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Abstract

The aim of this paper is to investigate the existence of optimal con-

trols for systems described by stochastic partial differential equations

(SPDEs) with locally monotone coefficients controlled by different ex-

ternal forces which are feedback controls. To attain our objective we

adapt the argument of [2] where the existence of optimal control to the

stochastic Navier-Stokes equation was studied. The results obtained in

the present paper may be applied to demonstrate the existence of opti-

mal control to various types of controlled SPDEs such as: a stochastic

nonlocal equation and stochastic semilinear equations which are locally

monotone equations; we also apply the result to a monotone equation

such as the stochastic reaction diffusion equation and to a stochastic

linear equation.
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1 Introduction

Let H be a real separable Hilbert space. Let V be a reflexive Banach space.

Identify H with its dual H ′ and denote the dual of V by V ′. Let

V ⊂ H ∼= H ′ ⊂ V ′

where the inclusions are assumed to be dense and compact. The triad

(H,V, V ′) is known as a Gelfand triple. We will denote by ‖ · ‖V , ‖ · ‖,

‖ · ‖V ′ the norms in V, H, and V ′ respectively. The inner product in H and

the duality scalar product between V and V ′ will be denoted by (·, ·) and

〈·, ·〉 respectively.

Let {Wt}t≥0 be a cylindrical Wiener process on a separable Hilbert space U

w.r.t. a complete filtered probability space (Ω,F ,Ft,P) and (L2(U ;H), ‖·‖2)

denotes the space of all Hilbert-Schmidt operators from U to H.

Let T > 0 be some fixed time. Consider the following initial value problem

involving a controlled SPDE of the form:

du(t) = (A(t, u(t), u(t)) + Φ(t, u(t)))dt + Ξ(t, u(t))dW (t), u(0) = u0 (1)

where A : [0, T ] × V × V × Ω → V ′, Φ : [0, T ] × H × Ω → H and

Ξ : [0, T ] × V × Ω → L2(U ;H) are progressively measurable, A satisfies

a locally monotone condition (see condition A2 below) and Φ is a control.

In this paper we will study the existence of an optimal control which min-

imizes the cost function J (Φ) with Φ belonging to U , the set of controls

associated with the controlled initial value problem (1).
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The problem of the existence of an optimal control for SPDEs is an im-

portant question in optimal control theory and often resolved by assuming

that the set of admissible controls is compact and by using the Main The-

orem for Minimum Problems (see [13], Theorem 38.B ). In order to answer

this question, we use a weaker condition to the set of admissible controls

which is weak sequentially compact and similarly with the Theorem 38.A of

Zeidler [13], we assume that the functional cost is weak sequentially lower

semicontinuous. The problem of the existence of an optimal control for

SPDEs has been studied by several authors, for example, by Nagase [10],

Buckdahn and Răşcanu [3], Gatarek and Sobczyk [5], Guisepina and Feder-

ica [6], and Al-Hussein [1] but the results of these papers cannot be applied in

the study of the equation in (1) because they assume semilinearity or bound-

edness for the nonlinearities. As we mentioned previously, the existence of

optimal controls for the stochastic Navier - Stokes equation was studied in

[2] and we follow the same idea to demonstrate the existence of optimal

control to other SPDEs that satisfies a local monotonicity condition. The

argument is to prove that a minimizing sequence has a subsequence which

converges weakly (see Lemma 2.1 ). Then, we prove that weak convergence

implies strong convergence of a subsequence of the corresponding solutions,

see Theorems 2.1 and 2.2, these theorems were adapted from [2] to the case

of SPDEs with locally monotone coefficients and allow to demonstrate the

existence of optimal control to a wide class of SPDEs with locally mono-

tone coefficients as we will see in the examples section. We want to remark

that the main result, the Theorem 2.3 of the present work, may also be

applied to demonstrate the existence of optimal control to locally monotone

SPDEs which until the present moment were not studied by other authors.

Specifically, the Examples 3.2 and 3.3 demonstrating the existence of opti-
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mal control are new in the literature.

The article is organized in the following way: in Section 1, we present

the basic spaces, the norms, properties and notations which we are going to

work with in the subsequent sections. In section 2, we formulate the control

problem, which is the goal of this work and we prove the existence of an

optimal control. Finally, in Section 3 we provide examples where the result

of the present paper is applied to some SPEDs such as a nonlocal equation,

semilinear equation and to other type of SPDEs such as a linear equation

and to the stochastic reaction diffusion equation which is a monotone equa-

tion.

To simplify notation, we use the letter T for the interval [0, T ]. Let (Ω,F ,P)

be a complete probability space, (Ft)t∈T a right-continuous filtration such

that F0 contains all F−null sets and let E(X) denote the mathematical ex-

pectation of the random variable X. We abbreviate “almost surely ω ∈ Ω.”

to a.s.

Let B be a Banach space with norm ‖ · ‖B and let B(B) denote the

Borel σ−algebra of B. The space L2(Ω × T;B) is the set of all F ⊗

B(T)−measurable processes u : Ω × T → B which are Ft− adapted and

E(
∫
T
‖u‖2Bdt) < ∞. The constant cHV is such that ‖v‖2 ≤ cHV ‖v‖

2
V for all

v ∈ V .

In order to get solutions to (1), we state the following conditions on the

coefficients: Suppose there exist constants α > 1, β ≥ 0, θ > 0, K > 0

and a positive adapted process f ∈ L1([0, T ]×Ω;R) such that the following

conditions hold for all v, v1, v2 ∈ V and a.e. (t, ω) ∈ T×Ω.

A1) (Hemicontinuity) The map s → 〈A(t, v1+sv2, v1+sv2), v〉+ 〈Φ(t, v1+

sv2), v〉 is continuous on R.
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A2) (Local monotonicity)

2〈A(t, v1, v1)−A(t, v2, v2), v1 − v2〉+ 2〈Φ(t, v1)− Φ(t, v2), v1 − v2〉+

+‖Ξ(t, v1)− Ξ(t, v2)‖
2
2 ≤ (K + ρ(v2))‖v1 − v2‖

2,

where ρ : V → [0,+∞) is a mensurable function and locally bounded

in V.

A3) (Coercivity)

2〈A(t, v1, v1), v1〉+2〈Φ(t, v1), v1〉+‖Ξ(t, v1)‖
2
2+ ≤ −θ‖v1‖

2
V +K‖v‖2+f(t).

A4) (Growth)

‖A(t, v1, v1)‖
2
V ′ + ‖Φ(t, v1)‖

2
V ′ ≤ (f(t) +K‖v1||

2
V )(1 + ‖v1‖

β).

In this work, we understand that the stochastic process uΦ is a solution to

the problem in (1) in the following sense.

Definition 1.1 Let u0 be a random variable which does not depend on W (t).

The stochastic process (uΦ(t))t∈T ∈ L2(Ω × T;V ), Ft− adapted, with a.s.

sample paths continuous in H, is a solution to (1) if it satisfies the equation:

(uΦ(t), v)= (u0, v) +

∫ t

0
〈A(uΦ(s), v〉 ds+

∫ t

0
(Φ(s, uΦ(s)), v)ds+

+

∫ t

0
(v, (Ξ(s, uΦ(s))dW (s))

(2)

a.s. for all v ∈ V and t ∈ T.

Uniqueness means indistinguishability.

We need the following existence of solutions theorem which is a particular

case of Theorem 1.1 of [8].

Theorem 1.1 Let u0 ∈ L4(Ω, V ). Suppose that (A1) - (A4) is satisfied and

there is a constant C such that

‖Φ(t, v)‖2V ′ +‖Ξ(t, v)‖22 ≤ C(f(t) + ‖v‖2), t ∈ T, v ∈ V ;

ρ(v) ≤ C(1 + ‖v‖2V )(1 + ‖v‖β) v ∈ V.
(3)
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The problem (2) has a unique solution uΦ which has a.s. sample paths

continuous in H.

Proof: See Theorem 1.1 of [8] . �

2 Formulation of the control problem and main

result

We consider the SPDE (1) controlled by continuous feedback controls and we

denote by U :=
{
Φ : T× L2(D) → L2(D)

}
the set of the admissible controls

satisfying:

‖Φ(0, 0)‖2 ≤ η a.s. (4)

and for all s, t ∈ T, x, y ∈ H

‖Φ(t, x)− Φ(s, y)‖2 ≤ λ|t− s|2 + α‖x− y‖2 a.s. (5)

where η, λ, α are positive constants.

Furthermore, we will assume that the coefficients of (1) satisfy the following

conditions, for all v, v1, v2 ∈ V and a.e.(t, ω) ∈ T× Ω:

C1) there is a constant L > 0 such that

‖Ξ(t, v1)− Ξ(t, v2)‖
2
2 ≤ L‖v1 − v2‖

2 and ‖Ξ(0, v1)‖2 = 0

C2) there are nonnegative constants K1 and J1 such that

〈A(t, v, v1), v1〉 ≤ −K1‖v1‖
2
V + J1‖v1‖

2

C3) there is a positive constant θ1 such that

〈A(t, v, v1)−A(t, v, v2), v1 − v2〉 ≤ −θ1 ‖v1 − v2‖
2
V
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C4) there are constants c1, c2, c3 and c4 which are nonnegatives and c5 > 0

such that

〈A(t, v1, v2)−A(t, v3, v3), v2 − v3〉 ≤ −c5‖v2 − v3‖
2
V +

+(c4 + c1ρ(v1))‖v2 − v3‖
2+ c2‖v2 − v1‖

2
V + c3ρ(v1)‖v1 − v2‖

2
V .

C5) there are nonnegative constants θ2, p3, p4 and p5 such that

‖A(t, v, v1)‖
2
V ′ ≤ θ2 ‖v1‖

2
V + p3‖v‖

2‖v‖2V + p4‖v1‖
2‖v1‖

2
V + p5

Remark 2.1 Under the conditions (4), (5) and (C1) the solution uΦ ob-

tained in the Theorem 1.1 satisfies:

E(sup
t∈T

‖uΦ(t)‖
2) + E(

∫ T

0
‖uΦ(s)‖

2
V ds) ≤ cE(‖u0‖

2) (6)

and

E(sup
t∈T

‖uΦ(t)‖
4) + E

(∫ T

0
‖uΦ(s)‖

2ds

)2

≤ cE(‖u0‖
4) (7)

where c = c(L, η, λ, α, θ, T ) is a positive constant.

Let us now define the cost functional

J (Φ) := E(

∫ T

0

(
L(s, uΦ(s)) +K(Φ(s, uΦ(s)))

)
ds) + E(H(uΦ(T ))), Φ ∈ U

(8)

whenever the integral in (8) exists and is finite, with L : T×H1
0 (D) → R+,

K : L2(D) → R+, and H : L2(D) → R+. It is required that the mappings K,

H, and u ∈ L2(T;H1
0 (D)) 7−→

∫ T

0
L(s, u(s))ds be weak sequentially lower

semicontinuous.

Our control problem is to minimize (8) over U , we denote by (P) the

problem of minimizing J among the admissible controls. Any Φ∗ ∈ U sat-

isfying J (Φ∗) = inf{J(Φ) : Φ ∈ U} is called an optimal control.

The following lemma proves that given a minimizing sequence for the prob-

lem (P) we can obtain a subsequence and a mapping Φ ∈ U , such that the

subsequence converges weakly to Φ.
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Lemma 2.1 Let Φn be a minimizing sequence for problem (P). There exists

a subsequence nk of n and a mapping Φ ∈ U such that for all t ∈ T, x, y

∈ H, we have

lim
k→∞

(Φnk
(t, x), y) = (Φ(t, x), y). (9)

Proof: See Lemma 4.1 of [2]. �

For simplicity the subsequence of {Φnk
}∞k=1 obtained in the previous

lemma will be relabeled as the same. For this sequence and Φ as in the last

lemma let us consider the equation

(ûΦn
(t), v) = (u0, v) +

∫ t

0
〈A(uΦ(s), ûΦn

(s)), v〉 ds+

+

∫ t

0
(Φn(s, uΦ(s)), v) ds+

∫ t

0
(v,Ξ(s, uΦ(s))dW (s))

(10)

a.s., v ∈ V, t ∈ T and for n ∈ Z
+. Since the coefficients in the equation (10)

satisfied the condition (C2), (C3), (A1), (A3) and (A4), there is a unique

process ûΦn
∈ L2(Ω×T;V ) which is a solution of (10 ) with a.s. continuous

trajectories in H (see Theorem 4.2.4, p. 75 of [11] or Theorem 3.6, p. 32 of

[7]) satisfying:

E(sup
t∈T

‖ûΦn
(t)‖4)+E

(∫ T

0
‖ûΦn

(s)‖21ds

)2

≤ c (E(‖u0‖
4)+E(

∫ T

0
‖uΦ(s)‖

4ds))

(11)

where c is a positive constant independent of n.

To obtain the estimates in (11) we use the Burkholder and Schwarz inequal-

ities.

Theorem 2.1 The solution to (2) and (10) satisfies:

lim
n→∞

E(

∫ T

0
‖(uΦ − ûΦn

)(s)‖2V ds) = lim
n→∞

E(‖(uφ − ûΦn
)(T )‖2) = 0.

Proof: Let us consider the equation

(z(t), v) = (u0, v) +

∫ t

0
〈A(uΦ(s), z(s)), v〉 ds+

∫ t

0
(v,Ξ(s, uΦ(s))dW (s))

(12)
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a.s., v ∈ V and t ∈ T. By a similar argument as in the case of equation

(10), there exists a unique solution z ∈ L2(Ω × T;V ) of (12), which has

a.s. continuous trajectories in H. By using the Gronwall lemma, we get the

estimate

E(sup
t∈T

‖z(t)‖2)+2pE(

∫ T

0
‖z(s)‖2V ds) ≤ k

(
E(‖u0‖

2) + E(

∫ T

0
‖uΦ(s)‖

2ds)

)
.

Then, there exists k2(ω) > 0 and a.s.,

supt∈T ‖z(t)‖
2 ≤ k2(ω),∫ T

0
‖z(s)‖2V ds ≤ k2(ω)

(13)

and

supt∈T ‖uΦ(t)‖
2 ≤ k2(ω),∫ T

0
‖uΦ(s)‖

2
V ds ≤ k2(ω).

(14)

Using stochastic integral properties and (7), we obtain that for all s, t ∈ T,

t > s,

E(‖

∫ t

s

Ξ(r, uΦ(r))dW (r)‖4V ′) ≤ c(t− s)2E(‖u0‖
4)

As a result of the Kolmogorov continuity test, we get a random variable

H̃ such that

‖

∫ t

s

Ξ(r, uΦ(r))dW (r)‖2V ′ ≤ H̃(ω)|t− s|2γ (15)

a.s. with 0 < γ < 1
4 and for every t, s ∈ T.

Let Ω̄ ⊂ Ω with P(Ω̄) = 1 such that for ω ∈ Ω̄ the equations in (2)

and (12) are satisfied and, for each n ∈ Z
+, (10) is also satisfied and the

inequalities in (13), (14) and (15) are satisfied.

From (10), (12), (14) and the properties of A (C3) and Φn, it follows

that for ω ∈ Ω̄,

supt∈T ‖(ûΦn
− z)(t)‖2+ θ1

∫ T

0
‖(ûΦn

− z)(s)‖2V ds ≤
c2HV 2T (λT

2 + η)

θ1
+

+
c2
HV

2α
θ1

∫ T

0
‖uΦ(s)‖

2
V ds ≤ k(ω),

9



where k(ω) is independent of n. Hence, for all n ∈ Z
+, we obtain

sup
t∈T

‖ûΦn
(t)‖2 + p

∫ T

0
‖ûΦn

(s)‖2V ds ≤ k(ω) (16)

for ω ∈ Ω̄, where k(ω) is a positive constant independent of n.

For ω ∈ Ω̄, we consider the sequence

F (ω) := {ûΦn
(ω, ·)}∞n=1 ,

which is bounded because of (16).

From (10), we obtain

‖ûΦn
(t)− ûΦn

(s)‖2V ′ ≤ ‖

∫ t

s

Ξ(r, uΦ(r))dW (r)‖2V ′+

+(t− s)

∫ t

s

(
‖A(uΦ(r), ûΦn

(r))‖2V ′ + ‖Φn(r, uΦ(r))|‖
2
V ′

)
dr,

for each t, s ∈ T, t > s. From this, (15), (16) and the properties of A (C5),

Φn, we get

‖ûΦn
(t)− ûΦn

(s)‖2V ′ ≤ k(ω)(t− s) + H̃(ω)(t− s)2γ

for γ ∈ (0, 14 ) and where k(ω) > 0 is independent of n.

Consequently, F (ω) is equi-continuous in C([0, T ], V ′). Now, using Du-

binsky’s Theorem, (see Theorem 4.1, p. 132 of [12]), it follows that F (ω) is

relatively compact in L2(0, T ;H). Thus, there exists a subsequence nk of n

and û ∈ L2(0, T ;H) such that

lim
k→∞

∫ T

0
‖(ûΦn

k
− û)(s)‖2ds = 0. (17)

From (10), (2) and the properties of A (C3) we obtain

‖ûΦn
k
(T )− uΦ(T )‖

2 +2θ1

∫ T

0
‖(ûΦn

k
− uΦ)(t)‖

2
V dt ≤

≤

∫ T

0

(
Φnk

(t, uΦ(t))− Φ(t, uΦ(t)), (ûΦn
k
− û)(t)

)
dt+

+

∫ T

0
(Φnk

(t, uΦ(t))− Φ(t, uΦ(t)), (û − u)(t)) dt.

10



We use Lemma 2.1, (17) and the properties of Φn and Φ to obtain

lim
k→∞

‖(ûΦn
k
− uΦ)(T )‖

2 = lim
k→∞

∫ T

0
‖(ûΦn

k
− uΦ)(t)‖

2
V dt = 0.

Since every subsequence of (ûΦn
(ω, ·) has a subsequence which converges

to the same limit uΦ(ω,·) in the space L2(0, T ;V ), it follows that the sequence

(ûΦn
(ω, ·) converges to uΦ(ω, ·). Similarly, we can conclude that (ûΦn

(ω, T )

converges to uΦ(ω, T ) in H.

From Remark (2.1) and (11), the processes (ûΦn
)t∈T and (uΦ)t∈T are

uniformly integrable and thus the theorem follows. �

Let (Q(t)) be a H1
0 (D)−valued process with

∫ T

0
‖Q(s)‖21ds < ∞ and sup

t∈T

‖Q(t)‖2 < ∞ a.s.

For each M, a nonnegative integer, we define the following stopping times:

T̄ Q
M :=





inf

{
t ∈ T :

∫ t

0
‖Q(s)‖2V ds ≥ M

}
,

T, if

∫ T

0
‖Q(s)‖2V ds < M,

and

T̂ Q
M :=





inf
{
t ∈ T : supt∈T ‖Q(t)‖2 ≥ M

}

T, if supt∈T ‖Q(t))‖2 < M

and T Q
M := min

{
T̄ Q
M , T̂ Q

M

}
.

Let Φn and Φ be the sequence and the map obtained in the Lemma 2.1, the

following theorem asserts that there is a subsequence nk of n such that the

correspondent solutions of (2) uΦn
k
converge strongly to uΦ.

Theorem 2.2 Let {Φn}n∈N be as in the last theorem. There is a subse-

quence nk of n such that

lim
k→∞

E(

∫ T

0
‖(uΦ − uΦn

k
)(s)‖21ds) = lim

k→∞
E(‖(uΦ − uΦn

k
)(T )‖2) = 0.

11



Proof: For the sake of convenience, we use the abbreviations, u := uΦ and

TM := T u
M for M = 1, 2, . . ..

Let e(t) := exp(

∫ t

0
−2c4 −

2α

c5
− 2L − 2c1ρ(u(s))ds). As a result of the Itô

formula, we get

e(TM )‖ ûΦn
(TM )− uΦn

(TM )‖2 =

∫ TM

0
e(s)‖Ξ(s, u(s)) − Ξ(s, uΦn

(s)‖22ds+

+2

∫ TM

0
e(s)(Φn(s, u(s))− Φn(s, uΦn

(s)), (ûΦn
− uΦn

)(s))ds+

+2

∫ TM

0
e(s) 〈A(u(s), ûΦn

(s))−A(uΦn
(s), uΦn

(s)), (ûΦn
− uΦn

)(s)〉 ds+

+2

∫ TM

0
e(s)((ûΦn

− uΦn
)(s),Ξ(s, u(s)) − Ξ(s, uΦn

(s))dW (s))+

+

∫ TM

0
e′(s)‖(ûΦn

− uΦn
)(s)‖2ds.

Using the properties of A, (C4), Φn and Ξ, we get

E(e(TM )‖ûΦn
(TM )− uΦn

(TM )‖2) + c5 E(

∫ TM

0
e(s)‖(ûΦn

− uΦn
)(s)‖2V ds) ≤

≤ E(

∫ TM

0
e′(s)‖(ûΦn

− uΦn
)(s)‖2ds) + 2c1 E(

∫ T

0
e(s)ρ(u(s))‖(ûΦn

− uΦn
)(s)‖2ds)+

+2c2E(

∫ T

0
e(s)‖(ûΦn

− u)(s)‖2V ds) + 2c3 E(

∫ T

0
e(s)ρ(u(s))‖(ûΦn

− u)(s)‖2V ds)+

+ α
c5
E(

∫ T

0
e(s)‖(u− uΦn

)(s)‖2ds) + LE (

∫ TM

0
e(s)‖(u − uΦn

)(s)‖2ds)+

+2c4E(

∫ T

0
e(s)‖(ûΦn

− uΦn
)(s)‖2ds) .

(18)

From Theorem 2.1, we can get a subsequence
{
ûΦn

k

}∞

k=1
that converges to

u a.e. (ω, t) ∈ Ω×T. Thus, from (18), we obtain

E((e(TM )‖ûΦn
k
(TM )− uΦn

k
(TM )‖2) + c5E(

∫ TM

0
e(s)‖(ûΦn

k
− uΦn

k
)(s)‖2V ds) ≤

≤ 2c3E(

∫ T

0
e(s)ρ(u(s))‖(ûΦn

k
− u)(s)‖2V ds)+

+(2c2 + 2L+ 2α
c5
)E(

∫ T

0
e(s)‖(ûΦn

k
− u)(s)‖2V ds).

From this, Theorems 2.1 and the triangle inequality, we obtain

lim
k→∞

E(

∫ TM

0
‖(uΦ − uΦn

k
)(s)‖21ds) = lim

k→∞
E(‖(uΦ − uΦn

k
)(TM )‖2) = 0,

12



which implies the desired conclusion. �

Finally, we are in a position to formulate our main result.

Theorem 2.3 Under the assumptions of Theorem 1.1, if, moreover, the

conditions (C1)-(C5)) are satisfied, then there exists an optimal control for

the problem (P).

Proof: Let {Φn} be a minimizing sequence for the problem (P). We apply

Lemma (2.1) and Theorem (2.2) to this sequence. Thus, there exists a

subsequence {Φnk
} of {Φn} and Φ ∈ U such that, for all t ∈ T, x, y ∈ L2(D)

and a.s. ω ∈ Ω, the following hold:

lim
k→∞

(
Φnk

(t, uΦn
k
), y

)
= (Φ(t, uΦ), y)

and

lim
k→∞

∫ T

0
‖(uΦn

k
− uφ)(s)‖

2
V ds = lim

k→∞
‖(uΦn

k
− uφ)(T )‖

2 = 0.

From Theorem (2.2) and the weak sequentially lower semicontinuous

properties of L, K and H, we get

J (Φ) ≤ lim inf
k→∞

J (Φnk
).

Since {Φn} is a minimizing sequence for the problem (P), J (Φ) = minλ∈U J (λ)

and thus Φ ∈ U is an optimal feedback control for problem (P). �

3 Examples

Example 3.1 Let (H,V, V ′) be a Gelfand triple. The main result can be

applied to the initial value problem involving the linear stochastic evolution

equation:

du(t) = (A(t, u(t)) + Φ(t, u(t)))dt + Ξ(t, u(t))dW (t), u(0) = u0 (19)

13



where A : T×V ×Ω → V ′ is a linear operator, Φ is the control and u0 ∈ H.

Furthermore, we will suppose that there are constants α1, β1 and γ1 such

that a.e. (t, ω) ∈ T× Ω and v1, v2 ∈ V :

1) |〈A(t, v1), v2〉 ≤ α1‖v1‖V ‖v2‖V

2) |〈A(t, v1), v1〉 ≤ −β1‖v1‖
2
V + γ1‖v1‖

2.

Then, there is an optimal control Φ which minimizes the cost func-

tional J given by (8).

Proof: Under the conditions (1) , (2) (above), (4), (5) and (C1) it is not

hard to prove that the coefficients of the equation (19) satisfy the conditions

(A1), (A2) with K = 2γ1 +
2L
θ1

+ α and ρ(v2) = 0 and (A3) with θ = β1,

K = γ1 f ≡ 1, and (A4) with β = 2. Thus from the Theorem 1.1 there is a

solution uΦ to the equation (19).

Taking A(t, u, v) = A(v) we have that the coefficients of the equation (19)

satisfy (C2) with K1 = β1, J1 = 0, (C3) with θ1 = β1, (C4) with c1 = c2 =

c3 = 0, c5 = β1, c4 = γ1, and (C5) with θ2 = α1, p3 = p4 = p5 = 0. So that

the claim follows from Theorem 2.3. �

The following example shows that the Theorem 2.3 can be applied to some

monotone controlled SPDEs.

Example 3.2 (Stochastic Reaction-Diffusion) Let O be a bounded domain

in R
d with smooth boundary. We can take H = L2(O), V = H1

0 (O) and

V ′ = H−1(O) with p ∈ [1,+∞) such that p = 2d
d−2 and d ≥ 3. Consider

the following initial-boundary value problem involving a controlled stochastic

reaction diffusion:





du(t) = (∆u(t)− u(t)|u(t)|q−2 +Φ(t, u))dt+ g(t, u)dW (t), t ∈ ]0, T [ ;

u(x, 0) = u0(x) on O and u(x, t) = 0 on ∂O × ]0, T [

(20)

14



where W is a Wiener process in L2(O), q ∈ [2, p] and Φ is the control.

Then, there is an optimal control Φ which minimizes the cost functional J

given by (8).

Proof: To prove the claim we use the Theorem 2.3 with:

A(t, u, v) = ∆v − v|v|q−2.

To demonstrate that A satisfies the conditions (A1), (A2) (with K = L and

ρ = 0), (A3) and (A4) see [11] example 4.1.5 so that from the Theorem1.1

there is a unique solution for the equation (20). On the other hand, A

satisfies the condition (C2) with K1 = 1. In fact

〈A(t, v, v1), v1〉 = 〈∆v1 − v1|v1|
q−2, v1〉 ≤ −‖v1‖

2
V .

To demonstrate that A satisfies the condition (C3) with θ1 = 1, we observe

that

〈A(t, v, v1)−A(t, v, v2), v1 − v2〉 = 〈∆(v1 − v2), v1 − v2〉+

−〈v1|v1|
q−2 − v2|v2|

q−2, v1 − v2〉 ≤

≤ −‖v1 − v2‖
2
V

because the map u 7→ −u|u|q−2 satisfies a local monotonicity condition with

L = 0 and ρ = 0.

Analogously, we can prove that the condition (C4) is satisfied with c5 = 1,

c1 = c3 = 0 and c2 = c4 = 1, in a similar manner we can demonstrate that

(C5) is satisfied to suitable constants. �

Remark 3.1 We wish to remark that although the equation (20) is well

known, this is the first time that the problem of the existence of optimal

control to this equation is studied.
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Now we will consider the following initial-boundary value problem involving

a controlled SPDE:





du(t) = (a(
∫
D
udx)∆u+Φ(t, u))dt+ g(t, u)dW (t) on t ∈ ]0, T [ ,

u(x, 0) = u0(x) on D and u(x, t) = 0 on ∂D × ]0, T [
(21)

where D is a bounded open subset of Rn with smooth boundary ∂D, n ≥ 1,

a = a(s) is a continuous function with Lipschitz constant L such that 0 <

p ≤ a(s) ≤ P where p and P are constants, W is a Wiener process in L2(D)

and Φ ∈ U is a control.

In this case the Gelfand triple

V ⊂ H = H ′ ⊂ V ′,

where V = H1
0 (D) and H = L2(D).

Example 3.3 (Stochastic nonlocal parabolic equation) There is an optimal

control Φ which minimizes the cost functional J given by (8) to the equation

(21).

Proof: In this example we will consider A(t, u, v) = (a(
∫
D
udx)∆v for t ∈ T,

u, v ∈ V. First, we will verify that if u0 ∈ L4(Ω,H) then (21) has a unique

solution u = uΦ. In fact, the hemicontinuity (A1) is a consequence of the

properties of a.

About (A2), we have

〈A(t, u, u) −A(t, v, v), u − v〉 ≤ −〈a(
∫
D
u(x)dx) ∇u− a(

∫
D
v(x)dx)∇v,∇(u − v)〉 ≤

≤ −〈a(
∫
D
u(t, x)dx)(∇u− ∇v),∇(u− v)〉+

−〈(a(
∫
D
u(t, x)dx)− a(

∫
D
v(t, x)dx))∇v,∇(u − v)〉,

then

〈A(t, u, u) −A(t, v, v), u − v〉+
p

2
‖∇(u− v)‖2 ≤

C(D)L1

2p
‖u− v‖2‖v‖2V ,
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thus

2(A(t, u) −A(t, v), u − v〉+ 2〈Φ(t, u) −Φ(t, v), u − v〉+ ‖Ξ(t, u) − Ξ(t, v)‖22 ≤

≤ C(D)L1

p
‖v‖2V ‖v − u‖2 +L‖v − u‖2 + 2α

p
‖v − u‖2.

Hence, we have the local monoticity (A2) with ρ(v) = C(D)L1

p
‖v‖2V where

C(D) = 1D.

We proceed to demonstrate (A4), we have

|〈A(t, u), w〉|2 ≤ P‖u‖2V for ‖w‖V ≤ 1

so we have (A4) with β = 2. Similarly, (A3) is verified. Thus, from Theorem

(1.1) there is a unique solution for the equation (21).

The properties of a provide (C2) with K1 = p and J1 = 0. Using the

properties of a we obtain (C3) with θ1 = p. Now, we proceed to demonstrate

(C4.) In fact, since

〈A(v1, v2 )−A(v3, v3), (v2 − v3)〉 =

= 〈A(v1, v2)−A(v3, v2), (v2 − v3)〉+

+ 〈A(v3, v2 − v3), (v2 − v3)〉 =

−

(
(a(

∫

D

v1(x)dx− a(

∫

D

v3(x)dx))∇v2 −∇v1,∇(v2 − v3)

)
+

−

(
(a(

∫

D

v1(x)dx− a(

∫

D

v3(x)dx))∇v1,∇(v2 − v3)

)
+

+ 〈A(v3, v2 − v3), (v2 − v3)〉 ≤

≤ −3p
4 ‖v2 − v3‖

2
V + 2P

p
‖v2 − v1‖

2
V +

+
4L2

1
C(D)
p

‖v1‖
2
V ‖v2 − v3‖

2 +
4L2

1
C(D)
p

‖v1‖
2
V ‖v1 − v2‖

2
V

thus (C4) is satisfied with c1 = 4L1, c2 =
2P
p
, c3 = 4L1, c5 = 3p

4 and c4 = 0.

Using the properties of a we obtain (C5) with θ2 = P and p3 = p4 = p5 = 0,

and the claim follows from Theorem 2.3. �

Remark 3.2 We wish to remark that the the problem of the existence of

optimal control to the equation (21) showing that the equation (21) is a
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particular case of a monotone locally equation is studied for the first time in

the present work and for this reason we need to demonstrate that in fact the

coefficients satisfy the conditions (A1)-(A4).

Let D ⊂ R
n be an open bounded domain with smooth boundary.

Lemma 3.1 Consider the Gelfand triple

V := H1
0 (D) ⊂ H := L2(D) ⊂ V ′ := H−1(D)

and the operator

A(u) = ∆u+

d∑

i=1

fi(u)Diu,

where fi, for i = 1, . . . , d are bounded Lipschitz functions on R.

(1) If d < 3, there exists a constant K2 such that

2〈A(u)−A(v), u−v〉 ≤ −‖u−v‖2V +(K2+K2‖v‖
2
V )‖u−v‖2H , u, v ∈ V. (22)

(2) If d = 3, there exists a constant K3 such that

2〈A(u) −A(v), u − v〉 ≤ −‖u− v‖2V + (K3 +K3‖v‖
4
V )‖u− v‖2H , u, v ∈ V.

(3) If fi are independent of u for i = 1, . . . , d , i.e.

A(u) = ∆u+

d∑

i=1

fiDiu,

then for d ≥ 1 we have

2〈A(u) −A(v), u − v〉 ≤ −‖u− v‖2V +K4‖u− v‖2H , u, v ∈ V.

where K4 is a constant.

Proof: See Lemma 3.1 of [8] �
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Example 3.4 ( Stochastic semi-linear equations). Let d ≤ 3 and consider

the initial value problem involving the controlled semi-linear stochastic equa-

tion

du(t) = (∆u(t)+

d∑

i=1

fi(u(t))Diu(t)+Φ(u(t)))dt+Ξ(u(t))dW (t), u(0) = u0

(23)

where W (t) is a Wiener process on L2(D), Φ is the control and fi are

bounded Lipschitz functions on R for i = 1, . . . , d. Suppose that |fi(x)| ≤

J < 1. There is an optimal control Φ for the problem (P).

Proof: We can suppose that all fi with i = 1, . . . , d have the same Lipschitz

constant L1.

We define the map

A(u, v) = ∆v +
d∑

i=1

fi(u)Div, u ∈ V.

The hemicontinuity (A1) follows from the continuity of f and Ξ. We give

the proof of (A2)-(A4) only for the case d = 3; the case 1 ≤ d < 3 is similar.

Therefore, by Lemma 3.1

2〈A(u)−A(v), u−v〉+2〈Φ(u)−Φ(v), u−v〉 ≤ −
1

2
‖u−v‖2V +(α2+K2‖v‖

4
V )‖u−v‖2H

for u, v ∈ V. Hence, (A2) and (A3) are satisfied with α = 2 and ρ(v) =

K2‖v‖
4
V respectively. We proceed to demonstrate (A4) since we have that

|〈Au, v〉|2 ≤ C‖u‖2V ‖v‖
2
V

so we have (A4) with β = 2. Thus, from Theorem (1.1) there is a unique

solution for the equation (23).

Now we proceed to verify (C2) - (C5). Using the properties of fi we have

that (C2) is satisfied with K1 = 1− J and J1 = 0. Since

〈A(v, v1)−A(v, v2), v1 − v2)〉 ≤ −(1− J)‖v1 − v2‖
2
V
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we have that (C3) is satisfied with θ1 = 1− J .

Using the properties of fi we obtain the following inequality

〈A(v1, v2)−A(v3, v3), v2 − v3)〉 ≤ −‖v2 − v3‖
2
V +

∑d
i=1

∫
D
(fi(v1)− fi(v3))(Div2 −Div1)(v2 − v3)dx+

+
∑d

i=1

∫
D
(fi(v1)− fi(v2))Di(v1)(v2 − v3)dx+

+
∑d

i=1

∫
D
(fi(v2)− fi(v3))Di(v1)(v2 − v3)dx+

+
∑d

i=1

∫
D
fi(v3)(Div2 −Div3)(v2 − v3)dx ≤

≤ −‖v2 − v3‖
2
V + 2J‖v2 − v3‖‖v2 − v1‖V +

+L1‖v1 − v2‖L4(D)‖v2 − v3‖L4(D)‖v1‖V +

+L1‖v2 − v3‖
2
L4(D)‖v1‖V + J‖v2 − v3‖‖v2 − v3‖V ,

(24)

for v1, v2, v3 ∈ V. For d < 3, from inequality (22) and from (24) we have

〈A(v1, v2)−A(v3, v3), v2 − v3)〉 ≤ −1
4‖v2 − v3‖

2
V +

+‖v2 − v3‖
2‖v1‖

2 + 2J2‖v2 − v3‖
2 + (1 +

L4

1

2 )‖v2 − v1‖
2
V +

+1
2‖v1 − v2‖

2
V ‖v1‖

2
V +

thus (C4) is satisfied with c1 = 1
K2

, c2 = (1 +
L4

1

2 ), c3 = 1
2K2

, c5 = 1
4 and

c4 = 2J2.

For d = 3, from (24), Young’s inequality and the following inequality (see

p. 34 of [9]):

‖u‖4L4(D) ≤ 4 ≤ ‖u‖L2(D)‖∇u‖3L2(D) u ∈ V

we get

〈A(v1, v2)−A(v3, v3), v2 − v3)〉 ≤ −1
4‖v2 − v3‖

2
V +

+L4
13

3(1+28

26
)‖v2 − v3‖

2‖v1‖
4 + 2J2‖v2 − v3‖

2 + (1 +
3L4

1

4 )‖v2 − v1‖
2
V +

+1
4‖v1 − v2‖

2
V ‖v1‖

4
V +

thus (C4) is satisfied with c1 = 1
K3

L4
13

3(1+28

26
), c2 = 1 +

3L4

1

4 , c3 = 1
4K3

,

c5 =
1
4 and c4 = 2J2.
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Finally, (C5) is satisfied with θ2 = 1 + L, p3 = p4 = 0 and p5 = 1, and the

claim follows from Theorem 2.3. �
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