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ABSTRACT
In this paper, we study a robust L2 disturbance attenuation problem that arises
when applying the Artstein-Kwon-Pearson reduction transformation for a class of
uncertain Lipschitz nonlinear systems with input delay and external disturbances.
A conventional predictor-based feedback controller is adopted with the control gain
matrix carefully identified by solving a couple of sufficient conditions in terms of
Linear Matrix Inequalities (LMIs). Lyapunov-Krasovskii functionals are constructed
to guarantee that the robust L2 disturbance attenuation problem can be solved by
the proposed controller. A numerical example is included to validate the performance
of the proposed controller.

KEYWORDS
Disturbance attenuation; input delay; Lipschitz nonlinearity; parametric
uncertainty; robust stabilization

1. Introduction

Time delays widely exist in many industrial processes due to the time taken for trans-
mission of signals, transport of materials, etc. For the analysis and control of aircraft
turbofan engine as an example, pure time delays must be included during the pro-
cess of modeling and may vary as a function of fan speed, altitude and Mach number
(Hueschen, 2011). The presence of time delays, if not considered in control design,
may lead to the significant performance degradation of the controlled system. For this
reason, the research on delay systems in control engineering has been active for a long
time (Richard, 2003).

It is known from the perspective of control theory that stabilization of input delayed
systems are more involved than the state delayed systems counterpart. One basic idea
in tackling input delay is to predict the evolution of the state variable for the delay
period and then use the predicted state for control. The Smith predictor (Smith, 1959)
is an early result for stable linear systems in frequency domain, which has been widely
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used in industrial applications. For general (possible unstable) linear systems in the
time domain, the reduction method (Artstein, 1982; Kwon & Pearson, 1980), also
known as finite spectrum assignment technique (Manitius & Olbrot, 1979; Mondie &
Michiels, 2003), is one of the most popular approaches to cope with delays in the input,
which uses a state predictor with an integral operator to transform the original system
to a delay-free one for control design. Recently, the prediction method is extended to
several specific classes of nonlinear systems (e.g., nonlinear strict-feedback systems
(Krstic, 2010)) with more recent results in (Bekiaris-Liberis & Krstic, 2012, 2013;
Mazenc et al., 2012; Pasillas-Lépine et al., 2013). For conventional predictor-based
methods, difficulties arise in computation of the prediction term involving on-line
integration. The truncated prediction feedback (TPF) control (Lin & Fang, 2007) is
developed with the integral part dropped for both general linear systems (Yoon & Lin,
2013; Zhou et al., 2010, 2012) and Lipschitz nonlinear systems (Zuo et al., 2016).

However, the predictor-based feedback control methods suffer from a difficulty in
practical implementation when uncertainties exist in system dynamics. The TPF con-
trol also encounters the same barrier since the prediction is based on the exponential
of the exact system matrix. In real-world scenarios, it may induce unstable behav-
ior when applying the existing predictor feedback controller without considering the
system uncertainties. For linear input-delayed systems with parametric uncertainties,
LQR control (Choi & Chung, 1995) and robust control (Kim et al., 1996) have been
proposed to guarantee the delay-independent stability of the closed-loop systems. As
pointed out in (Moon et al., 2001), the derived memoryless controllers are very con-
servative especially when the actual delay is small. To overcome this conservativeness,
the reduction transformation is applied in (Moon et al., 2001) to the uncertain input-
delayed systems and a robust stabilizing controller is constructed by solving convex
optimization problems. But for uncertain nonlinear input-delayed systems, very a few
results are reported till now. Taking into account the nonlinear parameter perturba-
tions, the work (Roh & Oh, 1999) applied the reduction transformation to compensate
for the input delay and then proposed a sliding mode control to eliminate the non-
linear perturbations. Unfortunately, the nonlinear function are very restrictive to be
matched uncertainties (Nguang, 2001).

Motivated by the existing results, this paper considers the robust control problem
for input-delayed nonlinear systems with both parametric uncertainties and external
disturbances. In addition, the nonlinear function considered in the system dynamics is
restrictive to be Lipschitz as a perturbation. In viewing the possible heavy dependence
on the precise system dynamics of TPF method, classical reduction transformation is
applied to deal with the input delay. However, the transformed system is no longer
delay free due to the parametric uncertainties and the nonlinear functions. In particu-
lar, the nonlinearity is still a function of the original state after transformation, which
poses a challenge to control design and stability analysis. To guarantee the closed-loop
stability and attenuate the unknown external disturbances, a set of conditions based on
Lyapunov-Krasovskii analysis for the robust L2 disturbance attenuation problem are
established. Finally, a numerical example is introduced to show the design procedure
proposed in this paper.

This paper is organized as follows. The well-known reduction method and a lemma
are recalled in Section 2. Section 3 formulates the disturbance attenuation problem
to be solved. In Section 4, sufficient conditions are established with rigorous stability
analysis. Section 5 introduces a control design with simulation results as an example to
illustrate the proposed design. Finally, the paper ends concluding remarks in Section 6.
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2. Preliminaries

In this section, we recall briefly the Artstein-Kwon-Pearson reduction method (Kwon
& Pearson, 1980) for general linear input-delayed systems

ẋ(t) = Ax(t) +Bu(t− h), (1)

where x ∈ Rn is the state, u ∈ Rp is the input, h ∈ R+ is the input delay, A ∈
Rn×n, B ∈ Rn×p are constant matrices with (A,B) being controllable, and the initial
conditions x(θ), θ ∈ [−h, 0], are bounded.

Introduce a reduction transformation

z(t) = x(t) +

∫ t+h

t
eA(t−τ)Bu(τ − h)dτ, (2)

Differentiating z(t) against time, we have

ż(t) = Ax(t) + e−AhBu(t) +A

∫ t+h

t
eA(t−τ)Bu(τ − h)dτ

= Az(t) +Du(t), (3)

where D = e−AhB. Thus, the original system (1) is transformed to a delay-free one
(3) via the transformation (2). Note that the controllability of (A,B) and (A, e−AhB)
are equivalent.

Let’s consider a controller

u(t) = Kz(t). (4)

where K is the control gain matrix. Then, we have from (2) and (4) that

∥x(t)∥ ≤ ∥z(t)∥+ h

(
max

−h≤θ≤0
∥eAθ∥

)
∥B∥∥K∥∥zt(θ)∥,

where zt(θ) := z(t + θ), −h ≤ θ ≤ 0, which implies that x(t) approaches 0 as z(t)
approaches 0. In other words, if the controller (4) stabilizes the transformed system
(3), then the original system (1) subject to the same controller is also stable (Kwon
& Pearson, 1980).

Finally, we recall a lemma (Gu, 2010) for stability analysis.

Lemma 2.1. For a positive definite matrix P , and a function x : [a, b] → Rn, with
a, b ∈ R and b > a, the following inequality holds:(∫ b

a
xT (τ)dτ

)
P

(∫ b

a
x(τ)dτ

)
≤(b− a)

∫ b

a
xT (τ)Px(τ)dτ. (5)
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3. Problem Statement

In this paper, we consider robust stabilization problem for a class of uncertain Lipschitz
nonlinear systems with input delay and external disturbances, given by

ẋ(t) =(A+△A(t))x(t) + (B +△B(t))u(t− h)

+ ϕ(x(t)) +B1ω(t), (6)

where x ∈ Rn is the state, u ∈ Rp is the input, h ∈ R+ is the input delay, A ∈
Rn×n, B ∈ Rn×p and B1 ∈ Rn×m are nominal constant matrices with (A,B) being
controllable, the initial conditions x(θ), θ ∈ [−h, 0], are bounded,△A(t) and△B(t) are
time-varying uncertain matrices, ω(t) ∈ Lm

2 [0,∞) are unknown external disturbances,
and ϕ : Rn → Rn, ϕ(0) = 0, is an unknown global Lipschitz nonlinear function with a
Lipschitz constant γ. For any two constant vectors a, b ∈ Rn,

∥ϕ(a)− ϕ(b)∥ ≤ γ∥a− b∥. (7)

For system (6), the following two assumptions are made to facilitate the robust
control design in the sequel.

Assumption 3.1. The Lipschitz constant γ in (7) is a priori known for the nonlinear
function ϕ(x(t)).

Assumption 3.2. The parametric uncertainties △A(t) and △B(t) are assumed to be
norm bounded in the form

∆A(t) = EΣ(t)F1 and ∆B(t) = EΣ(t)F2, (8)

where E, F1 and F2 are real constant matrices with appropriate dimensions, and Σ(t)
is an unknown real time-varying matrix with Lebesgue-measurable elements satisfying
ΣT (t)Σ(t) ≤ I.

Remark 1. The nonlinearities in (6) are restricted to being Lipschitz, say Assump-
tion 3.1, which allows less restriction on the structure of nonlinearity and may result
from the un-modeled dynamics or the linearization errors around operating points.
Assumption 3.2 is very essential for robust control design, which allows the parameter
perturbations to be time-varying. Thus, our formulation in this paper covers a wide
class of systems.

Following the reduction method, we consider the same transformation (2) for the
system in (6). In this case, it can be transformed to

ż(t) =(A+△A(t))z(t) +Du(t) +△B(t)u(t− h) + ϕ(x(t))

+B1ω(t)−△A(t)

∫ t+h

t
eA(t−τ)Bu(τ − h)dτ, (9)

where D = e−AhB. It is worth noting from (9) that system (6) is not completely
reduced to a delay-free system due to the existence of the parametric uncertainties
and the Lipschitz nonlinearity.

Employing the same control structure as in (4) for (9), we specify the control gain
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matrix as

K = −DTP, (10)

where P > 0 is a positive definite matrix to be designed later. The gain matrix K
in (10) is actually a classic LQ (Linear Quadratic) optimal control gain (Anderson &
Moore, 1989) with R = I.

Definition 3.3. The robust L2 disturbance attenuation problem of the nonlinear
system (6) is said to be solved by the control input (4) if the following items are
satisfied:

1) The uncertain closed-loop system (6) with ω(t) ≡ 0 are asymptotically stable at
the origin.

2) For any t ≥ t0 and t0 ≥ 0, there exists a scalar κ1 such that∫ t

t0

∥x(τ)∥2dτ ≤ ᾱ(t0) +
1

κ1

∫ t

t0

β̄(∥ω(τ)∥)dτ, (11)

where ᾱ(t0) is a positive constant depending on the initial conditions at time t0 and
β̄(·) is a positive definite gain function.

In other words, the control design problem in this paper is to find possible positive
definite matrices P such that the robust L2 disturbance attenuation problem is solved.

4. Main Results

This section establishes sufficient conditions for the positive definite matrix P in (10)
such that the predictor-based control (4) stabilizes the system (9).

Under the control input (4) with (10), the closed-loop system (9) can be written as

ż(t) = (A−DDTP )z(t) +△Az(t)−△BDTPz(t− h)

+△A

∫ t+h

t
eA(t−τ)BDTPz(τ − h)dτ

+ ϕ(x) +B1ω(t) (12)

Note from (12) that the nonlinear term ϕ(x) in the transformed system is still
expressed as a function of the original state x. However, for the stability analysis, we
need to establish a bound of the nonlinear function in terms of the new state z.

The following lemma prescribe a bound for the nonlinear function with respect to
z.

Lemma 4.1. For the Lipschitz nonlinear function ϕ(x) in (12), a bound can be es-
tablished in terms of the state z as follows:

∥ϕ(x)∥2 ≤ γ22∥z(t)∥2 + 2hγ2
∫ t

t−h
zT (τ)PDBT eA

T (t−τ−h)

× eA(t−τ−h)BDTPz(τ)dτ, (13)

where γ is the Lipschitz constant defined in (7).
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Proof. From Lipschitz condition (7), we have

ϕT (x)ϕ(x) ≤ γ2xT (t)x(t) = γ2∥x(t)∥2. (14)

Based on the reduction transformation (2), we have

x(t) = z(t)−
∫ t+h

t
eA(t−τ)Bu(τ − h)dτ

= z(t) +

∫ t

t−h
eA(t−τ−h)BDTPz(τ)dτ

It follows that

∥x(t)∥2 ≤2∥z(t)∥2 + 2

(∫ t

t−h
eA(t−τ−h)BDTPz(τ)dτ

)T

×
(∫ t

t−h
eA(t−τ−h)BDTPz(τ)dτ

)
≤2∥z(t)∥2 + 2h

∫ t

t−h
zT (τ)PDBT eA

T (t−τ−h)

× eA(t−τ−h)BDTPz(τ)dτ, (15)

where Lemma 2.1 is employed to derive the last inequality. It is straightforward to
derive the bound (13) by substituting (15) into (14). This completes the proof.

The following theorem gives a set of sufficient conditions for P to solve the robust
stabilization problem for system (6).

Theorem 4.2. Consider the uncertain Lipschitz nonlinear system (6) with Assump-
tions 3.1 and 3.2. The predictor-based feedback control (4) with (10) solves the ro-
bust L2 disturbance attenuation problem if the following conditions are satisfied, for
X = P−1 > 0, Y > 0, [

Y DF T
2

F2D
T 1

µI

]
> 0, (16)

U XF T
1 X DDT

F1X −1
εI 0 0

X 0 − 1
γ2 + κ1

I 0

DTD 0 0 −1
ρW

 < 0, (17)

where ε > 0, µ > 0, ρ > 0 and ϵ > 0 are all scalars,

U = AX +XAT − 2DDT +

(
1

ε
+

1

µ
+

1

ρ

)
EE

+
2

ϵ
I + Y, (18)

W−1 ≥ h

∫ h

0
eA

T s
(
ρF T

1 F1 + 2ϵγ2I
)
eAsds. (19)
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Proof. Let’s first try a Lyapunov function

V0(z(t)) = zT (t)Pz(t) (20)

With (12), a direct calculation of the time derivative of V0(z(t)) gives

V̇0 =zT (t)
(
ATP + PA− 2PDDTP

)
z(t) + 2zT (t)P△Az(t)

− 2zT (t)P△BDTPz(t− h) + 2zT (t)P (ϕ(x) +B1ω(t))

+ 2zT (t)P△A

∫ t

t−h
eA(t−τ−h)BDTPz(τ)dτ

≤zT (t)

[
ATP + PA− 2PDDTP +

2

ϵ
PP + εF T

1 F1

+

(
1

ε
+

1

µ
+

1

ρ

)
PEETP

]
z(t) + ϵϕT (x)ϕ(x)

+ ϵβ∥ω(t)∥2 + µzT (t− h)PDF T
2 F2D

TPz(t− h)

+ ρ

(∫ t

t−h
eA(t−τ−h)BDTPz(τ)dτ

)T

F T
1 F1

×
(∫ t

t−h
eA(t−τ−h)BDTPz(τ)dτ

)
, (21)

where we have used Assumption 3.2 and the inequality

±aT b ≤ 1

ε
aTa+ εbT b

for any a, b ∈ Rn, ε, µ, ρ, ϵ > 0, β is a positive number such that βI ≥ BT
1 B1.

Applying Lemma 2.1 and the bound (13) derived in Lemma 4.1 to (21), we have

V̇0 ≤ zT (t)

[
ATP + PA− 2PDDTP +

2

ϵ
PP + εF T

1 F1

+

(
1

ε
+

1

µ
+

1

ρ

)
PEETP

]
z(t) + ϵϕT (x)ϕ(x)

+ ϵβ∥ω(t)∥2 + µzT (t− h)PDF T
2 F2D

TPz(t− h)

+ hρ

∫ t

t−h
zT (τ)PDBT eA

T (t−τ−h)F T
1 F1

× eA(t−τ−h)BDTPz(τ)dτ

≤ zT (t)

[
ATP + PA− 2PDDTP +

2

ϵ
PP + εF T

1 F1

+

(
1

ε
+

1

µ
+

1

ρ

)
PEETP + 2ϵγ2I

]
z(t)

+ ϵβ∥ω(t)∥2 + µzT (t− h)PDF T
2 F2D

TPz(t− h)

+ hρ

∫ h

0
zT (t− s)PDDT eA

T s
(
ρF T

1 F1 + 2ϵγ2I
)

× eAsDDTPz(t− s)ds, (22)
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where D = e−AhB and s = t− τ are inserted in the last inequality.
Next, we consider the following Krasovskii functionals

V1(zt) =

∫ t

t−h
zT (τ)Rz(τ)dτ (23)

V2(zt) =hρ

∫ h

0

∫ t

t−s
zT (τ)PDDT eA

T s
(
ρF T

1 F1 + 2ϵγ2I
)

× eAsDDTPz(τ)dτds, (24)

where

R− µPDF T
2 F2D

TP > 0. (25)

A direct calculation gives that

V̇1 = zT (t)Rz(t)− zT (t− h)Rz(t− h) (26)

V̇2 =ρzT (t)PDDT

[
h

∫ h

0
eA

T s
(
ρF T

1 F1 + ϵγ2I
)
eAsds

]
×DDTPz(t)

− hρ

∫ h

0
zT (t− s)PDDT eA

T s
(
ρF T

1 F1 + ϵγ2I
)

× eAsDDTPz(t− s)ds, (27)

Consider the following Lyapunov-Krasovskii functional

V (zt) = V0(z) + V1(zt) + V2(zt) (28)

which is radially unbounded with respect to z(t). LetW−1 be a positive definite matrix
satisfying (19). A direct evaluation gives that

V̇ (zt) = V̇0(z) + V̇1(zt) + V̇2(zt)

≤ zT (t)Qz(t) + β̄(∥ω(t)∥), (29)

where

Q =ATP + PA− 2PDDTP +

(
1

ε
+

1

µ
+

1

ρ

)
PEETP

+
2

ϵ
PP + εF T

1 F1 + ρPDDTW−1DDTP

+R+ 2ϵγ2I, (30)

and

β̄(∥ω(t)∥) = ϵβ∥ω(t)∥2. (31)
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By Lyapunov-Krasovskii Stability Theorem (Gu et al., 2003), global asymptotical
stability can be established if the inequalities (19), (25) and Q < 0 hold. It is easy to
show that inequality (25) can be written as

P−1RP−1 − µDF T
2 F2D

T > 0. (32)

which is equivalent to condition (16) with Y = P−1RP−1. By changing variable X =
P−1, Q < 0 in (29) can be expressed as

Q = AX +XAT − 2DDT +

(
1

ε
+

1

µ
+

1

ρ

)
EET +

2

ϵ
I

+ Y + εXF T
1 F1X + 2ϵγ2XX + ρDDTW−1DDT

< 0.

With (30), it can be shown by Schur Complement that the condition (17) is equivalent
to Q < −κ1I, which further implies that

V̇ (t) ≤ −κ1∥x(t)∥2 + β̄(∥ω(t)∥). (33)

1) If ω(t) ≡ 0, we have β̄(∥ω(t)∥) = 0 by (31) and thus V̇ (t) < 0. This implies that
the uncertain closed-loop system (6) is asymptotically stable at the origin.

2) If ω(t) ∈ Lm
2 [0,∞) is nonzero, integrating both sides of (33) obtains

V (t) ≤ V (t0)− κ1

∫ t

t0

∥x(τ)∥2dτ +

∫ t

t0

β̄(∥ω(t)∥)dτ. (34)

Since V (t) > 0, from (34) we have (11) with ᾱ(t0) = V (t0)/κ1. This completes the
poof.

Remark 2. It is worth mentioning that the decision variables of the LMI problem
in (16) and (17) are X and Y , while the scalars ε, µ, ρ and ϵ are positive constants
introduced by Young inequality in stability analysis. For simplicity, ε = µ = ρ =
ϵ = 1 can be set for solving the LMIs (16) and (17). However, these free parameters
may provide additional design degrees of freedom and reduce the conservativeness of
solutions.

Remark 3. It can be seen from (11) that the steady-state performance can be im-
proved by increasing the parameter κ1 and the disturbance attenuation can be there-
fore better achieved. However, a feasible solution X > 0 of (17) may not exist for a
very large κ1. A compromise between performance and stability has to be balanced
carefully in the control design.

Remark 4. For γ = 0 (i.e., the linear case as studied in (Moon et al., 2001)), the
right hand side of (19) is positive definite if and only if the pair (A,F1) is observable.
For the case of unobservable pair (A,F1), it is much simpler to select W since the right
hand side of (19) with γ = 0 is nonnegative definite. But for γ ̸= 0, the right hand
side of (19) is a positive definite matrix. In other words, a more stringent condition is
needed for the selection of control gain due to the nonlinearity. One alternative way
is that W can be directly chosen as the inverse of the matrix in the right hand side of
(19).
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Remark 5. The conditions (16) and (17) shown in Theorem 4.2 can be checked by
standard LMI routines for a set of fixed values R and W−1. The iterative methods
developed in (Yoon & Lin, 2013) for linear systems may also be applied here.

Remark 6. It is also found that in spite of no explicit rule for us to judge the existence
of a feasible solution in advance, if A is Hurwitz or the Lipschitz constant γ is small
enough, it will become relatively easy to obtain a feasible solution P > 0. In other
words, for an open-loop unstable system with input delay, the existence of a solution
to (16) and (17) cannot be guaranteed (Yoon & Lin, 2013), and in addition, it would
be harder to find a feasible solution if the influence of the nonlinearity is too big.

5. Example

Consider the system (6) with

A =

[
0 −1
1 0

]
, B =

[
1 0.5
0 1.2

]
,Σ(t) =

[
sin(t) 0
0 sin(2t)

]
,

E =

[
0.2 0
0 0.2

]
, F1 =

[
0.1 0
0 0.1

]
, F2 =

[
0.1 0
0 0.1

]
,

ϕ(x) = g

[
sin(x1)

0

]
, B1 =

[
0
1

]
.

The linear nominal part of the system considered represents an oscillator, which covers
a wide class of physical systems, like the electronic oscillator that produces a periodic,
oscillating electronic signal. The Lipschitz nonlinearity may represent unmodeled or
unknown dynamics. The initial condition x(0) = [−2, 1]T is set in the simulation. The
Lipschitz constant γ = g = 0.03 and the delay h = 0.1. With ε = µ = ρ = 0.1, κ1 =
1, ϵ = 5, a feasible solution of the feedback gain K is found to be

K =

[
−0.9349 0.6384
−0.0468 −2.0017

]
.

To validate the robust L2 disturbance attenuation performance, a normally dis-
tributed disturbance signal with zero mean and variance of 0.2 is added into (6)
through ω(t). The simulation results shown in Figs. 1 and 2 demonstrate that the
controller (4) with (10) (resp. asymptotically) stabilizes the input-delayed Lipschitz
nonlinear system (resp. without) with external disturbances. The control inputs for
the system in the presence of external disturbances are shown in Fig. 3. In addition,
a better disturbance attenuation can be achieved with a larger κ1, as shown in Fig.
4, which implies that the performance index (11) can be guaranteed by appropriately
choosing κ1. However, a larger overshoot is observed, compared with the state re-
sponses with a small κ1. Thus, a tradeoff between the transient performance and the
disturbance rejection performance should be carefully considered in practice.
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Figure 1. Closed-loop state profiles with h = 0.1 and ω(t) ≡ 0.
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Figure 2. Closed-loop state profiles with h = 0.1 and ω(t) ̸= 0.

6. Conclusions

In this paper, we have developed a robust predictor feedback control design for a
class of uncertain Lipschitz nonlinear systems with input delay and external distur-
bances. The stability analysis is carried out in the framework of Lyapunov-Krasovskii
functionals. Sufficient conditions in terms of two LMIs for the robust L2 disturbance
attenuation are established with a set of iterative parameters. The effectiveness of the
proposed designs has been demonstrated through a numerical example.

References

Anderson, B. & Moore, J. (1989). Optimum control: Linear quadratic methods, New Jersey:
Prentice-Hall.

Artstein, Z. (1982). Linear systems with delayed controls: a reduction. IEEE Transactions on
Automatic Control, 27 (4), 869-879.

Bekiaris-Liberis, N. & Krstic, M. (2012). Compensation of time-varying input and state delays
for nonlinear systems. Journal of Dynamic Systems-Transactions ASME, 134, 011009-1–

11



0 5 10 15
−5

−4

−3

−2

−1

0

1

2

3

4

5

Time(Sec)

In
p
u
ts

 

 

u1
u2

Figure 3. Input responses with h = 0.1 and ω(t) ̸= 0.

0 5 10 15
−2.5

−2

−1.5

−1

−0.5

0

0.5

Time(Sec)

x
1

 

 

 

κ1 = 1
κ1 = 2

10 11 12 13 14 15
−0.2

−0.1

0

0.1

0.2
 

 

 

κ1 = 1
κ1 = 2

Figure 4. Closed-loop state profiles with different κ1’s.

011009-14.
Bekiaris-Liberis, N. & Krstic, M. (2013). Nonlinear control under nonconstant delays. Philadel-

phia, PA: SIAM.
Choi, H.H. & Chung, M.-H. (1995). Memoryless stabilization of uncertain dynamic systems

with time-varying delayed state and control. Automatica, 31 (9), 1349–1351.
Gu, K. (2010). An integral inequality in the stability problem of time-delay systems. Proceeding

of 39th IEEE Conference Decision and Control, Sydney, Australia, pp. 2805–2810.
Gu, K., Kharitonov, V.L., & Chen., J. (2003). Stability of time-delay systems. Boston, MA:

Birkhäuser.
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Pasillas-Lépine, W., Loŕıa, A., & Hoang, T.B. (2013). Preliminary results on output tracking
control for restricted-feedback linearizable systems with input delay. Proceedings of 52nd
IEEE Conference on Decision and Control, Florence, Italy, 2013, pp. 324–329.

Richard, J. (2003) Time-delay systems: An overview of some recent advances and open prob-
lems. Automatica, 39 (10), 1667–1694.

Roh, Y.H. & Oh, J.H. (1999). Robust stabilization of uncertain input-delay systems by sliding
mode control with delay compensation. Automatica, 35 (11), 1861–1865.

Smith, O. (1959). A controller to overcome dead time. ISA Journal, 6 (2), 28–33.
Yoon, S.Y. & Lin, Z. (2013). Truncated prediction feedback control for exponentially unstable

linear systems with time-varying input delay. Systems & Control Letters, 62 (10), 837–844.
Yoon, S. Y., Anantachaisilp, P., & Lin, Z. (2013). An LMI approach to the control of expo-

nentially unstable systems with input time delay. Proceedings of 52nd IEEE Conference on
Decision and Control, Florence, Italy, 2013, pp. 312–317.

Zhou, B., Lin, Z., & Duan, G. (2010). Stabilization of linear systems with input delay and
saturation – a parametric Lyapunov equation approach. International Journal of Robust
and Nonlinear Control, 20 (13), 1502–1519.

Zhou, B., Lin, Z., & Duan, G. (2012). Truncated predictor feedback for linear systems with
long time-varying input delays. Automatica, 48 (10), 2387–2399.

Zuo, Z., Lin, Z., and Ding, Z. (2016). Truncated prediction output feedback control of a class of
Lipschitz nonlinear systems with input delay. IEEE Transactions on Circuits and Systems-
II: Brief Papers, 63 (8), 788–792.

Zuo, Z., Lin, Z., and Ding, Z. (2016). Truncated predictor control of Lipschitz nonlinear systems
with time-varying input delay. IEEE Transactions on Automatic Control, Published online,
doi: 10.1109/TAC.2016.2635021.

13




