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Improving the robustness, vis-à-vis matched input disturbances of IDA-PBC (Interconnection Damping
Assignment, Passivity Based Control) for a class of underactuated mechanical systems is addressed in
this paper. The characterized class of systems is the one for which IDA–PBC yields a smooth stabilizing
controller. Our main contribution consists in combining the so-called IDA-PBC controller with an adap-
tive control technique. Some sufficient stability conditions on matched input disturbances are given. The
comparison of the stability robustness between the classical controller IDA-PBC and the proposed one is
then provided. As illustration we propose to revisit the application of IDA-PBC controller to the Inertia
Wheel Inverted Pendulum (IWIP) in the presence of matched disturbances. Simulation and real-time
experimental results are presented as validations of the theoretical results.

Keywords: IDA-PBC, Hamiltonian systems, matched disturbances, Inertia Wheel Inverted Pendulum,
Stability, adaptive control, robustness.

1. Introduction

This paper deals with the robustness improvement of IDA-PBC controller when applied to a class
of underactuated mechanical systems (Choukchou-Braham, Cherki, Djemäı, et Busawon (2014),
Spong. (1998)). The latter, will be, necessarily 1(F. et der Schaft A.J (2004)) described by the
so-called Port-Controlled Hamiltonian models (PCH).
PCH systems have been introduced in 1994 by Van der Shaft and Mashke (Maschke et van der
Schaft (1994)). The central paradigm of complex systems modeling is to have individual open sub-
systems with well defined port interfaces, hiding an internal model of variable complexity, and a
set of rules describing how these subsystems interact through the port variables (D‘oria-Cerezo
(2006)). Port-controlled Hamiltonian systems are used to implement this general idea. Their mo-
dels represent another alternative to the classical Euler-Lagrange models. Writing a system in a
PCH form has the advantage of covering a large set of physical systems and provide important
structural properties. An extended survey of PCH systems is presented in (van der Schaft (2006)).
The technique used to control PCH systems is called IDA-PBC (Ortega, van der Schaft, Maschke,
et Escobar (2002)). It combines the passivity properties of PCH systems with interconnection and
energy-based control. IDA-PBC uses the hamiltonian framework, it consists in solving the PDE
(Partial Differential Equation) associated to the energy balance equation. This technique has been
applied to a large variety of plants : Mechanical systems (Acosta, Ortega, et Astolfi (2004); Ortega,

∗Corresponding author. Email : khraiefnahla@gmail.com

1. To stabilize underactuated mechanical systems by energy shaping, it is necessary to modify the total energy function.

Which cannot be done with the classical PBC (passivity based control). That is why IDA-PBC is used
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Spong, Gomez-Estern, et Blankenstein (2002)), magnetic levitation systems (Rodrıguez, Ortega,
et Mareels (2000); Rodrıguez, Siguerdidjane, et Ortega (2000a)), mass balance systems (Ortega,
Astolfi, Bastin, et Rodrıguez (2000)), electrical machines (Batlle, Doria-Cerezo, et Ortega (2005);
Petrovic, Ortega, et Stankovic (2001)), power converters (Rodrıguez, Ortega, Escobar, et Baraba-
nov (2000)). For an in-depth review of IDA-PBC the reader is referred to (Ortega et Garcıa-Canseco
(2004)).
In this paper we will focus on the robusteness improvement of IDA-PBC controller, for a class
of underactuated mechanical systems. Especially in the case of matched input disturbances where
little is known about the robusteness issue. Many studies turn around the improvement of the
robustness of the IDA-PBC controller. In (Gentili et van der Schaft (2003)) an input disturbance
suppression for PCH systems is based on internal model. In (Rodrıguez, Siguerdidjane, et Ortega
(2000b)) an IDA-PBC controller applied to a magnet levitation system was experimentally tested.
To solve the robustness problem an integral term was added to the error of the passive output. The
same technique was used in (Batlle et al. (2005)) to improve the robustness of hamiltonian passive
control. Stability and robustness of disturbed port-controlled Hamiltonian systems with dissipa-
tion have been addressed in (Bechrif et Mendes (2005)). The authors studied IDA-PBC controller
robustness against parameter uncertainties. Recently Romero et al. (J. G. Romero (2013)) impro-
ved the robustness vis-à-vis external disturbances, of energy shaping controllers for fully actuated
mechanical systems. They design a dynamic state feedback controller such that the closed-loop sys-
tem ensures some stability properties in spite of the presence of external disturbances. In (Khraief,
Chemori, et Belghith (2014)) the effect of external disturbances is especially studied. Two sufficient
stability conditions are provided to deal with matched and unmatched disturbances. Motivated by
the practical matter of IDA-PBC, the paper presents experimental results shown that IDA-PBC is
robust with respect to external disturbances. To improve the robusteness we propose in this paper
the design of a robust Model Reference Adaptive (MRA) control combined with the IDA-PBC.
The resulting MRA-IDA-PBC control scheme yields a smooth asymptotically stabilizing control-
ler which increases the disturbance boundary. To strength those results we validate the proposed
controllers experimentally on the inertia wheel inverted pendulum (IWIP). Simulation and expe-
rimental results on the disturbed IWIP for different scenarios show that the proposed controller
gives better performences than the classical IDA-PBC.
The remaining of the paper is organized as follows. In section 2, IDA-PBC for disturbed underac-
tuated mechanical systems is introduced. Section 3 presents the main contribution of the paper
resulting in an adaptive control to improve the robusteness of IDA-PBC controller against matched
disturbances. Section 4 is devoted to simulation and experimental results. Finally, we present some
conclusions and future work in section 5.

2. IDA-PBC for disturbed underactuated mechanical systems

2.1 Background on IDA-PBC control for underactuated mechanical systems

This background is based on previous work proposed in (Ortega, Spong, et al. (2002); Ortega,
van der Schaft, et al. (2002)). An underactuated mechanical system whith no natural damping can
be written in Port Controlled Hamiltonian (PCH) form as follows 2 :

(
q̇
ṗ

)
=

(
0 In
−In 0

)(
∇qH
∇pH

)
+

(
0

G(q)

)
u

y = G(q)T∇pH
(1)

2. Throughout the whole of the paper we present all vectors, including the gradient(∇xH = ∂H
∂x

), as column vectors.
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with total energy

H(q, p) =
1

2
pTM−1(q)p+ V (q) (2)

(1) will be called the nominal system, where q ∈ Rn, p ∈ Rn are the generalized position and
momenta respectively. G(q) ∈ Rn×m, is the input matrix. We consider here that the system is
underactuated and assume rank(G) = m < n, u and y are the control input vector and the output
vector respectively. M(q) = MT (q) > 0 is the inertia matrix, and V (q) is the potential energy.
Note that :

q̇ = M−1(q)p (3)

The desired (closed-loop) energy function can be expressed by (Ortega, Spong, et al. (2002)) :

Hd(q, p) =
1

2
pTM−1

d (q)p+ Vd(q) (4)

we define (q∗, 0) as the desired equilibrium. Vd is required to have an isolated minimum at q∗. This
target can be achieved by the following IDA-PBC controller :

u = ues + udi (5)

Where :

ues = (GTG)−1GT (∇qH −MdM
−1∇qHd + J2M

−1
d p) (6)

udi = (−Kv)G
T∇pHd (7)

ues is the energy shaping control to assign the equilibrium and udi injects damping to achieve
asymptotic stability. We put the control expression (5) in the nominal system (1) we obtain the
following desired (closed-loop) PCH dynamics :

(
q̇
ṗ

)
= (Jd(q, p)−Rd(q, p))

(
∇qHd

∇pHd

)
y = G(q)T∇pHd

(8)

where Md = MT
d > 0, Jd = −JTd =

(
0 M−1Md

−MdM
−1 J2

)
is the interconnection matrix, and

Rd = RTd =

(
0 0
0 GKvG

T

)
is the damping matrix (Ortega, Spong, et al. (2002)).

3
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2.2 Matched dsiturbances rejection in IDA-PBC controller

2.2.1 Problem formulation

Let us describe the underactuated mechanical system in presence of matched input disturbances
by the following PCH model :

(
q̇
ṗ

)
=

(
0 In
−In 0

)(
∇qH
∇pH

)
+

(
0

G(q)

)
(u+ δ(x, t))

y = G(q)T∇pH
(9)

where t ∈ R+, x = (q p)T ∈ R2n is the system’s state, u(t) ∈ Rm is the control input, δ(x, t) is the
matched input distubances. δ(x, t) is assumed to be unmeasured and bounded in magnitude, usually
its Euclidean norm is denoted by ‖δ(x, t)‖. In this paper we formulate the IDA-PBC stabilization
objective as follows : Given the disturbed PCH system (9) and a desired equilibrium (q∗, 0), is the
IDA-PBC controller (5) capable to reject disturbances and keep (q∗, 0) as a stable equilibrium in
spite of the existence of matched input disturbances ?
Applying the controller (5) to the system (9) we obtain the following closed-loop disturbed system :

(
q̇
ṗ

)
= (Jd(q, p)−Rd(q, p))

(
∇qHd

∇pHd

)
+ δ1(x, t)

y = G(q)T∇pHd

(10)

Note that δ1(x, t) = (0 G(q)δ(x, t))T is also a vector of external disturbances. Let λmin {Kv} be
the smallest eigenvalue of the matrix Kv, and x̃ = (q − q∗ p)T .
The following proposition sets some sufficient conditions on the disturbance boundaries in order to
have (q∗, 0) as a stable equilibrium.

Proposition 1: (Khraief et al. (2014)) Consider the closed-loop dynamics (10) with the desired
total energy Hd.

If ‖δ(x, t)‖ ≤ λmin {Kv}
∣∣(∇pHd)

TG
∣∣2, then Ḣd ≤ 0 and x̃ of (10) is a stable equilibrium point.

Proof. The derivative of Hd defined in (4) gives :

Ḣd = (∇qHd)
T q̇ + (∇pHd)

T ṗ (11)

We remplace dotq and dot(p) by their expression in (10) we obtain :

Ḣd = (∇qHd)
T (M−1Md)∇pHd + (∇pHd)

TG(q)δ1(x, t)− (∇pHd)
T (MdM

−1)∇qHd+

(∇pHd)
T (J2 −GKvG

T )∇pHd

= (∇pHd)
TG(q)δ1(x, t)− (∇pHd)

T (GKvG
T )∇pHd

(12)

4
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If ‖δ1(x, t)‖ ≤ λmin {Kv}
∣∣(∇pHd)

TG
∣∣2 then

Ḣd ≤ ‖δ1(x, t)‖ − λmin {Kv}
∣∣(∇pHd)

TG
∣∣2 (13)

and Ḣd ≤ 0.

3. Main result : Robusteness improvement of the IDA-PBC controller

This section deals with the robusteness improvement of the IDA-PBC controller. Our main
contribution consists in combining IDA-PBC controller with an adaptation law (Khraief-Haddad,
Chemori, Pena, et S.Belghith (2015)) in order to reduce the tracking error rapidly and to increase
the admissible disturbance boundries. The proposed approach consists on a direct adaptive control
in which the controller parameters (feedback gains) are estimated online.

3.1 Basic principle of MRA-IDA-PBC

In this work the idea is to introduce an adaptive control scheme combined with the IDA-PBC
controller. The latter, yields smooth stabilization for disturbed underactuated systems (Khraief et
al. (2014)). Nevertheless the controller gains depend strongly on the matching conditions. They
have to be online adapted in order to get better performances.
Motivated by this issue an adaptive control is proposed to improve the convergence of the IDA-
PBC controller in presence of matched input disturbances. Before going further, the whole block
diagram of the proposed controller is illustrated in figure (1).

3.2 Proposed adaptive control solution

3.2.1 Controller design

In the previous section the standard (IDA-PBC) was introduced to stabilize a class of disturbed
underactuated mechanical systems. However, this controller needs the well known of the control
gains which required full information about the interconnection and damping matrices. Conse-
quently, ill-known adequate gains can result in a control input which doesn’t lead to the desired
closed-loop behavior of the closed-loop system. To resolve this issue we propose to describe the
control input signal u in terms of a nominal part and an unknown part (based on unknown errors
in the control gains).

Proposition 2: Let’s consider the control law u∗ :

u∗ = u(x, t) + ∆(x, t)ẑ (14)

Where u(x, t) is the nominal controller defined in (5), ∆(x, t) is a matrix of known functions,

5
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+ 

- 

Adaptation Law 

Controller Disturbed PCHS 

Reference model : Desired 
PCHS (Hd,Jd and Rd) 

Reference 
 input 

Error 
output 

ẑ

y

y

Figure 1.: Block diagram of the proposed MRA-IDA-PBC approach.

z = [z1, z2, ..., zp] is the vector of unknown parameters and ẑ is the estimate of z with the following
adaptation law :

˙̂z = −Ka∆
T (x, t)y (15)

Where Ka is a diagonal positive definite matrix.
u∗ renders the equilibrium point stable.

if ‖δ1(x, t)‖ ≤ (α+ λmin {Kv})
∣∣(∇pHd)

TG
∣∣2.

Proof. With the control law (14) the resulting closed-loop of the disturbed system can be written
as follows :


(
q̇
ṗ

)
= (Jd(q, p)−Rd(q, p))

(
∇qHd

∇pHd

)
+

(
0

G(q)(∆(x, t)ẑ + δ(x, t))

)
y = G(q)T∇pHd

(16)

Define the estimation error by z̃ = ẑ − z and a hamiltonian H as :

H(q, p) = Hd(q, p) +
1

2
z̃TK−1

a z̃ (17)

6
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Then the closed-loop system (16) with the error z̃ can be rewritten as :



 q̇
ṗ
˙̃z

 =

 0 M−1Md 0
−MdM

−1 J2 −GkvGT G∆Ka

0 −Ka∆
TGT 0

 ∇qH∇pH
∇z̃H

+ δ1(x, t)

= (Jeq(q, p)−Req(q, p))

 ∇qH∇pH
∇z̃H

+ δ1(x, t)

(18)

Note that δ1(x, t) = (0 G(q)δ1(x, t) 0)T is the new vector of external disturbances. It can be
easily proved that (18) is in a PCH form (Jeq = −JTeq and Req = RTeq ≥ 0) 3.

Let’s Choose H as a Lyapunov candidate function, then its first derivative can be expressed by :

Ḣ = (∇qH)T q̇ + (∇pH)T ṗ+ (∇zH)T ˙̃z

= (∇qH)T (M−1Md)∇pH + (∇pH)TG(q)δ1(x, t)− (∇pH)T (MdM
−1)∇qH + (∇pH)T (J2 −GKvGT )∇pH+

∇pH
T
G(q)∆(x, t)Ka∇z̃H −∇zHKa∆(x, t)TGT∇pH

= ∇qHd q̇ +∇pHd ṗ+K−1
a z̃∆T (x, t)GT∇pHd

(19)

If ‖δ1(x, t)‖ ≤ (α+ λmin {Kv})
∣∣(∇pHd)

TG
∣∣2 then

Ḣ ≤ δ1(x, t)− (α+ λmin {Kv})
∣∣(∇pHd)

TG
∣∣2 where α > 0.

Hence Ḣ ≤ 0, and (q∗; 0; z̃) is a stable equilibrium.

4. Application : Inertia Wheel Inverted Pendulum

4.1 Description and modelling

The system illustrated in figure (2) is called the Inertia Wheel Inverted Pendulum (IWIP). It is
an underactuated mechanical system. The IWIP can be modeled as a two-degrees-of-freedom serial
mechanism. The first link is the pendulum (passive joint) and the second one is the rotating disc
(active joint). The generated torque produces an angular acceleration of the end-mass which induces
a coupling torque at the pendulum axis. The dynamic parameters of the system are summarized
in table (1).

The Euler-Lagrange equations of motion can be written as (Spong et Vidyasagar (1989)) :(
(a+ IWC) IWC

IWC IWC

)(
θ̈1

θ̈2

)
−
(
bg sin θ1

0

)
=

(
0
u

)
(20)

3. See (D. Dirksz et Scherpen (2010),Dirksz et Scherpen (2012),Fujimoto et Sugie (1998),K. Fujimoto et Sugie (2000),K. Fu-
jimoto, Sakurama, et Sugie (2003)) for more theoretical details.

7
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θ1

θ2

PB

PC,m

WC,M

x

y

z

(a) Shematic view of the IWIP.

inclinometer

pendulum body

inerita wheel

active joint

passive joint

frame

(b) Mechanical structure of the IWIP.

Figure 2.: The Inertia Wheel Inverted Pendulum (IWIP)

Table 1.: Description of dynamical parameters of the IWIP

Description Notation Value Unit
Pendulum angle with respect to verti-
cal axis

θ1 rad

Wheel angle with respect to pendulum
axis

θ2 rad

Mass of pendulum m 3.228 kg
Mass of the Wheel M 0.33081 kg
Length from pendulum base (PB) to
pendulum center of mass (PC)

l 0.06 m

Length from pendulum base (PB) to
Wheel center of mass (WC)

L 0.044 m

Rotational Inertia of pendulum about
pendulum center of mass (PC)

IPC 0.0314 kg.m2

Rotational Inertia of pendulum about
its base (PB)

IPB kg.m2

Rotational Inertia of Wheel about its
center of mass (WC)

IWC 4.176e− 4 .m2

Constant of gravitational acceleration g 9.8 m/s2

where :
θ = [θ1 θ2]T is the vector of generalized positions, u is the torque generated and applied by the
actuator on the inertia wheel and :

a = ML2 + IPB
b = ml +ML.

(21)

Let us now introduce the following change of coordinates :

8
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[
q1

q2

]
=

[
1 0
1 1

] [
θ1

θ2

]
(22)

This leads to the following simplified model :[
a 0
0 IWC

] [
q̈1

q̈2

]
−
[
bg sin q1

0

]
=

[
−1
1

]
u. (23)

The model (23) can be rewritten through Hamilton’s equations of motion as (Santibanez, Kelly, et
Sandoval (2005)) : 

q̇1

q̇2

ṗ1

ṗ2

 =


p1
a
p2
IWC

bg sin q1 − u
u

 (24)

Where q = [q1 q2]T and p = [p1 p2]T = [aq̇1 IWCq̇2]T are the generalized positions and mo-
menta respectively. Which leads to write the Hamiltonian function as follows :

H(q, p) =
1

2
pTM−1(q)p =

1

2
[
p2

1

a
+

p2
2

IWC
] (25)

The equilibrium point to be stabilized is the upward position whith the inertia disk aligned (q1 =
q2 = 0)

4.2 Simulation results

In (Ortega, Spong, et al. (2002))the authors proposed the following control law for the IWIP :

u = γ1sin(q1) + kp(q2 + γ2q1) + kvk2(q̇2 + γ2q̇1) (26)

where γ1 > b, γ2 = − aγ1
IWC(γ1−b) and k2 > 0.

Together with kp and kv positive arbitrary constants, define the tuning gains.
In (Khraief et al. (2014), Khraief-Haddad et al. (2015)) we propose to rewrite the control law (26)
in terms of the generalized coordinates q and momenta p as :

u = γ1sin(q1) + k1q1 + k2q2︸ ︷︷ ︸
ues

+ k3p1 + k4p2︸ ︷︷ ︸
udi

(27)

where : k1 = kpγ2, k2 = kp, k3 = kv(
a2+a3

a1a3−a2
2
) and k4 = −kv( a1+a2

a1a3−a2
2
).

In the following paragraphs simulation results are obtained using Matlab software. Two simulation
scenarios are considered in order to compare IDA-PBC controller with the proposed adaptive one.

9
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The first scenario is to consider the system in the nominal case without any external disturbances.
While the second one aims to show the robustness of both controllers against matched input
disturbances.

4.2.1 Stabilization in the nominal case by both controllers

In the forthcoming simulations the dynamics of the PCH model (24) is considered. The para-
meters of the IWIP are described in table (1). They have been experimentally identified on the
real prototype of the system. In this section simulation results obtained on the IWIP (in the no-
minal case) when applying both controllers are presented and discussed. The first controller is the
IDA-PBC given in (27). We choose the initial configuration (q1 q2 p1 p2)T=(0.2 0 0 0)T .
The remaining control parameters were selected as γ1 = 6.1284, k1 = 1.0367 and k2 = 0.0011.
k3 = 16.62 and k4 = 3.4640.
The second controller is the proposed MRA-IDA-PBC when the control input is described by the
following expression :

u∗ = γ1sin(q1) + k1q1 + k2q2 + k3p1 + k4p2 + ∆(x, t)ẑ

∆(x, t) = [p2, p1]T

ẑ = [k̂3, k̂4]

˙̂z = −Ka[p2; p1] (q̇2 + γ2 q̇1)

(28)

We consider the initial conditions :
(q1 q2 p1 p2 k3 k4)T=(0.2 0 0 0 2 10)T . The remaining control parameters were se-

lected as : γ1 = 6.1284, γ2 = 942.447, k1 = 1.0367, k2 = 0.0011 and Ka =

(
2.08e− 4 0

0 2.08e− 4

)
.

Figure (3) displays the evolution of joint positions versus time for both controllers. A simple obser-
vation shows a better performance of the proposed adaptive IDA-PBC controller which assure the
convergence towards the equilibrium point faster than the standard IDA-PBC controller. Figure
(4) shows the efficiency of the MRA-IDA-PBC through the evolution of the angular velocities of
the pendulum and the inertia wheel. When applying the proposed adaptive controller the evolution
of the control input converges more rapidly than the one of the IDA-PBC controller and presents
less oscillations. These observations can also be seen in figure(5). The effectiveness of the proposed
controller can also be observed through the phase portrait in figure(6) and figure (7) which displays
the evolution of estimated parameters versus time.

4.2.2 Disturbances rejection by both controllers

To test and compare the robustness of both controllers we propose in this section to check their
capability to reject external matched disturbances.
A matched input disturbance is added to the dynamics (24). It consists of constant torques 4

‖δ1(x, t)‖ = 10 added to the control (27) at time instants : t = 5s, t = 10s and t = 15s during
0.2s at each time. The obtained simulation results are shown in figure (8) and (9). According to
the obtained result it can be noticed that the MRA-IDA-PBC controller is better than IDA-PBC

4. we can check simply that‖δ1(x, t)‖ ≤ 12 ∗
∥∥|(∇pHd)TG

∣∣2, leading to the theoretical results.

10
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Figure 3.: Evolution of angular positions versus time

controller to compensate matched disturbances and keep the system around its open-loop unstable
equilibrium point.

4.3 Real-time experimental results

4.3.1 Description of the experimental testbed

To validate the theoretical results, real-time experiments have been carried out on the inertia
wheel inverted pendulum testbed shown in figure (10). This platform is designed and developed
at LIRMM 5. Mechanical stops constrain the movement of the pendulum angle θ1. This angle
is measured by an encoder fixed to the actuator of the system (Maxon EC-powermax 30 DC
motor). An inclinometer FAS-G of micro strain served to measure in real-time the angle of the
pendulum with respect to the vertical. The control approach is implemented on a computer using
C++ language. The whole system is running under Ardence RTX real-time OS. Different control
schemes have been already implemented on this testbed (Andary, Chemori, et Krut (2009), Touati
et Chemori (2013), S. Andary, Chemori, et Krut (2009)). In the remaining of this section we

will compare the performance of both controllers experimentally.Two scenarios are represented

5. LIRMM (Montpellier Laboratory of Informatics, Robotics and Microelectronics) : http ://www.lirmm.fr
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Figure 4.: Simulation results of the angular velocities

whith implementation issues. The first one concerns the control of the nominal system without
perturbations ; however in the second one the system is subject to an external perturbation.

4.3.2 Stabilization in the nominal case

Real-time experiments have been carried out thanks to the experimental testbed described above.
We apply at first the IDA-PBC controller (27) with the following parameters : γ1 = 6.1284,
k1 = 0.0471, k2 = 0.00005, k3 = 15.9840 and k4 = 3.9960. The proposed experiments are started
from the initial condition (q1 q2 p1 p2)T = (0.17 0 0 0)T . Secondly we apply the proposed
MRA-IDA-PBC controller (28) starting with the configuration : (q1 q2 p1 p2 K3 K4)T =
(0.17 0 0 0 2 10)T . The remaining parameters are chosen as follows : γ1 = 6.1284, γ2 =

942.447, k1 = 0.0471, k2 = 0.00005, and Ka =

(
0.02547 0

0 0.02547

)
. Figure (11) displays the obtained

results in terms of the angular positions and velocities as well as the control input versus time. It
can be clearly observed that the convergence in the case of MRA-IDA-PBC is better than the case
with the standard IDA-PBC controller. The phase portrait in figure(12) illustrates experimentally
the performance of the adaptation law added to the IDA-PBC controller.
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Figure 5.: Simulation results of the input control
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Figure 6.: Plot of the phase portrait (θ1, θ̇1)
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4.3.3 Stabilization with matched input disturbances

In this scenario matched input disturbances rejection is emphasized experimentally by adding
external torques to (27) which are generated by pushing the pendulum at approximately t = 6s,
t = 8s and t = 12s. Experimental results are displayed in figure (13). The effect of punctual
disturbances at different times can be observed as peaks on the curves. Compensations of such
disturbances are observed in the evolution of the angular position and velocity. These matched
disturbances are better rejected by the MRA-IDA-PBC controller. We observe that the MRA-IDA-
PBC controller compensates better the added external torques and maintain the system around
the desired equilibrium point. These observations are also proved by displaying the phase portrait
in figure (14).

5. Conclusion and future work

In this work we have studied the effect of matched input disturbances in the IDA-PBC method.
We have considered the robustness improvement of IDA-PBC control applied to a class of underac-
tuated mechanical systems. We propose an adaptive control scheme combined with the IDA-PBC
design methodology. As an illustration we have presented the proposed adaptation law for the
IDA-PBC controller of the Inertia Wheel Inverted Pendulum. The objective was to stabilize the
system at its upward position (unstable equilibrium). Simulation as well as experimental results
was presented to show the efficiency of the proposed controller compared to a classical IDA-PBC.
The results illustrate how the adaptive control estimates and compensates for the errors on the
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Figure 8.: Simulation results with matched disturbances

gain parameters, which yields smooth stabilization better than the classical IDA-PBC controller.
Various possible extensions of this work can be investigated. At first, we can improve the adapta-
tion law in order to increase the robustness of the IWIP against unmatched uncertainties. Secondly,
discussions can be investigated about the generalization of the proposed adaptive control scheme
to the case of other classes of underactuated mechanical systems. Besides, such control scheme can
also be tested to track some reference trajectories for stable limit cycle generation.
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Figure 14.: Phase portrait obtained experimentally for both controllers
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