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ABSTRACT
This paper is devoted to the robust H∞ and guaranteed cost control problems for continuous-time
switched linear systems with polytopic uncertainties, considering an output-dependent switching law
and a switched static output feedback controller. The proposed method offers new sufficient conditions
based on Linear Matrix Inequalities (LMIs) for designing the switching strategy. In order to provide extra
free dimensions in the solution space, some conditions become a special class of Bilinear Matrix Inequali-
ties (BMIs). Therefore, the hybrid algorithm Differential Evolution–Linear Matrix Inequality is proposed for
obtaining feasible solutions of this NP-hard problem. Theoretical analyses and numerical examples show
that these new procedures reduce the design conservatism of two recent known methods for solving the
presented control problems. Besides, a practical application of themethod in the design and simulation of
a robust switched controller of a switched semi-active suspension is performed.
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1. Introduction

Recently, the designing of control laws for switched systems
have received lots of attention (Yu &Wu, 2015; Zhang, Zhuang,
& Braatz, 2016). Switched systems are a particular case of hybrid
systems which are composed of a family of subsystems where a
switching rule or strategy defines the active subsystem at each
instant of time (Liberzon, 2003). The growing interest in this
topic is mainly due their widespread practical applications, such
as power electronics (Cardim, Teixeira, Assunção, & Covacic,
2009; Deaecto, Geromel, Garcia, & Pomilio, 2010), embedded
systems (Zhang & Hu, 2008), road traffic control strategies
(Papageorgiou,Diakaki, Dinopoulou, Kotsialos, &Wang, 2003),
among others. A significant result concerning the stability of
switched linear systems was presented in Wicks, Peleties, and
DeCarlo (1994): it was demonstrated that if there exists a Hur-
witz convex combination of the subsystemsmatrices, then there
exists a state switching rule that stabilises the switched linear
system.Regarding the concepts of robust stabilisation, Zhai, Lin,
and Antsaklis (2003) proposed a quadratic stabilisation rule for
uncertain switched linear systems based on LMIs. In Lin and
Antsaklis (2007) were developed two necessary and sufficient
conditions for providing global stability for a class of switched
linear systemswith time-variant parametric uncertainties. Con-
cerning stability and stabilisability of switched linear systems,
in Lin and Antsaklis (2009) can be found a survey of available
results and a proposed necessary and sufficient condition for
asymptotic stabilisability.
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Additionally, in Daafouz, Riedinger, and Iung (2002) the
authors proposed two different LMI-based conditions. In the
first one, it is presented a classical method while the sec-
ond incorporates slack variables in order to relax the condi-
tions. Moreover, in Ding and Yang (2009) the authors describe
more relaxed conditions through Finsler’s Lemma and piece-
wise quadratic Lyapunov functions for Static Output Feedback
(SOF) control. For robust stabilisation of switched linear sys-
tems, when all subsystems matrices are not Hurwitz, in Yu
and Wu (2015) are presented sufficient conditions, under some
assumptions, for stability using the invariant subspace theory
and average dwell time method. Considering some hypothe-
ses, the authors in Yu and Zhao (2016) developed a necessary
condition of stability for discrete-time switched linear systems.
Concerning the output feedback control design problem for
uncertain switched linear systems, its solution is among one
of the most challenging problems in literature, due to their
non-convex characteristic (Sadabadi & Peaucelle, 2016; Syr-
mos, Abdallah, Dorato, & Grigoriadis, 1997). Nevertheless, in
recent years, the design of SOF controllers has been scru-
tinised by several authors, mainly due to the use of output
feedback techniques results in simpler implementation rou-
tines for practical applications. In Peaucelle andArzelier (2005),
the authors proposed a two-step iterative algorithm focused
on H2optimisation. In doing so, Agulhari, Oliveira, and Peres
(2010) presented an extension of previous method considering
polynomial Lyapunov functions.
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Concerning a performance criterion, in this case, the H∞
cost, several authors have proposed conditions LMI-based con-
sidering an output feedback strategy. Crusius andTrofino (1999)
presented sufficient conditions for SOF controllers adopting lin-
earmatrices equalities. Aiming to avoid the equality constraints,
Dong and Yang (2013) presented new LMI conditions, for cases
where the output matrix is not required to be of full row rank.
In sequence, the authors in Chang, Park, and Zhou (2015) have
extended the flexibility of conditions for robust SOF H∞ con-
troller design. More specifically, the developed method is appli-
cable for uncertain systems relaxing the constraint in system
matrices. Furthermore, in Shi, Wang, Ren, and Fei (2017), the
authors investigated the dynamic output feedback H∞ control
for a class of switched systems with mode-dependent average
dwell time switching. InWu, Gao, Liu, and Li (2017), it was pro-
posed a sliding mode control (SMC) for stochastic systems via
output feedback considering among others, the exogenous dis-
turbance constraint in SMC design. An extended state observer
was used in order to reject external disturbance considering
SMC for power converters (Liu, Vazquez, Wu, Marquez, Gao,
& Franquelo, 2017). Additionally, in Ban, Kwon, Won, and Kim
(2018), it was designed a technique for robust H∞ finite-time
control for discrete-time polytopic uncertain switched linear
systems.

In practical applications, the state vector may not be com-
pletely available. In this situation, it is important to aim at
strategies for switching based on the measured output of the
plant. Nowadays, to the best of the author’s knowledge, there are
not available in the literature papers which consider switched
SOF H∞ controllers design for uncertain switched linear sys-
tems with output-depending switching. Regarding the afore-
mentioned researches, usually, papers on this subject consider
full or reduced order output feedback controllers through of
estimated state-dependent switching or state feedback.

The major contribution proposed in this paper is an exclu-
sively output-dependent switching strategy jointly with the
design of switched SOFH∞ controllers. It is important to high-
light that the proposedmethodology also provides conditions to
design switched output feedbackH∞ controllers for plants with
only one dynamic subsystem. These two different situations are
detailed in numerical examples.

Two different strategies to design output feedback controllers
considering output dependent switching strategy for uncer-
tain switched linear systems are presented. Firstly, it is consid-
ered that not exist exogenous input neither control input. In
sequence, the results presented in Mainardi Júnior et al. (2015)
are relaxed and the inclusion of guaranteed cost performance
and decay rate criterion is approached. Following, novel con-
ditions are proposed based on less conservative results available
in Liu and Zhang (2003), Teixeira, Assunção, and Avellar (2003)
and Mozelli and Palhares (2011).

Besides that, novel and less conservative conditions for
switching SOF H∞ control of continuous time switched lin-
ear systems are proposed. The results presented in Chang et al.
(2015) are relaxed considering the inclusion of switched output
feedback H∞ controllers jointly with an output-dependent
switching strategy.

In doing so, some bilinear terms appear in conditions of the
proposed theorems. The conditions of the proposed methods

are a special class of BMIs (Bilinear Matrix Inequalities), which
contain some bilinear terms as the product of a matrix and
a scalar, related to a suitable convex combination and two
scalar parameters to provide extra free dimensions in the solu-
tion space. Currently, to the best of the authors’ knowledge,
there are not available solvers (deterministic methods) able to
find the optimum solution for non-convex problems. Thus, the
proposed design method of the output gains in order to sta-
bilise an uncertain switched linear system is an NP-hard prob-
lem (Lin & Antsaklis, 2009). Therefore, it is proposed the use
of a hybrid metaheuristic technique, called DE–LMI (Differ-
ential Evolution – Linear Matrix Inequality) (Storn & Price,
1997) for finding quasi-optimum values for SOF gains (San-
dou, 2013) and/or a suitable convex combination. The pro-
posed procedure can also be used for designing robust con-
trollers for uncertain plants subject to structural failures, con-
sidering the plant uncertainties and the structural failures as
polytopic uncertainties (Silva, Assunção, Teixeira, & Cardim,
2013). An example illustrates a practical application of the
method in the design and simulation of a robust controller of
a semi-active suspension addressed in Cardim et al. (2016) and
Geromel, Colaneri, and Bolzern (2008). The paper is organised
as follows.

Section 2 presents a general definition of polytopic uncertain
switched linear systems.

Following, in Section 3 the problem statement is given and
relaxation results for robust SOF control design for uncer-
tain switched linear systems with an output dependent switch-
ing law introduced in Mainardi Júnior et al. (2015) jointly
with a performance criterion. Based on the relaxation con-
cepts available in Liu and Zhang (2003), Teixeira et al. (2003)
and Mozelli and Palhares (2011) are proposed novel condi-
tions for stability of uncertain switched linear systems. A the-
oretical analysis shows that these conditions hold when the
conditions presented in Mainardi Júnior et al. (2015) hold.
A numerical example illustrates the flexibility obtained through
of these less conservative conditions comparing feasible area
and guaranteed cost obtained in the theorems proposed in this
section.

In Section 4, it is presented the results for robust SOF H∞
control (Chang et al., 2015). In the sequence, the problem state-
ment is given and it is developed novel and less conservative
conditions for robust switching SOFH∞ control of continuous
time switched linear systems. Furthermore, the results avail-
able in Chang et al. (2015) are generalised through a switched
output H∞ controller. A theoretical analysis shows that these
new conditions hold when the conditions presented in Chang
et al. (2015) hold. Finishing the contributions of this section,
it is showed that the proposed methodology to develop robust
SOF H∞ switched controllers can be directly applied to non-
switched linear systems.

In Section 5, it is briefly described how the differential evo-
lution (DE) is applied in order to solve the proposed control
problem.

Three examples in Section 6 illustrate the effectiveness of the
proposed methods, including the design and simulation results
of a robust controller of a semi-active suspension (Cardim et al.,
2016) and showing that there exist cases where the proposed
conditions hold and the conditions from Mainardi Júnior et al.
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(2015) do not hold. Another example shows that the obtained
H∞ guaranteed cost from conditions proposed in this paper is
less when compared to the cost achieved in Chang et al. (2015).

Finally, in Section 7, conclusions are presented and future
works extensions are discussed.

The notation used in this paper are described as follows. For
real matrices or vectors (′) indicates transpose. The set com-
posed by the first N positive integers {1, . . . ,N} is represented
by KN . The set of all vectors λ = [λ1 . . . λN]′ such that λi ≥ 0,
i ∈ KN and λ1 + λ2 + · · · + λN = 1 is designated by �N . The
convex combination of a set ofmatrices (A1, . . . ,AN) is denoted
by Aλ = ∑N

i=1 λiAi, where λ ∈ �N . In addition, an asterisk (∗)
will be used in matrix expressions to express the transpose of
the symmetric element. Moreover, for in-line expressions, the
symbol (∗) represents the transpose of the left side term. The
notation He(M) refers toM + M′. The set of all finite ζ(t) tra-
jectories, such that

∫∞
t=0 ζ(t)

′ζ(t) dt < ∞ is denoted by L2. For
simplicity of notation, σ(t) = σ .

2. Polytopic uncertain switched systems

Consider the continuous-time uncertain switched linear system
defined by the following state-space realisation:

ẋ(t) = A(σ ,α)x(t)+ B(σ ,α)u(t)+ E(σ ,α)w(t), x(0) = x0,

z(t) = C1(σ ,α)x(t)+ D(σ ,α)u(t)+ F(σ ,α)w(t),

y(t) = C2(α)x(t)+ H(α)w(t),
(1)

where x(t) ∈ R
nx is the state vector, y(t) ∈ R

ny is the mea-
sured output, z(t) ∈ R

nz is the controlled output, u(t) ∈R
nu

is the control input, w(t) ∈R
nw is an exogenous distur-

bance input with w(t) ∈ L2[0,∞) and x0 is the initial con-
dition. The constant vector α = [α1 α2 . . . αr]′ represents
the polytopic uncertainties of the plant or structural failures
(Silva et al., 2013) and (Cardim et al., 2016). Consider that
σ(t) ∈ KN is the switching strategy which selects at each
instant of time an available subsystem i ∈ KN . The matrices
A(σ ,α), B(σ ,α), E(σ ,α), C1(σ ,α), D(σ ,α), F(σ ,α), C2(α)
and H(α) are constant matrices of appropriate dimensions and
can be described by convex combinations of their vertices,
as below:⎧⎨⎩[A(σ ,α), B(σ ,α), E(σ ,α), C1(σ ,α), D(σ ,α),

F(σ ,α), C2(α), H(α)]

=
r∑

j=1
αj
[
Aσ j, Bσ j, Eσ j, C1σ j, Dσ j, Fσ j, C2j, Hj

]⎫⎬⎭ = �,

αj ≥ 0,
r∑

j=1
αj = 1, j ∈ Kr , σ ∈ KN , (2)

where r is the number of vertices of the polytope and N is the
number os subsystems.

3. Robust control of polytopic uncertain switched
linear systems based on output-dependent switching

In practical applications, the state vector may not be completely
available. In these cases, it is important to propose switching
strategies based on the measured output of the plant. There-
fore, this section is devoted to present results concerning the
output-dependent switching control.

In this section, the plant equations are given by the switched
linear system (1) and (2), but without control input (u(t) = 0,
t ≥ 0), without exogenous disturbance (w(t) = 0, t ≥ 0) and
assuming constant output matrices C2j = C, for all j ∈ Kr , as
in Mainardi Júnior et al. (2015).

Assume that the state vector x(t) ∈ R
nx is not completely

available, but y(t) ∈ R
ny is accessible for feedback.

Problem 3.1: Determine a switching strategy σ(·) : R
p →

{1, 2, . . . ,N} such that:

σ(t) = f (y(t)), forall t ≥ 0, (3)

which makes the origin (x = 0) of the polytopic uncertain
switched linear system (1) and (2), supposing that u(t) = 0 and
w(t) = 0 for t ≥ 0, and assuming constant output matrices C2j =
C, for all j ∈ Kr , a globally asymptotically stable equilibrium
point.

Mainardi Júnior et al. (2015) presented less conservative
conditions for Problem 3.1, described in Theorem 3.1, than
conditions available in the literature.

Theorem 3.1 (Mainardi Júnior et al., 2015): If there exist λ ∈
�N , matrices X1ik ∈ R

nx×nx , X2ik ∈ R
nx×nx , symmetric matri-

ces Q0jk ∈ R
nx×nx , Qi ∈ R

ny×ny and symmetric positive definite
matrices Pjk ∈ R

nx×nx , such that[
X1ikAij + A′

ijX
′
1ik + X1ijAik + A′

ikX
′
1ij

Pjk − X′
1ik + X2ikAij + Pkj − X′

1ij + X2ijAik

Pjk − X1ik + A′
ijX

′
2ik + Pkj − X1ij + A′

ikX
′
2ij

−X2ik − X′
2ik − X2ij − X′

2ij

]

<

[
Q0jk + Q0kj + 2C′QiC 0

0 0

]
, (4)

Q0jk + C′QλC < 0, (5)

for all i ∈ KN , j ∈ Kr and k ∈ Kr , then the switching strategy

σ(y) = arg min
i∈KN

(y′Qiy) (6)

makes the origin x= 0 of the uncertain switched linear system
(1) and (2), supposing that u(t) = 0 and w(t) = 0 for t ≥ 0,
and assuming constant output matrices C2j = C, for all j ∈ Kr ,
a globally asymptotically stable equilibrium point.

Proof: See Appendix. �
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In order to establish a performance criterion for the switched
linear system (1) and (2), the following control problem intro-
duces the guaranteed cost performance (Deaecto et al., 2010),
as an extension of Problem 3.1.

Problem 3.2: Determine a switching strategy (3) which makes
the origin x= 0 of the controlled polytopic uncertain switched lin-
ear system (1) and (2), supposing that u(t) = 0 and w(t) = 0 for
t ≥ 0, and assuming constant output matrices C2j = C, for all
j ∈ Kr , a globally asymptotically stable equilibrium point and the
guaranteed cost

J =
∫ ∞

0
z(t)′z(t) dt

=
∫ ∞

0
x(t)′C1(σ ,α)′C1(σ ,α)x(t) dt < μx′

0Inx0 (7)

holds for a given scalar μ > 0 and all initial conditions, x0 =
x(0) �= 0.

A solution of Problem 3.2, that is an extension of the results
presented in Mainardi Júnior et al. (2015) for cases where is
required a guaranteed cost performance given in (7) and related
to the controlled output z(t) = C1(σ ,α)x(t) defined in (1), is
proposed in Theorem 3.2. Furthermore, a specification of the
decay rate is also considered in the problem. The decay rate is
shown in Boyd, El Ghaoui, Feron, and Balakrishnan (1994) as
the largest positive real constant (χ), such that:

lim
t→∞ eχ t ‖x(t)‖ = 0. (8)

Moreover, if P(α) = P(α)′ > 0 is a constant matrix and
V(x(t)) = x(t)′P(α)x(t) is a Lyapunov function for a given sys-
tem, then the condition V̇(x(t)) ≤ −2χV(x(t)) assures that the
decay rate is greater than or equal to χ .

Theorem 3.2: Consider that there exist λ ∈ �N , a scalar μ >
0, matrices X1ik ∈ R

nx×nx , X2ik ∈ R
nx×nx , symmetric matrices

Q0jk ∈ R
nx×nx , Qi ∈ R

ny×ny and symmetric positive definite
matrices Pjk ∈ R

nx×nx , such that

Pjk − μIn < 0, (9)

[
X1ikAij + A′

ijX
′
1ik + X1ijAik + A′

ikX
′
1ij + 2C′

1ijC1ik

+2χ(Pjk + Pkj)Pjk − X′
1ik + X2ikAij + Pkj − X′

1ij + X2ijAik

Pjk − X1ik + A′
ijX

′
2ik + Pkj − X1ij + A′

ikX
′
2ij

−X2ik − X′
2ik − X2ij − X′

2ij

]

<

[
Q0jk + Q0kj + 2C′QiC 0

0 0

]
, (10)

Q0jk + C′QλC < 0. (11)

Then, the switching strategy (6) makes the origin x= 0 of the
uncertain switched linear system (1) and (2), supposing that
u(t) = 0 and w(t) = 0 for t ≥ 0, and assuming constant output
matrices C2j = C, for all j ∈ Kr , a globally asymptotically stable

equilibrium point, the decay rate is greater than or equal to χ
and the guaranteed cost (7) holds for all initial conditions,x0 =
x(0) �= 0.

Proof: Considering that C′
1ijC1ij ≥ 0 and 2χ(Pjk + Pkj) > 0,

then if (10) and (11) hold, then (4) and (5) also hold. There-
fore, from Theorem 3.1, the conditions (10) and (11) assure
that the equilibrium point x= 0 of the controlled system (1),
(2), is globally asymptotically stable. The proof of the Theorem
3.1 was performed considering a Lyapunov function V(x(t)) =
x(t)′P(α)x(t), where P(α) = ∑r

j=1
∑r

k=1 αjαkPjk and Pjk =
P′
jk > 0, for all j, k ∈ Kr . Now, following the same steps used in

the proof of Theorem 3.1 (Appendix), applied to the conditions
(10) and (5), supposing that C1ij �= 0, from (1), one obtains for
x(t) �= 0:

0 > x(t)′
[

In
A(σ ,α)

]′ [C1(σ ,α)′C1(σ ,α)+ 2χP(α) P(α)
P(α) 0

]
×
[

In
A(σ ,α)

]
x(t),

0 > V̇(x(t))+ 2χV(x(t))+ z(t)′z(t), (12)

where V(x(t)) = x(t)′P(α)x(t) was defined above. Therefore,
from (12), V̇(x(t)) < −2χV(x(t)). Thus, the decay rate is
greater than or equal to χ . From (2), note that V(x(t)) > 0
for x(t) �= 0. Observe that, from (1) and (12), V̇(x(t)) < 0 for
x(t) �= 0 and thus x(∞) = 0. Now, integrating (12) from zero to
infinity, considering x0 = x(0) �= 0, knowing that V(x(∞)) =
0, from (9) and remembering that from (2) (α1 + α2 + · · · +
αr)

2 = 1, it follows that:

J =
∫ ∞

0
z(t)′z(t) dt < x′

0P(α)x0 < μx′
0Inx0. (13)

The proof is concluded. �

Now, in order to relax the feasibility of the LMIs from
Theorem 3.2, based on the results presented in Liu and Zhang
(2003), Teixeira et al. (2003), Souza, Teixeira, Cardim, and
Assunção (2014), Deaecto, Geromel, and Daafouz (2011) and
inspired on the Finsler’s lemma (Mozelli & Palhares, 2011; Qiu,
Feng, & Yang, 2008), less conservative conditions are proposed
in Theorem 3.3.

Theorem 3.3: Consider that there exist λ ∈ �N , a scalarμ > 0,
symmetric matrices Q0jk ∈ R

nx×nx , Qi ∈ R
ny×ny and matrices

ξijk = ξ ′
ikj ∈ R

2nx×2nx ,φjk = φ′
kj ∈ R

nx×nx ,wjk = w′
kj ∈ R

nx×nx ,
Pjk = P′

kj ∈ R
nx×nx , X1ik ∈ R

nx×nx , X2ik ∈ R
nx×nx , such that

ψikk − γikk < ξikk, (14)

ψijk − γijk + (∗) < ξijk + ξ ′
ijk, k �= j, (15)

θkk < φkk, (16)

θjk + θ ′
jk < φjk + φ′

jk, k �= j, (17)
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Pkk > wkk (18)

Pjk + P′
jk > wjk + w′

jk, k �= j, (19)

Pkk − μIn < 0, (20)

1
2

×
(
Pjk + P′

jk

)
− μIn < 0, k �= j, (21)

W� > 0, (22)

�� < 0, (23)

��i < 0, (24)

for all i ∈ KN , j, k ∈ Kr , where,

W� =

⎡⎢⎣w11 . . . w1r
...

. . .
...

wr1 . . . wrr

⎤⎥⎦ , (25)

�� =

⎡⎢⎣φ11 . . . φ1r
...

. . .
...

φr1 . . . φrr

⎤⎥⎦ , (26)

��i =

⎡⎢⎣ξi11 . . . ξi1r
...

. . .
...

ξir1 . . . ξirr

⎤⎥⎦ , (27)

ψijk =
[
νijk ϑijk
(∗) −X2ik − X′

2ik − X2ij − X′
2ij

]
, (28)

γijk =
[
Q0jk + Q0kj + 2C′QiC 0

0 0

]
, (29)

θjk = Q0jk + C′QλC, (30)

νijk = X1ikAij + A′
ijX

′
1ik + X1ijAik + A′

ikX
′
1ij + 2C′

1ijC1ik + 2χ
(Pjk + Pkj), ϑijk = Pjk − X1ik + A′

ijX
′
2ik + Pkj − X1ij + A′

ikX
′
2ij ,

Qλ = λ1Q1 + λ2Q2 + · · · + λNQN, λ = [λ1 λ2 . . . λN],∑N
i=1 λi = 1, andλi ≥ 0 for all i ∈ KN. Then, the switching strat-

egy (6) makes the origin x= 0 of the uncertain switched linear
system (1) and (2), supposing that u(t) = 0 and w(t) = 0 for t ≥
0, and assuming constant output matrices C2j = C, for all j ∈ Kr ,
a globally asymptotically stable equilibrium point, the decay rate
is greater than or equal to χ and the guaranteed cost (7) holds for
all initial conditions, x0 = x(0) �= 0.

Proof: Take into account the following definitions:

X =
[
X1(σ ,α)
X2(σ ,α)

]
, T =

[
In

A(σ ,α)

]
,

∑
=

r∑
j=1

αj

r∑
k=1

αk, �(σ ,α) = [
α1T′ α2T′ . . . αrT′]′ .

(31)

Afterwards, consider that (14)–(24) are feasible. Then, from
(14), (15), (26)–(31), it follows that, for x = x(t) �= 0:

0 > x′�′(σ ,α)��i�(σ ,α)x = x′∑T′ξijkTx

> x′∑T′ (ψijk − γijk
)
Tx. (32)

From (28)–(30), note that (32) can be rewritten as:

0 > x′∑T′
([
νijk ϑijk
ϑ ′
ijk −X2ik − X′

2ik − X2ij − X′
2ij

]
−
[
Q0jk + Q0kj + 2C′QiC 0

0 0

])
Tx. (33)

Observe that,
∑
(X1ikAij + X1ijAik) = 2

∑
X1ikAij,

∑
(Pjk +

Pkj) = 2
∑

Pjk,
∑
(X1ik + X1ij) = 2

∑
X1ik and

∑
(Q0jk + Q0kj)

= 2
∑

Q0jk . Therefore, verify that (33) can also be described as
follows:

0 > 2x′∑T′
([

X1ikAij + (∗)+ C′
1ijC1ik + 2χPjk

Pjk − X′
1ik + X2ikAij

(∗)
−X2ik − X′

2ik

]
−
[
Q0jk + C′QiC 0

0 0

])
Tx. (34)

Then, define X1(σ ,α) = α1X1σ1 + α2X1σ2 + · · · + αrX1σ r ,
X2(σ ,α) = α1X2σ1 + α2X2σ2 + · · · + αrX2σ r , Q0(α) = α1α1
Q011 + α1α2Q012 + α2α1Q021 + · · · + αrαrQ0rr , Qi(α) = α1α1
Qi11 + α1α2Qi12 + α2α1Qi21 + · · · + αrαrQirr , C1(σ ,α) = α1
C1σ1 + α2C1σ2 + . . .+ αrC1σ r and P(α) = α1α1P11 + α1α2
P12 + α2α1P21 + · · · + αrαrPrr . Hence, from (2) and (34), con-
sidering (31) and i = σ one obtains:

0 > x′T′
⎛⎝⎡⎣X1(σ ,α)A(σ ,α)+ (∗)+ C1(σ ,α)′C1(σ ,α)

+2χP(α)
P(α)− X′

1(σ ,α)+ X2(σ ,α)A(σ ,α)

(∗)
−X2(σ ,α)− X′

2(σ ,α)

]
−
[
Q0(α)+ C′QσC 0

0 0

])
Tx

= x′T′
({[

C1(σ ,α)′C1(σ ,α)+ 2χP(α) P(α)
P(α) 0

]
+ X

[
A′(σ ,α)

−In

]′
+
[
A′(σ ,α)

−In

]
X′
}

−
[
Q0(α)+ C′QσC 0

0 0

])
Tx

= x′T′
([

C1(σ ,α)′C1(σ ,α)+ 2χP(α) P(α)
P(α) 0

]
−
[
Q0(α)+ C′QσC 0

0 0

])
Tx. (35)

Now, considering that the minimum of a set of real numbers
is less than or equal to an arbitrary convex combination of these
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numbers, observe that, from (1), (2), (6), (30), (31) and defining
V(x(t)) = x′(t)P(α)x(t), (35) becomes:

0 > V̇(x)+ 2χV(x)+ z′z − x′ (Q0(α)) x − min
i∈KN

(y′Qiy)

≥ V̇(x)+ 2χV(x)+ z′z − x′∑Q0jk + C′QλCx

= V̇(x)+ 2χV(x)+ z′z − x′∑ θjkx. (36)

Consequently, considering a Lyapunov function candidate
V(x(t)) = x(t)′P(α)x(t), where P(α) was defined above, from
(16), (17), (30), note that (36) can be represented as:

0 > V̇(x)+ 2χV(x)+ z′z −
r∑

j=1
αj

r∑
k=1

αkx′θjkx,

> V̇(x)+ 2χV(x)+ z′z −
r∑

j=1
αj

r∑
k=1

αkx′φjkx. (37)

Now, from (23) and (26), it follows that:

V̇(x)+ 2χV(x)+ z′z <
r∑

j=1
αj

r∑
k=1

αk φjk,

V̇(x)+ 2χV(x)+ z′z <

⎡⎢⎢⎣
α1I
α2I
. . .

αrI

⎤⎥⎥⎦
′

��

⎡⎢⎢⎣
α1I
α2I
. . .

αrI

⎤⎥⎥⎦ < 0. (38)

Moreover, from (2), (18), (19), (22) and (25), observe that for
x(t) �= 0:

V(x(t)) = x(t)′

⎡⎢⎢⎣
α1I
α2I
. . .

αrI

⎤⎥⎥⎦
′⎡⎢⎣P11 . . . P1r

...
. . .

...
Pr1 . . . Prr

⎤⎥⎦
⎡⎢⎢⎣
α1I
α2I
. . .

αrI

⎤⎥⎥⎦ x(t),

> x(t)′

⎡⎢⎢⎣
α1I
α2I
. . .

αrI

⎤⎥⎥⎦
′⎡⎢⎣w11 . . . w1r

...
. . .

...
wr1 . . . wrr

⎤⎥⎦
⎡⎢⎢⎣
α1I
α2I
. . .

αrI

⎤⎥⎥⎦ x(t),

= x(t)′
r∑

j=1
αj

r∑
k=1

αkW�x(t) > 0. (39)

Furthermore, from (39), note that V(x(t)) > 0, for
x(t) �= 0. Now, considering that Pjk = P′

kj, from (2), (20) and
(21) it follows that P(α)− μIn < 0. Now, from (38), z(t)′z(t) ≤
−V̇(x(t)), and integrating both sides from zero to infinity, con-
sidering x0 = x(0) �= 0, knowing that, from (38) and (39), the
equilibrium point (x = 0) of the uncertain switched system (1),
(2), and (6) is globally asymptotically stable, thenV(x(∞)) = 0
and one obtains (7). Therefore, the proof is concluded. �

Theorem 3.4: If the conditions given in Theorem 3.2 hold, then
the conditions given in Theorem 3.3 also hold.

Proof: Considering the definitions (28), (29) and the above
conditions, ψijk = ψ ′

ijk, γijk = γ ′
ijk, then the (10) is equiva-

lent to ψijk − γijk < 0, for all i ∈ KN and k, j ∈ Kr . If (10)

holds, then, there exist ξikk = ψikk − γikk + εI, where ε > 0,
is sufficiently small such that, ξikk < 0, for all i ∈ KN and k ∈
Kr , and ξijk = 0 for k �= j, i ∈ KN , j, k ∈ Kr , such that, (14)
and (15) hold. Furthermore, in this case, the condition (24)
also holds, because it can be rewritten as showed in (27).
Note that in Theorem 3.2, Pjk = P′

jk > 0, but it is not neces-
sary that Pjk = P′

kj, for j �= k. However, observe that one can
also rewrite P(α) as P(α) = ∑r

j=1 α
2
j Pjj + 1

2
∑r

j�=k αjαk(Pjk +
Pkj) = ∑r

j=1 α
2
j Pjj +

∑r
j�=k αjαkPNjk , where PNjk = P′

Nkj
= 1

2 ×
(Pjk + Pkj), because from Theorem 3.2 Pjk = P′

jk for all j, k ∈
Kr . Furthermore, in the LMI (10) given in Theorem 3.2, note
that Pjk appears added to Pkj and then, Pjk + Pkj = PNjk + PNkj .
From Theorem 3.2 it also follows that Pjk > 0 for all j, k ∈ Kr .
Then, note that, without loss of generality, one can consider in
Theorem 3.2 that Pjk = P′

kj. Therefore, there exist wkk = Pkk −
εI, where ε > 0 is sufficiently small such that,wkk > 0 for all k ∈
Kr , andwjk = 0 for j �= k, such that the conditions (18) and (19)
hold. In this situation, the condition (22) also holds, because it
can be rewritten as described (25). Now, from definition (30),
the condition (11) is equivalent to θjk < 0, j, k ∈ Kr . Hence,
when (11) holds, observe that (16) and (17) also hold for φkk =
θkk + εI, where ε > 0 is sufficiently small such that, φkk < 0,
for all k ∈ Kr , and φjk = 0, for j �= k and k, j ∈ Kr . In this case,
the condition (23) also holds, because it can be rewritten as
presented in (26). Finally, when (9) holds for some μ > 0, the
conditions (20) and (21) also hold. The proof is concluded. �

Remark 3.1: Note that the termsQλ = ∑N
i=1 λiQi presented in

the conditions (5), (11) and (30) of the previous theorems can be
seen as BMIs sinceQi and λi are variables to be found. However,
if the parameters λi are set to be known, those conditions are
LMIs that can be solved. Further, an example will exploit the
optimisation of the parametersλi in order to achieve suboptimal
values for the guaranteed cost.

3.1 Example I

In order to compare the potentiality of the proposed theorems,
is presented in this section a numerical simulation. The exam-
ple shows a comparison between the feasible region obtained
through the conditions of Theorems 3.2 and 3.3. Furthermore,
it is presented a comparative study regarding the guaranteed
cost (7).

This example was borrowed from Mainardi Júnior et al.
(2015). Consider the uncertain system (1) and (2), supposing
that u(t) = 0 and w(t) = 0 for t ≥ 0, and assuming constant
output matrices C2j = C, for all j ∈ Kr , with r= 2, N = 3, i ∈
{1, 2, 3}, j ∈ {1, 2} and the following matrices given below:

A11 =
⎡⎣2 1 0
3 −5 0
2 0 −2

⎤⎦ , A12 =
⎡⎣h1 1 0
3 −2 0
2 0 −2

⎤⎦ ,

A21 =
⎡⎣−5 −3 1

−3 −2 0
0 2 −2

⎤⎦ , A22 =
⎡⎣−5 −6 1

−3 h2 0
0 2 −2

⎤⎦ ,
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A31 =
⎡⎣0 1 0
1 −2 0
3 0 −3

⎤⎦ , A32 =
⎡⎣0 1 −3
1 −2 0
3 h3 −3

⎤⎦ ,

C21 = C22 =
[
0 1 0
0 0 1

]
. (40)

A comparative study on feasibility analysis and guaranteed
cost for some pairs of h1 and h2, where h1 ∈ [−10, 0], h2 ∈
[−50, 0] and h3 = −(h1 + h2)/3 is performed in this exam-
ple. It was considered increments of 0.5 and 2 regarding the
variables h1 and h2, respectively. Note that the matrices A12,
A22 and A32 depend on the parameters h1, h2, and h3, respec-
tively. Observe that the matrix A12 is Hurwitz (i.e. it has all
eigenvalues with negative real parts) for all h1 ∈ [−10, − 2]
and it is not Hurwitz for all h1 ∈ [−1.5, 0]. The matrix A22 is
Hurwitz for all h2 ∈ [−50, − 4] and it is not Hurwitz for all
h2 ∈ [−2, 0]. Moreover, verify that the matrix A32 is Hurwitz
for all h3 ∈ [0, 18] and it is not Hurwitz for all h2 ∈ [18.5, 20].
Furthermore, note that the matrices A11 and A31 are not Hur-
witz and the matrix A21 is Hurwitz. It was considered λ1 = 0.4,
λ2 = 0.3, and λ3 = 0.3. In this example the condition regard-
ing the guaranteed cost (7) is removed, adoptingC111 = C112 =
C121 = C122 = C131 = C132 = 0. Thus, note that the conditions
from Theorem 3.2 are equivalent to the conditions presented
on Theorem 5 (Mainardi Júnior et al., 2015). Figure 1 shows a
comparison between the feasible regions obtained through the
conditions of Theorems 3.2 and 3.3. Note that, the proposed
methodology (Theorem 3.3) presents a greater feasible region
than that obtained with the conditions given in (Theorem 5)
(Mainardi Júnior et al., 2015). This fact and the result presented
in Theorem 3.4 show that the conditions proposed in Theorem
3.3 are less conservative than that presented in Mainardi Júnior
et al. (2015).

Furthermore the potentiality of proposed theorems are com-
pared establishing the guaranteed cost as performance criterion,
considering x0 = x(0) = [−0, 25 0, 5 − 0, 75]′, C111 = C112 =
C121 = C122 = C131 = C132 = C21 = C22, for h1 ∈ [−10, −7]

and h2 ∈ [−30, −12]. Observe that, from Figure 2, the less
conservative conditions proposed in Theorem 3.3 reduce the
guaranteed cost when compared to the conditions of Theorem
3.2. Additionally, note that, when h2 ≤ −17, the conditions of
Theorem 3.2 are unfeasible.

4. Robust switching SOFH∞ control of continuous
time switched linear systems

This section is devoted to coping with the problem of designing
robust SOFH∞ switching controllers for switched linear uncer-
tain systems. The output feedback controller for the uncertain
switched system (1) and (2) is given by

u(t) = Ky(t). (41)

Consequently, the closed-loop system results in

ẋ(t) = Ã(σ ,α)x(t)+ Ẽ(σ ,α)w(t), x(0) = x0

z(t) = C̃1(σ ,α)x(t)+ F̃(σ ,α)w(t),

y(t) = C2(α)x(t)+ H(α)w(t),

(42)

where,

Ã(σ ,α) = A(σ ,α)+ B(σ ,α)KC2(α),

Ẽ(σ ,α) = E(σ ,α)+ B(σ ,α)KH(α),

C̃1(σ ,α) = C1(σ ,α)+ D(σ ,α)KC2(α),

F̃(σ ,α) = F(σ ,α)+ D(σ ,α)KH(α). (43)

Initially, the approach presented in Chang et al. (2015) is
introduced. These results are important to develop the contri-
bution of this section. The following lemma was presented in
Chang et al. (2015) and employed to establish the main result of
the paper.

Lemma 4.1 (Chang et al., 2015): For matrices T , P , U and
A with appropriate dimension and a scalar β, the following
statements are equivalent:

 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
   −40

   −35

   −30

  −25

  −20

  −15

  −10

−5

0

a

b

Figure 1. Feasible regions obtained with Theorems 3.2 and 3.3 without the guaranteed cost specification, where the region obtained with Theorem 3.2 is illustrated by
(×) and the region obtained for Theorem 3.3 is illustrated by (×) and (•).
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Figure 2. Guaranteed cost obtained from conditions of Theorems 3.2 (gray) and 3.3 (black).

(i):
[

T ∗
βP ′+UA −βU−βU ′

]
< 0,

(ii): T < 0, T + A′P ′ + AP < 0.

Theorem 4.2 provides LMI-based conditions for designing a
SOF H∞ controller.

Theorem 4.2 (Chang et al., 2015): Given a scalar γ > 0, for
known scalar parameters β and ρ, if there exist matrices V ∈
R
nu×ny , U ∈ R

ny×ny , and Xj > 0 ∈ R
nx×nx , j = 1, 2, . . . , r sat-

isfying the following LMIs:

�jj < 0, (44)

�jk +�kj < 0, j < k, (45)

for all j, k ∈ Kr , with:

�jk =

⎡⎢⎢⎢⎣
He(AjXk + BjVFk) ∗

E′
j + H′

kV
′B′

j −γ 2I
C1jXk + ρF ′

0V
′B′

j + D′
jVFk Fj + DjVHk

βV ′B′
j + C2jXk − UFk Hj − UHk

∗ ∗
∗ ∗

−I + He(ρDjVF0) ∗
βV ′D′

j − ρUF0 −βU − βU ′

⎤⎥⎥⎦ (46)

Fk =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(C2C′
2)

−1C2, C2(α) is fixed, C2(α) = C2 and
C2 is of full rank,

C2, C2(α) is fixed, C2(α) = C2 and
C2 is of non − full rank,

C2k, C2(α) isnon − fixed,
(47)

F0 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Iny , ny = nz,

[Iny 0nz×(nz−ny)], ny < nz,[
Inz

0(ny−nz)×nz

]
ny > nz,

(48)

then the system (1) and (2) is asymptotically stable with the H∞
performance γ and the controller gain matrix (41) is given by

K = K = VU−1. (49)

Proof: See Chang et al. (2015). �

Remark 4.1: In Theorem 4.2 if ρ and β are set to be known
the conditions became LMI which, when feasible, can be easily
solved. As mentioned in Chang et al. (2015), these parameters
are not necessary but they provide extra free dimensions for the
design problem. Therefore it is possible to use numerical opti-
misation to search suboptimal values for β and ρ to reduce the
H∞ bound. In Chang et al. (2015) the function fminsearch of
the Matlab optimisation toolbox (Gahinet, Nemirovskii, Laub,
&Chilali, 1994)was used to obtain a locally convergent solution.

In order to extend the conditions of Theorem4.2 for a class of
switched systems and also aiming to design SOFH∞ switching
controllers for linear uncertain systems, the following problem
is stated.

Problem 4.1: Find a function f (·) : R
ny → [{1, 2, . . . ,N},

{1, 2, . . . , r}] and gains Kis ∈ R
m×p, i ∈ KN , s ∈ Kr , such that

the switching strategy

ϕ(t) = f (y(t)) = [
σ(y) η(y)

]
, forall t ≥ 0, (50)

and the control input (41),withK = Kϕ ,make the origin x= 0 of
the controlled polytopic uncertain switched linear system (1) and
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(2) a globally asymptotically stable equilibrium point such that the
controlled system satisfies,∫ ∞

0
z(t)′z(t) dt ≤ γ 2

∫ ∞

0
w(t)′w(t) dt. (51)

Therefore, theH∞ norm of the aforementioned system is less than
γ (Dong & Yang, 2013) for x(0) = 0 and w(t) ∈ L2[0,∞].

To deal with Problem 4.1, Theorem 4.3 provides conditions
for designing static output H∞ switching controllers for the
switched linear uncertain system (1)–(2), based on the results
presented inMainardi Júnior et al. (2015) (Theorem3.1), Chang
et al. (2015) (Theorem 4.2) and Souza et al. (2014).

Theorem 4.3: Consider that for known scalar parameters β
and ρ there exist λ ∈ �, a scalar γ > 0, matrices Vis ∈ R

nu×ny ,
Uis ∈ R

ny×ny , Q0j ∈ R
nx×nx , Q1j ∈ R

nx×nw , Q2j ∈ R
nw×nw , and

symmetric matrices Xj > 0 ∈ R
nx×nx , Zis ∈ R

ny×ny , such that

Wijjs < 0, (52)

Wijks + Wikjs < 0, j < k (53)

�λjjj < 0, (54)

�λjjk +�λjkj +�λkjj < 0, j �= k (55)

�λjkq +�λjqk +�λkjq +�λkqj +�λqjk +�λqkj < 0,

j < k, k < q. (56)

for all i ∈ KN , j, s, k, q ∈ Kr , where

Wijks =

⎡⎢⎢⎢⎣
He(AijXk + BijVisFk)− Q0j − C′

2jZisC2k
E′
ij + H′

kV
′
isB

′
ij − Q′

1j − H′
jZisC2k

C1ijXk + ρF ′
0V

′
isB

′
ij + D′

ijVisFk

βV ′
isB

′
ij + C2jXk − UisFk

∗ ∗
−γ 2I − Q2j − H′

jZisHk ∗
Fij + DijVisHk −I + He(ρDijVisF0)
Hj − UisHk βV ′

isD
′
ij − ρUisF0

∗
∗
∗

−βUis − βU ′
is

⎤⎥⎥⎦ (57)

�λjkq =
[
Q1j + C′

2jZλkC2q Q1j + C′
2jZλkHq

Q′
1j + H′

jZλkC2q Q2j + H′
jZλkHq

]
,

Zλ(α) =
N∑
i=1

r∑
k=1

αkλiZik (58)

with Fk and F0 are given in (47) and (48), respectively.

Thus the switching strategy,

ϕ = [σ η] = arg min
i∈KN
s∈Kr

(y′Zisy) (59)

and the control input (41), with K = Kφ = Kση, where the con-
troller gains are given by

Kis = VisU−1
is , i ∈ KN , s ∈ Kr (60)

make the closed-loop system (1), (2), (41), (59) and (60) asymp-
totically stable with the H∞ performance γ .

Proof: From (2), (52), (53), (57) and considering i = σ , s = η
one obtains:

r∑
j=1

r∑
k=1

αjαkWσ jkη =
r∑

j=1

α2Wσ jjη +
r∑

j=1

r∑
j<k

αjαk(Wσ jkη + Wσkjη)

=

⎡⎢⎢⎣
He

(
A(σ ,α)X(α)+ B(σ ,α)VσηF(α)

)− Q0(α)− C2(α)
′ZσηC2(α)

E(σ ,α)′ + H(α)′V ′
σηB(σ ,α)′ − Q1(α)

′ − H(α)′ZσηC2(α)

C1(σ ,α)X(α)+ ρF ′
0V

′
σηB(σ ,α)′ + D(σ ,α)′VσηF(α)

βV ′
σηB(σ ,α)′ + C2(α)X(α)− UσηF(α)

∗ ∗
−γ 2I − Q2(α)− H(α)′ZσηH(α) ∗

F(σ ,α)+ D(σ ,α)VσηH(α) −I + He(ρD(σ ,α)VσηF0)

H(α)− UσηH(α) βV ′
σηD(σ ,α)′ − ρUσηF0

∗
∗
∗

−βUση − βU ′
ση

⎤⎥⎥⎦ < 0. (61)

Since the inequalities (52) and (53) are feasible, it implies from
(57) that Uis are no singular, for all i ∈ KN and r ∈ Kr . From
Lemma 4.1 with A = U−1

ση [C2(α)X(α)− UσηF(α) H(α)−
UσηH(α) − ρUσηF0], P ′ = [V ′

σηB(σ ,α)′ 0 V ′
σηD(σ ,α)′] and

T =
⎡⎣ He

(
A(σ ,α)X(α)+ B(σ ,α)VσηF(α)

)− Q0(α)− C2(α)
′ZσηC2(α)

E(σ ,α)′ + H(α)′V ′
σηB(σ ,α)′ − Q1(α)

′ − H(α)′ZσηC2(α)

C1(σ ,α)X(α)+ ρF ′
0V

′
σηB(σ ,α)′ + D(σ ,α)′VσηF(α)

∗ ∗
−γ 2I − Q2(α)− H(α)′ZσηH(α) ∗

F(σ ,α)+ D(σ ,α)VσηH(α) −I + He(ρD(σ ,α)VσηF0)

⎤⎦ ,

(62)

the inequality (61) results in

⎡⎣ He
(
A(σ ,α)X(α)+ B(σ ,α)VσηF(α)

)− Q0(α)− C2(α)
′ZσηC2(α)

E(σ ,α)′ + H(α)′V ′
σηB(σ ,α)′ − Q1(α)

′ − H(α)′ZσηC2σ
C1(σ ,α)X(α)+ ρF ′

0V
′
σηB(σ ,α)′ + D(σ ,α)′VσηF(α)

∗ ∗
−γ 2I − Q2(α)− H(α)′ZσηH(α) ∗

F(σ ,α)+ D(σ ,α)VσηH(α) −I + He(ρD(σ ,α)VσηF0)

⎤⎦

+ He

⎛⎜⎝
⎡⎣B(σ ,α)Vση

0
D(σ ,α)Vση

⎤⎦U−1
ση

⎡⎣X(α)C2(α)
′ − F(α)′U ′

ση

H(α)′ − H(α)′U ′
ση

−ρF ′
0U

′
ση

⎤⎦′⎞⎟⎠ < 0. (63)
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Rewriting (63),

⎡⎣He (A(σ ,α)X(α)) ∗ ∗
E(σ ,α)′ −γ 2I ∗

C1(σ ,α)X(α) F(σ ,α) −I

⎤⎦

+ He

⎛⎜⎝
⎡⎣B(σ ,α)Vση

0
D(σ ,α)Vση

⎤⎦U−1
ση

⎡⎣F(α)′U ′
ση

H(α)′U ′
ση

ρF ′
0U

′
ση

⎤⎦′⎞⎟⎠

+ He

⎛⎜⎝
⎡⎣B(σ ,α)Vση

0
D(σ ,α)Vση

⎤⎦U−1
ση

⎡⎣X(α)C2(α)
′ − F(α)′U ′

ση

H(α)′ − H(α)′U ′
ση

−ρF ′
0U

′
ση

⎤⎦′⎞⎟⎠
−
⎡⎣Q0(α)+ C2(α)

′ZσηC2(α) ∗ ∗
Q1(α)

′ + H(α)′ZσηC2σ Q2(α)+ H(α)′ZσηH(α) ∗
0 0 0

⎤⎦

=
⎡⎣He (A(σ ,α)X(α)) ∗ ∗

E(σ ,α)′ −γ 2I ∗
C1(σ ,α)X(α) F(σ ,α) −I

⎤⎦

+ He

⎛⎝⎡⎣B(σ ,α)Vση
0

D(σ ,α)Vση

⎤⎦U−1
ση

⎡⎣X(α)C2(α)
′

H(α)′
0

⎤⎦′⎞⎠

−
⎡⎣Q0(α)+ C2(α)

′ZσηC2(α) ∗ ∗
Q1(α)

′ + H(α)′ZσηC2σ Q2(α)+ H(α)′ZσηH(α) ∗
0 0 0

⎤⎦

=
⎡⎣He

(
A(σ ,α)X(α)+ B(σ ,α)KσηC2(α)X(α)

)
E(σ ,α)′ + H(α)′K ′

σηB(σ ,α)′(
C1(σ ,α)+ D(σ ,α)KσηC2(α)

)
X(α)

∗ ∗
−γ 2I ∗

F(σ ,α)+ D(σ ,α)KσηH(α) −I

⎤⎦

−
⎡⎣Q0(α)+ C2(α)

′ZσηC2(α) ∗
Q1(α)

′ + H(α)′ZσηC2(α) Q2(α)+ H(α)′ZσηH(α) ∗
0 0 0

⎤⎦ < 0.

(64)

Using the Schur complement in (64) and considering (43), one
obtains

[
He

(
Ã(σ ,α)X(α)

)+ X(α)C̃1(σ ,α)′C̃1(σ ,α)X(α) ∗
Ẽ(σ ,α)′ + F̃(σ ,α)′C̃1(σ ,α)X(α) F̃(σ ,α)′F̃(σ ,α)− γ 2I

]

−
[
Q0(α)+ C2(α)

′ZσηC2(α) ∗
Q1(α)

′ + H(α)′ZσηC2(α) Q2(α)+ H(α)′ZσηH(α)

]
< 0. (65)

Pre and post-multiplying (65) in both sides by [x(t)′w(t)′] and
its transpose

[
x(t)
w(t)

]′
⎛⎝⎡⎣ He

(
Ã(σ ,α)X(α)

)+ X(α)
C̃1(σ ,α)′C̃1(σ ,α)X(α) ∗

Ẽ(σ ,α)′ + F̃(σ ,α)′C̃1(σ ,α)X(α) F̃(σ ,α)′F̃(σ ,α)− γ 2I

⎤⎦
−
[
Q0(α)+ C2(α)

′ZσηC2(α) ∗
Q1(α)

′ + H(α)′ZσηC2(α) Q2(α)+ H(α)′ZσηH(α)

])[
x(t)
w(t)

]

=
[
x(t)
w(t)

]′
⎛⎝⎡⎣ He

(
Ã(σ ,α)X(α)

)+ X(α)
C̃1(σ ,α)′C̃1(σ ,α)X(α) ∗

Ẽ(σ ,α)′ + F̃(σ ,α)′C̃1(σ ,α)X(α) F̃(σ ,α)′F̃(σ ,α)− γ 2I

⎤⎦
−
[
Q0(α) ∗
Q1(α)

′ Q2(α)

])[
x(t)
w(t)

]
−
[
x(t)
w(t)

]′

×
[
C2(α)

′ZσηC2(α) ∗
H(α)′ZσηC2(α) H(α)′ZσηH(α)

] [
x(t)
w(t)

]
. (66)

Observe that,[
x(t)
w(t)

]′ [C2(α)
′ZσηC2(α) ∗

H(α)′ZσηC2(α) H(α)′ZσηH(α)

] [
x(t)
w(t)

]
= [

x(t)′ w(t)′
] [C2(α)

′
H(α)′

]
Zση

[
C2(α) H(α)

] [x(t)
w(t)

]
= (

x(t)′C2(α)
′ + w(t)′H(α)′

)
Zση (C2(α)x(t)+ H(α)w(t))

= y(t)′Zσηy(t). (67)

From (65)–(67), and considering x(t) �= 0, note that

[
x(t)
w(t)

]′
⎛⎝⎡⎣ He

(
Ã(σ ,α)X(α)

)+ X(α)
C̃1(σ ,α)′C̃1(σ ,α)X(α) ∗

Ẽ(σ ,α)′ + F̃(σ ,α)′C̃1(σ ,α)X(α) F̃(σ ,α)′F̃(σ ,α)− γ 2I

⎤⎦
−
[
Q0(α) ∗
Q1(α)

′ Q2(α)

])[
x(t)
w(t)

]
− y(t)′Zσηy(t) < 0. (68)

Now, from (54)–(56) one has
r∑

j=1

r∑
k=1

r∑
q=1

αjαkαq�λjkq

=
r∑

j=1
α3j �λjjj +

r∑
j=1

r∑
j�=k

α2j αk
(
�λjjk +�λjkj +�λjjk

)

+
r∑

j=1

r∑
j<k

r∑
k<q

αjαkαq(�λjkq +�λjqk +�λkjq

+�λkqj +�λqjk +�λqkj) (69)

=
[
Q0(α) Q1(α)
Q1(α)

′ Q2(α)

]
+
[
C2(α)

′Zλ(α)H(α) C2(α)
′Zλ(α)H(α)

H(α)′Zλ(α)C2(α) H(α)′Zλ(α)H(α)

]
< 0. (70)

Pre and post-multiplying (70) in both sides by
[
x(t)′w(t)′

]
and

its transpose result in[
x(t)
w(t)

]′ ([Q0(α) Q1(α)

Q1(α)
′ Q2(α)

]
+
[
C2(α)

′Zλ(α)H(α) C2(α)
′Zλ(α)H(α)

H(α)′Zλ(α)C2(α) H(α)′Zλ(α)H(α)

])
[
x(t)
w(t)

]
=
[
x(t)
w(t)

]′ [Q0(α) Q1(α)

Q1(α)
′ Q2(α)

] [
x(t)
w(t)

]
+ y(t)′Zλ(α)y(t) < 0.

(71)

Now, knowing that the minimum of a set of real numbers is less
than or equal to an arbitrary convex combination of these num-
bers it is possible to rewrite (68), considering the definition of
Zλ(α) in (58):

0 > − min
i∈KN
s∈Kr

(y′Zisy)+
[
x(t)
w(t)

]′ (
−
[
Q0(α) ∗
Q1(α)

′ Q2(α)

]

+
⎡⎣ He

(
Ã(σ ,α)X(α)

)
+X(α)C̃1(σ ,α)′C̃1(σ ,α)X(α) ∗

Ẽ(σ ,α)′ + F̃(σ ,α)′C̃1(σ ,α)X(α) F̃(σ ,α)′F̃(σ ,α)− γ 2I

⎤⎦⎞⎠[
x(t)
w(t)

]

≥ −y(t)′Zλ(α)y(t)−
[
x(t)
w(t)

]′ [Q0(α) ∗
Q1(α)

′ Q2(α)

] [
x(t)
w(t)

]

+
[
x(t)
w(t)

]′ [ He
(
Ã(σ ,α)X(α)

)+ X(α)C̃1(σ ,α)′C̃1(σ ,α)X(α)
Ẽ(σ ,α)′ + F̃(σ ,α)′C̃1(σ ,α)X(α)

∗
F̃(σ ,α)′F̃(σ ,α)− γ 2I

] [
x(t)
w(t)

]
. (72)
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Therefore, from (72),[
x(t)
w(t)

]′ [ He
(
Ã(σ ,α)X(α)

)+ X(α)C̃1(σ ,α)′C̃1(σ ,α)X(α)
Ẽ(σ ,α)′ + F̃(σ ,α)′C̃1(σ ,α)X(α)

∗

F̃(σ ,α)′̃F(σ ,α)− γ 2I

⎤⎦[x(t)
w(t)

]

≤ y(t)′Zλ(α)y(t)+
[
x(t)
w(t)

]′ [Q0(α) ∗
Q1(α)

′ Q2(α)

] [
x(t)
w(t)

]
.

(73)

Considering (71) and (73)
[

He
(
Ã(σ ,α)X(α)

)+ X(α)C̃1(σ ,α)′C̃1(σ ,α)X(α)
Ẽ(σ ,α)′ + F̃(σ ,α)′C̃1(σ ,α)X(α)

∗
F̃(σ ,α)′F̃(σ ,α)− γ 2I

]
< 0. (74)

Considering a Lyapunov function candidate V(x(t)) =
x(t)P(α)x(t), defining X(α) = P−1(α) and pre- and post-
multiplying both sides of (74) with diag{P(α), I} and its trans-
pose and then pre- and post-multiplying the result in both sides
with [x(t)′ w(t)′], one has[

x(t)′
w(t)′

] [
He

(
Ã(σ ,α)′P(α)

)+ C̃1(σ ,α)′C̃1(σ ,α) ∗
Ẽ(σ ,α)′P(α)+ F̃(σ ,α)′C̃1(σ ,α) F̃(σ ,α)′F̃(σ ,α)− γ 2

]
[
x(t)
w(t)

]
= V̇(t)+ z(t)′z(t)− γ 2w(t)′w(t) < 0. (75)

Integrating (75) from zero to infinity∫ ∞

0
V̇(t) dt +

∫ ∞

0
z(t)′z(t) dt − γ 2

∫ ∞

0
w(t)′w(t) dt

= V(∞)− V(x(0))+
∫ ∞

0
z(t)′z(t) dt

− γ 2
∫ ∞

0
w(t)′w(t) dt < 0. (76)

Considering x(0) = 0, then V(x(0)) = 0 and V(∞) ≥ 0.
Therefore, from (76) one has∫ ∞

0
z(t)′z(t) dt ≤ γ 2

∫ ∞

0
w(t)′w(t) dt. (77)

Thus, (51) holds and the H∞ performance is fulfilled. Note
that from (75) ifw(t) = 0 one obtains V̇(t) < 0 for all x(t) �= 0.
Hence, the proof is concluded. �

Remark 4.2: As mentioned in Remark 4.1, in Theorem 4.2 to
obtain LMI conditions the parameters β and ρ are set to be
known. In Theorem 4.3, besides β and ρ, the parameters λi, i ∈
KN need to be known to have LMI conditions. It is important
to highlight that the parameters λi, unlike β and ρ, are neces-
sary for the conditions. Obviously, as mentioned in Remark 3.1,
the same discussion concerning λi can be drawn for Theorems
3.1– 3.3 since the convex combination of the parameters λi is
needed. With the purpose of optimising the H∞ norm finding
the values of β , ρ and λi, i ∈ KN , the DE–LMI algorithmwill be
introduced later.

Theorem 4.4: If the conditions given in Theorem 4.2 hold, then
the conditions given in Theorem 4.3 also hold.

Proof: For Theorem4.3 assume the particular casewhereN = 1
and the controller gains are fixed (K = K) which yield fixed
values for Zis = Z , Uis = U, Vis = V ,�λjkq = �j andWijks =
Wjk. Therefore, assumingZ = 0, it is possible to rewrite (57) as

Wjk =

⎡⎢⎢⎢⎣
He(AjXk + BjVFk) ∗ ∗ ∗

E′
j + H′

kV
′B′

j −γ 2I ∗ ∗
C1jXk + ρF ′

0V ′B′
j + D′

jVFk Fj + DjVHk −I + He(ρDjVF0) ∗
βV ′B′

j + C2jXk − UFk Hj − UHk βV ′D′
j − ρUF0 −βU − βU ′

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

ωjk

+

⎡⎢⎢⎣
−Q0j ∗ ∗ ∗
−Q′

1j −Q2j ∗ ∗
0 0 0 ∗
0 0 0 0

⎤⎥⎥⎦
︸ ︷︷ ︸

Qj

, (78)

and (58) as

�j =
[
Q0j ∗
Q′
1j Q2j

]
. (79)

Note that for this particular case the term ωjk defined in (78) is
equal to�jk given in (46) of Theorem 4.2. Considering that the
conditions of Theorem 4.2 hold, then from (44) and (45) one
has that ωjj = �jj < 0 and ωjk + ωkj = �jk +�jk < 0 . Thus,
there exists sufficient small parameters ε > 0 and τ > 0 such
thatωjj + εI < 0 andωjk + ωkj + τ I < 0. Therefore, from (78),
for the particular case where Q0j = −εI, Q2j = −εI and Q1j =
0, considering (57), then (52) and (53) hold. Hence (54), (55)
and (56) also hold, since Q0j = −εI, Q2j = −εI and Q1j = 0,
because�λjkq = �j and from (79),�j = −εI < 0. The proof is
concluded. �

Corollary 4.5: Theorem 4.3 also suits for designing switched out-
put feedbackH∞ controllers for continuous-time uncertain linear
systems. These systems can be considered a particular case of the
switched systems with N= 1.

5. Hybrid DE–LMI-based algorithm

Note that as mentioned in Remarks 3.1 and 4.2, terms Qλ lead
to BMIs conditions in Theorems 3.1– 3.3 and 4.3. As well as
stated in Remark 4.1, the parameters ρ and β in the Theorems
4.2 and 4.3 can be found through numerical optimisation in
order to reduce the H∞ norm. Currently, to the best of the
author’s knowledge, there are not available solvers (determinis-
tic methods) in literature able to find the optimum solution for
non-convex problems (Sadabadi & Peaucelle, 2016). Thus, find-
ing the output gains in order to stabilise an uncertain switched
linear system is a NP-hard problem (Koumboulis & Tzamtzi,
2007; Lin &Antsaklis, 2009). Therefore, it is proposed the use of
an hybrid metaheuristic technique, DE–LMI (Differential Evo-
lution – Linear Matrix Inequality) (Storn & Price, 1997) for
finding quasi-optimum values for the parameters ρ, β and λi.

5.1 Differential evolution

Global optimisation is considered effective in different fields
of engineering, statistics, and finances models. Consequently,
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Figure 3. Main stages of DE algorithm (Das & Suganthan, 2011).

there are different techniques proposed in the literature to solve
these problems. DE is a stochastic method based on population
optimisation algorithm introduced by Storn and Price (1997).
This method belongs to the class of Evolutionary Algorithms
(EA), which also includes, GeneticAlgorithms (GA), Evolution-
ary Strategies (ES) and Evolutionary Programming (EP) (Price,
Storn, & Lampinen, 2006). DE figured as one of the best among
the competing algorithms presented at Second International
Contest on Evolutionary Optimisation and over the the years
has attracted the attention of researchers from diverse fields of
knowledge.Hence, a plenty of variants of the basicDE algorithm
has emerged (Das & Suganthan, 2011). DE is a real parameter
algorithm and can be summarised in four stages, such as GA:
initialisation of the population/parameters,mutation, crossover,
and selection. Figure 3 depicts these stages.

The notation for representing a population consisting of NP
vectors that will be updated throughout the G generations was
adopted as following (80):{�xi,G | i = 0, 1, 2 . . .NP − 2,NP − 1

}
. (80)

To initialise the population (G = 0), in order to cover the
suitable range with uniformly distributed random individuals,
one has to consider the knowledge about the problem. For
instance, if the parameters of the convex combination compose
the population, knowing that λi ≤ 1, λi ≥ 0 and

∑N
i=1 λi = 1,

the initial population should cover the range between 0 and 1,
considering the sum of the individuals equal to 1, with uni-
formly distributed random values.

The mutation stage involves adding the weighted difference
between two random individuals (�xβ ,G and �xγ ,G) of the popula-
tion to a third one (�xκ ,G), as shown in (81).

�ν = �xκ ,G + F(�xβ ,G − �xγ ,G), (81)

where the real and constant F> 0 factor controls the amplifica-
tion of the differential variation and for each target vector �xi,G
a mutant vector is generated (Storn & Price, 1997). The vector
�xκ ,G may be replaced by the best individual in the population at
generation G (�xbest,G). In order to do that, when initialising the
population the fitness function must be evaluated.

Aiming to increase the diversity, the crossover between the
mutant vector and the target vector is performed to yield the
trial vector (�u). The last stage (selection) involves whether or not
the trial vector should replace the target vector. The trial vector
replaces the target vector if it yields a smaller fitness function.
Otherwise, the target vector is held.

5.2 DE–LMI-based algorithm employed to the proposed
problem

As aforementioned the proposed DE–LMI-based algorithm
applies the SeDuMi algorithm (Sturm, 1999) or Matlab LMI

toolbox (Gahinet et al., 1994) for solving the LMI problems
in order to provide the parameters to evaluate each individual
of the population considered in the DE. Considering the DE
traditional algorithm described in Section 5.1 and in order to
illustrate the integration of DE and LMI solvers, Figure 4 depicts
the algorithm routine.

Our main goal is to find the convex combination parame-
ters (λi), β and ρ when required. It is possible to consider that
the characteristics of the individuals are the convex combina-
tion parameters and those aforementioned parameters. Hence,
aiming to minimise the guaranteed cost for Theorems 3.2 and
3.3 and the H∞ cost for Theorem 4.3, is possible to apply
the DE–LMI algorithm to deal with the problem, achieving
quasi-optimum values for λi, β and ρ.

6. Examples

In this section, three examples are used to compare the poten-
tiality of the theorems proposed in this paper and complement
the results presented in Section 3.1. Example II illustrates the
casewhere allmatrices of the subsystems are notHurwitz. Com-
parisons regarding the guaranteed cost were performed consid-
ering a given set of λ1, λ2 and λ3 and the suboptimal λ1, λ2
and λ3 obtained using the proposed hybrid algorithmDE–LMI.
Example II, consider that u(t) = 0 and w(t) = 0, and thus The-
orems 3.2 and3.3 are compared. With the aim to compare the
proposed technique with the results presented in Chang et al.
(2015) for continuous-time systems, the condition of Corollary
4.5 is used to cover the Example III. Finally, in Example IV
the conditions of Theorem 4.3 are used in order to find a fea-
sible solution for a practical application of the method in the
design of a switched robust controller for a semi-active suspen-
sion (Cardim et al., 2016) and (Geromel et al., 2008) aiming to
minimise theH∞ cost (51). Concerning LMI solver, it was used
the SeDuMi or Matlab LMI toolbox interfaced by YALMIP in
MATLAB software.

6.1 Example II – numerical simulation

Consider the uncertain switched linear systems represented by
(1) and (2), with r= 2, N = 3, i ∈ {1, 2, 3}, j ∈ {1, 2} and the
following matrices given below:

A1(a) =
⎡⎣a 1 0
1 −3 0
1 0 −1

⎤⎦ , A2(b) =
⎡⎣−1 −2 0

−2 b 0
0 1 −1

⎤⎦ ,

A3(c) =
⎡⎣−2 0 1

0 −1 2
0 1 c

⎤⎦ , C21 = C22 = C1ij =
[
1 0 0
0 0 1

]
.

(82)

Since there neither control input (u(t) = 0) nor exogenous dis-
turbance (w(t) = 0) the matrices Bij ,Eij, Dij, Fij and Hj are not
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Figure 4. DE–LMI routine.

Figure 5. Time response of the state variables and switching selection of the controlled system (1), (2), (6) and (82).

represented. Note that, if a < − 1
3 , b<−4, c<−2, the matrices

A1(a), A2(b) and A3(c) are Hurwitz. Otherwise, if a ≥ − 1
3 , b ≥

−4, c ≥ −2, the matrices A1(a), A2(b) and A3(c) are not Hur-
witz. The vertices of polytope were obtained considering 0 ≤
a ≤ 1, −3 ≤ b ≤ −1.5, −1.5 ≤ c ≤ −1. Initially, consider that
λ1 = 0.3, λ2 = 0.4, λ3 = 0.3, x0 = x(0) = [0.25 0.5 − 0.25]′
and u(t) = 0. From conditions of both Theorems 3.2 and 3.3,
the obtained guaranteed cost (7) was 6.022. The next subsec-
tion is devoted to apply the concepts of DE–LMI algorithm in
order to reduce the guaranteed cost.

6.1.1 Finding the suboptimal parameters of convex
combination
Note that, the conditions (11), (16) and (17) are BMIs, con-
tain terms as the product of a scalar by a matrix. However, as
discussed earlier, the proposed hybrid metaheuristic DE–LMI
algorithm is able to find feasible solutions in order to reduce

the guaranteed cost (7), obtaining values of convex combination
parameters that yield suboptimal guaranteed cost value. In this
case, the DE–LMI algorithm searches the values of λi, i ∈ KN ,
such that,

∑N
i=1 λi = 1 andQλ = λ1Q1 + λ2Q2 + · · · + λNQN .

From the conditions of Theorem 3.3, the DE–LMI algorithm
stopped in the 17th generation due tolerance stop criterion,
yielding a value of 2.087 for the guaranteed cost with the solu-
tion λ1 = 0.2449;, λ2 = 0.3623;, and λ3 = 0.3928;. The result
shows that the guaranteed cost was considerably reduced when
compared with the value obtained disregarding optimisation.
Figure 5 presents the trajectories of the state variables and the
selected subsystem over time, obtained through of conditions
proposed in Theorem 3.3. It is important to highlight that the
switching strategy (6) stabilises the system described in (82),
even when the state matrices are not Hurwitz. Furthermore,
note that when t > 4 s, the time responses of the state
variables are close to zero. However, observe that the switching
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strategy continues selecting the best available subsystem
considering (6).

6.2 Example III – numerical simulation

This numerical example was introduced in Chang et al. (2015).
It is represented by (1) and (2), with r= 2,N = 1 (Corollary 4.5)
and the following matrices:

A1 =
⎡⎣−0.9896 17.41 96.15

0.2648 −0.8512 −11.39
0 0 −30 + δ

⎤⎦ ,

A2 =
⎡⎣−1.702 50.72 263.5
0.2201 −1.418 −31.99

0 0 −30 + δ

⎤⎦ ,

B1 =
⎡⎣−97.78

0
30

⎤⎦ , B1 =
⎡⎣−85.09

0
30

⎤⎦ , E1 = E2 =
⎡⎣01
1

⎤⎦ ,

C11 = C12 = I3×3,

D1 = D2 = 0, F1 = F2 = 0, C21 =
[
1 0 0
0 1 0

]
,

C21 =
[
1 0 0
0 1 1

]
,

H1 = H2 = 0. (83)

The parameter δ was added in the matrices A1 and A2 to
draw a comparison between Theorem 4.2 (Chang et al., 2015)
and Theorem 4.3 for theH∞ performance, considering δ incre-
ments.

Figure 6 shows that Theorem 4.3 achieves betterH∞ perfor-
mance when compared with the Theorem 4.2. Furthermore, it

to highlight that for δ > 4.9 the conditions of Theorem 4.2 are
unfeasible.

6.3 Example IV – practical application: semi-active
switched suspension

In order to evaluate the proposed technique presented in the
Theorem 4.3 in a practical application, consider the semi-active
switched suspension addressed in Geromel et al. (2008) and
Cardim et al. (2016). The problem consists in designing an
output feedback controller that jointly with the switching strat-
egy mitigates the passenger’s discomfort. Figure 7 depicts the
system. The mathematical model can be seen as the system
represented in (1) and (2) with the following matrices:

A1(α) =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 0

−k(α)
M(α)

−cmin

M(α)
k(α)
M(α)

cmin

M(α)
0 0 0 1

k(α)
m

cmin

m
−(k(α)+ kt)

m
−cmin

m

⎤⎥⎥⎥⎥⎥⎦ ,

Figure 7. Active suspension system (quarter car).

Figure 6. H∞ cost comparison between Theorems 4.2 and 4.3 for δ increments.
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B1(α) = B2(α) =

⎡⎢⎢⎢⎢⎢⎣
0
1

M(α)
0

−1
m

⎤⎥⎥⎥⎥⎥⎦ ,

A2(α) =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 0

−k(α)
M(α)

−cmax

M(α)
k(α)
M(α)

cmax

M(α)
0 0 0 1

k(α)
m

cmax

m
−(k(α)+ kt)

m
−cmax

m

⎤⎥⎥⎥⎥⎥⎦ ,

E1(α) = E2(α) =

⎡⎢⎢⎢⎣
0
0
0
kt
m

⎤⎥⎥⎥⎦ ,

C11(α) =
[ −k
M(α)

−cmin

M(α)
k

M(α)
cmin

M(α)

]
,

C12(α) =
[ −k
M(α)

−cmax

M(α)
k

M(α)
cmax

M(α)

]
,

D11 = D12 = D21 = D22 = 0,

F11 = F12 = F21 = F22 = 0

C21 = C22 =
[
1 0 −1 0
0 1 0 −1

]
, H1 = H2 = 0. (84)

where the state vector is x(t) = [δy1 δẏ1 δy2 δẏ2], δy1 and δy2 are
the variations of y1 and y2 around an equilibrium point. Addi-
tionally y1(t), y2(t), ζ(t) are the vertical position of the body,
the unsprung mass, and the road profile, respectively. The oth-
ers plant parameters are the quarter-car body mass (M), the
unsprung mass (m), the stiffness of the suspension spring (k),
the stiffness of the tire (kt) anddamping coefficient of the passive
shock absorber (cσ ). Furthermore, it is considered a switching
strategy such that the coefficient of the passive shock absorber
(cσ ) can assume only two values, previously named, cmin and
cmax. Moreover, it is important to stress that z(t) corresponds to
the body acceleration, that is, ÿ1(t).

6.3.1 Case I: uncertain quarter-car bodymass (Cardim et al.,
2016)
For the first simulation it is assumed that the quarter-car
body mass is uncertain and belongs to Mmin < M < Mmax.
Thus, for this case, the system is represented by (1), (2)
and (84) with r= 2, N = 2, i ∈ {1, 2}, j ∈ {1, 2}. The following
values were adopted: Mmin = 350 kg, Mmax = 450 kg, cmin =
3 × 102 (N.s)/m, cmax = 3.9 × 103 (N.s)/m,m= 50 kg, k = 2 ×
104 N/m, kt = 2.5 × 105 N/m. Due to practical implementation
issues, the output feedback gainsmust be bounded. In this sense,
through theDE–LMI it is possible to constraint the normof vec-
tors gains. For this case the values were constrained according
to norm(Kis) ≤ 10 × 103. The DE–LMI algorithm, considering
the solver LMIlab (Gahinet et al., 1994), was applied in order to
obtain the output feedback gains (Kis) and the switching deci-
sion matrices (Zis) for the conditions proposed in Theorem 4.3.

The obtained values are the following:

β = 0.1709, ρ = 1.8066
λ1 � 0, λ2 � 1
K11 = [

619.8018 −0.6575
]
, K21 = 1 × 103

[−7.5318 −1.0005
]
,

K12 = [
635.0843 −0.0200

]
, K22 = 1 × 103

[−9.8440 −1.0180
]
,

Z11 = 1 × 107
[−0.5164 −1.7135
−1.7135 0.0129

]
, Z12 = 1 × 107

[−0.5163 −1.7138
−1.7138 0.0261

]
,

Z21 = 1 × 107
[−0.5164 −1.7135
−1.7135 0.0126

]
, Z22 = 1 × 107

[−0.5164 −1.7135
−1.7135 0.0126

]
,

(85)
The road profile is treated in this paper as the exogenous dis-
turbance, that is w(t) = ζ(t). It is important to highlight that
in Cardim et al. (2016) the guaranteed cost was selected as the
performance criterion and there is no H∞ approach involved.
For comparison purpose with the simulation results presented
in Cardim et al. (2016), the same road profile (w(t) = ζ(t)),
a square wave with amplitude ±4cm, was considered. Since
the quarter-car body mass is an uncertain parameter (M), the
simulation examines two different scenarios, for M = Mmin =
350 kg (0 ≤ t < 4 s) andM = Mmax = 450 kg (t > 4 s). For the
open-loop simulation, it was used the maximum value of cσ , in
this case cmax = 3.9 × 103 (N.s)/m. Figures 8, 9 and 10 show the
simulation results. Figure 8 shows the comparison of the time
response of y1(t) and y2(t) for the conditions of Theorem 4.3,
the conditions introduced in Cardim et al. (2016) in Section
5.2, and the uncontrolled situation with cmax. It is possible to
observe that the proposed Theorem 4.3 presents the best per-
formance for y1(t), considering the reduction of the guaranteed
cost. This fact is linked with the reduction of

∫ t
0 z(t)

′z(t) dt, as
depicted in Figure 9, since z(t) corresponds to the body accel-
eration ÿ1(t). Theorem 4.3 provides about 20.4% and 7.11% of
reduction in the

∫ t
0 z(t)

′z(t) dt final value, when compared to
the open-loop case and the response related to the conditions
proposed in Cardim et al. (2016), respectively. It is important
to stress that the proposed DE–LMI method do not ensure the
global optimisation, due to non-convex characteristics related
to BMIs. Therefore different values for the controllers can be
found, depending on the ED initialisation parameters values
(Storn & Price, 1997). Figure 10 shows the control input u(t)
time response. The switching selection was omitted in this
example, as in this case for Theorem 4.3 the switching function
returned σ = 2 and η = 1 for the simulation time, that is, the
controller gain K21 was kept. Concerning the dynamical out-
put feedback design proposed in Geromel et al. (2008), note
that it can not be directly applied in this example that presents
uncertainties since in the aforementioned paper the plant was
supposed known and without uncertain parameters.

6.3.2 Case II: uncertain quarter-car bodymass (M) and
suspension spring stiffness (k) variation
For this second case besides the quarter-car body mass the
stiffness of the suspension spring was treated as an uncertain
parameters, belonging to kmin < k < kmax. Now, the system is
represented by (1), (2) and (84) with r= 4, N = 2, i ∈ {1, 2},
j ∈ {1, 2, 3, 4}. The following values were adopted: Mmin =
300 kg, Mmax = 500 kg, cmin = 6 × 102 (N.s)/m, cmax = 9 ×
102 (N.s)/m, m= 50 kg, kmin = 2 × 104 N/m, kmax = 12 ×
104 N/m, kt = 2.5 × 105 N/m. It is important to highlight that
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Figure 8. Comparison of the time response:M = Mmin = 350 kg (0 ≤ t < 4 s) andM = Mmax = 450 kg (t > 4 s).

Figure 9. Comparison of the guaranteed cost:M = Mmin = 350 kg (0 ≤ t < 4 s) andM = Mmax = 450 kg (t > 4 s).

Figure 10. Control signal u(t):M = Mmin = 350 kg (0 ≤ t < 4 s) andM = Mmax = 450 kg (t > 4 s).

the range of the quarter-car body mass was increased and the
suspension spring stiffness was treated as another uncertainty
parameterwith the purpose of exploiting and to show the poten-
tial of Theorem 4.3. For this case, the norm of the vectors gains
was also constrained according to norm(Kis) ≤ 10 × 103. The
DE–LMI algorithm, considering the solver LMIlab (Gahinet
et al., 1994), was used for the conditions proposed in Theorem
4.3. The obtained values for the parameters λi, ρ, β , for the con-
troller gains Kis and the switching decision matrices Zis are the
following:

β = 0.2559,

λ1 = 0.15020,

K11 = 1 × 103
[−7.1936 −0.7666

]
,

K12 = 1 × 103
[−5.5566 −0.7633

]
,

K13 = 1 × 103
[−5.0453 −0.7935

]
,

K14 = 1 × 103
[−4.3620 −0.7681

]
,

Z11 =
[
30444329.2000 26631481.8465
26631481.8465 5045455.02273

]
,

Z12 =
[
30444329.2000 26631481.8469
26631481.8469 5045455.01505

]
,

Z13 =
[
30444329.1998 26631481.8478
26631481.8478 5045455.00590

]
,
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Z14 =
[
30444329.1999 26631481.8477
26631481.8477 5045455.00677

]
,

ρ = −0.3026

λ2 = 0.8498

K21 = 1 × 103
[−9.3346 −0.9770

]
,

K22 = 1 × 103
[−7.4555 −0.9792

]
,

K23 = 1 × 103
[−7.2094 −0.9824

]
,

K24 = 1 × 103
[−6.4612 −0.9838

]
,

Z21 =
[
30444329.1999 26631481.8476
26631481.8476 5045454.97914

]
,

Z22 =
[
30444329.1998 26631481.8477
26631481.8477 5045454.97644

]
,

Z23 =
[
30444329.1998 26631481.8478
26631481.8478 5045454.97463

]
,

Z24 =
[
30444329.1998 26631481.8479
26631481.8479 5045454.97452

]
. (86)

Figure 11. Comparison of the time response: M = Mmin = 300 kg and k = kmin = 2 × 104 (0 ≤ t < 12 s), M = Mmax = 500 kg and k = kmin = 2 × 104

(12 ≤ t < 24 s),M = Mmin = 300 kg and k = kmax = 12 × 104 (24 ≤ t < 36 s), andM = Mmax = 500 kg and k = kmax = 12 × 104 (36 ≤ t < 48 s).

Figure 12. Control signal u(t) and switching selection: M = Mmin = 300 kg and k = kmin = 2 × 104 (0 ≤ t < 12 s), M = Mmax = 500 kg and k = kmin = 2 × 104

(12 ≤ t < 24 s),M = Mmin = 300 kg and k = kmax = 12 × 104 (24 ≤ t < 36 s), andM = Mmax = 500 kg and k = kmax = 12 × 104 (36 ≤ t < 48 s).
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For the open-loop simulation, it was used the maximum
value of cσ , in this case cmax = 9 × 102 (N.s)/m. The simula-
tion examines four different scenarios: (1)M = Mmin = 300 kg
and k = kmin = 2 × 104 N/m (0 ≤ t < 12 s), (2)M = Mmax =
500 kg and k = kmin = 2 × 104 N/m (12 ≤ t < 24 s), (3) M =
Mmin = 300 kg and k = kmax = 12 × 104 N/m (24 ≤ t < 36 s)
and (4) M = Mmax = 300 kg and k = kmax = 12 × 104 N/m
(t> 36 s) . Figure 11 shows the comparison of the time response
of y1(t) and y2(t) for the conditions of Theorem 4.3 and the
open-loop system. It is possible to observe that the oscillation
and peak values of y1(t) and y2(t) are significantly reducedwhen
considering the switching controllers. Finally, Figure 12 shows
the control input signal (u(t)) and the controllers/subsystems
switching.

7. Conclusions

Initially, this paper proposed in Theorem3.3 a strategy to design
an exclusive output-dependent switching strategy for control-
ling linear time-invariant continuous-time uncertain switched
linear systems.

A proof in Theorem 3.4 shows that, if the known conditions
of Theorem 3.2 hold, then the conditions proposed in Theorem
3.3 also hold. Furthermore, from simulations results (Exam-
ples I and II), the conditions proposed in Theorem 3.3 present
a greater feasible region and reduce the guaranteed cost when
compared with the conditions of Theorem 3.2. Therefore, the
conditions proposed in Theorem 3.3 are less conservative than
that presented in Theorem 3.2. The second control problem
studied in this paper was the robust switching SOF H∞ con-
trol of continuous-time switched linear time-invariant systems.
For a particular case of switched systems with only one subsys-
tem, a proof in Theorem 4.4 shows that if the known conditions
of Theorem 4.2 hold, then the conditions proposed in Theorem
4.3 also hold.

Additionally, from simulations results (Example III), the
conditions proposed in Theorem 4.3 present a greater feasi-
ble region and reduce the H∞ cost when compared with the
conditions of Theorem 4.2. Therefore, the conditions proposed
in Theorem 4.3 are less conservative than that presented in
Theorem 4.2.

The conditions of the proposed methods are a special class
of BMIs, which contain some bilinear terms as the product of a
matrix and a scalar, related to a suitable convex combination and
two scalar parameters to provide extra free dimensions in the
solution space. The hybrid algorithm DE–LMI, is proposed for
obtaining feasible solutions of this particular NP-hard problem.

Finally, in Example IV, it was presented a practical appli-
cation on a semi-active suspension system. It was possible
to observe a dynamic response improvement considering the
reduction of the guaranteed cost when compared with the
results obtained considering the procedure presented in Cardim
et al. (2016). The second study regarding this problem, con-
sidering an uncertain bounded mass and a fault in the spring,
confirms the effectiveness of the proposed approach. Future
research on this subject is to extend the proposed methodology
for designing switched dynamic output feedback controllers for
the same class of uncertain switched linear systems studied in
this paper.
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Appendix. Proof of Theorem 3.1
Consider that (4) and (5) are feasible. It is known that theminimum of a set
of real numbers is less than or equal to an arbitrary convex combination of
these numbers. Then, from (5) and (6), for x �= 0 it follows that:

0 > x′(Q0jk + C′QλC)x ≥ x′Q0jkx + min
i∈KN

(y′Qiy) = x′(Q0jk + C′QσC)x,

(A1)
whereλ = [λ1 λ2 . . . λN ],

∑N
i=1 λi = 1 andλi ≥ 0, for all i ∈ KN . Observe

that (A1) can be rewritten as:

x′(Q0jk + C′QσC)x

x′
[

In
A(σ ,α)

]′ [Q0jk + C′QσC 0
0 0

] [
In

A(σ ,α)

]
x < 0.

(A2)

Thus, multiplying (A2) by αj × αk and taking the sum from j= 1 to j= r
and k= 1 to k= r, respectively, from (4), note that:

0 >
r∑

k=1

αk

r∑
j=1

αj x′
[

In
A(σ ,α)

]′

×
[
Q0jk + Q0kj + 2C′QσC 0

0 0

] [
In

A(σ ,α)

]
x

>

r∑
k=1

αk

r∑
j=1

αj x′
[

In
A(σ ,α)

]′

×
[

X1σkAσ j + A′
σ jX

′
1σk + X1σ jAσk + A′

σkX
′
1σ j

Pjk − X′
1σk + X2σkAσ j + Pkj − X′

1σ j + X2σ jAσ j

Pjk − X1σk + A′
σ jX

′
2σk + Pkj − X1σ j + A′

σkX
′
2σ j

−X2σk − X′
2σk − X2σ j − X′

2σ j

] [
In

A(σ ,α)

]
x

= 2
r∑

k=1

αk

r∑
j=1

αj x′
[

In
A(σ ,α)

]′

×
[

X1σkAσ j + A′
σ jX

′
1σk Pjk − X1σk + A′

σ jX
′
2σk

Pjk − X′
1σk + X2σkAσ j −X2σk − X′

2σk

]
×
[

In
A(σ ,α)

]
x. (A3)

Now, define P(α) = (α1α1P11 + α1α2P12 + . . .+ αrαrPrr), X1(σ ,α) =
(α1X1σ1 + α2X1σ2 + . . .+ αrX1σ r),X2(σ ,α)=(α1X2σ1 +α2X2σ2 + . . .+
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αrX2σ r). Then, from (2) and (A3), one has:

0 > x′
[

In
A(σ ,α)

]′ [X1(σ ,α)A(σ ,α)+ A′(σ ,α)X′
1(σ ,α)

P(α)− X′
1(σ ,α)+ X2(σ ,α)A(σ ,α)

P(α)− X1(σ ,α)+ A′(σ ,α)X′
2(σ ,α)−X2(σ ,α)− X′

2(σ ,α)

] [
In

A(σ ,α)

]
x

= x′
[

In
A′(σ ,α)

]′ {[ 0 P(α)
P(α) 0

]
+
[

X1(σ ,α)
X2(σ ,α)

] [
A(σ ,α) −In

]

+
[

A′(σ ,α)
−In

] [
X′
1(σ ,α) X′

2(σ ,α)
]} [ In

A(σ ,α)

]
x

= x′ [In A′(σ ,α)
] [ 0 P(α)

P(α) 0

] [
In

A(σ ,α)

]
x. (A4)

Considering a Lyapunov function candidate V(x) = x′P(α)x, note that
from (2), V(x) > 0 for x �= 0 and from (1), supposing that u(t) = 0 and
w(t) = 0 for t ≥ 0, and assuming constant output matrices C2j = C, for all
j ∈ Kr , and (A4) it follows that V̇(x) = ẋ(t)′P(α)x(t)+ x(t)′P(α)ẋ(t) < 0
for x �= 0. The proof is concluded.
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