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Abstract

When dealing with large-scale systems, manual selection of a sub-
set of components (sensors/actuators), or equivalently identification of
a favourable structure for the controller, that guarantees a certain closed-
loop performance, is not very feasible. This paper is dedicated to the
problem of concurrent optimal selection of actuators/sensors which can
equivalently be considered as the structure identification for the controller.
In the context of a multi-channel ℋ2 dynamic output feedback controller
synthesis, we formulate and analyse a framework in which we incorporate
two extra terms for penalising the number of actuators and sensors into
the variational formulations of controller synthesis problems in order to in-
duce a favourable controller structure. We then develop an explicit scheme
as well as an iterative process for the purpose of dealing with the multi-
objective problem of controller structure and control law co-design. It is
also stressed that the immediate application of the proposed approach lies
within the fault accommodation stage of a fault tolerant control scheme.
By two numerical examples, we demonstrate the remarkable performance
of the proposed approach.

keywords Simultaneous actuator/sensor selection, regularisation, row/column-
wise sparsification, linear matrix inequality, dynamic output feedback.
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1 Introduction
Actuator/sensor selection problem is a standard step of control system design
which aims at selecting an appropriate number, place, and type of actuators/sen-
sors (Van De Wal & De Jager, 2001). While actuator/sensor selection is, broadly
speaking, carried out prior to the physical realisation of the plant, sometimes
actuator/sensor selection can be performed for a system with pre-equipped ac-
tuators/sensors (Van De Wal & De Jager, 2001). Roughly speaking, controllers
exploiting all available actuation and sensing resources can achieve better closed-
loop performance compared to the ones that use only a small number of actu-
ation and sensing resources. However, due to the high level of the control
system complexity as well as the costs of operation and maintenance, employ-
ing controllers with a dense structure does not seem very practical (Dhingra,
Jovanović, & Luo, 2014). Further, in some cases, all existing components cannot
be exploited at the same time, e.g. when a plant needs different set of instru-
mentations at startup and at full load modes (Van De Wal & De Jager, 2001).
Furthermore, the number of components (actuators or sensors) in modern con-
trol systems can be very large. Therefore, it is not very feasible to manually find
a subset of all available components to meet a specific control objective. Hence,
the problem of selecting a configuration of actuators (sensors) from the set of
all available actuators (sensors), while the control performance remains at an
acceptable level compared to the non-sparse performance, is a well-known prob-
lem in the literature of control theory; see for example Joshi and Boyd (2009);
Polyak, Khlebnikov, and Shcherbakov (2013); Rogers (2000); Roy, Chepuri, and
Leus (2013); Savkin and Evans (2002); Savkin, Evans, and Skafidas (2001).

There are a large number of investigations considering this problem, but
most of them do not consider dynamical systems and/or do not use a system-
atic method. Joshi and Boyd (2009) considers the problem of sensor selection
through a convex optimisation scheme and for a system with linear measure-
ments. Moreover, a method is proposed in Roy et al. (2013) for identifying
favourable subsets of available system sensors while minimising the Cramer-
Rao bound of a class of nonlinear measurement models. Kekatos, Giannakis,
and Wollenberg (2012) formulates the problem of Phasor Measurement Units
(PMUs) placement in power systems as a variation of the optimal experiment
design. A genetic algorithm-based method is proposed in Rogers (2000) for the
problem of actuator selection. Moreover, the problem of simultaneous sensor
and actuator placement is considered in Güney and Eşkinat (2008); Nestorović
and Trajkov (2013) employing heuristic optimisation-based methods. In Polyak
et al. (2013), an LMI approach is utilised for addressing this problem by in-
corporating certain forms of sparsity in the feedback gain. Further, an ADMM
algorithm based method is proposed in Dhingra et al. (2014) which addresses
the problems of sensor and actuator selection separately. The problem of actua-
tor/sensor selection for aeroservoelastic systems is considered in Moreno, Pfifer,
and Balas (2015), by proposing a heuristic approach that allows a fair com-
parison between different configurations of sensors/actuators. In Westermayer,
Schirrer, Hemedi, and Kozek (2009), a sensor/actuator placement criterion is
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proposed that is able to evaluate the system response intensity using the ℋ2
norm properties of flexible structures, while the balance between low and high
frequency modes is guaranteed by the geometric mean of the gramian eigenval-
ues. It is worth noting that a large number of early methods proposed for the
actuator placement problem have been constructed based on open-loop consid-
erations to guarantee that the necessary controllability, reachability or power
factor requirements are satisfied (Van De Wal & De Jager, 2001). The problem
of finding the optimal location of sensors/actuators to achieve reduction of the
noise field in an acoustic cavity is also considered in Fahroo and Demetriou
(2000), in which two control strategies are proposed for this goal. Each strategy
indeed optimises an appropriate quadratic performance criterion representing
the location of the actuators and/or the sensors.

Basically, to address an actuator/sensor selection problem, one has to, in
worst case, check all actuator/sensor sets, implying an exhaustive search for a
number of configurations that can grow exponentially with the number of actu-
ators and sensors. This is practically intractable and impossible to perform. As
explained in Van De Wal and De Jager (2001), to avoid performing an exhaus-
tive search, a trade-off can be made either in the choice of the search strategy
or in the choice of the selection criterion. Another alternative to avoid solving
a combinatorial problem is to consider a multi-objective problem of controller
structure and control law co-design by incorporating secondary cost functions,
which promotes sparsity of the controller, into a main cost function, which
represents a performance specification of the closed-loop system (see e.g. Lin,
Fardad, and Jovanovic (2011) and Schuler, Münz, and Allgöwer (2014)).

The so-called reweighted ℓ1 (REL1) norm, known as a convex relaxation of
the ℓ0-norm, is usually exploited to make a convex problem rather than the orig-
inal combinatorial optimisation problem. The weights (entries of the weighting
matrix) are then updated at each step inversely proportional to the strength
of individual entries of feedback gain in the previous step. This scheme succes-
sively applies to the applications that the sparsity is required to be achieved
at the entry-wise level, i.e. minimising the number of communication links in
distributed control networks exploiting the so-called bilateral communication
scheme (Staroswiecki & Amani, 2014). However, in cases where the sparsity
is noted at a group (e.g. row or column) level, the strength of groups of vari-
ables (entries of feedback gain) needs to be considered. We consider ‖⋅‖row−ℓ0
(‖⋅‖col−ℓ0

), that counts the number of nonzero rows (columns) of a matrix, as
the row (column) sparsity promoting penalty function and then propose its
reweighted convex relaxation. This paper then develops an iterative algorithm,
using the relaxed row/column sparsity promoting penalty functions, which is
able to penalise the number of sensors and actuators employed in the control
system simultaneously.

Most of the sparse control design approaches in the literature have focused
on the problem of sparse state feedback and static output feedback design.
This paper instead utilises a dynamic output feedback (DOF) scheme to control
the system using the measured system outputs. To the best knowledge of au-
thors, concurrent actuator and sensor selection problem through DOF has not
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been researched thoroughly. Furthermore, it should be noted that the sparse
row/column-wise feedback design using DOF is a totally different problem com-
pared to the case of row (column) sparse static output (state) feedback design,
as the sparsification procedure should be applied only to a certain part of the
controller. One immediate application of this approach will be in over-actuated
(over-sensed) systems (Casavola & Garone, 2010; Cristofaro & Johansen, 2014;
Härkegård & Glad, 2005; Johansen & Fossen, 2013), as it can be used to se-
lect a subset of actuators (sensors) while optimising a cost function resulting
in, for example, less power or fuel consumption, minimum actuator wear and
tear, maintenance cost, etc. Equipped with a fault reconstruction framework
(Casavola & Garone, 2010; Edwards & Tan, 2006; Tan & Edwards, 2003; Zhang
& Jiang, 2002), it will be shown that the optimisation-based approach proposed
in this paper for the design of row/column-sparse DOF controllers, by incorpo-
rating a secondary cost function into the main cost function used for optimal
control design, can become a fault accommodation algorithm that searches for
both a controller structure and a control law while minimising the performance
degradation and allocation error.

In summary, the major focus of this paper is on the development of an ap-
proach for optimal actuator/sensor selection in over-actuated/sensed systems.
However, this paper for dealing with this issue includes several novelties as fol-
lows:

- This paper develops a novel framework for the design of multi-channel
ℋ2 sparse row/column-wise DOF. To the authors’ best knowledge, this
is a new technology which can be exploited for the purpose of controller
structure/control law co-design while employing only sensor’s information.

- This paper proposes a novel scheme for the identification of favourable
sparse row/column-wise patterns for DOF. It is worth noting that the
current variable selection schemes typically amount to the selection of
important individual variables; i.e. elements in the feedback gain, rather
than the important groups of variables; i.e. rows/columns in the feedback
gain. The contribution of this paper, in this regard, is to introduce a novel
method that is able to penalise groups of variables (rows/columns in a
matrix), so that a sparse row/column-wise (DOF) gain can be identified
while minimising the performance degradation of the closed-loop system.

- A more practical result would be achieved by augmenting the optimisation
problems exploited for the control synthesis by a set of LMI constraints to
guarantee that the poles of the closed-loop system are located in a suitable
subregion. Indeed, without having additional constraints to control the
closed-loop transient behavior, a very sparse structure may be identified
whilst an unsatisfactory time response and closed-loop damping may oc-
cur. This is a drawback of the existing literature for sparse control design
that this paper aims to resolve. Moreover, as we take into consideration
the mixed sparse multi-channel ℋ2 DOF design problem (which can read-
ily be extended to sparse multi-channel ℋ2/ℋ∞ DOF design problem), a
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natural byproduct is to develop a form of pole clustering LMI character-
isation which is applicable to our particular problem formulation. The
contribution of this paper for this goal will extend the results in Chilali
and Gahinet (1996) to more general LMI regions that can be combined
with the specific LMI constraints developed for constraining the control
performance.

- This approach has an immediate application in fault tolerant control
(FTC) and specifically control allocation (CA) (Härkegård & Glad, 2005;
Johansen & Fossen, 2013) for over-actuated/sensed systems. A distinct
subsection is devoted to this issue.

Notation: [Φ𝑖𝑗]𝑟×𝑟 is a (block) matrix with (block) entries Φ𝑖𝑗, 𝑖 = 1,⋯,𝑟, 𝑗 =
1,⋯,𝑟, and diag[Φ𝑖]

𝑟
𝑖=1 is a (block) diagonal matrix with (block) entries Φ𝑖, 𝑖 =

1,⋯,𝑟. Moreover, col(𝜈𝑖(𝑡))𝑟
𝑖=1 denotes a (block) vector with (block) entries 𝜈𝑖(𝑡), 𝑖 =

1,⋯,𝑟. herm(𝐹 ), where 𝐹 is a square matrix, stands for 𝐹 + 𝐹 ∗, and ∗ denotes
Hermitian transpose. ℂ denotes the complex plane and ̄𝑧 denotes the conjugate
of 𝑧.

2 Problem Statement and Preliminaries
2.1 Problem statement
Consider the following LTI system,

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵2𝑢(𝑡) + 𝐵1𝑤(𝑡)
𝑧(𝑡) = 𝐶2𝑥(𝑡) + 𝐷2𝑢(𝑡)
𝑦(𝑡) = 𝐶𝑥(𝑡),

(1)

where 𝑥 ∈ ℝ𝑛, 𝑢 ∈ ℝ𝑚, 𝑦 ∈ ℝ𝑝, 𝑧 ∈ ℝ𝑞 and 𝑤 ∈ ℝ𝑚𝑤 are the state vector, control
input vector, output vector, ℋ2 performance output vector, and the external
disturbance of the system, respectively. The matrices in (1) are constant and of
appropriate dimensions. It is also assumed that (𝐴,𝐵2) is stabilisable and (𝐴,𝐶)
is detectable. The main objective of this paper which is addressing the problem
of optimal selection of the actuators and sensors can be stressed as the following
problem:

Problem 1. Given a system with the state space representation in Equation (1),
select a subset of available actuators/sensors and simultaneously find a controller
that employs only the selected subset of actuators/sensors while minimising the
degradation of an optimisation metric, say ℋ2 norm of the closed-loop transfer
function from 𝑤 to 𝑧, relative to the case where all the components are exploited.

To address Problem 1, we firstly construct a framework for the design of a
controller which uses a priori specified subset of potential sensors and actuators.
This framework can be employed to cope with different sensing and actuating
capabilities.
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Problem 2. Given a system with the state space representation in Equation (1),
find a controller employing a priori specified subset of potential actuators/sensors
which minimises an optimisation metric, say ℋ2 norm of the closed-loop transfer
function from 𝑤 to 𝑧.

In order to deal with Problem 2, this paper tackles the DOF synthesis prob-
lem with multichannel ℋ2 constraints as well as structural constraints. In what
follows, to avoid the conservatism introduced by the so-called quadratic ap-
proach for the design of feedback gains with respect to multichannel ℋ2 (or
mixed ℋ2/ℋ∞) performance specifications, we develop a novel LMI method for
the multichannel ℋ2 DOF problem that can handle the requirements in Prob-
lem 2. Later in this paper, we will propose a method for addressing the issue
of Problem 1 which can be regarded as optimal simultaneous actuator/sensor
selection problem. Before doing so, let us present some definitions which we will
make use of later in this paper.

Definition 1. A matrix is said to be a structure matrix if its elements are either
0 or 1. The structure matrix of a block matrix 𝑌 = [𝑌𝑖𝑗]𝑚×𝑛 with 𝑌𝑖𝑗 ∈ ℝ𝑟𝑖×𝑠𝑗 is
S(𝑌 ) ≜ [𝑠𝑖𝑗]𝑚×𝑛 with

𝑠𝑖𝑗 = {
0 if 𝑌𝑖𝑗 = 0
1 otherwise.

Definition 2. Two matrices 𝑌1 and 𝑌2 are said to have the same structure if
S(𝑌1) = S(𝑌2).

Definition 3. The matrix 𝑌1 with S(𝑌1) ≜ [𝑠1
𝑖𝑗]𝑚×𝑛 is said to be structurally a

subset of 𝑌2 with S(𝑌2) ≜ [𝑠2
𝑖𝑗]𝑚×𝑛 while 𝑠2

𝑖𝑗 −𝑠1
𝑖𝑗 ≥ 0. We denote this as S(𝑌1) ⊆ S(𝑌2).

Definition 4. A matrix ̃𝑌 is said to be sparse row-wise (column-wise) if its
structure matrix Γ̃, i.e. S( ̃𝑌 ) = Γ̃, includes (at least) one row (column) of all
zeros.

2.2 Controller dynamic
We represent the DOF controller 𝒦(𝑠) in state-space as:

𝑥̇𝑐(𝑡) = 𝐴𝑐𝑥𝑐(𝑡) + 𝐵𝑐𝑦(𝑡)
𝑢(𝑡) = 𝐶𝑐𝑥𝑐(𝑡) + 𝐷𝑐𝑦(𝑡),

(2)

where 𝑥𝑐 ∈ ℝ𝑛 is the state vector of the controller and 𝐴𝑐, 𝐵𝑐, 𝐶𝑐 and 𝐷𝑐 are of
appropriate dimensions. Let (𝐴𝑐𝑙, 𝐵𝑐𝑙, 𝐶𝑐𝑙) denotes realisation of 𝑇𝑤𝑧 ≔ 𝐶𝑐𝑙(𝑠𝐼 −
𝐴𝑐𝑙)−1𝐵𝑐𝑙 (the closed loop transfer function from 𝑤(𝑡) to 𝑧(𝑡)), where

𝐴𝑐𝑙 ≔ [
𝐴 + 𝐵2𝐷𝑐𝐶 𝐵2𝐶𝑐

𝐵𝑐𝐶 𝐴𝑐 ], 𝐵𝑐𝑙 ≔ [
𝐵1
0 ],

𝐶𝑐𝑙 ≔ [𝐶2 + 𝐷2𝐷𝑐𝐶 𝐷2𝐶𝑐] .
(3)
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Furthermore, as this paper aims to design the DOF subject to the constraints
on the available sensors/actuators, we define S(𝒦𝑎) ⊆ Γ𝑎, S(𝒦𝑠) ⊆ Γ𝑠, where Γ𝑎
and Γ𝑠 are a priori specified sparse row-wise and column-wise structures, respec-
tively, and 𝒦𝑎 ≜ [ 𝐶𝑐 𝐷𝑐 ], 𝒦𝑠 ≜ [ 𝐵𝑇

𝑐 𝐷𝑇
𝑐 ]𝑇. It is not hard to realise that Γ𝑎 and

Γ𝑠 can embody the pre-selected subsets of actuators and sensors, respectively.
In other words, each nonzero row of 𝒦𝑎 corresponds to an actuator used by
the DOF controller, and likewise, each nonzero column of 𝒦𝑠 corresponds to a
sensor employed by the DOF controller, and thus, the number of nonzero rows
(columns) of 𝒦𝑎 (𝒦𝑠) is associated with the number of actuators (sensors).
We now provide a formulation for multichannel ℋ2 DOF synthesis with the as-
sumption of availability of all potential sensors or actuators. We later consider
the problem of control synthesis subject to sparse row-wise and column-wise
structure constraints from this full formulation.

2.3 LMI characterisation
2.3.1 Structured ℋ2 LMI characterisation for DOF synthesis

Lemma 2.1. Let (𝐴𝑐𝑙, 𝐵𝑐𝑙, 𝐶𝑐𝑙) denotes realisation of 𝑇𝑤𝑧. The following three
statements, involving 𝑋 > 0, 𝑍 > 0, a general matrix variable 𝐺 are equivalent.

𝑖) 𝐴𝑐𝑙 is stable and ‖𝐶𝑐𝑙(𝑠𝐼 − 𝐴𝑐𝑙)−1𝐵𝑐𝑙‖
2
2 < 𝛾.

𝑖𝑖) ∃ 𝑋 > 0 and 𝑍 > 0 such that

[
𝐴𝑐𝑙𝑋 + 𝑋𝐴𝑇

𝑐𝑙 ⋆
𝐶𝑐𝑙𝑋 −𝛾𝐼] < 0,

[
−𝑍 ⋆
𝐵𝑐𝑙 −𝑋] < 0,

trace(𝑍) < 1.

𝑖𝑖𝑖) ∃ 𝑋 > 0, 𝑍 > 0 and 𝐺 such that

⎡
⎢
⎢
⎣

−(𝐺 + 𝐺𝑇) ⋆ ⋆
𝐴𝑐𝑙𝐺 + 𝑋 + 𝐺 −2𝑋 ⋆

𝐶𝑐𝑙𝐺 0 −𝛾𝐼

⎤
⎥
⎥
⎦

< 0, (4)

[
−𝑍 ⋆
𝐵𝑐𝑙 −𝑋] < 0, (5)

trace(𝑍) < 1. (6)

Proof. Refer to the Appendix A.

Remark 1. The advantage of the item 𝑖𝑖𝑖) over the LMI condition derived in
Apkarian, Tuan, and Bernussou (2001) lies within the smaller dimension of the
first LMI in 𝑖𝑖𝑖) than that of in Apkarian et al. (2001).
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It should be emphasised that the specific LMI characterisation in (4) enables
us to utilise different Lyapunov matrices (𝑋) for each of the involved LMI con-
straints in the problem. Moreover, the advantage of the LMI (4) lies within the
fact that the product terms between the matrix 𝐴𝑐𝑙 and the Lyapunov matrices
have disappeared. More importantly, the control gain can be obtained indepen-
dent of the Lyapunov matrix. This feature has a significant implication in the
design of controllers satisfying multiple objectives such as the multi-channel ℋ2
(or even mixed multi-channel ℋ2/ℋ∞) specifications. It is also worth mention-
ing that, usually, the projection lemma (Gahinet & Apkarian, 1993) is used, in
the field of robust control, to eliminate the variable which contains the controller
state-space data, and thus, deal only with a set of LMIs which include less num-
ber of decision variables. However, as can be seen, the proposed methodology
here utilises the projection lemma in order to introduce an additional matrix
variable 𝐺 to the problem.

2.3.2 Multi-channel ℋ2 synthesis using improved LMI characterisa-
tions

Our target is primarily to compute a full-order DOF 𝒦(𝑠) presented in (2) which
meets several performance specifications of the form

minimise ‖𝑇𝑤𝑘𝑧𝑘‖2
(7)

subject to ‖𝑇𝑤1𝑧1‖
2

2
< 𝛾1,⋯,‖𝑇𝑤𝑘−1𝑧𝑘−1‖

2

2
< 𝛾𝑘−1,

‖𝑇𝑤𝑘+1𝑧𝑘+1‖
2

2
< 𝛾𝑘+1,⋯,‖𝑇𝑤𝒩𝑧𝒩‖

2

2
< 𝛾𝒩,

where ‖𝑇𝑤𝑖𝑧𝑖‖2
≔ ‖𝐿𝑖𝑇𝑤𝑧𝑅𝑖‖2, in which 𝐿𝑖 and 𝑅𝑖 are selection matrices that

determine the involved channels in the associated constraint. Hereafter in this
paper, 𝒩 denotes the number of channels. Furthermore, a realisation of the
closed loop system 𝑇𝑤𝑖𝑧𝑖

will be obtained by replacing matrices 𝐵1, 𝐶2 and 𝐷2 by
𝐵1,𝑖, 𝐶2,𝑖 and 𝐷2,𝑖, 𝑖 = 1,⋯,𝒩, respectively, in (1). Notice that, in such a case, the
closed-loop performance is ensured by constraining (minimising) the ℋ2 norm
of the closed-loop transfer functions associated with the (input/output) signals
𝑤𝑖 = 𝑅𝑖𝑤 and 𝑧𝑖 = 𝐿𝑖𝑧; see De Oliveira, Gerome, and Bernussou (1999); Scherer,
Gahinet, and Chilali (1997). Letting each channel to be associated with the LMI
constraints in (4), (5), and (6), the desired characterisation with multi-channel
specifications can be obtained by introducing a different Lyapunov variable for
every channel and exploiting common variable 𝐺 for all channels. Hence, it is
readily verified that using the part 𝑖𝑖𝑖) of Lemma 2.1, the LMI characterisation
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for each channel 𝑙 can be written as:

⎡
⎢
⎢
⎣

−(𝐺 + 𝐺𝑇) ⋆ ⋆
𝐴𝑐𝑙𝐺 + 𝑋𝑙 + 𝐺 −2𝑋𝑙 ⋆

𝐶𝑐𝑙,𝑙𝐺 0 −𝛾𝑙𝐼

⎤
⎥
⎥
⎦

< 0, (8)

[
−𝑍𝑙 ⋆
𝐵𝑐𝑙,𝑙 −𝑋𝑙]

< 0, (9)

trace(𝑍𝑙) < 1, (10)

where 𝑋𝑙 > 0, 𝑍𝑙 > 0 and 𝐺 are LMI variables. Now the multi-objective problem
described in (7) can be set as

minimise 𝛾𝑘 (11)
subject to (8), (9), and (10) for 𝑘-th channel,

(8), (9), and (10) for 𝑙-th channel, with given 𝛾𝑙, 𝑙 = 1,⋯,𝒩 , 𝑙 ≠ 𝑘.

2.3.3 Regional pole placement

An adequate closed-loop transient response can be ensured by locating the
closed-loop poles in a predetermined region (Chilali & Gahinet, 1996). As the
final goal of this paper is to optimise the number of actuators/sensors employed
in the control loop, which is equivalent to row/column-wise sparsification of the
feedback gain, without having additional constraints to control the closed-loop
transient behavior, a very sparse structure might be identified, whereas an un-
satisfactory time response and closed-loop damping may occur. As a result,
the objective will be not only to sparsify the feedback gain while enforcing per-
formance constraints of the closed-loop system, but also to guarantee that the
poles of the closed-loop system are located in a suitable subregion.

In brief, an LMI region is a subset 𝒟 of the complex plane as

𝒟 ≔ {𝑧 ∈ ℂ ∶ 𝑓𝒟(𝑧) ≜ Ξ + 𝑧Π + ̄𝑧Π𝑇 < 0} (12)

in which Ξ = Ξ𝑇 ∈ ℝ𝜉×𝜉 and Π ∈ ℝ𝜉×𝜉 are real matrices. 𝑓𝒟(𝑧) is referred to as
the characteristic equation of the region 𝒟.

Definition 5 (Chilali, Gahinet, and Apkarian, 1999). A real matrix 𝒜 is said
to be 𝒟-stable if all its eigenvalues lie within the LMI region 𝒟.

Lemma 2.2 (Chilali et al., 1999). A real matrix 𝒜 is 𝒟-stable iff a symmetric
matrix 𝑋𝒟 > 0 exists such that

Ξ ⊗ 𝑋𝒟 + Π ⊗ (𝑋𝒟𝒜) + Π𝑇 ⊗ (𝒜 𝑇𝑋𝒟) < 0, (13)

where ⊗ denotes the Kronecker product.

However, the regional pole placement problem considered in e.g. Chilali
and Gahinet (1996) or Chilali et al. (1999) is developed for the conventional
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LMI characterisation of control problems such as ℋ2 and/or ℋ∞. As discussed
in Chilali et al. (1999), the synthesis problem is not convex when different
Lyapunov matrices are used in the corresponding LMI region constraints. We
alternatively extend the regional pole placement constraints in terms of the
Lyapunov matrices 𝑋𝑙, 𝑙 = 1,⋯,ℳ (ℳ hereafter denotes the number of involved
LMI region constraints) and the instrumental matrix 𝐺 to eliminate the product
terms between the system matrix 𝐴𝑐𝑙 and the Lyapunov matrix 𝑋. A sufficient
condition is presented in the following theorem which is a suitable one for the
control synthesis purposes.

Theorem 2.3. Let 𝒜, 0 ≤ Ξ ∈ ℝ𝜉×𝜉 and Π ∈ ℝ𝜉×𝜉 be real matrices. If there exist
𝐺 and symmetric positive definite matrix 𝑋 such that:

⎡
⎢
⎢
⎣

−𝐼𝜉 ⊗ (𝐺 + 𝐺𝑇) ⋆ ⋆
Π ⊗ (𝒜𝐺) + 𝐼𝜉 ⊗ 𝑋 + 𝐼𝜉 ⊗ 𝐺 −2𝐼𝜉 ⊗ 𝑋 ⋆

Ξ
1
2 ⊗ 𝐺 0 −𝐼𝜉 ⊗ 𝑋

⎤
⎥
⎥
⎦

< 0, (14)

then 𝒜 is 𝒟-stable.

Proof. Refer to the Appendix B.

This result is indeed a generalisation of the extended Lyapunov theorem
presented in Theorem 3.1 of Apkarian et al. (2001). In other words, with Ξ = 0
and Π = 1, (14) reduces to

[
−(𝐺 + 𝐺𝑇) ⋆

𝒜𝐺 + 𝑋 + 𝐺 −2𝑋] < 0, (15)

whose equivalence to the standard Lyapunov stability inequality for continuous-
time LTI systems can be demonstrated through a similar manner presented in
the proof of Lemma 2.1. As stated before, pole clustering specifications can be
combined with other LMI performance constraints. For preserving tractabil-
ity, the synthesis problem e.g. in Chilali and Gahinet (1996) requires to use
the same matrix decision variable for all the LMIs involved in the problem, at
the expense of additional conservatism. However, the extended LMI region de-
veloped here obviates the need for utilising the same Lyapunov variable in the
synthesis problem. This also leads to the possibility to combine the pole cluster-
ing LMI regions to the aforementioned performance constraints in Section 2.3.2.

Specifically, we may aim to confine the closed-loop poles to the region S(𝛼,𝑟,𝜃)
(see Chilali and Gahinet (1996)) which can ensure a minimum decay rate 𝛼, a
minimum damping ratio 𝜁 = cos𝜃, and a maximum undamped natural frequency
𝜔𝑑 = 𝑟sin𝜃. The LMI region for an 𝛼-stability, i.e. Re(𝑧) < −𝛼, can be obtained
through (14), with

Ξ = 2𝛼, Π = 1. (16)

Moreover, by letting

Ξ = 0, Π = [ sin𝜃 cos𝜃
−cos𝜃 sin𝜃 ] , (17)

10



the LMI region for a conic sector S(0,0,𝜃) is achieved. Furthermore, a disk
centered at the origin with radius 𝑟 corresponds to

Ξ = [ −𝑟 0
0 −𝑟 ] , Π = [ 0 1

0 0 ] . (18)

However, for this special pole clustering constraint, as Ξ is not a semi-positive
definite matrix, the LMI region cannot be obtained through (14). We can
alternatively state the following theorem.

Theorem 2.4. Let 𝒜 be a real matrix. The following statements are equivalent:

1) The eigenvalues of 𝒜 lie in a disk centered at the origin with radius 𝑟.

2) There exists a symmetric matrix 𝑋 > 0 such that

1
𝑟

𝒜𝑋𝒜 𝑇 − 𝑟𝑋 < 0. (19)

3) There exists a symmetric matrix 𝑋 > 0 such that

[
−𝑟𝑋 ⋆
𝑋𝒜 𝑇 −𝑟𝑋] < 0. (20)

4) There exist a symmetric matrix 𝑋 > 0, and a matrix 𝐺 such that

[
−𝑟𝑋 ⋆

𝐺𝑇𝒜 𝑇 −(𝐺 + 𝐺𝑇) + 1
𝑟 𝑋] < 0. (21)

Proof. Refer to the Appendix C.

Notice that the above theorem with 𝑟 = 1 reduces to the standard and ex-
tended Lyapunov stability inequality for discrete-time linear systems, respec-
tively; e.g. see de Oliveira, Bernussou, and Geromel (1999).

Remark 2. Exploiting a common 𝐺 may also lead to conservatism compared to
the methods e.g. in Leite and Peres (2003). However, the methods in the afore-
mentioned references are not beneficial for the control synthesis aims, unless
gain scheduled controllers (Montagner & Peres, 2005) are considered. More-
over, by employing two instrumental variables, a different sufficient condition
for robust 𝒟-stability has been developed in Peaucelle, Arzelier, Bachelier, and
Bernussou (2000) which is not applicable to the continuous time control syn-
thesis purposes. Nevertheless, the approach here can achieve less conservative
results through employing non-common Lyapunov matrix variables for each de-
sign specification.
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3 Row-Column-Sparse Multi-Channel ℋ2 DOF
With Regional Pole Placement

Based on the discussions given in the previous section, we specify the require-
ments of Problem 2 in the following Problem.

Problem 3. Given a system with the state space representation in Equation (1),
design a DOF such that it

• ensures the ℋ2 performances with respect to channels 𝑗 = 1,⋯,𝒩 , 𝑙 ≠ 𝑘
which means that for a prescribed closed loop ℋ2 performance 𝛾𝑙 > 0, we
have ‖𝑇𝑤𝑙𝑧𝑙‖

2

2
< 𝛾𝑙;

• places the closed-loop poles in the predefined subregion;

• minimises the ℋ2 performance of the 𝑘-th channel subject to the above
constraints and S(𝒦𝑎) ⊆ Γ𝑎, S(𝒦𝑠) ⊆ Γ𝑠, where Γ𝑎 and Γ𝑠 are given row and
column sparse structures, respectively, and 𝒦𝑎 ≜ [ 𝐶𝑐 𝐷𝑐 ], 𝒦𝑠 ≜ [ 𝐵𝑇

𝑐 𝐷𝑇
𝑐 ]𝑇.

This problem can be formulated as an optimisation program in decision
variables 𝑋𝑙 > 0, 𝑍𝑙 > 0, 𝑙 = 1, ⋯, 𝒩 + ℳ, 𝐺, 𝐴𝑐, 𝐵𝑐, 𝐶𝑐, 𝐷𝑐 and 𝛾𝑘 > 0:

minimise 𝛾𝑘 (22)
subject to (8), (9), and (10), for 𝑘-th channel,

(8), (9), and (10), for 𝑙-th channel, with given 𝛾𝑙, 𝑙 = 1,⋯,𝒩 , 𝑙 ≠ 𝑘,
(14) and/or (21) (with 𝒜 ≔ 𝐴𝑐𝑙, 𝑋 ≔ 𝑋𝑙, 𝑙 = 𝒩 + 1,⋯,𝒩 + ℳ),
S(𝒦𝑎) ⊆ Γ𝑎 and S(𝒦𝑠) ⊆ Γ𝑠,

where Γ𝑎 and Γ𝑠 are preset row and column sparse structure matrices respectively.
A difficulty in (22) is that it involves nonlinear terms (𝐴𝑐𝑙𝐺). The nonlinearities
can be eliminated by some appropriate change of controller variables. In what
follows, a change of variables is performed, inspired by the one introduced in
Apkarian et al. (2001), to remove the nonlinear terms. We let the instrumental
variable 𝐺 and 𝑉 = 𝐺−1 be of the form:

𝐺 ≔ [
𝐺1 𝐺3
𝐺2 𝐺4], 𝑉 ≔ [

𝑉1 𝑉3
𝑉2 𝑉4], (23)

where dim 𝐺1 = dim 𝑉1 = dim 𝐴. As stated in e.g. Apkarian et al. (2001) and
Chilali and Gahinet (1996), without loss of generality it can be assumed that
𝐺2 and 𝑉2 are invertible. Now consider the following invertible matrices:

T𝐺 ≔ [
𝐺1 𝐼
𝐺2 0], T𝑉 ≔ [

𝐼 𝑉1
0 𝑉2]. (24)

It can readily be deduced that

𝑉T𝐺 = T𝑉, 𝐺T𝑉 = T𝐺.
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Now the following theorem represents alternative tractable conditions which are
useful for solving the optimisation problem (22).

Theorem 3.1. Let 𝒟 be an arbitrary LMI region with (12) as its characteristic
function. The sparse row-wise and column-wise multi-channel ℋ2 DOF prob-
lem in (22) is solvable iff the following optimisation program has a solution in

decision variables 𝑋̃𝑙 = [
𝑋̃𝑙,1 𝑋̃𝑙,2
𝑋̃𝑇

𝑙,2 𝑋̃𝑙,3 ] > 0, 𝑍𝑙 > 0, 𝑙 = 1, ⋯, 𝒩 + ℳ, 𝑉1, 𝐺1, 𝐻, ̃𝐴𝑐,

̃𝐵𝑐, ̃𝐶𝑐, 𝐷̃𝑐 and 𝛾𝑘 > 0:

minimise 𝛾𝑘 (25)
subject to (26), (27), and (10), for 𝑘-th channel,

(26), (27), and (10), for 𝑙-th channel, with given 𝛾𝑙, 𝑙 = 1,⋯,𝒩 , 𝑙 ≠ 𝑘,
(28) and/or (29) for 𝑙 = 𝒩 + 1,⋯,𝒩 + ℳ,
S( ̃𝒦𝑎) ⊆ Γ𝑎 and S( ̃𝒦𝑠) ⊆ Γ𝑠,

where ̃𝒦𝑎 ≔ [ ̃𝐶𝑐 𝐷̃𝑐 ], ̃𝒦𝑠 ≔ [ ̃𝐵𝑐 𝐷̃𝑐 ], and

⎡
⎢
⎢
⎢
⎢
⎣

−(𝐺1 + 𝐺𝑇
1) ⋆ ⋆ ⋆ ⋆

−𝐻𝑇 − 𝐼 −(𝑉1 + 𝑉 𝑇
1 ) ⋆ ⋆ ⋆

𝐴𝐺1 + 𝐵2 ̃𝐶𝑐 + 𝑋̃𝑙,1 + 𝐺1 𝐴 + 𝐵2𝐷̃𝑐𝐶 + 𝑋̃𝑙,2 + 𝐼 −2𝑋̃𝑙,1 ⋆ ⋆
̃𝐴𝑐 + 𝑋̃𝑇

𝑙,2 + 𝐻𝑇 𝑉 𝑇
1 𝐴 + ̃𝐵𝑐𝐶 + 𝑋̃𝑙,3 + 𝑉 𝑇

1 −2𝑋̃𝑇
𝑙,2 −2𝑋̃𝑙,3 ⋆

𝐶2𝐺1 + 𝐷2 ̃𝐶𝑐 𝐶2 + 𝐷2𝐷̃𝑐𝐶 0 0 −𝛾𝑙𝐼

⎤
⎥
⎥
⎥
⎥
⎦

< 0 (26)

⎡
⎢
⎢
⎣

−𝑍 ⋆ ⋆
𝐵1 −𝑋̃𝑙,1 ⋆

𝑉 𝑇
1 𝐵1 −𝑋̃𝑇

𝑙,2 −𝑋̃𝑙,3

⎤
⎥
⎥
⎦

< 0 (27)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−𝐼𝜉 ⊗ [
𝐺1 + 𝐺𝑇

1 ⋆
𝐻𝑇 + 𝐼 𝑉1 + 𝑉 𝑇

1 ] ⋆ ⋆

Π ⊗ [
𝐴𝐺1 + 𝐵2 ̃𝐶𝑐 𝐴 + 𝐵2𝐷̃𝑐𝐶

̃𝐴𝑐 𝑉 𝑇
1 𝐴 + ̃𝐵𝑐𝐶] + 𝐼𝜉 ⊗ [

𝑋̃𝑙,1 ⋆
𝑋̃𝑇

𝑙,2 𝑋̃𝑙,3] + 𝐼𝜉 ⊗ [
𝐺1 𝐼
𝐻𝑇 𝑉 𝑇

1 ] −2𝐼𝜉 ⊗ [
𝑋̃𝑙,1 ⋆
𝑋̃𝑇

𝑙,2 𝑋̃𝑙,3] ⋆

Ξ
1
2 ⊗ [

𝐺1 𝐼
𝐻𝑇 𝑉 𝑇

1 ] 0 −𝐼𝜉 ⊗ [
𝑋̃𝑙,1 ⋆
𝑋̃𝑇

𝑙,2 𝑋̃𝑙,3]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0

(28)

⎡
⎢
⎢
⎢
⎢
⎣

−𝑟𝑋̃𝑙,1 ⋆ ⋆ ⋆
−𝑟𝑋̃𝑇

𝑙,2 −𝑟𝑋̃𝑙,3 ⋆ ⋆
𝐺𝑇

1𝐴𝑇 + ̃𝐶𝑇
𝑐 𝐵𝑇

2
̃𝐴𝑇
𝑐 −(𝐺1 + 𝐺𝑇

1) + 1
𝑟 𝑋̃𝑙,1 ⋆

(𝐴 + 𝐵2𝐷𝑐𝐶)𝑇 𝐴𝑇𝑉1 + 𝐶𝑇 ̃𝐵𝑇
𝑐 −𝐻𝑇 − 𝐼 + 1

𝑟 𝑋̃𝑇
𝑙,2 −(𝑉1 + 𝑉 𝑇

1 ) + 1
𝑟 𝑋̃𝑙,3

⎤
⎥
⎥
⎥
⎥
⎦

< 0 (29)

Proof. Performing congruence transformations diag(T𝑉,T𝑉, 𝐼), diag(𝐼,T𝑉), diag(𝐼𝜉 ⊗
T𝑉, 𝐼𝜉 ⊗T𝑉, 𝐼𝜉 ⊗T𝑉), and diag(T𝑉,T𝑉) in (8), (9), (14) and (21) respectively, along
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with the following change of variables:

̃𝐴𝑐 ≔𝑉 𝑇
1 𝐴𝐺1 + 𝑉 𝑇

1 𝐵2𝐷𝑐𝐶𝐺1 + 𝑉 𝑇
2 𝐵𝑐𝐶𝐺1 + 𝑉 𝑇

1 𝐵2𝐶𝑐𝐺2 + 𝑉 𝑇
2 𝐴𝑐𝐺2, (30)

̃𝐵𝑐 ≔𝑉 𝑇
1 𝐵2𝐷𝑐 + 𝑉 𝑇

2 𝐵𝑐, (31)
̃𝐶𝑐 ≔𝐷𝑐𝐶𝐺1 + 𝐶𝑐𝐺2, (32)

𝐷̃𝑐 ≔𝐷𝑐, (33)
𝑋̃𝑙 ≔T𝑇

𝑉𝑋𝑙T𝑉,
𝐻 ≔𝐺𝑇

1𝑉1 + 𝐺𝑇
2𝑉2,

lead to the LMIs in (26), (27), (28) and (29). Hence, the optimisation problem
in (22) is equivalent to optimisation problem in (25).

Remark 3. It is readily derived that

[
̃𝐴𝑐 ̃𝐵𝑐
̃𝐶𝑐 𝐷̃𝑐]

= [
𝑉 𝑇

2 𝑉 𝑇
1 𝐵2

0 𝐼 ][
𝐴𝑐 𝐵𝑐
𝐶𝑐 𝐷𝑐][

𝐺2 0
𝐶𝐺1 𝐼] + [

𝑉 𝑇
1 𝐴𝐺1 0

0 0]. (34)

As a result, it can be seen

̃𝒦𝑎 = 𝒦𝑎 [
𝐺2 0

𝐶𝐺1 𝐼].

Thus, since post-multiplication retains the row sparsity, it can be stated that 𝒦𝑎
is row-sparse iff ̃𝒦𝑎 is row-sparse. Moreover, as

̃𝒦𝑠 = [
𝑉 𝑇

2 𝑉 𝑇
1 𝐵2

0 𝐼 ]𝒦𝑠,

and since pre-multiplication retains the column sparsity, then 𝒦𝑠 is column-
sparse iff ̃𝒦𝑠 is column sparse.

Obtaining a solution from (25), the DOF controller can readily be found
from:
1) computing a full rank factorisation 𝐺𝑇

2𝑉2 of 𝐻 − 𝐺𝑇
1𝑉1 and thus invertible 𝐺2

and 𝑉2;
2) solving the equations (30)-(33) for controller matrices 𝐴𝑐, 𝐵𝑐, 𝐶𝑐 and 𝐷𝑐.

4 Optimal Actuator/Sensor Selection Problem
While the previous section considered the design of a multi-channel ℋ2 DOF
with a priori specified set of actuators and sensors, this section aims to ad-
dress the objective mentioned in Problem 1, which is exploring favourable row
and column sparse DOF gains (selection of actuators and sensors). To do so,
an optimisation framework is proposed here, by incorporating the column-wise
sparsity of ̃𝒦𝑠 and row-wise sparsity of ̃𝒦𝑎 into the index function, which is
encapsulated in the following problem.
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Problem 4. Given a system with the state space representation in Equation (1),

find 𝑋̃𝑙 = [
𝑋̃𝑙,1 𝑋̃𝑙,2
𝑋̃𝑇

𝑙,2 𝑋̃𝑙,3 ] > 0, 𝑍𝑙 > 0, 𝑙 = 1, ⋯, 𝒩 + ℳ, 𝑉1, 𝐺1, 𝐻, ̃𝐴𝑐, ̃𝐵𝑐, ̃𝐶𝑐, 𝐷̃𝑐

and 𝛾𝑘 > 0 in the following optimisation program:

minimise 𝛾𝑘 + 𝜂𝑎 ‖ ̃𝒦𝑎‖row−ℓ0
+ 𝜂𝑠 ‖ ̃𝒦𝑠‖col−ℓ0

, (35)

subject to the constraints given in (25), excluding the structural constraints on
̃𝒦𝑎 and ̃𝒦𝑠, where the row-ℓ0 (col-ℓ0) is a quasi-norm that counts the number

of non-zero rows (columns) of ̃𝒦𝑎 ( ̃𝒦𝑠), and 𝜂𝑎 > 0 (𝜂𝑠 > 0) is the regularisation
parameter that implies the emphasis on the row-sparsity (column-sparsity) of

̃𝒦𝑎 ( ̃𝒦𝑠); i.e. a larger 𝜂𝑎 (𝜂𝑠) will result in a more row-sparse (column-sparse)
̃𝒦𝑎 ( ̃𝒦𝑠).

Clearly (35) is a combinatorial problem and broadly speaking impossible to
solve. This is because an intractable combinatorial search is required to ad-
dress this problem whose computation time grows faster than polynomial, as
the order of the system under study grows (Schuler et al., 2014). In the litera-
ture, several alternatives such as ℓ1-norm or weighted ℓ1-norm are proposed as
convex relaxations of the ℓ0-quasi-norm (Candes, Wakin, & Boyd, 2008). The
so-called reweighted ℓ1 (REL1) minimisation method (Candes et al., 2008) is
an iterative scheme, in which at each iteration a convex optimisation problem
is solved by employing weighted ℓ1-norm rather than the quasi ℓ0-norm, whilst
the weights are updated inversely proportional to the previous iteration’s solu-
tion. The REL1 algorithm has recently been used by a number of researchers
(e.g. see Fardad and Jovanovic (2014), Zoltowski, Dhingra, Lin, and Jovanovic
(2014)) for the design of sparse controllers for the distributed systems. Notice
that the variable selection in the aforementioned papers typically amounts to
the selection of important individual variables (elements in the feedback gain)
rather than the important groups of variables (rows or columns). The contri-
bution of this paper, in this regard, is to introduce a novel method that is able
to penalise groups of variables (rows or columns in a matrix), so that a sparse
row/column-wise DOF controller can be identified while minimising the perfor-
mance degradation of the closed-loop system. Let us now relax Problem 4 as
follows:

Problem 5. Given a system with the state space representation in Equation (1),

find 𝑋̃𝑙 = [
𝑋̃𝑙,1 𝑋̃𝑙,2
𝑋̃𝑇

𝑙,2 𝑋̃𝑙,3 ] > 0, 𝑍𝑙 > 0, 𝑙 = 1, ⋯, 𝒩 + ℳ, 𝑉1, 𝐺1, 𝐻, ̃𝐴𝑐, ̃𝐵𝑐, ̃𝐶𝑐, 𝐷̃𝑐

and 𝛾𝑘 > 0 in the following convex optimisation program:

minimise 𝛾𝑘 + 𝜂𝑎𝑓( ̃𝒦𝑎) + 𝜂𝑠𝑔( ̃𝒦𝑠), (36)

subject to the constraints given in (25), excluding the structural constraints on
̃𝒦𝑎 and ̃𝒦𝑠, where 𝑓(⋅) (𝑔(⋅)) denotes the relaxed row-sparsity (column-sparsity)

promoting function.

Different choices for relaxed row/column-sparsity promoting function will be
proposed in the following of this section.
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4.1 Row (column) sparsity promoting penalty function
Consider the row-sparsity promoting function as

𝑓( ̃𝒦𝑎) = ∑
𝑖,𝑗

𝑊𝑎,𝑖| ̃𝒦𝑎,𝑖𝑗|, (37)

where 𝑊𝑎,𝑖 denotes the weight corresponds to the 𝑖-th row of ̃𝒦𝑎. One may
now resort to update the weights inversely proportional to the ℓ1-norm of its
corresponding row in ̃𝒦𝑎 obtained at the previous iteration as:

𝑊 ℎ
𝑎,𝑖 = 1

∑𝑗 | ̃𝒦 (ℎ−1)
𝑎,𝑖𝑗 | + 𝜖

, (38)

where ℎ denotes the current iteration and 0 < 𝜖 ≪ 1 is used to provide stability,
and form the weighting matrix as 𝑊𝑎 = diag[𝑊𝑎,𝑖]𝑚

𝑖=1. One can also imagine a
variety of possible norms in place of (38), e.g. ℓ2-norm and ℓ∞-norm. Therefore
the update rule in (38) can be revised to:

𝑊 ℎ
𝑎,𝑖 = 1

√∑𝑗 | ̃𝒦 (ℎ−1)
𝑎,𝑖𝑗 |2 + 𝜖

, (39)

for ℓ2-norm, and

𝑊 ℎ
𝑎,𝑖 = 1

max
𝑗

(| ̃𝒦 (ℎ−1)
𝑎,𝑖𝑗 |) + 𝜖

, (40)

for ℓ∞-norm. Although we have found the one in (38) performs well in a wide
range of experiments, using ℓ2-norm or ℓ∞-norm can sometimes outperform
ℓ1-norm. Notice that these norms only indicate the method which allows us
to update the weighting matrix 𝑊𝑎, while the sparsity term in the objective
function is considered as the one in (37).

Remark 4. Instead of using (37) which is the weighted ℓ1-norm of ℓ1-norms
of the rows of ̃𝒦𝑎, one can use

𝑓( ̃𝒦𝑎) =
(∑

𝑖,𝑗
𝑊 2

𝑎,𝑖| ̃𝒦𝑎,𝑖𝑗|2
)

1
2

. (41)

It is not hard to comprehend that (41) denotes the weighted Frobenius-norm of
̃𝒦𝑎. As discussed in Candes et al. (2008), while unweighted ℓ2-norm minimisa-

tion does not encourage sparsity, its reweighted algorithm can be used as a (row
or column)-sparsity promoting function.

For the sensor selection problem, we can similarly replace column-ℓ0 by a
relaxed column-sparsity promoting function (𝑔( ̃𝒦𝑠)) for which different choices
can be considered, which are basically the counterparts of the ones given for
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the actuator selection problem. For instance, the column-sparsity promoting
function can be considered as:

𝑔( ̃𝒦𝑠) = ∑
𝑖,𝑗

| ̃𝒦𝑠,𝑖𝑗|𝑊𝑠,𝑗, (42)

while the update rule e.g. in (38) can be converted to:

𝑊 ℎ
𝑠,𝑗 = 1

∑𝑖 | ̃𝒦 (ℎ−1)
𝑠,𝑖𝑗 | + 𝜖

, (43)

and the weighting matrix is similarly formed as 𝑊𝑠 = diag[𝑊𝑠,𝑗]
𝑝
𝑗=1. An iterative

scheme for identifying a row-sparse ̃𝒦𝑎 and a column-sparse ̃𝒦𝑠 is proposed in
the next subsection.

4.2 Identification of row/column sparse patterns through
DOF

Define the matrices 𝑅𝑎 = [0(𝑛+𝑝)×𝑛 1(𝑛+𝑝)×𝑚 ] and 𝑅𝑠 = [0(𝑛+𝑚)×𝑛 1(𝑛+𝑚)×𝑝 ]
𝑇. The opti-

misation problem in (36), by letting 𝑓( ̃𝒦𝑎) and 𝑔( ̃𝒦𝑠) as (37) and (42) respec-
tively, is equivalent to

minimise 𝛾𝑘 + 𝜂𝑎trace(𝑅𝑎𝒲 ) + 𝜂𝑠trace(𝒲 𝑅𝑠) (44)
subject to (26), (27), and (10), for 𝑘-th channel,

(26), (27), and (10), for 𝑙-th channel, with given 𝛾𝑙, 𝑙 ≠ 𝑘, 𝑙 = 1,⋯,𝒩 ,
(28) and/or (29) for 𝑙 = 𝒩 + 1,⋯,𝒩 + ℳ,
− 𝒲 ≤ diag(𝐼,𝑊𝑎) ⋅ ̃𝒦 ⋅ diag(𝐼,𝑊𝑠) ≤ 𝒲 ,

where 𝑊𝑎 and 𝑊𝑠 denote the weighting matrices and the last inequality is
element-wise with 𝒲 ∈ ℝ(𝑛+𝑚)×(𝑛+𝑝) whose entries are nonnegative. Besides, to
solve the above optimisation problem, the following algorithm is utilised:

Algorithm 1. 1) With given 𝜖 > 0, 𝜅 > 0, 𝜂𝑎 > 0 and 𝜂𝑠 > 0, initialise 𝑊𝑎 =
𝐼𝑚, 𝑊𝑠 = 𝐼𝑝, ℎ = 1 and ̃𝒦 ℎ = 0.

2) Solve the minimisation problem (44) to obtain ̃𝒦 ⋆ and the associated
̃𝒦 ⋆
𝑎 = [ ̃𝐶⋆

𝑐 𝐷̃⋆
𝑐 ] and ̃𝒦 ⋆

𝑠 = [ ̃𝐵⋆
𝑐 𝐷̃⋆

𝑐 ]𝑇.

3) Update 𝑊 ℎ
𝑎,𝑖 using the update rule in (38) (or (39) or (40)) and its coun-

terpart 𝑊 ℎ
𝑠,𝑖 for sensor selection e.g. in (43), form 𝑊 ℎ

𝑎 = diag[𝑊 ℎ
𝑎,𝑖]

𝑚
𝑖=1 and

𝑊 ℎ
𝑠 = diag[𝑊 ℎ

𝑠,𝑗]
𝑝
𝑗=1.

5) If ‖ ̃𝒦 ⋆ − ̃𝒦 ℎ‖ ≤ 𝜅 go to Step 6, else ̃𝒦 ℎ = ̃𝒦 ⋆, ℎ = ℎ + 1 and return to
Step 2.

6) Let the unnecessary rows of ̃𝒦 ⋆
𝑎 and columns of ̃𝒦 ⋆

𝑠 be zero and return
Γ⋆

𝑎 = S( ̃𝒦 ⋆
𝑎 ) and Γ⋆

𝑠 = S( ̃𝒦 ⋆
𝑠 ).
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We denote the obtained structure of the minimisation problem (44), as
S( ̃𝒦𝑎) ≜ Γ𝑎 and S( ̃𝒦𝑠) ≜ Γ𝑠. Eventually, in order to find the multi-channel ℋ2
DOF associated with the achieved Γ𝑎 and Γ𝑠, we turn to the minimisation prob-
lem in (25).

4.3 Application to fault accommodation for over-actuated/over-
sensed systems

Let us rewrite the system in (1) for the cases that are subject to actuator/sensor
faults or failures:

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + ̃𝐵2(𝑡)𝑢(𝑡) + 𝐵1𝑤(𝑡) (45)
𝑧(𝑡) = ̃𝐶𝑧(𝑡)𝑥(𝑡) + 𝐷̃𝑧(𝑡)𝑢(𝑡)
𝑦(𝑡) = ̃𝐶(𝑡)𝑥(𝑡),

where ̃𝐵2(𝑡) = 𝐵2Φ𝑢(𝑡), 𝐷̃𝑧(𝑡) = 𝐷2Φ−1
𝑢 (𝑡), in which Φ𝑢(𝑡) = diag(𝜙𝑢,1(𝑡),⋯,𝜙𝑢,𝑚(𝑡)),

whereas 𝒦𝑢(𝑡) = diag(𝑘𝑢,1(𝑡),⋯,𝑘𝑢,𝑚(𝑡)) ≜ 𝐼𝑚 −Φ𝑢(𝑡) is referred to as the effective-
ness gain (Alwi & Edwards, 2010; Casavola & Garone, 2010) with 𝑘𝑢,𝑖(𝑡) denoting
some scalars satisfying 0 ≤ 𝑘𝑢,𝑖(𝑡) ≤ 1; i.e. 𝑘𝑢,𝑖(𝑡) = 0 implies that the 𝑖-th actua-
tor is fault-free, whilst 0 < 𝑘𝑢,𝑖(𝑡) < 1 represents a fault in the 𝑖-th actuator, and
𝑘𝑢,𝑖(𝑡) = 1 shows the actuator failure. Similarly, ̃𝐶(𝑡) = Φ𝑦(𝑡)𝐶, ̃𝐶𝑧(𝑡) = 𝐶𝑧Φ−1

𝑦 (𝑡)𝐶,
in which 𝐶𝑧 ∈ ℝ𝑞×𝑝, Φ𝑦(𝑡) = diag(𝜙𝑦,1(𝑡),⋯,𝜙𝑦,𝑝(𝑡)), with 𝜙𝑦,𝑗(𝑡) denoting some
scalars satisfying 0 ≤ 𝜙𝑦,𝑗(𝑡) ≤ 1; i.e. 𝜙𝑦,𝑗(𝑡) = 1 implies that the 𝑗-th sensor is
fault-free, whilst 0 < 𝜙𝑦,𝑗(𝑡) < 1 represents a fault in the 𝑗-th sensor, and 𝜙𝑦,𝑗(𝑡) = 0
demonstrates the sensor failure.

Assume the system (45) involves multiplicative faults. Employing an actua-
tor fault reconstruction framework such as the one in Tan and Edwards (2003)
or Kalman filter-based fault reconstruction frameworks (Zhang & Jiang, 2002),
and a sensor fault reconstruction framework such as the scheme proposed in Ed-
wards and Tan (2006), Φ𝑢(𝑡) and Φ𝑦(𝑡) can be computed in a real-time manner.
Now, the optimisation problem in (25), excluded from the structural constraints,
by replacing 𝐵2, 𝐶2 and 𝐷2, with ̃𝐵2(𝑡), ̃𝐶𝑧(𝑡) and 𝐷̃𝑧(𝑡), respectively, can be con-
sidered as a sensor/actuator fault accommodation algorithm that searches for a
control law in faulty situation while minimising the performance degradation.
When no fault exists, Φ𝑢 = 𝐼𝑚 and Φ𝑦 = 𝐼𝑝. On the other hand, it is obvious
that if 𝜙𝑢,𝑖 → 0 and/or 𝜙𝑦,𝑖 → 0, then 𝜙−1

𝑢,𝑖 → ∞ and/or 𝜙−1
𝑦,𝑖 → ∞, respectively,

and hence, the associated components 𝑢𝑖 and/or 𝑦𝑖 are weighted heavily in the
ℋ2 performance output.

As discussed earlier, in over-actuated systems, in order to, for example, min-
imise power or fuel consumption and/or actuator wear and tear, one may resort
to select a subset of available actuators (Johansen & Fossen, 2013). The same
statement can be mentioned for over-sensed systems. Thus, roughly speaking,
a subset with small number of actuators/sensors is often preferred to a large
subset. This issue is of importance in fault-tolerance, as redundancy of actua-
tors and/or sensors may be desired. In other words, the component selection
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problem can be used to select subsets that show no redundancy. As explained
previously, the optimisation problem proposed in (35) (or its relaxed version
in (36)), achieved by incorporating two secondary cost functions into the main
cost function, aims to select a subset of available actuators/sensors in an optimal
manner. It is not hard to realise that the optimisation problem in (36), by re-
placing 𝐵2, 𝐶2, and 𝐷2, with ̃𝐵2(𝑡), ̃𝐶𝑧(𝑡), and 𝐷̃𝑧(𝑡), respectively, can specifically
be employed as a simultaneous sensor/actuator fault tolerant control algorithm
that searches for a sparse control law while minimising the performance degra-
dation and allocation error. In summary, undesirable actuators/sensors would
be neglected due to i) the high execution cost (identified by solving the optimisa-
tion problem (36)) or ii) failure (identified by a fault reconstruction framework)
by means of penalising the associated components in the control/output signals
by large weights, i.e. 𝜙−1

𝑢,𝑖 → ∞ and/or 𝜙−1
𝑦,𝑖 → ∞.

5 Numerical examples
Two numerical examples are presented here in order to evaluate the effectiveness
of the proposed method for the problem of actuator-sensor selection via DOF
approach. All the LMI optimisation problems are solved by YALMIP (Löfberg,
2004) as the interface and SDPT3 (Toh, Todd, Tütüncü, & Tutuncu, 1998) as
the solver.

5.1 Example 1
Let us consider the problem HE3 from COMPleib (Leibfritz & Lipinski, 2003).
This problem is related to the eight order linearised state space model of the
dynamics of the Bell201A-1 helicopter that has four inputs and six outputs.
The system matrices can be seen in Leibfritz and Lipinski (2003). Besides, we
let 𝐶1 = [ 𝐶

04×8 ], 𝐷1 = [
06×4
𝐼4 ], 𝐶2 = [

̃𝐶
04×8 ] and 𝐷2 = [

02×4
𝐼4 ], where

̃𝐶 = [
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0].

The objective is first to identify the minimum number of actuators and sensors
by which the closed-loop stability is not violated, the closed-loop damping is
satisfactory, i.e. 𝜁 > 0.8660, and its decay rate is limited by 𝑥 < −𝛼 < −0.2, and
the performance degradation of the closed-loop system is restricted. Solving the
optimisation problem in (25), with 𝒩 = 2, 𝛾2 < 10, Γ𝑎 = 1𝑚×(𝑛+𝑝), Γ𝑠 = 1(𝑛+𝑚)×𝑝,
involved with the LMI regional pole placement constraints associated with the
above pole clustering constraints, results in a true 𝐻2 cost of 0.8118 for channel
1 and 0.4585 for channel 2.

Remark 5. Note that the value of the ℋ2 cost obtained from (25) is not the
true one, due to the conservatism introduced by employing common 𝐺, 𝐴𝑐, 𝐵𝑐,
𝐶𝑐 and 𝐷𝑐. Nevertheless, the true value can be computed by solving the following
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Lyapunov equation

𝑋𝑖,𝑡𝑟𝑢𝑒𝐴𝑐𝑙 + 𝐴𝑇
𝑐𝑙𝑋𝑖,𝑡𝑟𝑢𝑒 + 𝐶𝑇

𝑐𝑙,𝑖𝐶𝑐𝑙,𝑖 = 0. (46)

One can then find the ℋ2 cost as √trace(𝐵𝑇
𝑐𝑙,𝑖𝑋𝑖,𝑡𝑟𝑢𝑒𝐵𝑐𝑙,𝑖).

Now we solve the optimisation problem in (36) by utilising Algorithm 1
with 𝜅 = 0.1, 𝜖 = 0.0001 and exploiting the row-sparsity promoting function
(37) as well as the column-sparsity promoting function (42), in addition to the
update rule in (39) and its counterpart for the sensor selection, respectively.
As increases 𝜂𝑎 and 𝜂𝑠, the underlying 𝒦𝑎 and 𝒦𝑠 gradually become row-sparse
and column-sparse, respectively. For example with 𝜂𝑎 = 0.1 and 𝜂𝑠 = 0.5, the
algorithm suggests excluding the control system from the sensors 4 and 5. We
then solve the optimisation problem in (25) with the obtained pattern for Γ𝑠
(Γ𝑎 is still non-structured), for the design of DOF controller. In such a case, no
degradation occurs in the upper bound of 𝐻2-norm of channels 1 and 2.
Further with 𝜂𝑎 = 1 and 𝜂𝑠 = 0.5, the algorithm suggests exploiting only the
control inputs 2 and 4 while the controller does not receive information of sensors
4 and 5, but at the expense of about 25% 𝐻2 performance degradation in channel
1 compared to the non-sparse 𝒦.
Moreover, letting 𝜂𝑎 = 2 and 𝜂𝑠 = 10, Algorithm 1 proposes exploiting sensors 1, 2
and 3 and actuators 2 and 4 (‖𝒦𝑎‖row−ℓ0

= 2 and ‖𝒦𝑠‖col−ℓ0
=3). Again, about

25% 𝐻2 performance degradation happens in channel 1. As can be seen, the
performance degradation that occurs, in this case, is the same as the previous
case with ‖𝒦𝑎‖row−ℓ0

= 2 and ‖𝒦𝑠‖col−ℓ0
=4. The closed-loop eigenvalues are:

{ − 11.3706, −1.8788 ± 0.2658𝑖, −1.1343 ± 0.2956𝑖,
− 1.0941 ± 0.1427𝑖, −0.3859 ± 0.5176𝑖, −0.2412 ± 0.3487𝑖,
− 0.6508 ± 0.3724𝑖, −0.8371, −0.2329 ± 0.0368𝑖},

that all of them lie within the preselected region.

5.2 Example 2: Flight control
Now we consider the B747 aircraft (Alwi & Edwards, 2010) whose 12 rigid body
states can be split into two separate axes: 6 longitudinal axis states and 6 lateral
and directional axes states. The same as in Alwi and Edwards (2010) we only
consider the first four states of the lateral axis which are the roll rate 𝑝, yaw
rate 𝑟, sideslip angle 𝛽, and roll angle 𝜙. Considering an operating condition of
263,000 𝐾𝑔, 92.6 𝑚/𝑠 true airspeed, and 600 𝑚 altitude at 25.6 % of maximum
thrust and at a 20∘ flap position, a linear model can be obtained. In this case,
the lateral system, about the trim condition, can be represented as:

𝐴 =
⎡
⎢
⎢
⎢
⎣

−1.0579 0.1718 −1.6478 0.0004
−0.1186 −0.2066 0.2767 −0.0019
0.1014 −0.9887 −0.0999 0.1055
1.0000 0.0893 0 0

⎤
⎥
⎥
⎥
⎦

, (47)
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𝐵2 =
⎡
⎢
⎢
⎢
⎣

−0.0832 0.0832 −0.2285 0.2285 −0.2625 −0.0678 0.0678
−0.0154 0.0154 −0.0123 0.0123 −0.0180 −0.0052 0.0052

0 0 0 0 0.0017 0.0006 −0.0006
0 0 0 0 0 0 0

0.2625 0.1187 0.0246 0.0140 −0.0140 −0.0246
0.0180 −0.2478 0.1269 0.0724 −0.0724 −0.1269

−0.0017 0.0174 0.0005 0.0005 −0.0005 −0.0005
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

.

Note that the lateral control surfaces are

𝛿𝑙𝑎𝑡 = [ 𝛿𝑎𝑖𝑟 𝛿𝑎𝑖𝑙 𝛿𝑎𝑜𝑟 𝛿𝑎𝑜𝑙 𝛿𝑠𝑝1−4 𝛿𝑠𝑝5 𝛿𝑠𝑝8 𝛿𝑠𝑝9−12 𝛿𝑟 𝑒1 𝑒2 𝑒3 𝑒4 ] ,

denoting aileron deflection (right and left - inner and outer)(rad), spoiler de-
flections (left: 1-4 and 5, right: 8 and 9-12) (rad), rudder deflection (rad) and
lateral contributions to the engine pressure ratios (EPR), respectively. We let
the system outputs be sideslip angle 𝛽 and roll angle 𝜙, and thus the output
distribution matrix is

𝐶𝑙 = [
0 0 1 0
0 0 0 1]. (48)

Exploiting an integral action, we include a tracking facility in the problem.
Defining

̇𝜗(𝑡) = r(𝑡) − 𝑦𝑙(𝑡), (49)

where r(𝑡) is the input reference to be tracked by 𝑦𝑙(𝑡) = 𝐶𝑙𝑥(𝑡), with 𝐶𝑙 ∈ ℝ𝑙×𝑛,
and 𝜗 represents the integral of the tracking error, i.e. r(𝑡)−𝑦𝑙(𝑡), and introducing
𝑥̃ ≔ [ 𝑥

𝜗 ], an augmented system can be derived as:

̇𝑥̃(𝑡) = ̃𝐴𝑥̃(𝑡) + ̃𝐵𝑢(𝑡) + ̃𝐵1𝑤(𝑡) + 𝐵rr(𝑡)
̃𝑦(𝑡) = ̃𝐶𝑥̃(𝑡), (50)
̃𝑧(𝑡) = ̃𝐶2𝑥̃(𝑡) + 𝐷̃2𝑢(𝑡),

with

̃𝐴 = [
𝐴 0

−𝐶𝑙 0], ̃𝐵 = [
𝐵2
0 ], 𝐵r = [

0
𝐼𝑙]

, ̃𝐶 = [
𝐼𝑛 0
0 𝐶𝑙]

, ̃𝐵1 = [
𝐵1
0 ] = [

𝐼4
02×4],

̃𝐶2 = [
diag(50,50,10,10,20,20)

013×6 ], 𝐷̃2 =
[

06×13

diag( √2
2 𝐼8,√2𝐼5)]

, 𝑙 = 2, 𝑛 = 4, 𝑚 = 13.

Note that the last two nonzero terms of ̃𝐶2 are associated with the integral
action. Further, the first and second terms of ̃𝐶2 are more heavily weighted in
comparison with the third and fourth terms to provide an adequate quick closed-
loop response in terms of the angular acceleration in roll and yaw. Note also
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Figure 1: Schematic of the proposed reference tracking DOF controller

that if the matrix pair (𝐴,𝐵2) is controllable and the matrix triplet (𝐴,𝐵2,𝐶𝑙)
has no zeros at the origin, it can be shown that ( ̃𝐴, ̃𝐵) is controllable (Alwi &
Edwards, 2010). Now for the reference output tracking control objective, the
full order DOF is constructed as:

[
̇𝑥̄𝑐(𝑡)

𝑢(𝑡) ] = [
̄𝐴𝑐 ̄𝐵𝑐
̄𝐶𝑐 𝐷̄𝑐][

𝑥̄𝑐(𝑡)
𝑥̃(𝑡) ] , (51)

where 𝑥̃ ∈ ℝ𝑛+𝑙 is the reference output tracking controller state and ̄𝐴𝑐 ∈ ℝ(𝑛+𝑙)×(𝑛+𝑙).
The schematic of the proposed reference tracking DOF controller is shown in
Figure 1. We also aim to assign the closed-loop poles within a subregion achieved
by the intersection of the half-plane 𝑥 < −𝛼 < −0.1, and the sector centred at
the origin making an angle of 𝜃 = 𝜋/3. By imposing no structure on ̃𝒦𝑎 and ̃𝒦𝑠;
i.e. Γ𝑎 = 1𝑚×[2(𝑛+𝑙)] and Γ𝑠 = 1(𝑛+𝑙+𝑚)×(𝑛+𝑙), solving the optimisation problem in
(25) leads to an ℋ2 norm of 69.0439 (Case 1). We then use Algorithm 1 with
𝜅 = 0.1, 𝜖 = 0.0001 and exploit the row-sparsity and column-sparsity promoting
functions (37) and (37) and (42), respectively, with the update rules in (38)
and (43). By increasing 𝜂𝑎 and 𝜂𝑠 from zero, the number of non-zero rows and
non-zero columns of ̃𝒦𝑎 and ̃𝒦𝑠, respectively, decreases. For example, letting
𝜂𝑎 = 500 and 𝜂𝑠 = 100, the algorithm suggests exploiting only 𝛿𝑠𝑝9−12 and 𝛿𝑟 as
the control surfaces whilst all 4 sensors’ signal are employed in the control sys-
tem (Case 2). The ℋ2 norm of 𝑇𝑤𝑧 is 71.6807, which is about 4% worse than
that obtained by the non-structured feedback gain. Further with 𝜂𝑎 = 100 and
𝜂𝑠 = 105, the result is to use two control surfaces (𝛿𝑠𝑝9−12 and 𝛿𝑟) as well as 3
sensors (roll rate 𝑝, sideslip angle 𝛽, and roll angle 𝜙) among 4 available sensors
(Case 3), although with about 25% increase in the ℋ2-norm of the closed-loop
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Figure 2: System states for Case 1

system. Note that once a pattern is identified, we need to turn to the problem
in (25) to obtain a suboptimal structured DOF controller.
Considering a step change of 10 degree for 𝛽 during 30 to 70 𝑠 as well as a step
change of 5 degree for 𝜙 during 120 to 160 𝑠, Figures 2-4 and 6-8 show the
tracking responses of the system for Cases 1-3.

Now, let us consider the case where the rudder is missing. We repeat
the above-mentioned procedure, with the difference that a large initial value is
assigned to the weight associated with the rudder in the sparsification algorithm
(or equivalently a large value is assigned to 𝜙−1

𝑢,9 in the associated performance
output 𝑧(𝑡)). Solving the REL1 algorithm with 𝜂𝑎 = 500 and 𝜂𝑠 = 105, the find-
ing is that 𝛿𝑠𝑝9−12 and 𝑒4 can be used for the 𝛽 and 𝜙 tracking problem, in the
absence of the rudder, while 3 sensors (roll rate 𝑝, sideslip angle 𝛽, and roll angle
𝜙) are exploited (Case 4). However, the performance degradation in this case
is about 7% worse than that of Case 3. Figures 5, 6, 7 and 8 show the tracking
responses of the system in this case.

6 Conclusions
This paper develops a framework for addressing the issue of selecting an optimal
set of actuators (sensors) for dynamical systems, satisfying several performance
and pole clustering constraints. Firstly, an LMI-based framework for the design
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Figure 3: System states for Case 2
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Figure 4: System states for Case 3

24



0 50 100 150 200

0

5

10

Time (Sec)

si
d

es
lip

 a
n

g
le

 (
d

eg
)

(a)

 

 
β

Reference

0 50 100 150 200
−2

0

2

4

6

Time (Sec)

ro
ll 

an
g

le
 (

d
eg

)

(b)

 

 
φ

Reference

0 50 100 150 200
−2

−1

0

1

2

Time (Sec)

ro
ll 

ra
te

 (
d

eg
/s

)

(c)

0 50 100 150 200
−4

−2

0

2

Time (Sec)

ya
w

 r
at

e 
(d

eg
/s

)

(d)

Figure 5: System states for Case 4
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of multi-channel ℋ2 DOF gain has been proposed. Besides, it has been discussed
that this framework is capable of imposing additional convex regional pole place-
ment constraints as well as the structural constraints on the DOF. Following
this, a procedure has been developed which includes two stages; the first stage
identifies the desirable row and column sparsity pattern for necessary parts of
dynamic feedback gain via iterative processes and then the second one solves
the multi-channel ℋ2 problem, augmented by structural constraints and/or re-
gional pole placement constraints. This scheme has an immediate application in
over-actuated/sensed systems for selecting a subset of available actuators/sen-
sors aimed at minimising power or fuel consumption and/or actuator wear and
tear, maintenance cost, etc. The proposed approach has also been shown that
has the potential to be employed as a novel fault accommodation scheme search-
ing for a sparse structure for the controller while minimising the performance
degradation and allocation error. It is worth noting that it is nevertheless hard
to give guarantees on the maximum number of iterations and computation time
that the algorithm requires to achieve the optimal solution. This is indeed
a common issue in the existing optimisation based fault tolerant control and
component selection approaches. Hence, one may resort to accept some de-
gree of sub-optimality for meeting the restrictions of computational resources
so that the real-time computation constraints can be satisfied. Additionally,
this paper does not involve the Lyapunov function used for checking system
performances in the controller variables. This can help us to avoid the unneces-
sary conservatism of the so-called quadratic approach, and thus can widen the
applicability region of the proposed scheme for multi-objective synthesis. How-
ever, it may also increase the computation time, since more decision variables
are involved in the optimisation-based controller design problem. Nevertheless,
in practice it is not necessary to solve the proposed REL1 algorithm exactly
and it can be terminated after a few iterations. This feature can significantly
reduce the computation time, albeit at the expense of accepting some degree of
sub-optimality. Two practical case studies, including the lateral control design
for an over-actuated flight, clearly demonstrate the effectiveness of our proposed
approaches. However, it should be emphasised that LMI-based approaches are
not scalable and solving large LMIs for many iterations may practically limit
the size of the underlying problem. A more scalable method such as alternation
direction method of multipliers (ADMM) or first-order optimisation methods
can be considered in future work. Moreover, in this manuscript, while an op-
timal scheme has been used to design sparse row/column wise controllers, no
limit for rate saturations or actuator magnitude is explicitly imposed on the
problem. Theoretically, in the case of exceeding a position limit or rate limit,
the occurred difference between the commanded actuator and expected one is
thought of as a fault. The proposed optimal scheme can then redistribute the
control commands to other actuators, so that the effect of the actuator satura-
tion is mitigated. Nevertheless, in terms of dealing with actuator saturations,
imposing explicit constraints on the optimal control synthesis scheme makes the
whole problem more practical. This issue can be evaluated in future work.
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A Proof of Lemma 2.1
The equivalence between the first two statements is a standard ℋ2 state feedback
synthesis and can be seen e.g. in Boyd, Ghaoui, Feron, and Balakrishnan (1994).
We just show the equivalence between the statements 𝑖𝑖) and 𝑖𝑖𝑖). Exploiting
the well-known Schur complement, one can show that the first LMI in 𝑖𝑖𝑖) can
be reformulated as

[
−(𝐺 + 𝐺𝑇) + 𝛾−1(𝐶𝑐𝑙𝐺)𝑇(𝐶𝑐𝑙𝐺) ⋆

𝐴𝑐𝑙𝐺 + 𝑋 + 𝐺 −2𝑋] < 0.
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Note that as 𝐺𝑇 +𝐺 > 0, 𝐺 is invertible. By performing congruence transforma-
tion [

𝐺−𝑇 0
0 𝑋−1 ] in the above inequality, we obtain

[
−(𝐺̃ + 𝐺̃𝑇) + 𝛾−1𝐶𝑇

𝑐𝑙𝐶𝑐𝑙 ⋆
𝑋̃𝐴𝑐𝑙 + 𝑋̃ + 𝐺̃ −2𝑋̃] < 0.

where 𝐺̃ = 𝐺−1 and 𝑋̃ = 𝑋−1. The above inequality can be written as

[
𝛾−1𝐶𝑇

𝑐𝑙𝐶𝑐𝑙 ⋆
𝑋̃𝐴𝑐𝑙 + 𝑋̃ −2𝑋̃] + herm([

−𝐼
𝐼 ]𝐺̃ [𝐼 0]) < 0.

According to the well-known Projection lemma (Gahinet & Apkarian, 1993),
the above inequality holds iff the following inequalities, with respect to 𝐺̃, are
satisfied:

[
𝐼
𝐼]

𝑇

[
𝛾−1𝐶𝑇

𝑐𝑙𝐶𝑐𝑙 ⋆
𝑋̃𝐴𝑐𝑙 + 𝑋̃ −2𝑋̃][

𝐼
𝐼] < 0, (52)

[
0
𝐼]

𝑇

[
𝛾−1𝐶𝑇

𝑐𝑙𝐶𝑐𝑙 ⋆
𝑋̃𝐴𝑐𝑙 + 𝑋̃ −2𝑋̃][

0
𝐼] < 0. (53)

As seen the inequality (53) indeed becomes the trivial inequality −𝑋̃ < 0 and
(52) is equivalent to

𝑋̃𝐴𝑐𝑙 + 𝐴𝑇
𝑐𝑙𝑋̃ + 𝛾−1𝐶𝑇

𝑐𝑙𝐶𝑐𝑙 < 0.

With pre- and post-multiplying the above inequality by 𝑋 = 𝑋̃−1 we have

𝐴𝑐𝑙𝑋 + 𝑋𝐴𝑇
𝑐𝑙 + 𝛾−1𝑋𝐶𝑇

𝑐𝑙𝐶𝑐𝑙𝑋 < 0,

The above inequality can simply be written as item 𝑖𝑖), using the Schur comple-
ment.

B Proof of Theorem 2.3
Using the Schur complement, the LMI in (14) can be reformulated as

[
−𝐼𝜉 ⊗ (𝐺 + 𝐺𝑇) + (𝐼𝜉 ⊗ 𝐺𝑇)(Ξ ⊗ 𝑋−1)(𝐼𝜉 ⊗ 𝐺) ⋆

Π ⊗ (𝒜𝐺) + 𝐼𝜉 ⊗ 𝑋 + 𝐼𝜉 ⊗ 𝐺 −2𝐼𝜉 ⊗ 𝑋] < 0.

Note that as 𝐼𝜉 ⊗ (𝐺 + 𝐺𝑇) > 0, 𝐼𝜉 ⊗ 𝐺 is invertible. By performing congruence

transformation [
𝐼𝜉⊗𝐺−𝑇 0

0 𝐼𝜉⊗𝑋−1 ] in the above inequality, we obtain

[
−𝐼𝜉 ⊗ (𝐺̃ + 𝐺̃𝑇) + Ξ ⊗ 𝑋̃ ⋆

Π ⊗ (𝑋̃𝒜) + 𝐼𝜉 ⊗ 𝑋̃ + 𝐼𝜉 ⊗ 𝐺̃ −2𝐼𝜉 ⊗ 𝑋̃] < 0.
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where 𝐼𝜉 ⊗ 𝐺̃ = 𝐼𝜉 ⊗ 𝐺−1, 𝑋̃ = 𝑋−1. The above inequality can be rewritten as

[
Ξ ⊗ 𝑋̃ ⋆

Π ⊗ (𝑋̃𝒜) + 𝐼𝜉 ⊗ 𝑋̃ −2𝐼𝜉 ⊗ 𝑋̃] + herm([
−𝐼
𝐼 ](𝐼𝜉 ⊗ 𝐺̃)[𝐼 0]) < 0.

Based on the Projection lemma, the above inequality holds if the following
inequalities, with respect to 𝐼𝜉 ⊗ 𝐺̃, are satisfied:

[
𝐼
𝐼]

𝑇

[
Ξ ⊗ 𝑋̃ ⋆

Π ⊗ (𝑋̃𝒜) + 𝐼𝜉 ⊗ 𝑋̃ −2𝐼𝜉 ⊗ 𝑋̃][
𝐼
𝐼] < 0, (54)

[
0
𝐼]

𝑇

[
Ξ ⊗ 𝑋̃ ⋆

Π ⊗ (𝑋̃𝒜) + 𝐼𝜉 ⊗ 𝑋̃ −2𝐼𝜉 ⊗ 𝑋̃][
0
𝐼] < 0. (55)

As seen the inequality (55) indeed becomes the trivial inequality −𝑋̃ < 0 and
(54) is equivalent to

Ξ ⊗ 𝑋̃ + Π ⊗ (𝑋̃𝒜) + Π ⊗ (𝒜 𝑇𝑋̃) < 0,

Pre- and post-multiplying the above inequality by 𝐼𝜉 ⊗ 𝑋 = 𝐼𝜉 ⊗ (𝑋̃−1) will lead
to

Ξ ⊗ 𝑋 + Π ⊗ (𝒜𝑋) + Π ⊗ (𝑋𝒜 𝑇) < 0.

This completes the proof.

C Proof of Theorem 2.4
The equivalence between 1) and 3) is shown in e.g. Chilali and Gahinet (1996).
Moreover, the equivalence between 2) and 3) is simply obtained through apply-
ing the Schur complement with respect to the block (2,2) in (20). Applying
the Schur complement with respect to the block (1,1) in (21), (19) is recov-
ered by choosing 𝐺 = 𝐺𝑇 = 1

𝑟 𝑋 > 0, hence 2) implies 4). Also, left- and right-
multiplication of (21) by [ 𝐼 𝒜 ] and [ 𝐼 𝒜 ]𝑇, respectively, lead to (19). Hence, 4)
implies 2), and the proof is completed.
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