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Abstract

This paper provides a link between time-domain and frequency-domain stability results in the literature. Specifically, we focus on
the comparison between stability results for a feedback interconnection of two nonlinear systems stated in terms of frequency-domain
conditions. While the Integral Quadratic Constrain (IQC) theorem can cope with them via a homotopy argument for the Lurye problem,
graph separation results require the transformation of the frequency-domain conditions into truncated time-domain conditions. To date,
much of the literature focuses on “hard” factorizations of the multiplier, considering only one of the two frequency-domain conditions.
Here it is shown that a symmetric, “doubly-hard” factorization is required to convert both frequency-domain conditions into truncated
time-domain conditions. By using the appropriate factorization, a novel comparison between the results obtained by IQC and separation
theories is then provided. As a result, we identify under what conditions the IQC theorem may provide some advantage.

1 Motivation

Classical multiplier theory is a well known technique to
reduce the conservatism of absolute stability criteria (Zames
and Falb, 1968; Desoer and Vidyasagar, 1975). Frequency-
domain and time-domain conditions are combined, and the
canonical factorization of the multiplier is the essential tool
to ensure that time-domain properties can be recovered from
the frequency-domain conditions (Jönsson, 1996; Goh and
Safonov, 1995; Goh, 1996; Carrasco et al., 2012).

The IQC theorem by Megretski and Rantzer (1997) uses
only frequency-domain inequalities and provides a shortcut
to avoid conditions on the existence of factorizations by
using a homotopy argument in their proof. However the
original IQC framework was developed using time-domain
constraints by Yakubovich (1965, 1967, 1971), so Megretski
and Rantzer (1997) have coined the terms soft and hard
IQC 1 to establish the connection between their IQC theorem
and Yakubovich’s work. Loosely speaking:

Email addresses:
joaquin.carrascogomez@manchester.ac.uk (Joaquin
Carrasco), seile017@umn.edu (Peter Seiler).
1 It has been shown in (Seiler et al., 2010; Seiler, 2015) that the
same IQC can be either hard or soft depending on the factorization
used to convert from frequency to time-domain; therefore the terms
hard and soft factorizations terminology must be introduced.

• an IQC is hard when the time-domain version of the con-
straint holds for any finite time interval [0,T ];

• an IQC is soft when the time-domain version of the con-
straint holds for the interval [0,∞) but need not be satis-
fied on finite time intervals.

It may appear that a hard factorization is equivalent to the
canonical factorization in the classical multiplier theory. In
other words, one may think that a hard factorization of
an IQC is sufficient to convert frequency-domain stabil-
ity conditions to equivalent time-domain conditions (Goh,
1996; Seiler et al., 2010). However, it has been shown that
hard factorizations are not enough to establish such equiva-
lence (Veenman and Scherer, 2013; Seiler, 2015). The equiv-
alence between IQC and the so-called dissipative inequality
is shown in Seiler (2015). The term hard factorization is still
used, and then an extra condition is imposed on the solution
of an LMI involving the LTI system.

The graph separation framework (Safonov, 1980; Teel, 1996;
Georgiou and Smith, 1997) can be seen as a generalisation
of the classical multiplier theory and uses truncated time-
domain conditions to obtain stability result. Recently, Car-
rasco and Seiler (2015) have shown that it is possible to es-
tablish a counterpart of the IQC theorem using the graph sep-
aration framework. However, they rely on results in (Seiler,
2015) and require one of the two systems in the intercon-
nection to be LTI.
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Fig. 1. Lurye problem

This paper builds on the results presented in (Seiler, 2015)
and Carrasco and Seiler (2015). The main contribution of
this paper is the development of the counterpart of Lemma
2 in (Seiler, 2015). With this new result, we can establish
the equivalence between frequency-domain conditions and
truncated time-domain conditions from a pure input-output
point of view, without involving LMIs; hence the definition
of the factorization does not require one of the systems to
be LTI. This approach provides new insights, in particular,
we are able to establish a formal comparison between stabil-
ity results using IQC and graph separation theories for the
feedback interconnection of two nonlinear systems.

The structure of the paper is as follows. Sections 2 and 3 pro-
vides the IQC theorem and discusses classical hard and soft
factorizations as defined by Megretski and Rantzer (1997).
Section 4 states a new factorization, the so-called doubly-
hard factorization, and characterises this factorization for a
class of multipliers. Section 5 demonstrates that not all hard
factorizations are doubly-hard factorizations. Section 6 de-
velops two results for the stability of the feedback intercon-
nection of two systems, one using the IQC theorem, and
another using the graph separation result by Teel (1996). Fi-
nally, Section 7 gives the conclusions of the paper. We use
the same notation as in (Megretski and Rantzer, 1997).

2 IQC theorem

Definitions and results related with the IQC framework are
given in this section.
Definition 1 A stable and causal system ∆ : L m

2e[0,∞)→
L l

2e[0,∞) is said to satisfy the IQC defined by a bounded,
measurable Hermitian-valued function Π : jR→C(m+l)×(m+l)

if ∫
∞

−∞

[
û( jω)

∆̂u( jω)

]∗
Π( jω)

[
û( jω)

∆̂u( jω)

]
dω ≥ 0, (1)

for any u ∈L m
2 [0,∞).

Theorem 1 (IQC theorem (Megretski and Rantzer, 1997))
Let G∈RHm×l

∞ , let ∆ : L m
2e[0,∞)→L l

2e[0,∞) be a bounded
causal operator, and let Π : jR → C(m+l)×(m+l) be a
bounded, measurable Hermitian-valued function. Assume
that:

(1) for every τ ∈ [0,1], the interconnection of G and τ∆ is
well-posed;

(2) for every τ ∈ [0,1], the IQC defined by Π is satisfied
by τ∆;

(3) there exists ε > 0 such that[
G( jω)

I

]∗
Π( jω)

[
G( jω)

I

]
<−εI ∀ω ∈R. (2)

Then, the feedback interconnection of G and ∆ in Fig. 1 is
stable.

The multiplier Π is normally defined as a block 2-by-2 ma-
trix, i.e.

Π =

[
Π11 Π12

Π21 Π22

]
. (3)

where Π11 is m×m and Π22 is l× l. Then Π( jω) is called
a positive-negative multiplier if there exists ε > 0 such that
Π11( jω)≥ εIm and Π22( jω)≤−εIl ∀ω ∈R.

In this note we restrict our attention to positive-negative
rational multipliers Π ∈ RL(m+l)×(m+l)

∞ .

3 Hard and soft factorizations

The IQC in Equation 1 can be expressed in the time-domain
and this leads to a characterization of the IQC as soft or hard.
Specifically, let Π( jω) = Ψ>(− jω)MΨ( jω) where Ψ is a
causal and stable transfer function. Such factorizations are
not unique but can be computed with state-space methods
(Scherer and Weiland, 2000). With some abuse of notation
we will use the same notation for the transfer function and its
corresponding stable operator. The IQC-factorization (Ψ,M)
is said to be soft if

∫
∞

0

(
Ψ

[
u

∆u

])>
M

(
Ψ

[
u

∆u

])
dt ≥ 0, (4)

for any u ∈ L m
2 [0,∞). 2 The frequency-domain constraint

of Inequality 1 implies the time-domain soft constraint of
Inequality 4 by Parseval’s theorem. The factorization is said
to be hard if

∫ T

0

(
Ψ

[
u

∆u

])>
M

(
Ψ

[
u

∆u

])
dt ≥ 0, (5)

for any u ∈L m
2e[0,∞) and any T > 0. This condition for a

hard factorization is more restrictive. Specifically, all factor-
izations of Π are soft but only certain factorizations are hard.
It is now clear that the factorization step, i.e. Π = Ψ∼MΨ, is

2 Note that the dependence of time has been suppressed in
Equation 4 for simplicity. More precisely, this soft IQC is∫

∞

0 y>(t)My(t)dt ≥ 0 where y :=Ψ [ u
∆u ]. The time dependence will

similarly be dropped in other time-domain IQCs.
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a key point as the same Π can have hard and soft factoriza-
tions. These are called (Ψ,M)-hard and (Ψ,M)-soft factor-
izations (Seiler et al., 2010; Seiler, 2015). The terms com-
plete and conditional IQCs by Megretski (2010) are gener-
alizations of hard and soft IQCs. The hard/soft terminology
will be used here.

There are simple sufficient conditions for the existence of a
hard factorization (Goh, 1996). For positive-negative mul-
tipliers, it is always possible to find a hard factorization
(Ψ,Jm,l):

Ψ =

[
Ψ11 0

Ψ21 Ψ22

]
and Jm,l =

[
Im 0

0 −Il

]
(6)

where Ψ11,Ψ
−1
11 ,Ψ22 are stable rational transfer functions.

This ensures that the truncation of the IQC will preserve its
sign (Goh, 1996). This fact is shown via a simple argument
as

∫
∞

0

[
Ψ11u

(Ψ21 +Ψ22∆)u

]>
Jm,l

[
Ψ11u

(Ψ21 +Ψ22∆)u

]
dt =

‖Ψ11u‖2−‖(Ψ21 +Ψ22∆)u‖2 ≥ 0. (7)

Any input u can be truncated on [0,T ] and extended over
the positive real line by selecting an artificial input z([T,∞))
such that Ψ11ũ(t) = 0 for all t > T where the piecewise input
ũ is defined by

ũ(t) =
{

u(t) if t ≤ T,
z(t) if t > T.

(8)

The pair (ũ,∆ũ) satisfies the infinite horizon constraint of
Inequality 7. Hence, by construction, the pair (u,∆u) satisfies
the constraint over the finite horizon [0,T ]. The key point in
this construction is the stability of Ψ

−1
11 since it ensures that

the artificial input ũ belongs to L2 and ‖Ψ11u‖T = ‖Ψ11ũ‖T .

It may initially appear that this truncation is sufficient to
complete a dissipativity (or graph separation) proof for sta-
bility. However, the role of the second IQC condition seems
underappreciated in the literature. Specifically Equation 2 in
the IQC theorem is equivalent to the following second time-
domain IQC condition (because both G and Ψ are LTI):

∫
∞

0

(
Ψ

[
Gu

u

])>
M

(
Ψ

[
Gu

u

])
dt <−ε‖u‖2. (9)

All operators in this IQC condition are stable LTI systems
and hence the condition can be checked via an equivalent
frequency-domain condition. However, this does not imply
that the sign of this inequality will be preserved under finite-
horizon truncations in the time-domain. In particular, the key

difficulty is observed if we use the triangular factorization
along with the truncation arguments introduced above:

−
∫

∞

0

[
Ψ11Gu

(Ψ21G+Ψ22)u

]>
Jm,l

[
Ψ11Gu

(Ψ21G+Ψ22)u

]
dt =

‖(Ψ21G+Ψ22)u‖2−‖Ψ11Gu‖2 > ε‖u‖2. (10)

We now see the difficulties in creating an extension of the in-
put once a truncation u([0,T ]) has been selected. The exten-
sion of the piecewise input on [T,∞) must cancel (Ψ21G+
Ψ22)ũ for any time after the truncation. It may be possi-
ble in some cases, but in general this leads to piecewise
ũ 6∈L2[0,∞) since Ψ

−1
22 is not stable. This problem is linked

to the well known difficulties of applying feedback lineari-
sation to non-minimum phase systems (Isidori, 2013).

4 Doubly-hard IQC factorization

It is possible to show that positive-negative multipliers have
a more useful factorization for the purposes of stability anal-
ysis. It is shown by Seiler (2015) that J-spectral factoriza-
tions can be constructed for positive-negative multipliers, i.e.
Π( jω) = Ψ>(− jω)Jm,lΨ( jω) where Ψ and Ψ−1 are both
stable transfer functions. Moreover, this factorization allows
us to ensure that the signs of both IQCs are preserved under
truncation.

To the best of our knowledge this duality property of the
factorization has been overlooked. The argument by Seiler
(2015), where the J-spectral factorization is given, was based
on storage function and dissipativity arguments. The factor-
ization there was still referred to as a hard factorization with
a focus on the IQC condition for ∆, but the second condi-
tion was established in terms of the resulting LMI. Here we
propose a more symmetric and convenient definition where
we do not require the construction of the LMI, so we are
able to establish the properties of the factorization without
invoking the linearity of one of the systems.

In the graph framework, it is standard to use the graph and
the inverse graph (Safonov, 1980; Teel, 1996). The standard
IQC notation uses the graph of the system ∆. To develop a
symmetric formulation, we define the IQC over the inverse
graph, henceforward “inverse-graph IQC” as follows:
Definition 2 (Inverse-graph IQC) A stable and causal
system ∆ : L l

2e[0,∞)→L m
2e[0,∞) is said to strictly satisfy

the inverse-graph IQC defined by a bounded, measurable
Hermitian-valued function Π : jR→ C(m+l)×(m+l) if there
exists ε > 0 such that

∫
∞

−∞

[
∆̂u( jω)

û( jω)

]∗
Π( jω)

[
∆̂u( jω)

û( jω)

]
dω ≤−ε‖u‖, (11)

for any u ∈L l
2 [0,∞).

3



If ∆ is linear, then (11) is equivalent to (2) by using ∆ instead
of G.

Then we can state the definition of the factorization which
will lead to an equivalence between frequency-domain con-
ditions and truncated time-domain conditions:
Definition 3 (Doubly-hard factorization) For a given Π :
jR→ C(m+l)×(m+l), a factorization (Ψ,M) is said to be a
doubly-hard IQC factorization if the following two condi-
tions hold:

(1) for any bounded and causal ∆1 : L m
2e[0,∞) →

L l
2e[0,∞), the IQC condition

∫
∞

−∞

[
û( jω)

∆̂1u( jω)

]∗
Π( jω)

[
û( jω)

∆̂1u( jω)

]
dω ≥ 0, (12)

for all u ∈L m
2 [0,∞) implies that

∫ T

0

(
Ψ

[
u

∆1u

])>
M

(
Ψ

[
u

∆1u

])
dt ≥ 0. (13)

for any u ∈L m
2e[0,∞) and any T > 0, and

(2) for any bounded and causal ∆2 : L l
2e[0,∞) →

L m
2e[0,∞), the inverse-graph IQC condition

∫
∞

−∞

[
∆̂2u( jω)

û( jω)

]∗
Π( jω)

[
∆̂2u( jω)

û( jω)

]
dω ≤−ε‖u‖2,

(14)
for all u ∈L l

2 [0,∞) implies that

∫ T

0

(
Ψ

[
∆2u

u

])>
M

(
Ψ

[
∆2u

u

])
dt ≤−ε‖u‖2

T ,

(15)
for any u ∈L l

2e[0,∞) and any T > 0.

Finally, we show that the key property to obtain a doubly-
hard factorization is the stability of both Ψ and Ψ−1. This
result requires Lemma 2 in Seiler (2015), and the develop-
ment of a result for the inverse-graph condition (14).

Let

Ψ∼

 A Bv Bw

C Dv Dw

 . (16)

Define the functional J on v ∈L2[0,∞), w ∈L2[0,∞) and
x0 ∈Rn as

J(v,w,x0) =
∫

∞

0
z(t)>Mz(t)dt (17)

subject to

ẋ(t) = Ax(t)+Bvv(t)+Bww(t), x(0) = x0;
z(t) =Cx(t)+Dvv(t)+Dww(t).

Define the upper value J̄(x0) as

J̄(x0) := inf
v∈L2[0,∞)

sup
w∈L2[0,∞)

J(v,w,x0),

and the lower value J(x0) as

J(x0) := sup
w∈L2[0,∞)

inf
v∈L2[0,∞)

J(v,w,x0).

Lemma 1 (Seiler (2015)) Let Π be a multiplier and (Ψ,M)
any factorization with Ψ stable. Assume ∆1 is a causal
bounded operator such that

∫
∞

−∞

[
v̂( jω)

ŵ( jω)

]∗
Π( jω)

[
v̂( jω)

ŵ( jω)

]
dω ≥ 0, (18)

for any v ∈ L2[0,∞) and w = ∆1v. Then for all T ≥ 0,
for all v ∈ L2[0,∞), and w = ∆1v, the signal defined by

z = Ψ( jω)

[
v̂( jω)

ŵ( jω)

]
satisfies

∫ T

0
z(t)>Mz(t)dt ≥−J̄(x(T )), (19)

where x(T ) denotes the state of the system Ψ at the instant T
when driven by the inputs (v,w) with null initial conditions.

Lemma 2 Let Π be a multiplier and (Ψ,M) any factoriza-
tion with Ψ stable. Assume ∆2 is a causal bounded operator
such that

∫
∞

−∞

[
v̂( jω)

ŵ( jω)

]∗
Π( jω)

[
v̂( jω)

ŵ( jω)

]
dω ≤−ε(‖v‖2 +‖w‖2),

(20)
for any w∈L2[0,∞) and v=∆2w. Then for all T ≥ 0, for all

w∈L2[0,∞), and v = ∆2w, the signal defined by z = Ψ

[
v

w

]
satisfies

∫ T

0
z(t)>Mz(t)dt ≤−ε‖z‖T − J(x(T )), (21)

where x(T ) denotes the state of the system Ψ at the instant T
when driven by the inputs (v,w) with null initial conditions.

Proof: See Appendix. 2
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Theorem 2 Given a positive-negative multiplier Π ∈RL∞,
the factorization (Ψ,M) is doubly-hard if Ψ,Ψ−1 ∈ RH∞.

Proof: If Ψ ∈ RH∞, Lemma 1 and Lemma 2 hold. More-
over, if the multiplier Π is positive-negative and Ψ−1 ∈
RH∞ then J̄(x) = J(x) = 0 for all x ∈ Rn (see Lemma 5
in (Seiler, 2015)). As a result the factorization (Ψ,M) is
doubly-hard. 2

Therefore all J-spectral factorizations are doubly-hard fac-
torizations.

5 Triangular factorization vs J-spectral factorization

This section provides a simple example highlighting the
distinction between triangular and J-spectral factorizations.
Consider a simple feedback interconnection of the static sys-
tem G = 1

2 and an operator ∆. Define an positive-negative
multiplier Π ∈ RL2×2

∞ by

Π(s) =

[
3 −s+2

s+1
−s−2
s−1

−s2+4
s2−1

]
(22)

Assume the interconnection of G and τ∆ is well-posed for
all τ ∈ [0,1]. Also assume that τ∆ satisfies the IQC defined
by Π for all τ ∈ [0,1]. It can be verified that

[
G
1

]∼
Π
[

G
1

]
=

−1.25 < 0, i.e. G satisfies the IQC constraint with Π. Thus
the frequency domain IQC conditions in Theorem 1 are sat-
isfied and the feedback interconnection is stable.

As noted above, the factorization of Π is not unique. Here
we construct two different factorizations. First, a stable tri-
angular factorization (Ψ,M) of Π is given by:

M =
[

1 0
0 −1

]
and Ψ =

[
2 0
1 s−2

s+1

]
. (23)

Note that Ψ is stable but the (2,2) entry of Ψ is non-minimum
phase. The multiplier satisfies the positive-negative condi-
tions and hence it also has a J-spectral factorization (Ψ̃, J̃):

J̃ =
[

1 0
0 −1

]
and Ψ̃ =

[
−1.751 0.4133s−1.508

s+1
−0.2554 −1.082s−2.505

s+1

]
. (24)

Note that for this factorization Ψ̃ and Ψ̃−1 are both stable.
Figure 2 shows the IQC evaluated on [0,T ] versus the finite
horizon time T for the input signal u(t) = 0.458sin(t) for
t ∈ [0,10] and u(t) = 0 otherwise. The coefficient 0.458 is
selected to normalize the signal ‖u‖2 = 1. As t → ∞, both
IQCs converge to −1.25. This value is consistent with the
constraint

[
G
1

]∼
Π
[

G
1

]
= −1.25 < 0. Thus both factoriza-

tions satisfy the time-domain constraint as t→∞. However,
the lower triangular factorization goes positive on the ap-
proximate interval [0,2.8]. Thus the lower triangular factor-
ization can violate the constraint over finite horizons. On

0 5 10 15 20
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Time, sec

IQ
C

 o
n 

[0
,T

]

 

 

Lower Triang
J−spectral

Fig. 2.
∫ T

0
(
Ψ
[

G
1
]

u
)T M

(
Ψ
[

G
1
]

u
)

dt versus time T .

the other hand, the J-spectral factorization remains negative
and hence satisfies the constraint over all finite horizons.

It can be shown that lower triangular factorizations have a
(2,2) entry that is non-minimum phase in general. Specifi-
cally, if Ψ is lower triangular and Π = Ψ∼JΨ then the en-
tries of Ψ satisfy:

Π11 = Ψ
∼
11Ψ11−Ψ

∼
21Ψ21

Π12 =−Ψ
∼
21Ψ22

Π22 =−Ψ
∼
22Ψ22

These conditions imply that if Π12 has poles in the left half
plane then Ψ22 must be non-minimum phase. Specifically,
if Π is a positive-negative multiplier then there exists ε > 0
such that−Π22( jω)≥ εI ∀ω ∈R. Hence it can be factorized
as −Π22 = H∼H where H ∈ RH and H−1 is anti-stable. In
other words H is stable and anti-minimum phase. This fac-
torization can be constructed from the normal stable, min-
imum phase spectral factorization (Youla, 1961). Next, let
{pi}N

i=1 denote the poles of Π12 in the left half plane. Define
Ψ21 and Ψ22 as

Ψ22(s) := H(s)

(
N

∏
i=1

s+ p̄i

s− pi
· Im

)
(25)

Ψ21(s) :=
(
−Π12(s)Ψ−1

22 (s)
)∼

(26)

By construction, Ψ22 is stable and anti-minimum phase. The
inclusion of the Blaschke products 3 in the definition of
Ψ22 does not impact the value of Ψ∼22Ψ22 on the imaginary
axis. Thus Π22 = Ψ∼22Ψ22 on the imaginary axis by con-
struction of H. This choice of Ψ22 is required to ensure that
Π12Ψ

−1
22 is anti-stable and hence Ψ21 is stable. Moreover,

Ψ∼21Ψ22 =−Π12. A stable, stably invertible Ψ11 can then be
constructed from a spectral factorization of Π11 +Ψ∼21Ψ21.

3 See (Partington, 2004) for a definition.
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In this construction, any LHP poles of Π12 appear as RHP
zeros in Ψ22.

6 Comparison between IQC and graph separation re-
sults

6.1 Stability results

In this section we develop two stability results for the feed-
back interconnection of two nonlinear systems. One of these
results will be obtained using graph separation methods.
For completeness, we state an IQC version of Corollary 5.1
in (Teel, 1996) as follows:
Theorem 3 (Teel (1996)) Let ∆1 and ∆2 be two causal and
bounded systems. Let Ψ be a stable linear system. Assume
that:

(1) the feedback interconnection of G and ∆ is well-posed;
(2) the time-domain IQC

∫ T

0

(
Ψ

[
u

∆1u

])>
M

(
Ψ

[
u

∆1u

])
dt ≥ 0, (27)

is satisfied for any T > 0 and u ∈L2e[0,∞);
(3) the time-domain inverse-graph IQC

∫ T

0

(
Ψ

[
∆2u

u

])>
M

(
Ψ

[
∆2u

u

])
dt <−ε

∥∥∥∥∥
[

∆2u

u

]∥∥∥∥∥
2

T

,

(28)
is satisfied for any T > 0 and u ∈L2e[0,∞).

Then the feedback interconnection between ∆1 and ∆2 is
L2-stable.

In the spirit of Jönsson (2011), we can establish the following
corollary for the interconnection of two nonlinear systems:
Corollary 1 (Corollary of Theorem 1) Let ∆1 : L l

2e[0,∞)→
L m

2e[0,∞) and ∆2 : L m
2e[0,∞) → L l

2e[0,∞) be bounded
causal operators, and let Π ∈ RL(m+l)×(m+l)

∞ . Assume that:

(I) for every τ ∈ [0,1], the feedback interconnection of τ∆1
and τ∆2 is well-posed;

(II) for every τ ∈ [0,1], τ∆1 satisfies the IQC defined by Π;
(III) for every τ ∈ [0,1], τ∆2 strictly satisfies the inverse-

graph IQC defined by Π.

Then, the feedback interconnection of ∆1 and ∆2 is stable.

Proof: The result follows from the application of the IQC
theorem using

∆ =

[
∆1 0

0 ∆2

]
and G =

[
0 I

I 0

]
, (29)

and the following augmented multiplier:

Πa =


Π11 0 Π12 0

0 −Π22− εI 0 −Π∗12

Π∗12 0 Π22 0

0 −Π12 0 −Π∗11− εI

 (30)

Some straightforward algebra is required to show that the
conditions in Theorem 1 are satisfied. 2

Using Theorem 2, then it is possible to remove the homotopy
condition in the above result if the matrix Π is positive-
negative. Formally we can state the following result:
Corollary 2 (Corollary of Theorem 3) Let ∆1 : L l

2e[0,∞)→
L m

2e[0,∞) and ∆2 : L m
2e[0,∞) → L l

2e[0,∞) be bounded
causal operators, and let Π ∈ RL(m+l)×(m+l)

∞ . Assume that:

(i) the feedback interconnection of ∆1 and ∆2 is well-
posed;

(ii) ∆1 satisfies the IQC defined by Π;
(iii) ∆2 strictly satisfies the inverse-graph IQC defined by

Π;
(iv) Π is a positive-negative multiplier.

Then, the feedback interconnection of ∆1 and ∆2 is stable.

Proof: If Π is a positive-negative multiplier, then there ex-
ists a factorization (Ψ,M) such that Ψ and Ψ−1 are both
stable (Seiler, 2015). Therefore the factorization (Ψ,M) is
doubly-hard as it satisfies the conditions in Theorem 2.
The frequency-domain conditions (ii) and (iii) can be trans-
formed into truncated time-domain conditions by using the
factorization (Ψ,M). As a result, Theorem 3 can be used to
establish the stability of feedback interconnection between
∆1 and ∆2. 2

Remark 4 It would not be possible to prove Corollary 2 by
using triangular factorizations as it fails to guarantee that
condition (iii) is equivalent to the truncated time-domain
condition (28).

6.2 Discussion

A naı̈ve comparison of the results would suggest that condi-
tion (iv) in Corollary 2 an extra condition over the conditions
of Corollary 1. It is well known that the homotopy condition
in (II) is satisfied if Π11 is positive. Similarly, the homotopy
condition in (III) is satisfied if Π22 is negative. Hence one
can think of a superiority of Corollary 1 over Corollary 2.

However, if ∆1 and ∆2 are both nonlinear, the IQC theorem
requires homotopy conditions for both systems. If condition
(II) holds, the requirement of the condition to be true when
τ = 0 implies Π11( jω)≥ 0 for all ω ∈R. Similarly, if con-
dition (III) holds, the same argument when τ = 0 implies
Π22( jω)≤−εI for some ε > 0.

6



A perturbation argument as in (Carrasco et al., 2012; Seiler,
2015) in conjunction with a substitution argument (Carrasco
et al., 2013) is required here; although Π11( jω) ≥ 0 does
not guarantee the existence of a factorization, the following
Lemma ensures the existence of a new Π̄ with Π̄11( jω)≥ δ I
for some δ > 0, hence Π̄ can be factorised:
Lemma 3 Let G ∈ RHm×l

∞ , let ∆ : L m
2e[0,∞)→ L l

2e[0,∞)
be a bounded causal operator. If conditions (2) and (3) in
Theorem 1 are satisfied for some Π, then there exists some
δ > 0 such that conditions (2) and (3) are satisfied for

Π̄ =

[
Π11 +δ Im Π12

Π21 Π22

]
.

Proof: See Appendix. 2

Remark 5 The counterpart result for Corollary 1 is trivially
obtained as the only required condition that is the bound-
edness of ∆2.

As a result, we can consider without loss of generality that
Corollary 1 can only be satisfied if Π is positive-negative. In
conclusion, the IQC theorem may only provide better results
over the graph separation theory when (a) ∆2 is linear and
(b) Π22 is non-negative. Otherwise, graph separation and
IQC theories lead to the same stability result for rational
multipliers.

7 Conclusion

The aim of this paper is to complete the classification of
IQC-factorizations. It concludes previous work presented
in (Seiler, 2015; Carrasco and Seiler, 2015), establishing a
novel connection between IQC and graph separation theo-
ries. Here we propose the term doubly-hard factorizations,
where both frequency conditions can be transformed into
truncated time-domain conditions. We show that the stan-
dard triangular factorization is hard factorization but fails
to be a doubly-hard. Then it cannot be used to establish an
equivalence between the IQC theorem and separation results
in the truncated time-domain. We have shown that (Ψ,M)
is a doubly-hard factorization if Ψ and Ψ−1 are both stable.

The new results allow us to compare both theories for the
feedback interconnection two nonlinear systems. As a result
we conclude that the IQC theorem for two nonlinear system
does not provide any significant advantage over its counter-
part result derived using graph separation tools. However,
the IQC theorem may provide some advantages when one
of the system is linear and the term Π22 is non-negative.
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A Proof of Lemma 3

If condition (2) is satisfied for Π, then it is trivial that it is
also satisfied for Π̄ since[

û( jω)

∆̂u( jω)

]∗[
δ Im 0

0 0

][
û( jω)

∆̂u( jω)

]
= δ |û( jω)|2 ≥ 0 (A.1)

for all ω ∈R. If condition (3) is satisfied for Π, then there
exists ε > 0 such that[

G( jω)

I

]∗
Π( jω)

[
G( jω)

I

]
≤−εI ∀ω ∈R. (A.2)

Moreover, for any δ > 0, it follows

[
G( jω)

I

]∗[
δ Im 0

0 0

][
G( jω)

I

]
= δ (G( jω)∗G( jω))≤ δ‖G‖2

∞I,

(A.3)
for all ω . As a result, taking δ = ε

2‖G‖2∞
,

[
G( jω)

I

]∗
Π̄( jω)

[
G( jω)

I

]
≤−(ε− ε

2
)I =−ε

2
I ∀ω ∈R,

(A.4)

B Proof of Lemma 2

For any T ≥ 0, the frequency-domain inequality (20) can
be converted into time-domain (by Parserval’s theorem) and

re-arranged as

∫ T

0
z(t)>Mz(t)dt ≤−ε

∫
∞

0
z(t)>z(t)dt−

∫
∞

T
z(t)>Mz(t)dt

(B.1)
Note that −ε

∫
∞

T z(t)>z(t)dt ≤ 0 and hence the following
bound is also valid:∫ T

0
z(t)>Mz(t)dt ≤−ε

∫ T

0
z(t)>z(t)dt−

∫
∞

T
z(t)>Mz(t)dt

(B.2)
Next let w̃ ∈ L2[0,∞) be any signal satisfying w̃T = wT .
Define ṽ = ∆2w̃ and let z̃ = Ψ [ ṽ

w̃ ] be the response of Ψ with
null initial condition. By causality of ∆2 and Ψ, wT = w̃T
implies vT = ṽT and zT = z̃T . Hence for all w̃, it holds

∫ T

0
z(t)>Mz(t)dt =

∫ T

0
z̃(t)>Mz̃(t)dt.

Moreover, the IQC holds for any input/output pairs of ∆2.
In particular, Equation B.2 holds with z replaced by z̃. As a
result, any w̃ ∈L2 satisfying w̃T = wT can be used to upper
bound the integral

∫
∞

0 z(t)>Mz(t)dt obtained with w:

∫ T

0
z(t)>Mz(t)dt ≤−ε

∫ T

0
z(t)>z(t)dt−

∫
∞

T
z̃(t)>Mz̃(t)dt

(B.3)
Minimizing over all feasible w̃ yields the upper bound

∫ T

0
z(t)>Mz(t)dt ≤−ε

∫ T

0
z(t)>z(t)dt

+ inf
w̃∈L2,w̃T=wT

(
−
∫

∞

T
z̃(t)>Mz̃(t)dt

)
, (B.4)

The suitable set of signals w̃ can be rewritten as

w̃(t) =
{

w(t) if t ≤ T
w f (t) if t > T

for any w f ∈L2[T,∞). We can rewrite the minimisation as

∫ T

0
z(t)>Mz(t)dt ≤−ε

∫ T

0
z(t)>z(t)dt+

inf
w f∈L2[T,∞)

(
−
∫

∞

T
z̃(t)>Mz̃(t)dt

)
, (B.5)

such that ṽ = ∆2w̃ and z̃ = Ψ

[
ṽ

w̃

]
. The dependence on ∆2

can be removed following similar arguments to those given
in (Seiler, 2015). Partition ṽ = ∆2w̃ as:

ṽ(t) =
{

∆2w(t) if t ≤ T
v f (t) if t > T

(B.6)
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The bound in Equation B.5 only involves z̃ defined on [T,∞).
This signal can be computed from the state of Ψ at time T ,
i.e. xT , as well as the signals w f and v f . Note that x(T ) = xT
is the same for any feasible choice of w̃ because w̃T = wT
and ṽT = vT . The dependence on ∆2 is removed, with some
conservatism, by simply maximizing over all possible future
signals v f defined on [T,∞) instead of using ṽ = ∆2w. In
other words,

∫ T

0
z(t)>Mz(t)dt ≤−ε

∫ T

0
z(t)>z(t)dt+

inf
w f∈L2[T,∞)

sup
v f∈L2[T,∞)

(
−
∫

∞

T
z̃(t)>Mz̃(t)dt

)
, (B.7)

This is subject to constraint x(T ) = xT . This can be rewritten
using the cost function J as:

∫ T

0
z(t)>Mz(t)dt ≤ −ε

∫ T

0
z(t)>z(t)dt − J(xT ), (B.8)
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