic(i) If x;, is a ki°-
unobservable state, then for asny> 0, it must be &;°-unobservable state; (ii) lf;, is ak;'-unobservable

state, then for ang < sy < sy, it must be ak;’-unobservable state.

Example 3.1.1. In system [(B), if we taked, = 0 for & > ko, then any stater;, € lfrkofl is a kg°-

unobservable state. For aky > 0, z;, = 0 is a trivial k5°-unobservable state.

Different from the linear time-invariant system {44), even,, = ( is ak{°-unobservable state;, = ¢

may not be &;*-unobservable state for any > 0, which is seen from the next example.

Example 3.1.2. Consider the deterministic linear time-varying systemhwit, = 0 and

([10]
, If k is even
0 0
Hk:Fk: - =
0 0 ) )
, If k is odd
[ |01
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0 0
Obviously, zy = is a 0~°-unobservable state due tg = 0 for £ > 0, butx; = is not a

1 1

0
1%1-unobservable state for any > 0 due toy, = H; # 0, let alonel*-unobservable state.
1

Definition 3.1.2. System[(3) is callefly°-exactly detectable if alj°-unobservable statéis exponentially

stable, i.e., there are constants> 1, 0 < A < 1 such that
Ellzil* < BE|IEPA®), Yk > k. (45)
Similarly, system[(3) is calledl;’-exactly detectable if (45) holds for alf}"-unobservable staté.

Definition 3.1.3. System[(3) (o F, Gx|Hy)) is said to bel>*-exactly detectable if it ig>-exactly
detectable for anyc > 0. If there exists a nonnegative integer sequefigg},~o with the upper limit

lim;,_.o.5; = 400 such that systenfl](3) i**-exactly detectable, i.e., for ary*-unobservable statg;,
Ellz | < BE|GIPAY, B>1, 0< A <1, t >k,

then systeni(3) (aiF}., G| H})) is said to be weakly finite time &' 7-exactly detectable. Ifiim;,_, .55, <
+00, then systeni{3) (ofF}, G| Hy)) is said to be finite time okC?7-exactly detectable.

A special case okT-exact detectability is the so-calléd”-exact detectability, which will be used

to study GLEs.

Definition 3.1.4. If there exists an intege?V > 0 such that for any timéy, € [0,00), system[(3)
(or (Fy, Gix|Hy)) is k{'-exactly detectable, then system (3) (df., Gi|Hy)) is said to bek"-exactly

detectable.
From Definitiond_3.1]3=3.1.4, we have the following inctrsielation

KN -exact detectability—> C'"7-exact detectability

— K"WFT_exact detectability—> K>°-exact detectability

In this paper, we will mainly uséC>°- and K"-exact detectability. Obviously¥-exact detectability
implies K>-exact detectability, but the converse is not true. We metbe following examples to illustrate
various relations among several definitions on detectgbfor illustration simplicity, we only take the

concerned examples to be deterministic.
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Example 3.1.3. In system [(14), we také} = 1 for k£ > 0, and

1, fork=n? n=1,2---,

0, otherwise
In this case, systenl (IL4) (qF|H})) is K>-exactly detectable, and the zero vector is the unikfie
unobservable statéFy|H,) is alsoK" T-exactly detectable, wherg = k? —k — oo. However,(Fy,| H},)

is not KF'T-exactly detectable, and, accordingly, is ot -exactly detectable for any > 0.

Example 3.1.4. In system [(TH), if we take), = 1 and [}, = 1 for k > 0, then(F;|H,,) is KV -exactly
detectable for anyV > 0, but (F}|H) is not uniformly detectable. This is because for any 0,

0<d<1and¢ e R, we always havee, ,£? = [£]* > d?|€|*. But there do not exist > 0 ands > 0
satisfying [IB), becausg’ Oy, 1€ = [€]2 3077 & while limy, o S0 L = 0.

Example 3.1.5. In system [(I4), if we takeF, = 1 for k¥ > 0, and H,, = 1 and Hy,,; = 0 for
n=0,1,2,---, then(F;|H) is uniformly detectable an&*-exactly detectable, but it is ndt’-exactly

detectable.
The following lemma is obvious.

Lemma 3.1.1. At any timeky, xy, = 0 is not only akg°- but also ak;’-unobservable state for any

8020.

By Lemmal3.11, if we leB;° denote the set of all thej*-unobservable states of systelm (3) at time

ko, then©j: is not empty. Furthermore, it is easy to show thgf is a linear vector space.

Lemma 3.1.2. For ky € N, if there does not exist a nonzefoe R" such thatH;,( = 0, (Iy—x ®
H)pr1, =0,l=ko+1,kg+2,---, theny, =0 a.s. withk > &, impliesz;, = 0 a.s..

Proof: Fromy, =0 a.s., it follows that

Elx} H} Hy,xy,) = 0. (46)
Fromy, =0 a.s.,l = ky + 1, - - -, it follows from Lemma 2R that
Bl &l (Iy-ro @ H)(Iy-re ® H}) ¢y oxk,| = 0. (47)

Let Ry, = Elzy,x] |, rankR,, = r. Whenr = 0, this impliesz;, = 0 a.s., and this lemma is shown. For

1 < r <n, by the result of[[24], there are real nonzero vectqrss, - - - , z. such thatR,, = >\, z:z7.

7
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By (46), we have
Elx} H Hyxy,) = traceE[H)| Hy, x|

= tI‘aCQ{HIZ;HkOE[xkong]}

= trace{ H], Hy, Z zi2l'}

i=1

= &l Hf Hy,yz) = 0, (48)
i=1

which givesH,, z = 0 for i = 1,2,--- ,r. Similarly, (47) yields
(Iyiro @ H)rpozi =0, i =1,2,--- 7.

According to the given assumptions, we must haye- 0, i = 1,2, --- ,r, which again impliesc;, = 0
a.s.. [
By Lemmal3.1D, it is known that under the conditions of LenfBah2, r,, = 0 is the uniquekge-

unobservable state, i.e9° = {0}.
Lemma 3.1.3. Uniform detectability impliegC>-exact detectability.

Proof: For any k,*°-unobservable state,, = £, by Definition[2.2 and Definitiof 3.1.3, we must

have E|| ¢y xx1]|* < d*Ellxi]|? or 2, = 0 for k > ko; otherwise, it will lead to a contradiction since
k+s

0="> Elyl* > bllax]* > 0.
i=k
Under any case, the following system

Tp1 = Fro + Grarpwy,
T, =& € OF, (49)

Yk :Hkxky k:071727'”
is ESMS, so(F},, Gx|Hy) is exactly detectable. [ ]

Remark 3.1.2. When system[{3) reduces to the deterministic time-invarsystem [(2), the uniform
detectability, "~ !-exact detectability andC>°-exact detectability coincide with the classical deteititgb
of linear systems/ [16]. Examplés_3.1[4-3l1.5 show thateth®@mo inclusion relation between uniform
detectability andCV-exact detectability for somé& > 0. We conjecture that if F},, G| H}) is uniformly

detectable, then there is a sufficiently lalye> 0 such that(Fy, G| Hy) is K -exactly detectable.

Corresponding to Theorelm 2.1, we also have the followingréna for exact detectability, but its proof

is very simple.
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Theorem 3.1.1. If (F}, Gx|H}) is K>-exactly detectable, then so (8}, + M Ky Hy, Gy, + Ny K. Hy.|Hy,)
for any output feedback, = Kyy.

Proof: We prove this theorem by contradiction. Assume thiat + M, K Hy,, Gy, + N K Hy|Hy)
is not K>°-exactly detectable. By Definition_3.1.3, for systeml(2@)haugh the measurement equation

becomesy, = H,z;, = 0 for k € N, the state equation
Tp1 = (Fy, + My Ky Hy)zy, + (Gy, + N Kp Hy ) wwy, (50)
is not ESMS. In view ofy, = H,z;, = 0, (80) is equivalent to
Try1 = Frar + Grapwy. (51)

Hence, under the condition @f, = Hyz, = 0 for £ =0,1,2,---, if (BQ) is not ESMS, then so i$ (1),
which contradicts théC>°-exact detectability of £y, G| Hy). [ ]

It should be pointed out that Theorédm 3]11.1 does not holdidrexact detectability. That is, even if
(Fy, Gk|Hy) is KN-exactly detectable fov > 0, (F), + MKy Hy, Gy + N. K Hy|H;) may not be so,

and such a counterexample can be easily constructed.
Proposition 3.1.1. If there exists a matrix sequengé(,, k = 0,1,--- , } such that

Tpe1 = (Fx + KpHy)zg + Grapwy (52)
is ESMS, theni F},, G| Hy) is K*>-exactly detectable.

Proof: Because[(52) is ESMS, by Proposition]2.1 and Lerhmal3(¥3:+ Ky Hy., Gi|H}.) is K-
exactly detectable. By Theorem 311.1, for any matrix seqe€l;,k = 0,1,---,}, (F, + K Hy, +
LiHy, G|Hy) is also K°-exactly detectable. Taking, = —Kj, we obtain that(Fy, Gy|H}) is K-

exactly detectable. Thus, this proposition is shown. [ ]

Remark 3.1.3. In some previous references such [as [8]] [29], if system (&BSMS for some matrix
sequence Ky }ren,, then(Fy, G| Hy) is called stochastically detectable or detectable in dadil mean
[29]. Propositio 3.111 tells us that stochastic detetitghimplies K>°-exact detectability, but the converse
is not true. Such a counterexample can be easily construstad the following Example_3.1.6. The
K>-exact detectability implies that anyf°-unobservable initial stat¢ leads to an exponentially stable
trajectory for anyk, > 0. However, in the time-invariant systein {44), the stoclcadétectability of [(44)
(or (F,G|H) for short) is equivalent to that there is a constant outpatifack gain matrix<, rather

than necessarily a time-varying feedback gain matrix secgI€K }rcn;,, Such that

L1 = (F + KH)CL’k + kawk (53)
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is ESMS; seel[8].

Example 3.1.6. Let G, = 3 for k£ > 0, and
1, fork=3n, n=1,2,---,
Fk = Hk =
0, otherwise
By Lemma[2.1, for any output feedbaek = Ky, we haveEz} = 3= Ex? for k > ko, wherew;

is the closed-loop trajectory of
L1 = (Fk + Kka)SL’k + 3kak,

which is not ESMS. Sd F}, Gi|Hy) is not stochastically detectable. HoweveFy, G| Hj) is not only

K- but alsok3-exactly detectable, an@is the uniquek3-unobservable state.

Remark 3.1.4. According to the linear system theory, for the determinisifiear time-invariant system

@), the>- andK"~!-exact detectability are equivalent. By therepresentation theory [35], fdr (#4), the

n(n

fco°- and 5 - U-exact detectability are also equivalent. So, in what fetipsystem[(44) (ofF, G|H))

is simply called exactly detectable.

Remark 3.1.5. In Example 3.113(F|H}) is stochastically detectable, but it is n6t'-exactly detectable
for any N > 0. In Example3.116(F,| H) is not stochastically detectable, but ithis'-exactly detectable
for N > 3. Hence, it seems that there is no inclusion relation betvgemrhastic detectability and” -exact

detectability.

3.2 Lyapunov-Type Theorems under Exact Detectability

At present, we do not know whether Theorem 2.2.2 holds undiactaletectability, but we are able to
prove a similar result to Theorem 2.P.2 for a periodic systaamely, in [(B),F., = Fi, Gryir = G4,
H, ., = Hy. Periodic systems are a class of very important time-vargystems, which have been studied

by many researchers; see [3]| [8], [10].

Theorem 3.2.1(Lyapunov-Type Theorem)Assume that syster (3) is a periodic system with the period
7 > 0. If system[(B) iC"-exactly detectable for any fixedl > 0 and { P, > 0};>¢ is a positive definite
matrix sequence which solves GLEI(25), then the periodiesy§3) is ESMS.

Proof: By periodicity, P, = P.... Select an integek > 0 satisfyingkT — 1 > N. Forx > &, we
introduce the following backward difference equation
—Py N k) + EFPy Yk + 1) Fy + GEPF™ ' (k +1)Gy + HY Hy = 0,
P Nkt) =0, k=0,1,-- , k7 — 1.

(54)



22

SetV, = zl Py, then associated with (b4), we have

EVy — EViy = 2t Pyxg — Elal_Pe ., = ol Pyxg — Bzl Pyz,.,]
KT—1

= Ellyill* = 2§ Py (0)a, (55)
1=0

where the last equality is derived by using the completingases technique. We assert it —*(0) > 0.
Otherwise, there exists a nonzerg satisfyingz{ P} (0)z, = 0 due to P;"~'(0) > 0. As so, bykX"-

exact detectability[ (85) leads to
kT—1

0= Ellyall® = Auin(Po) | 00ll* = Amax (Po) BA™ |0

1=0

= (Amin(F0) — )‘maX(PO)ﬁ)‘m)HxOH2> (56)

where3 > 1 and0 < X\ < 1 are defined in[(15). I is taken sufficiently large such that> ko, > 0
with ko > 0 being a minimal integer satisfying.in(Fy) — Amax (Po)SA™™ > 0, then [E6) yieldsr, = 0,
which contradictse, # 0.

If we let P(T_Tl_)ér((” — 1)k7 + k) denote the solution of
—P(T_Tl_)iT((n —Drr+ k) + Fgl_l)erkP&“_Tl—)iT((n — DRT + k+ 1) Flntyertk

TG e kP ne (0= VAT + k +1)Gnvynrsn + H yyer i pHintysrsn = 0,

n—1)kT

an—_l (77,/{',’7'):0, k::Oa]-a"'7I{T_]'; n:1’2’”.’

(n—1)kT

then by periodicity,;™'(0) = P . ((n — 1)x7) > 0, and

nkT—1

EVin-vyor = EVirr = D Elyill® = Blafuony P, (0 = DAT)2 (r1)r]

kTS (n—1)kT

i=(n—1)kT

= E[I%;L—l)mPgT_l(O)x(n—l)n'r] > QO||x(n—1)mH27
where oy = Awin (P37 ") > 0. Generally, for0 < s < x7 — 1, we defineP[ "~} ((n — 1)s7 + s + k)

as the solution to

=Pt (= DAT + 5+ k) + F oD as (0= DT+ 5+ k + 1) Flnotyerssik

+G%;L—l)nr+s+kp(rizlﬁ—1—|)—z;—|l-s((n - 1)HT +s+k+ 1)G(n—1)m'+s+k + H&_l)HT+8+kH(n—1)HT+S+k = 07

Py (et +5) =0, k=01, kT =1 n=1,2---.

It can be shown thap)""1="" ((n — 1)s7 + s) = P77 !(s) > 0 and

nkT+s—1

Z E||y2||2 = E[‘T%;L—l)nr—l—sP:T—l—s_l(S)x(n—l)n'r-i-s]7

i=(n—1)k7+s
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provided that we take > maxg<s<xr—1 ks, Wherex; > 0 is the minimal integer satisfying,in(Ps) —
Amax (Ps) BA®T > 0.

Summarizing the above discussions, for &ny 0 and & > max{k, maxo<s<xr—1 ks, We have

k+rT—1
EVi — EViizr = Z Ellyil* > pE|lz ],

i=k
where p = ming<s<zr—1ps > 0 With p, = A\ [PF7771(s)]. The rest is similar to the proof of Theo-
rem[2.2.2 and thus is omitted. [ ]
In Theoren{3.211, iff P, > 0}x>o is weaken ag P, > 0}>0, then we have

Theorem 3.2.2(Lyapunov-Type Theorem)Assume that syster (3) is a periodic system with the period
7 > 0. If (i) system[(B) isk"-exactly detectable for any fixed > 0; (i) {P. > 0},>o iS a positive
semi-definite matrix sequence which solves GLE (25); (@) R,)) = Ker(P,) = - -- = Ker(P._;), then

the periodic systeni3) is ESMS.

Proof: From GLE [25), it is easy to show (e.g., see Theorem 3.27ih) [B¥t Kel P,) C Ker(H},),
FiKer(P,) C Ker(Pyy1), GyKer(P;) C Ker(Py41). In addition, in view of Ke(F,) = --- = Ker(P,_;)

and P, = P, there is a common orthogonal matrsxsuch that for any: > 0, there hold

0 0 0 0
STP.S = , P?*>0, STH'H,S =
O . ' 0 (HP)THP
STF.S = B B STGyS = G G
0 F 0 G#

Pre- and post-multiplying” and S on both sides of GLE(25) gives rise to
~STP.S+STEIS-STP 1S - STF.S + STGES - STPy 1S - STGS + STHES - STHS = 0,

which is equivalent to

— PP+ (B2 P FE + (G2 PELGR + (HP)THE? = 0. (57)
T
Sy S
Setn;, = k) STa), = e x, then it follows that
M2,k So1 Sa

Mo = Flme + Gl + F2no g + Gi2ng pwy,
Mokr1 = FPnok + G gy, (58)

Yr = HpSmy.
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It can be easily seen that, = H;Sn, = 0,a.s. iff Hn.y = 0,a.s., for which a sufficient condition
is mo, = 0. By KV-exact detectabilityy; 1.1 = F'nix + Gilnipwy is ESMS. To show thaty .1 =

FZnox + Gi%na wy, is ESMS, we consider the following reduced-order statesmesanment equation

22 22
Nokr1 = Fi nox + G pwi,
(59)

Uk = HZ o g
Obviously, system[(39) is still a periodic system and hasstmae period- > 0 as [3).
In the following, we show thaf(59) is alsk”-exactly detectable. Because systéin (3)Cis-exactly
detectable, for any > 0, y; = 0 a.s. fore = k,--- , kK + N, implies that there are constants > 1 and

0 < A\g < 1 such that

|zl = Bllprrepael® < BoBllzalPAS ™, t > k (60)
0 . .
for any kV-unobservable state,. Takex;, = Sn, = S , with 7, . being ak-unobservable state
12,k
. , 0 .
of 89), i.e.,y; = H?np; =0fori=k,---  k+ N. Theny, = H;S =0fori=k,---,k+ N.
T2,k

0
Hence, [(6D) holds. Substituting, = S into (60) yields
N2,k

Ellnosl® < BoEllmsl®AS ™, t > k. (61)
So (59) iskV-exactly detectable.
Associated with[(59), the GLE_(57) admits a positive defisidution sequencéP;, > 0},>0. Applying
Theoren:3.2]1, the subsystem](59) is ESMS. Singe 1 = F!'nix + Gilmwe has been shown to be
ESMS, there are constants > 1 and0 < \; < 1 such that

Ellmal* < BBl el P2, ¢ 2 k. (62)
Set 3 := max{fy, 51}, A = max{)\g, \1 }, then the composite systein {58) is ESMS with
Elmel® = Ellnell® + Ellneel® < BEInelPAH, ¢ > k,

which deduces that the periodic systdmh (3) is ESMS becal)san(8(58) are equivalent. [ |
Finally, we consider the linear time-invariant stochastistem [(44) and present a Lyapunov-type
theorem as a complementary result of Theorem[19 [20]. Aatettiwith [44), we introduce the linear

symmetric operatoLr, called the generalized Lyapunov operator (GLO), as fadtow

LraZ =FZFT +GZGY, Z € S,.
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Moreover, for systenl(44), the GLE_(25) becomes
—P+F'PF+G"PG+ H'H =0. (63)

Theorem 3.2.3. Suppose that (Lr) C © := {\: |\| < 1} and (F,G|H) is exactly detectable. P
is a real symmetric solution of (63), theh > 0 and (F,G) is stable, i.e., the state trajectory ¢f (44) is

asymptotically mean square stable.
In order to prove Theorein 3.2.3, we need to cite the well-kméiein-Rutman Theorem as follows:

Lemma 3.2.1(see [28]) Let 5 := max), e,
nonzeroX > 0 such thatlpX = 5X.

) |[Ai| be the spectral radius of ;. Then there exists a

Lpc

Proof of Theorerh 3.213Becauser(Lr) C ©, the spectral radiug < 1. If 5 < 1, then this means
that (F, ) is stable by[[20, Lemma 3], which yield3 > 0 according to[[20, Lemma 17]. I = 1, then
by Lemmal3.211, there exists a nonze¥o> 0, such thatCr;X = X. Therefore, we have

0> (=H"H,X) = (=P + Lpc(P), X) = (=P, X) + (P, Lra(X))
where(A, B) := trace(A" B), L}, is the adjoint operator of . ;, andL, (P) = F"PF+G" PG. From
@©4) it follows thattrace(HT HX) = 0, which impliesHX = 0 due toX > 0. However, according to

[20, Theorem 8-(4)]Lr X = X together withH X = 0, contradicts the exact detectability @f, G|H).

Hence, we must have < § < 1, and this theorem is verified. [ |

Remark 3.2.1. Following the line of Theorerh 3.2.3, Conjecture 3.1[in/[38hcalso be verified.

4. EXACT OBSERVABILITY

This section introduce another definition called “exactestability” for system[(B), which is stronger
than exact detectability and also coincides with the ctassibservability when systerl (3) reduces to the
deterministic linear time-invariant systef (2).

We first give the following definitions:

Definition 4.1. System[(3) is called°-exactly observable if;, = 0 is the uniquekj°-unobservable
state. Similarly, systeni](3) is callgg-exactly observable if;, = 0 is the uniquek;°-unobservable

State.

Definition 4.2. System[(3) (of Fy, G| Hy)) is said to bek*>-exactly observable if for ank € [0, c0),

system[(3) is:>°-exactly observable. If for any time< [0, c0), there exists a nonnegative integ¥r> 0
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such that systenfl(3) is"-exactly observable, then systelm (3) (i, G| H})) is said to bek N -exactly

observable. Similarly, théC'"" 7~ and KT -exact observability can be defined.

Combining Lemmab_3.1.1=3.1.2 together, a sufficient camdiior the exact observability is presented

as follows.

Theorem 4.1. If rankH . ;, = n for anyk > 0, then (£}, G| H},) is K>-exactly observable. In particular,
if rankHy+,,x = n for some fixed integes, > 0 and anyk > 0, then systenl{3) is not oniZ>- but

also K*°-exactly observable. Heré/, ;. is defined in Lemma3.2, and

Hy,
(Io ® His1) Ptk
(2 ® Hyy2) Psok

([2l—k X Hl)¢l,k

The next corollary follows immediately from Theorém14.1.
Corollary 4.1. If H,, is nonsingular fork > 0, then systen{]3) i&°-exactly observable.

By Definitions[4.1E4R kc° (resp. ki°)-exact observability is stronger tha°® (resp. k;°)-exact de-
tectability. Likewise K> (resp.KWET, KCFT, KV)-exact observability is stronger that (resp. V7,
KCET | KKV)-exact detectability. A necessary and sufficient condifir theCV-exact observability was pre-
sented in[[3b] based on thé-representation theory developed therein. Below, we gnatleer equivalent

theorem based on LemmaR.2.

Theorem 4.2. (i) System[(B) isCV-exactly observable iff for any € N, the GramianO; y . is a
positive definite matrix. (i) If systeril(3) i§"#”-exactly observable anflP, > 0},-0 solves the GLE

(28), thenP, > 0 for any k& > 0.

Proof: We note thaty; = 0 a.s. fori = k, k+1,--- , k+ N, is equivalent toy."*" E||y||> = 0. By
LemmdZ2 >N B|ly||? = Elzf Oy nrai] = 0. So systen((3) is exactly observableYF " £|y||> =
B[zl Oy n i) = 0 implies z; = 0 a.s., which is equivalent t@;, . > 0 due toO, x4 > 0. Hence,

(i) is proved.
Now we prove (ii) by contradiction. If somé,, is not strictly positive definite, then there exists a

nonzerozy, € Iz, _, such thatE[z} Py xy,] = 0. By the K" F*-exact observability of Fy,, G |Hy,), there
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is sg > 0 such that systeni |3) i&;°-exactly observable. Since the following identity

Elvy Poxy] = Elweyy Por1@ssi] Z Elly* (65)

holds for anys > k& > 0, it follows that

ko+so

0< Z EHyZ||2 ['Tk0+so+1Pk0+so+1xko+so+1] <0
i=ko

and accordingly; = 0 a.s. fori € [k, ko + so]. By the k;°-exact observabilityy;, = 0, which contradicts

xr, 7 0. Hence, (ii) is proved. [ ]

Remark 4.1. Theoren{4.R-(i) shows that tHé" -exact observability is weaker than the uniform observ-
ability given in [8], where it was proved that system (3) isfarmly observable iff there aré& > 0 and

v > 0 such thatOy x> I for any k € N.

Remark 4.2. There is no inclusion relation between uniform detectgb#ind exact observability. For
example, in Example—3.1.4F}|H,.) is KV -exactly observable, but it is not uniformly detectable. tba

other hand, in Example=3.1.5F}| H}.) is uniformly detectable, but it is ndf’-exactly observable.
Similar to exact detectability, we also have the followimglusion relation for exact observability:

ICN -exact observability—> K7-exact observability

— K" _exact observability—- C>°-exact observability
The following Lyapunov-type theorem can be viewed as a tanplof Theoreni 3.2]1.

Theorem 4.3 (Lyapunov-Type Theorem) Assume that systern| (3) is a periodic system with the period
T > 0. If system[(B) i9C"-exactly observable for aniy > 0 and { P, > 0},>¢ solves GLE[(25), then the
periodic system(3) is ESMS.

Proof: By Theoreni{4.R-(ii),P, > 0 for & > 0. BecauseC" -exact observability must b&™ -exact
detectability, this theorem is an immediate corollary oedrem3.2.11. u

5. ADDITIONAL COMMENTS

At the end of this paper, we give the following comments:
(i) In [22], [27], [37], exact observability and detectatyil of linear stochastic time-invariant systems
with Markov jump were studied. How to extend various defamns of this paper to linear time-varying

Markov jump systems is an interesting research topic thaitsnieirther study.
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Following the line of [35] that transforms the systeh)) (@to a deterministic time-varying system,
it is easy to give some testing criteria for uniform detetiigband observability of [B) by means
of the existing results on deterministic time-varying syss [23]. In addition, applying the infinite-
dimensional operator theory, the spectral criterion fab#ity of system[(B) is also a valuable research

issue.

(iii) In view of Remarks[3.1.3=3.1.4, we know that, for limeime-invariant system[{44), stochastic

(iv)

(V)

detectability implies exact detectability. In_[37], it waBown that exact detectability is equivalent to
the so-called “W-detectability” (seeé [87, Definition 3]). wew definition called “weak detectability”
was introduced in[30], where a counter-example (see Exaitpin [30]) shows that W-detectability
does not imply weak detectability. In particular, it was yd in [30] that weak detectability can
be derived from stochastic detectability. It is easy to prolwat weak detectability implies exact

detectability. In summary, we have the following inclusi@tation:
stochastic detectabilitys- weak detectabilitys- exact detectabilitys W-detectability

As stated in[[30], the converse implication that whether 8tedtability or exact detectability implies
weak detectability is an open question.

Lemmad Z.IE2]2 are important, which will have potdrdigplications in mean stability analysis and
system synthesis.

This paper reveals some essential differences betvireear ltime-varying and time-invariant systems.
For example, for linear time-invariant systeim|(44), exastiedtability and exact observability can be
uniquely defined, but they exhibit diversity for LDTV systd#). Moreover, many equivalent relations

in linear time-invariant systeni_ (#4) such as
uniform detectability= exact detectability ~ uniform observability= exact observability

do not hold for LDTV system[(3).

6. CONCLUSION

This paper has introduced the new concepts on detectahitit observability for LDTV stochastic

systems with multiplicative noise. Uniform detectabilitgfined in this paper can be viewed as an extended

version of that in[[l]. Various definitions on exact detedtgband observability are extensions of those in

[€], [20], [33], [34], [36] to LDTV stochastic systems. Défent from time-invariant systems, defining exact

detectability and exact observability for the time-varystochastic systerhl(3) is much more complicated.
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We have also obtained some Lyapunov-type theorems undérrnnidetectability of LDTV systems,
KN -exact detectability andC¥-exact observability of linear discrete periodic systet& believe that
all these new concepts that have been introduced hereirplayl important roles in control and filtering

design of LDTV systems.
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