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Neuro-adaptive Cooperative Tracking Control with
Prescribed Performance of Unknown Higher-order

Nonlinear Multi-agent Systems
Hashim A. Hashim∗, Sami El-Ferik, and Frank L. Lewis

Abstract—This paper is concerned with the design of a
distributed cooperative synchronization controller for a class
of higher-order nonlinear multi-agent systems. The objective is
to achieve synchronization and satisfy a predefined time-based
performance. Dynamics of the agents (also called the nodes) are
assumed to be unknown to the controller and are estimated using
Neural Networks. The proposed robust neuro-adaptive controller
drives different states of nodes systematically to synchronize
with the state of the leader node within the constraints of the
prescribed performance. The nodes are connected through a
weighted directed graph with a time-invariant topology. Only few
nodes have access to the leader. Lyapunov-based stability proofs
demonstrate that the multi-agent system is uniformly ultimately
bounded stable. Highly nonlinear heterogeneous networked sys-
tems with uncertain parameters and external disturbances were
used to validate the robustness and performance of the new novel
approach. Simulation results considered two different examples:
single-input single-output and multi-input multi-output, which
demonstrate the effectiveness of the proposed controller.

Index Terms—Prescribed performance, Transformed error,
Multi-agents, Neuro-Adaptive, Distributed adaptive control, Con-
sensus, Transient, Steady-state error, Networked Systems, Ro-
bustness.

I. INTRODUCTION

THE use of collaborative autonomous robotic vehicles
allows for greater flexibility and capacity as well as

higher performance in areas such as surveillance, inspection,
space explorations, communication, sensor deployment and
many others. Multi-agent systems (MAS) distribute work in
a logical manner and exchange information via self-formed
local network and, hence, they are often called nodes. The
network is named a communication graph formed by a set of
nodes and the communication lines between different nodes
are called edges. The graph can be directed or undirected.
An undirected graph allows the information to flow in both
directions. The connected nodes of such a graph own similar
characteristics. On a directed graph or a digraph the direction
of the information flow is fixed. The direction is pointed from
one node to another indicating how the information flows
from one node to its neighbors. Moreover, the structure of
the network can be fixed or variable.
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The control of such multi-agent systems faces several
practical as well as theoretical challenges (see for instance
(Olfati-Saber & Murray, 2004)). In particular, dynamics of the
node can be nonlinear and unknown, the network bandwidth
capacity is limited and may suffer from variable delays and
loss of packets, the operating environment is changing and
complex with presence of noise, the embedded computational
resources are limited, etc. In the literature, several studies
addressed either cooperative regulation problem, called
consensus, or cooperative tracking problem, known as
synchronization (see for example (Fax & Murray, 2004)).
Recently, several control methods for high-order non-linear
multi-agent systems have been proposed. Synchronization of
passive nonlinear systems has been considered in (Chopra
& Spong, 2006) while distributive tracking problem of node
consensus has been studied extensively such as (F. L. Lewis,
Zhang, Hengster-Movric, & Das, 2013), (Olfati-Saber, Fax,
& Murray, 2007), (Liao, Lu, & Liu, 2016) and (H. Zhang
& Lewis, 2012). Work of (Das & Lewis, 2010) and (Cao &
Ren, 2012) studied cooperative tracking control for single
node representing a single-input single-output (SISO) system
with high order dynamics. Due to unknown dynamics, (Das
& Lewis, 2010) and (H. Zhang & Lewis, 2012) proposed a
neuro-adaptive distributed control for heterogeneous agents
connected through a digraph. (Das & Lewis, 2010) considered
single integrator agents and later on (H. Zhang & Lewis,
2012), high order affine systems described in Brunovsky form
and connected through a directed graph have been addressed.
The authors assumed that the input function gi (·) is equal to
one for each agent i = 1, . . . , N .
In all previous studies the input function was assumed
to be known. On the other hand, adaptive distributed
tracking control of affine systems has been studied assuming
unknown input function by (Theodoridis, Boutalis, &
Christodoulou, 2012) and extended in (El-Ferik, Qureshi, &
Lewis, 2014). Also, consensus with Saturation and Dead-zone
was examined in (Shen, Shi, Shi, & Zhang, 2016; Shen
& Shi, 2016). (Theodoridis et al., 2012) approximated the
unknown nonlinear dynamics and input functions using a
neuro-adaptive fuzzy and defined the output membership
functions by a set of offline trials. All these previous studies
mainly focused on ultimate stability of the error response.
Most of the proposed controllers for highly nonlinear systems
guarantee that the consensus tracking error is upper bounded
due to uncertainties in dynamics and external disturbances.
Consensus in error has been proven to be ultimately uniformly
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bounded and to converge into a residual set having a size
that depends on some unknown but bounded sets. However,
bounded sets represent uncertainties in dynamics and external
disturbances. Therefore, it is almost impossible to make the
prediction of transient performance as well as steady-state
behavior analytically (Bechlioulis & Rovithakis, 2008).
On the other hand, designing a cooperative adaptive control
for a group of agents satisfying prescribed performance
function (PPF) has some advantages. PPF forces the output
error to begin within large set and steer systematically into an
arbitrarily small set satisfying a known measure (Bechlioulis
& Rovithakis, 2008) and (Hashim, El-Ferik, & Lewis, 2017).
Under prescribed performance, the error should display some
measure of dynamic features. For instance, convergence rate
should obey a predefined value and a maximum value of
overshoot or undershoot is not exceeding a given range. In
addition to having the error dynamically bounded, prescribed
performance-based controller for cooperative adaptive control
is capable of reducing the control effort and improving its
robustness. Upper and lower bounds of PPF should be defined
appropriately in order to provide smooth tracking error with
prescribed convergence. Neuro adaptive control with PPF
for strict feedback linearizable systems has been presented
by (Bechlioulis & Rovithakis, 2008). Since then, several
papers developed neuro adaptive control with prescribed
performance approximating the unknown nonlinearities and
disturbances through linearly parametrized neural network
(see for instance (Bu, Wu, Huang, & Wei, 2016), (Yang, Ge,
Wang, Li, & Hua, 2015) and (El-Ferik, Hashim, & Lewis,
2017)). A model reference adaptive control with PPF has
been proposed to avoid defining neural weights via trial
and error methods (Mohamed, 2014). Most of the studies
considered only single autonomous systems. However, just
recently (Hashim et al., 2017) considered networked graph
and proposed an adaptive cooperative control with prescribed
performance for a first order node dynamics with unknown
nonlinearities. (L. Zhang, Hua, & Guan, 2016) addressed the
problem of distributed output feedback consensus tracking
control for leader following nonlinear multi-agent systems in
strict-feedback form with PPF requirement. A similar work
has been proposed by (Shahvali & Askari, 2016).
Indeed, the present proposed control scheme is developed
using prescribed performance to satisfy transient and
steady-state dynamic performance for each node’s state
through synchronization error. The data exchange between
nodes is carried out according to a given directed graph.
Neural Network is used to estimate the unknown nonlinear
dynamics. In addition, this paper considers the original
prescribed performance scheme presented by (Bechlioulis &
Rovithakis, 2008). Hence, the interactions between all nodes
are considered in the consensus algorithm to track the leader
trajectory and guarantee stable non-oscillatory dynamics.
The rest of the paper is organized as follows. Section II
presents graph theory preliminaries and math notations. In
Section III, problem formulation, the associated local error
synchronizations and prescribed performance characteristics
are formulated. Section IV develops the control law in
order to prove stability of the directed connected graph and

satisfy prescribed performance characteristics. Section IV also
presents the neural approximation and stability of the control
design of distributed agents based on neural approximation.
Section V illustrates results which guarantee effectiveness
and robustness of the proposed control for SISO and MIMO
problems. Finally, conclusion and future directions of research
are given in Section VI.

II. PRELIMINARIES

A. Mathematical Identities

Throughout this paper, the set of real numbers is denoted
as R; n-dimensional vector space as Rn; the space span by
n × m matrix as Rn×m; identity matrix of order m as Im;
absolute value as | · |. For x ∈ Rn, the Euclidean norm is
given as ‖x‖ =

√
x>x and matrix Frobenius norm is given

as ‖·‖F . For any xi ∈ Rn we have xi =
[
x1
i , . . . , x

n
i

]>
for

i = 1, . . . , N and for xj ∈ RN we have xj =
[
xj1, . . . , x

j
N

]
for j = 1, . . . , n. Trace of associated matrix is denoted
as Tr {·}, diag {·} denotes the diagonal of associated
matrix, N is the set {1, ..., N}, and 1N is a unity vector
[1, . . . , 1]> ∈ RN . A is said to be positive definite if A > 0
for A ∈ Rn×n; A ≥ 0 indicates positive semi-definite; σ (·)
is the set of singular values of a matrix with maximum
value σ̄ (·) and minimum value σ (·). Finally, ⊗ denotes the
Kronecker product.

B. Basic graph theory

A graph is denoted by G = (V, E) with a nonempty finite
set of nodes (or vertices) V = {V1,V2, . . . ,Vn}, and a set
of edges (or arcs) E ⊆ V × V . (Vi,Vj) ∈ E if there is
an edge from node i to j. Topology of a weighted graph
is described by the adjacency matrix A = [ai,j ] ∈ RN×N
with weights ai,j > 0 if (Vj ,Vi) ∈ E : otherwise ai,j = 0.
Throughout the paper, a directed graph is called diagraph.
Also, the topology is fixed where A is time-invariant and the
self-connectivity element ai,i = 0. A graph can be directed
or undirected. The weighted in-degree of a node i is given
by the sum of i-th row of A, i.e., di =

∑N
j=1 ai,j . Also, the

diagonal in-degree matrix is D = diag (d1, . . . , dN ) ∈ RN×N
and the graph Laplacian matrix L = D − A. The set of
neighbors of a node i is Ni = {j| (Vj × Vi) ∈ E}. If node
j is a neighbor of node i, then node i can get information
from node j , but not necessarily vice versa. For undirected
graph, neighborhood is a mutual relation. A direct path from
node i to node j is a sequence of successive edges in the form
{(Vi,Vk) , (Vk,Vl) , . . . , (Vm,Vj)}. If there is a node such that
there is a directed path from one node to every other node in
the graph, then the diagraph has a spanning tree. If for any
ordered pair of nodes [Vi,Vj ] with i 6= j, then a diagraph is
strongly connected and there is a directed path from node i to
j (Ren & Beard, 2008).
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III. PROBLEM FORMULATION IN PRESCRIBED
PERFORMANCE

Let the nonlinear dynamics of the ith node be given by

ẋ1
i = x2

i

ẋ2
i = x3

i

...

ẋ
Mp

i = fi (xi) +Giui

yi = x1
i

(1)

where x
mp

i ∈ RP is the mpth-state node of i where xi =[
x1
i , . . . , x

Mp

i

]>
∈ RPMp with P ≥ 1, mp = 1, . . . ,MP and

Gi ∈ RP×P is a known control input matrix. The control
signal node is ui ∈ RP and the output vector is yi ∈ RP
with i = 1, . . . , N . It should be noted that the system has
p = 1, . . . , P and P is number of control inputs and it equals
to number of regulated outputs. The nonlinear dynamics fi :
RP×Mp → RP is unknown vector and Lipschitz. The global
dynamics of equation (1) can be described by

ẋ1 = x2

ẋ2 = x3

...

ẋMp = f (x) +Gu

y = x1

(2)

where xmp =
[
x
mp

1 , . . . , x
mp

N

]> ∈ RPN , u =[
u>1 , . . . , u

>
N

]> ∈ RPN , G = diag{Gi} ∈ RPN×PN ,
y = [y1, . . . , yN ]

> ∈ RPN , i = 1, . . . , N and f (x) =
[f1 (x1) , . . . , fN (xN )]

> ∈ RPN . The leader state vector can
be time-varying and is noted x0. It can be considered as
an exosystem defining the desired consensus trajectory. Let’s
define the leader dynamics by

ẋ1
0 = x2

0

ẋ2
0 = x3

0

...

ẋ
Mp

0 = f0 (t, x0)

y0 = x1
0

(3)

where x
mp

0 ∈ RP is the mp-th state variable of the leader

where x0 =
[
x1

0, . . . , x
MP
0

]>
∈ RPMP and the leader

nonlinear function vector f0 : [0,∞) × RP×Mp → RP is
piecewise continuous in t and locally Lipschitz. The disagree-
ment variable for node i is δ1

i = x1
i − x1

0 and the global
disagreement order is

γMp = x1 − x1
0 (4)

where γMp =
[
γ1

1 , . . . , γ
1
N

]> ∈ RPN , x1
0 =

[
x1

0, . . . , x
1
0

]> ∈
RPN . In this paper, local distributed state information is
assumed to be known on the communication graph for i-
th node and the only given information of the neighborhood

synchronization as in (Li, Wang, & Chen, 2004; Khoo, Xie,
& Man, 2009) is

ei =
∑
j∈Ni

ai,j
(
x1
i − x1

j

)
+ bi,i

(
x1
i − x1

0

)
, (5)

where ei =
[
e1
i , . . . , e

P
i

]> ∈ RP , ai,j ≥ 0 and ai,j > 0 in case
of agent i is directed to agent j, bi ≥ 0 and bi > 0 for one or
more agents i are directed to the leader. ep = [ep1, . . . , e

p
N ]
> ∈

RPN , p = 1, . . . , P and B = diag {bi} ∈ RN×N . The Global
error dynamics for SISO system can be driven from (5) to be

e = − (L+B)
(
x1

0 − x1
)

= (L+B)
(
x1 − x1

0

) (6)

Thereby, the error dynamics of (6) can be written in the global
form such as

ė1 = e2

ė2 = e3

...

ėMp = (L+B)
(
f (x) +Gu− f

0

) (7)

Notice that f
0

= [f0 (t, x0) , . . . , f0 (t, x0)]
> ∈ RN . The

proof of equation (7) can be found in (F. L. Lewis et al., 2013).

Remark 1. Global error dynamics of (6) for MIMO systems
in case of P > 1 becomes

e = − ((L+B)⊗ IP )
(
x1

0 − x1
)

= ((L+B)⊗ IP )
(
x1 − x1

0

) (8)

similarly, equation (7) for the MIMO case can be written as

ė1 = e2

ė2 = e3

...

ėMp = ((L+B)⊗ IP )
(
f (x) +Gu− f

0

) (9)

with⊗ is the Kronecker product and IP ∈ RP×P is the identity
matrix.

Remark 2. The networked graph is strongly connected. There-
fore, if there is one or more nodes i, i = 1, . . . , N such that
bi 6= 0, then the matrix (L+B) is an irreducible diagonally
dominant M-matrix. Thus, it is nonsingular (Qu, 2009).

for the case of graph is strongly connected, B 6= 0 and the
‖e0‖ is

‖e0‖ ≤
‖e‖

σ (L+B)
(10)

such that σ (L+B) denotes the minimum singular value of
matrix L+B.
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A. Prescribed Performance

The objective of this subsection is to introduce the pre-
scribed performance function (PPF) into the control algorithm.
PPF is a time function enables the tracking error e (t) to start
within a known large set and reduce in a systematic manner
to a known narrow set (Bechlioulis & Rovithakis, 2008) and
(Hashim et al., 2017). Providing smooth tracking response
with allocated properties and improving the control signal
range are classified as distinguished features of the control
algorithm with PPF.
Consider the performance function of a single agent system
with ρ (t) is a smooth function includes the error component
e (t) such as ρ (t) : R+ → R+ is a decreasing positive function
lim
t→∞

ρ (t) = ρ∞ > 0 where ρ∞ > 0 is a constant and refers
to the smaller set upper bound. Now, the general PPF of (5)
can be described as

ρpi (t) =
(
ρpi,0 − ρ

p
i,∞
)

exp (−`pi t) + ρpi,∞ (11)

where ρi (t) =
[
ρ1
i , . . . , ρ

P
i

]> ∈ RP , also, ρpi,0, ρpi,∞ and `pi
are appropriately defined positive constants with p = 1, . . . , P .
ρpi,0 and ρpi,∞ are positive constants define initial and final up-
per bounds of the predefined sets. The prescribed properties of
the control function should guarantee the following properties:

−δpi ρ
p
i (t) < epi (t) < ρpi (t), if epi (0) > 0 (12)

−ρpi (t) < epi (t) < δpi ρ
p
i (t), if epi (0) < 0 (13)

for all t ≥ 0 and 0 ≤ δpi ≤ 1, i = 1, . . . , N and
p = 1, . . . , P . The control algorithm should consider the
interactions between agents’ dynamics which may lead to
instability. The systematic convergence of the tracking error
epi (t) between the constraint bounds ρpi (t) and −δpi ρ

p
i (t) or

−ρpi (t) and δpi ρ
p
i (t) should obey the transient trajectory of

these foregoing bounds as revealed in Figure 1. In fact, Figure
1 illustrates the full idea of prescribed performance such that
the error will be tracked systematically from a pre-defined
bigger set to a given smaller set. A transformed error will be
defined to drive the error dynamics from constrained bounds
in (12) and (13) into an unconstrained one as follows

εpi = Υ

(
epi (t)

ρpi (t)

)
(14)

or equivalently,

epi (t) = ρpi (t)F (εpi ) (15)

where εpi , F (·) and Υ−1 (·) are smooth functions, i =
1, 2, . . . , N . For simplification, let us denote x := x (t),
ρ := ρ (t), e := e (t) and ε := ε (t). F (·) = Υ−1 (·) and
F (·) satisfy the following properties:

1) F (εpi ) is smooth and strictly increasing.
2) −δpi < F (εpi ) < δ̄pi , if epi (0) ≥ 0
−δ̄pi < F (εpi ) < δpi , if epi (0) < 0

3)
limεpi→−∞F (εpi ) = −δpi

limεpi→+∞F (εpi ) = δ̄pi

}
if epi (0) ≥ 0

limεpi→−∞F (εpi ) = −δ̄pi
limεpi→+∞F (εpi ) = δpi

}
if epi (0) < 0

for δpi , δ̄
p
i ∈ R+ are known constants. These constants

should be defined to satisfy

F (εpi ) =


δ̄pi exp (εpi )− δ

p
i exp (−εpi )

exp (εpi ) + exp (−εpi )
, δ̄pi > δpi if epi (0) ≥ 0

δ̄pi exp (εpi )− δ
p
i exp (−εpi )

exp (εpi ) + exp (−εpi )
, δpi > δ̄pi if epi (0) < 0

(16)
Now, consider the smooth function

F (εpi ) =
δ̄pi exp (εpi )− δ

p
i exp (−εpi )

exp (εpi ) + exp (−εpi )
(17)

and the transformed error

εpi =F−1 (epi /ρ
p
i )

=
1

2


ln
δpi + epi /ρ

p
i

δ̄pi − e
p
i /ρ

p
i

, δ̄pi > δpi if epi (0) ≥ 0

ln
δpi + ei/ρ

p
i

δ̄pi − e
p
i /ρ

p
i

, δpi > δ̄pi if epi (0) < 0

(18)

Therefore, the derivative of the transformed error in (18) will be

ε̇pi =
1

2ρpi

(
1

δpi + epi /ρ
p
i

+
1

δ̄pi − e
p
i /ρ

p
i

)(
ėpi −

epi ρ̇
p
i

ρpi

)
(19)

where εi ∈ RP and from (19), we define new variable rpi such as

rpi =
1

2ρpi

∂F−1 (epi /ρ
p
i )

∂ (epi /ρ
p
i )

=
1

2ρpi

(
1

δpi + epi /ρ
p
i

+
1

δ̄pi − e
p
i /ρ

p
i

) (20)

For further explanations, we define a new component Ei ∈ RP such
that Ei is a metric error that can be described as

Ei =

(
d

dt
+ λ

mp

i

)Mp−1

ε1
i , i = 1, . . . , N, mp = 1, . . . ,Mp

(21)
where λmp

i is a positive constant, alternatively, (21) is equivalent to

Ei = ε
Mp

i + λ
Mp−1
i ε

Mp−1
i + · · ·+ λ1

i ε
1
i (22)

one can write the global form of (22) as

E = εMp + λMp−1εMp−1 + · · ·+ λ1ε1 (23)

where εmp =
[
ε
mp

1 , . . . , ε
mp

N

]>, mp = 1, . . . ,MP . Let’s define

Φ1 =
[
ε1, ε2, . . . , εMp−1

]>
(24)

Φ2 = Φ̇1 =
[
ε2, ε3, . . . , εMp

]>
(25)

l = [0, 0, . . . , 0, 1]> ∈ RMp−1

and

Λ =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
−λ1 −λ2 −λ3 · · · λMp−2 −λMp−1


such that Λ is Hurwitz , hence, from (24) and (25) one can say

Φ2 = Φ1Λ> + El> (26)

and
Λ>M +MΛ = −βIMp−1 (27)

where β is a positive constant, M > 0 and IMp−1 ∈
R(Mp−1)×(Mp−1) is the identity matrix. Consider each of (7) and
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Fig. 1. Schematic representation of error trajectory with prescribed performance (a) Schematic illustration of prescribed performance of (12); (b) Graphical
illustration of prescribed performance of (13).

(18), the derivative of the metric error in (21) with respect to time is
given by

Ėi =

Mp−1∑
j=1

[
Mp − 1

j

]
λjiε

Mp−j
i + ε

Mp

i (28)

with λ̄ =
[
λ1, . . . , λMp−1

]> ∈ RPN , p = 1, . . . , P , and equation
(28) can be written in the global form for SISO systems as

Ė = εMp+1 + Φ2λ̄

= R (L+B)
(
f (x) +Gu− f

0

)
+ ∆ + Φ2λ̄

(29)

and for MIMO case

Ė = R ((L+B)⊗ IP )
(
f (x) +Gu− f

0

)
+ ∆ + Φ2λ̄ (30)

where E = [E1, . . . ,EN ]> ∈ RPN , εMp+1 = eMp+1 + ∆ and ∆ is
the function of higher orders of ρpi , rpi . It should be remarked that the
higher orders of ρpi , rpi are vanishing components with time which by
the way lead to ∆ = 0 as t→∞. Also, R = diag {Ωi} ∈ RPN×PN
and

Ωi =


1

2ρ1i

∂F−1(e1i /ρ
1
i )

∂(e1i /ρ1i )
· · · 0

...
. . .

...

0 · · · 1
2ρPi

∂F−1(ePi /ρ
P
i )

∂(ePi /ρPi )


Note that Ωi is a decreasing diagonal matrix with Ωi > 0. Let’s
recall the following definitions (see (Das & Lewis, 2010))

Definition 1. The global neighborhood error e (t) ∈ RPN is
uniformly ultimately bounded (UUB) if there exists a compact set
Ψ ⊂ RPN so that ∀e (t0) ∈ Ψ there exists a bound B and a time
tf (B, e (t0)), both independent of t0 ≥ 0, such that ‖e (t)‖ ≤ B so
that ∀t > t0 + tf .

Definition 2. The control node trajectory x0 (t) given by (1) is co-
operative UUB with respect to solutions of node dynamics (3) if there
exists a compact set Ψ ⊂ RPN so that ∀ (xi (t0)− x0 (t0)) ∈ Ψ,
there exist a bound B and a time tm (B, (x (t0)− x0 (t0))), both
independent of t0 ≥ 0, such that ‖γmp‖ ≤ B, ∀i, mp = 1, . . . ,Mp

and ∀t > t0 + tm.

IV. NEURAL APPROXIMATION AND DISTRIBUTED
CONTROL IN PRESCRIBED PERFORMANCE

A. Neural Approximations
Neural network with linear weights are used to approximate the

unknown nonlinear dynamics of local agents in (1) as

fi (xi) = W>i φi (xi) + αi (31)

where φi (xi) ∈ Rvi×1 and vi is a sufficient number of neurons at
each node, Wi ∈ Rvi×P and αi ∈ RP×1 is the approximated error
vector. It should be remarked that based on (Hornik, Stinchcombe,
& White, 1989; F. W. Lewis, Jagannathan, & Yesildirak, 1998),
nonlinearities could be approximated via variety of sets such as radial
basis functions (Poggio & Girosi, 1990), sigmoid functions (Cotter,
1989), etc.
The objective of this work is to use the available information to track
local performance behavior of each node and to compensate unknown
nonlinearities. Thereby, the unknown nonlinearities of the local nodes
can be approximated by

f̂i (xi) = Ŵ>i φi (xi) (32)

where Ŵi ∈ Rvi×P and f̂i (xi) ∈ RP approximate the component
fi (xi). The description of the global synchronization of the graph G
could be defined by

f (x) = W>φ (x) + α (33)

where φ (x) = [φ1 (x1) , . . . , φN (xN )]> , i = 1, . . . , N , W =
diag {Wi}, α = [α1, . . . , αN ]> and the global estimate of f (x)
is

f̂ (x) = Ŵ>φ (x) (34)

with Ŵ> = diag
{
Ŵi

}
. The error between true and estimated

nonlinearities is defined as

f̃ (x) = f (x)− f̂ (x) = W̃>φ (x) + α (35)

such as W̃ = W − Ŵ .

B. Neuro-Adaptive Control Design with PPF of Distributed
Agents

There are several assumptions should be considered (H. Zhang &
Lewis, 2012)
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Assumption 1. 1) Neural network (NN) weights are bounded but
otherwise, they are unknown such as ‖W‖ ≤ WM with WM

is a fixed bound.
2) Leader states ‖x0‖ ≤ X0 are bounded with X0 is a finite

bound.
3) The unknown nonlinear dynamics associated to the leader is

bounded by
∥∥f (x0, t)

∥∥ ≤ FM .
4) The activation function is finite such as ‖φ‖ ≤ φM .

Lemma 1. (Qu, 2009)
Consider L is an irreducible matrix with (L+B) is a nonsingular
matrix such as and B 6= 0, hence there is

q = [q1, . . . , qN ]> = (L+B)−1 · 1 (36)

M = diag {mi} = diag {1/qi} (37)

Then, M > 0 and the matrix Q defined as

Q =M (L+B) + (L+B)>M (38)

Remark 3. For simplification, the control signal and the estimated
weights of NN throughout the research paper will be developed for
SISO systems. In case of MIMO systems, these developments can
be easily modified by introducing the Kronecker product as will be
illustrated later. Two different simulation for SISO and MIMO systems
will be presented.

Consider a control signal of each local nodes be

ui =B−1
i

(
− cEi − Ŵi

>
φi (xi)

− (di + bi)
−1 Ω−1

i (λ
Mp−1
i ε

Mp

i + · · ·+ λ1
i ε

2
i )

) (39)

where c be a positive control gain and 1N×1 = [1, . . . , 1]> ∈ RN×1.
The control input is defined by

u = G−1
(
−cE− Ŵ>φ (x)− (D +B)−1 R−1Φ2λ̄

)
(40)

Then, the estimated weights of NN is defined by

˙̂
Wi = FiφiE

>
i miΩi (di + bi)− kFiŴi (41)

with Fi ∈ Rvi×vi , Fi = ΠiIvi and Πi > 0 are positive gains and
k > 0 is a scalar gain. c and k should be selected to satisfy (42).

Theorem 1. Consider the distributed system in (1) and the leader
dynamics in (3). If Assumption 1 holds and the distributed control is
as in (40) and the NN tuning law as in (41), then the control variable
c should satisfy

c >
1

σ (Q)σ (R)

(
γ2

k
+

2

β
g2 + ν

)
(42)

γ = − 1
2
Φσ̄ (M) σ̄ (R) σ̄ (A), g =

− 1
2

(
σ̄ (M) + σ̄(M)σ̄(A)

σ(D+B)
‖Λ‖F

∥∥λ̄∥∥) and ν = σ̄(M)σ̄(A)
σ(D+B)

∥∥λ̄∥∥,
where M was defined in (27) for β > 0. Hence, the trajectory of
x0 (t) is uniformly ultimate bounded. Also, all nodes steer close to
x0 (t) for all t ≥ 0.

Proof:
Based on (33), equation (7) becomes

ėMp = (L+B)
(
W>φ (x) + α+Gu− f (x0, t)

)
(43)

consider the result in (34) and (35), one can write (43) as

ė = (L+B)
(
W̃>φ (x) + α− cE− (D +B)−1 R−1Φ2λ̄− f (x0, t)

)
(44)

and from (29) and (44), the transformed error could be obtained as

Ė =R (L+B)
(
W̃>φ (x) + α− cE− (D +B)−1 R−1Φ2λ̄− f (x0, t)

)
+ ∆ + Φ2λ̄

(45)
Consider the following Lyapunov candidate function

V =
1

2
E>ME +

1

2
Tr
{
W̃>F−1W̃

}
+

1

2
Tr
{

Φ1MΦ>1

}
= V1 + V2 + V3

(46)

with V1 = 1
2
E>ME, V2 = 1

2
Tr
{
W̃>F−1W̃

}
, V3 =

1
2
Tr
{

Φ1MΦ>1
}

, and M > 0 is as defined in Lemma 1 and
F−1 = diag{F−1

i } is a zero matrix with positive components in
diagonal as in (41). Then, V̇1 and V̇2 after substitution of (40) is

V̇1 + V̇2 = E>MĖ + Tr
{
W̃>F−1 ˙̃W

}
(47)

V̇1 + V̇2 =E>MR (L+B)
(
W̃>φ (x) + α− cE

− (D +B)−1 R−1Φ2λ̄− f (x0, t)
)

+ E>M
(
∆ + Φ2λ̄

)
+ Tr

{
W̃>F−1 ˙̃W

}
(48)

V̇1 + V̇2 =− cE>MR (L+B)E + E>MR (D +B) W̃>φ (x)

−E>MRA
(
W̃>φ (x) + (D +B)−1 R−1Φ2λ̄

)
+ E>MR (L+B)

(
α− f (x0, t)

)
+ E>M∆

+ Tr
{
W̃>F−1 ˙̃W

}
(49)

Note that x>y = Tr{yx>}, ∀x, y ∈ RN , one can write V̇1 + V̇2 as

V̇1 + V̇2 =− cE>MR (L+B)E + Tr
{
W̃>φ (x)E>MR (D +B)

}
− Tr

{
W̃>φ (x)E>MRA

}
+ E>MRA (D +B)−1 R−1Φ2λ̄

+ E>MR (L+B)
(
α− f (x0, t)

)
+ E>M∆

+ Tr
{
W̃>F−1 ˙̃W

}
(50)

substitute (41) in (50) considering ˙̃W = Ẇ − ˙̂
W = − ˙̂

W yields

V̇1 + V̇2 =− cE>MR (L+B)E + Tr
{
W̃>φ (x)E>MR (D +B)

}
− Tr

{
W̃>φ (x)E>MRA

}
+ E>MRA (D +B)−1 R−1Φ2λ̄

+ E>MR (L+B)
(
α− f (x0, t)

)
+ E>M∆

− Tr
{
W̃>φ (x)E>MR (D +B)

}
+ Tr

{
W̃>kŴ

}
(51)

V̇1 + V̇2 =− cE>QRE− Tr
{
W̃>φ (x)E>MRA

}
+ E>M∆

+ kTr
{
W̃>Ŵ

}
+ E>MR

(
A (D +B)−1 R−1Φ2λ̄

+ (L+B)
(
α− f (x0, t)

))
(52)

V̇1 + V̇2 =− cE>QRE− kTr
{
W̃>W̃

}
− Tr

{
W̃>φ (x)E>MRA

}
+ E>M∆ + E>MR

(
A (D +B)−1 R−1Φ2λ̄

+ (L+B)
(
α− f (x0, t)

))
+ kTr

{
W̃>W

}
(53)
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Let TM = αM − f
M

such that

V̇1 + V̇2 ≤−
(
cσ (R)σ (Q)− σ̄ (M) σ̄ (A)

σ (D +B)

∥∥λ̄∥∥) ‖E‖2
+

(
− σ̄ (A)φM (R)

∥∥∥W̃∥∥∥
F

+
σ̄ (A) ‖Λ‖ F ‖Φ1‖

σ (D +B)

+ σ̄ (∆) + σ̄ (R) σ̄ (L+B)TM

)
σ̄ (M) ‖E‖

− k
∥∥∥W̃∥∥∥2

F
+ kWM

∥∥∥W̃∥∥∥
F

(54)

Now, the derivative of the third Lyapunov term V3 is

V̇3 =
1

2
Tr
{

Φ̇1MΦ>1 + Φ1MΦ̇1
>
}

= Tr
{

Φ2MΦ>1

} (55)

substituting (26) in (55) gives

V̇3 = Tr
{

Φ1Λ>MΦ>1

}
+ Tr

{
El>MΦ>1

}
(56)

which means

V̇3 = Tr
{

Φ1(MΛ + Λ>M)Φ>1

}
+ Tr

{
El>MΦ>1

}
= −1

2
βTr

{
Φ1Φ>1

}
+ Tr

{
El>MΦ>1

} (57)

One can write the derivative of the complete form in (47) as

V̇1 + V̇2 + V̇3 ≤−
(
cσ (R)σ (Q)− σ̄ (M) σ̄ (A)

σ (D +B)

∥∥λ̄∥∥) ‖E‖2
+

(
σ̄ (M) +

σ̄ (M) σ̄ (A)

σ (D +B)
‖Λ‖F

)
‖Φ1‖ ‖E‖

+

(
σ̄ (R) σ̄ (L+B)TM + σ̄ (∆)

− φM σ̄ (R) σ̄ (A)
∥∥∥W̃∥∥∥

F

)
σ̄ (M) ‖E‖

+ kWM

∥∥∥W̃∥∥∥
F
− k

∥∥∥W̃∥∥∥2

F
− 1

2
β ‖Φ1‖2

(58)

The result in (58) can be simplified to

V̇ ≤−
[
‖Φ1‖

∥∥∥W̃∥∥∥
F
‖E‖

] 1
2
β 0 g
0 k γ
g γ µ


 ‖Φ1‖∥∥∥W̃∥∥∥

F
‖E‖


+
[
0 kWM σ̄ (M) (σ̄ (R) σ̄ (L+B)TM + σ̄ (∆))

]  ‖Φ1‖∥∥∥W̃∥∥∥
F

‖E‖


(59)

with
γ = − 1

2Φσ̄ (M) σ̄ (R) σ̄ (A),
g = − 1

2

(
σ̄ (M) + σ̄(M)σ̄(A)

σ(D+B) ‖Λ‖F
∥∥λ̄∥∥),

ν = σ̄(M)σ̄(A)
σ(D+B)

∥∥λ̄∥∥, and

µ =
(
cσ (R)σ (Q)− σ̄(M)σ̄(A)

σ(D+B)

)
.

Let’s write (59) as

V̇ ≤− z>Hz + h>z (60)

such that
z =

[
‖Φ1‖

∥∥∥W̃∥∥∥
F
‖E‖

]>
,

h =
[
0 kWM σ̄ (M) (σ̄ (R) σ̄ (L+B)TM + σ̄ (∆))

]>
,

H =

 1
2β 0 g
0 k γ
g γ µ

,

hence, V̇ ≤ 0 is only valid if H is positive definite there is

‖z‖ > ‖h‖
σ (H)

(61)

According to Sylvester’s criterion, H > 0 if
1) β > 0
2) βk > 0
3) k

(
βµ− 2g2

)
− βγ2 > 0

Solving the foregoing equations proofs Theorem 1

c >
1

σ (Q)σ (R)

(
γ2

k
+

2

β
g2 + ν

)
Then, assume

η =
kWM + σ̄ (M) (σ̄ (R) σ̄ (L+B)TM + σ̄ (∆))

σ (H)
(62)

We have V̇ ≤ 0 if ‖z‖ > η, according to (46), we have

1

2
z>

σ (M) 0 0
0 σ̄ (F ) 0
0 0 σ (M)

 z ≤ V ≤ 1

2
z>

σ̄ (M) 0 0
0 σ (F ) 0
0 0 σ̄ (M)

 z
(63)

Define the appropriate variables matched with (63) to write

1

2
z>X z ≤ V ≤ 1

2
z>X̄ z

Accordingly, it is equivalent to

1

2
σ (X ) ‖z‖2 ≤ V ≤ 1

2
σ̄
(
X̄
)
‖z‖2 (64)

V >
1

2
σ̄
(
X̄
) ‖h‖2
σ2 (H)

(65)

Hence, based on Theorem 4.18 in (Khalil, 2002), for any the
initial value z (t0), there exists T0 such that

z (t) <

√
σ̄
(
X̄
)

σ (X )
η,∀t ≥ t0 + T0 (66)

The time T0 can be evaluated by

T0 =
V (t0)− σ̄

(
X̄
)
η2

k
(67)

And according (64), one can find

‖z‖ ≤

√
2V

σ (X )
, ‖z‖ ≥

√
2V

σ̄
(
X̄
) (68)

Therefore, V̇ in (59) can be given by

V̇ ≤ −τ1V + τ2
√
V (69)

with τ1 = 2σ(H)

σ̄(X̄)
and τ2 =

√
2‖h‖√
σ(X )

yield

√
V ≤

√
V (0) +

τ2
τ1

(70)
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It can be concluded that ε is L∞ for t ≥ t0 in a compact set
Ψ0 = {ε (t) | ‖ε (t)‖ ≤ rt0}. Consequently, e (t) will satisfy
the prescribed performance for all t ≥ 0 if we start at t = t0
within the prescribed functions.

Remark 4. The control signal for high order MIMO systems
can be written as

ui =B−1
i

(
−cEi − Ŵi

>
φi (xi)

)
−B−1

i

(
(di + bi)

−1 ⊗ IP
)

Ω−1
i

(
λ
Mp−1
i ε

Mp

i + · · ·+ λ1
i ε

2
i

)
(71)

and the estimated weights of NN can be defined by

˙̂
Wi = FiφiE

>
i miΩi ((di + bi)⊗ IP )− kFiŴi (72)

In brief, the proposed algorithm of nonlinear high order
agent dynamics as in equation (1) can be summarized by

Step 1. Select the setting parameters δ̄pi , δpi , ρpi,∞, `pi , Πi, k and
c.

Step 2. Obtain the synchronized local error epi from (5) or (7).
Step 3. Evaluate the PPF ρpi from (11).
Step 4. Evaluate rpi from (20).
Step 5. Obtain the transformed error from (20) starting from ε1

to εMp .
Step 6. Evaluate the metric error Ei from (21) or (22).
Step 7. The control signal ui from (39) or (71).
Step 8. Find Ŵi from (41) or (72).
Step 9. Go to Step 2.

V. SIMULATION RESULTS

Problem 1: Consider the connected network in Figure 2
includes a group of five nodes with node (3) is connected to
the leader node (0). The connected network is composed of 5
agents denoted by 1 to 5 with one leader denoted by 0 and
the leader node is connected to agents 1 and 5 as in Figure 2

 

 0  1  2 

 3  4  5 

Agents 

5 

5 3 2 

1 

4 

Fig. 2. Five nodes with one leader in a connected graph.

The single-input single-output (SISO) dynamics of the
graph are high order nonlinear such as

ẋ1
i = x2

i

ẋ2
i = x3

i

ẋ3
i = fi (xi) + ui

such that i = 1, 2, . . . , 5 with nonlinear dynamics

f1 =x2
1sin

(
x1

1

)
+ cos

(
x3

1

)2
,

f2 =−
(
x1

2

)2
x2

2 + 0.01x1
2 − 0.01

(
x1

2

)3
,

f3 =x2
3 + sin

(
x3

3

)
,

f4 =− 3
(
x1

4 + x2
4 − 1

)2 (
x1

4 + x2
4 + x3

4 − 1
)
− x3

4 + 0.5sin (2t)

+ cos (2t) ,

f5 =cos
(
x1

5

)
and the leader dynamics is

ẋ1
0 =x2

0

ẋ2
0 =x3

0

ẋ3
0 =− x2

0 − 2x3
0 + 1 + 3sin (2t) + 6cos (2t)

− 1

3

(
x1

0 + x2
0 − 1

) (
x1

0 + 4x2
0 + 3x3

0 − 1
)

The setting parameters in this problem were selected as
ρ∞ = 0.03 × 15×1, ρ0 = 4 × 15×1, ` = 0.6 × 15×1,
Γ = 0.05Ivi×vi , δ̄ = 4 × 15×1, δ = 4 × 15×1, vi = 6,
c = 30× 15×1, k = 0.1, x0 (0) = [0.3, 0.3, 0.3]> is the initial
vector of the nonlinear leader system, and the values of agents
are
x1 (0) = [−0.2850,−0.0821,−0.2126]>,
x2 (0) = [−0.6044,−0.3964,−0.0775]>,
x3 (0) = [−0.2110,−0.4237,−0.3253]>,
x4 (0) = [−0.1501,−0.3986,−0.0050]>,
x5 (0) = [−0.3281, 0.1618,−0.4160]>.
Figure 3 presents the output performance of the proposed
control and it shows smooth tracking performance for x1 as
well as for x2 and x3. It can be noticed that the networked
system with unknown high nonlinear dynamics achieved con-
sensus in the presence of high nonlinearities and time-varying
disturbances. The control effort is depicted in Figure 4. Figure
5 illustrates the systematic convergence of the synchronized
error ei for i = 1, . . . , 5 satisfying the predefined constraints
and setting parameters imposed on the system. In fact, Figure
5 shows how the error started from a predefined large set and
reduced systematically into the predefined small set prescribed
by the value of ρ∞. Moreover, Figure 5 presents transformed
error εi associated to agent i. The nonlinear compensation of
each agent is bounded and smooth as presented in Figure 6.

Problem 2: Consider a second order dynamics of multi-
input multi-output (MIMO) system with graph similar to
Figure 2. Each agent has 2 inputs and 2 outputs. The nonlinear
dynamics are defined by[

ẍ1
i

ẍ2
i

]
=

[
f1
i (xi, t)
f2
i (xi, t)

]
+ ψi (t)

[
x1
i

x2
i

]
+

[
D1
i (t)

D2
i (t)

]
+

[
u1
i

u2
i

]
yi,: =

[
x1
i x2

i

]>
where

fi(xi) =

[
a1
ix

2
ix

1
ix

1
i ẋ

2
i + 0.2sin

(
a1
ix

1
i ẋ

1
i

)
−a2

ix
1
ix

2
i ẋ

1
i − 0.2a2

i cos
(
a2
ix

2
i t
)
x1
i ẋ

2
i

]
,

ψi =

[
3c1i sin (0.5t) 2c1i sin

(
0.4c1i t

)
cos (0.3t)

0.9sin
(
0.2c2i t

)
2.5sin

(
0.3c2i t

)
+ 0.3cos (t)

]
,



9

0 5 10 15

0

1

2

x1

Leader Agent
1

Agent
2

Agent
3

Agent
4

Agent
5

0 5 10 15
-2

0

2

x2

Leader Agent
1

Agent
2

Agent
3

Agent
4

Agent
5

0 5 10 15
Time(sec)

-5

0

5

10

x3

Leader Agent
1

Agent
2

Agent
3

Agent
4

Agent
5

Fig. 3. The output performance of high order nonlinear SISO networked system.
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Fig. 4. Control signal of high order nonlinear SISO networked system.

Di (t) =

[
1 + b1i sin

(
b1i t
)

1.2cos
(
b2i t
) ] ,

and

a =

[
a1
i

a2
i

]
=

[
1.5 0.5 0.7 1.3 0.7
0.5 1.4 0.1 1.3 2.4

]>
,

b =

[
0.5 1.5 1.1 1.6 0.3
0.7 1.2 1.3 0.5 0.3

]>
,

c =

[
1.5 2.5 0.5 1.7 0.7
0.5 1.7 1.1 0.3 0.4

]>
The leader dynamics is x0 =

[0.5cos (0.8t) , 0.6cos (0.7t)]>. In this problem, he setting
parameters are ρ0 = 6 × 15×2, ρ∞ = 0.03 × 15×2,
` = 0.6× 15×2, Γ = 0.05I5×2, δ̄ = 6× 15×2, δ = 6× 15×2,
c = 300I5×2, k = 0.1I5×2. Initial conditions of
x1 (0) = [0.1956,−0.2307]

>,

x2 (0) = [−0.4947,−0.3852]
>,

x3 (0) = [−0.1475,−0.4880]
>,

x4 (0) = [−0.2947,−0.2203]
>,

x5 (0) = [−0.2850,−0.1593]
>

and ẋi (0) = [0, 0]
>
, i = 1 . . . , 5. Finally, number of neurons

is vi = 50.
The effectiveness of the proposed control algorithm against
unknown nonlinearities and time variant components is
examined in this problem. The output performance illustrates
the robustness and high tracking capabilities of control
algorithm. The output performance for high order MIMO
case is given in Figure 7. The output performance in Figure
7 moved from random initialization to consensus with the
leader softly. The control input of system dynamics in the
connected graph is shown in Figure 8. Each of transformed
and tracking errors are illustrated in figures 9 and 10. One can
clearly observe from these figures the quality of the control
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Fig. 5. Error and transformed error of high order nonlinear SISO networked system.
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Fig. 6. Nonlinearities compensation for each agent.

approach and its efficiency in ensuring synchronization with
prescribed performance characteristics. Clearly, errors obeyed
the predefined constraints and settings and the error started
within a predefined large set to end within a predefined small
set. Finally, the phase plane is presented in Figure 11 to
show the random initialization of each agent with systematic
consensus up to out destination or desired point.

VI. CONCLUSION

Neuro-adaptive distributed control with prescribed perfor-
mance of higher order nonlinear affine multi-agent systems
with full-state synchronization has been proposed. Neural
network is employed to estimate unknown nonlinear dynam-
ics of each node. The control signal has been chosen to
both respect the digraph and ensure stability. The Proposed

controller successfully allowed the nodes to synchronize the
leader trajectory and satisfy at any point in time the desired
performance with small residual errors. Also, the controller
guarantees tracking the leaders’ states with a synchronization
error within a predefined time varying constraints. Prescribed
performance controller was designed based on robust neuro-
adaptive approach. Lyapunov-based stability proofs establish
that the synchronization error of each node is UUB. Simulation
examples related to single-input single-output and multi-input
multi-output consider high-order dynamics with unknown non-
linearities and time variant components. However, the class of
systems addressed in this paper possesses an input function
with constant values. More realistic systems with general
nonlinear input functions can be considered in future work. In
addition, hard actuator nonlinearities and especially saturation
input functions could be studied in future research.
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