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ABSTRACT

The development of a control systems theory for multidimensional linear systems,
i.e., systems with more than one independent variable is an area where a very sig-
nificant volume of research is based on representations for the underlying dynamics
introduced in the 1970s. One of these is the Fornasini-Marchesini state-space model
published in 1978. This paper reviews the significant developments in the succeed-
ing four decades in both theory and application, where the second area includes
examples where this model description is an enabler the analysis of other classes of
systems.
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1. Introduction

A very substantial part of the literature on control theory and its applications ad-
dresses systems governed by ordinary differential equations or difference equations in
the discrete case, where the latter may result from sampling the former. One starting
point for the development of multidimensional, also termed nD, systems control theory
was systems described by partial differential or difference equations. In these systems,
the independent variables may represent different space coordinates, with examples
in image processing applications, or mixed time and space variables as in processing
seismic data. Multidimensional models also arise in the analysis of systems described
by particular types of functional differential equations in one independent variable,
such as delay-differential systems.

As for standard systems, i.e., the single independent variable is time, also termed
1D in some of the literature, the starting point in much of the literature for the
analysis of nD linear systems is state-space models and transfer-function descriptions
of the dynamics. The major state-space model classes considered are due, respectively,
to Roesser (1975) and Fornasini and Marchesini (1978). In the former case, the state
vector is partitioned into a sub-vector for each direction of information propagation
whereas in the latter a single state vector is used.

Repetitive processes make a series of sweeps, termed passes, through a set of dy-
namics defined over a finite duration known as the pass length. On completion of a
pass, the process resets to the starting location and the next pass can begin, either
immediately after the resetting operation is complete or after a further period of time
has elapsed. The output on each pass is termed the pass profile and acts as a forcing



function on the next pass profile and thereby contributes to its dynamics. This inter-
pass interaction can result in oscillations that increase in amplitude from pass-to-pass
and which cannot be removed by 1D control action. Repetitive process dynamics occur
in the modeling and control of industrial examples, such as Rogers, Galkowski, and
Owens (2007), which also references the original modeling work.

These three representations of 2D/nD systems have common structural properties
and this raises the question: is it possible to develop a unified setting for control
systems analysis and control law design? This question has been a recurring theme in
research over the years and for linear dynamics substantial progress has been reported.
For nonlinear dynamics, however, this route does not offer a way forward (unless the
dynamics can be locally approximated by a linear model).

The solution of nD systems and control design problems require a mathematical
setting to address problems whose formulation and solution, for linear dynamics, can
involve the use of functions and polynomials in more than one complex or real variables,
where fundamental differences with the 1D linear systems case immediately arise.
For example, transfer-function descriptions of the dynamics of linear time invariant
systems releases a wealth of results from the theory of polynomials in one indeterminate
for use in analysis and design, e.g., coprimeness and Bezout identities. In the nD case,
coprimeness is, see also below, no longer a single concept and hence the polynomial
approach in the nD case is much more complicated.

Four decades have elapsed since the Fornasini-Marchesini state-space model was
published and the general aim of this paper is to provide a review of the critical devel-
opments in control systems analysis for this class of models. The coverage is, except
for one area, for 2D systems but there are differences with nD, n > 2, case for which
coprimeness again provides an example. In the 1D systems case, zero, factor and mi-
nor coprimeness are the same property, for 2D systems, minor and factor coprimeness
are equivalent and zero coprimeness is a different property. For n > 3 none of these
coprimeness properties are equivalent but it can be shown that zero coprimeness im-
plies minor coprimeness, which, in turn, implies factor coprimeness, see, e.g., Youla
and Gnavi (1979) for a detailed treatment of this area. The next section considers the
modeling of such systems.

In this paper, the zero and identity matrices of compatible dimensions, respectively,
are denoted by I and 0. Also p(-) denotes the spectral radius of its matrix argument,
> 0 a symmetric positive-definite matrix, < 0 a symmetric negative definite matrix
and ® denotes the matrix Kronecher product.

2. Models for 2D Dynamics

2.1. Discrete Dynamics

The first significant developments in 2D linear systems theory arose in the 1970s with
the introduction of two state-space models, the first of which is the Roesser (1975)
model motivated by image processing problems, where there are several ways of mod-
eling the dynamics, e.g., convolutional sums, partial difference, or recursive, equations
and transfer-functions. In Roesser (1975) it is argued that a state-space model descrip-
tion is a powerful way to study 2D systems theoretical and design problems. The aim
was to develop a state-space model for 2D systems, which was subsequently generalized
to the nD case, n > 2.

In the introduction to Roesser (1975) it is stated that ‘Temporal systems have are



inherently non-anticipatory and are often treated as such for the sake of physical-
realization in real time; whereas spatial systems do not have causality as an inherent
limitation.” This means that for 2D spatio-temporal systems, as one example, an im-
age processor may have both left-to-right and right-to-left dependency. In a temporal
system time enforces a natural partition of past present and future, i.e., causality.
Moreover, in Roesser (1975) the same form of causality was assumed, with the aim of
establishing a close parallel with a spatial model, even though causality is not neces-
sary for physical realizability in real space. In the absence of causality, the processor
is termed bilateral.

The Roesser state-space model for discrete linear systems recursive over the upper
right quadrant of the 2D plane, i.e., Dyp{(4, ), i > 0, j > 0} has the form

[333(2 +1,5) } _ [Au A12} {SUZ(Z,J)] n [31] u(i, )
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In this model the state vector consists of sub-vectors for the vertical and horizontal
axes, i.e., 2'(i,j) € R% and 2V(i,j) € R%, respectively, where these vectors are also
termed the horizontal and vertical sub-vectors in much of the literature. The output
vector y(i,7) € R? and the input vector u(i,j) € R! complete with model structure
together with the boundary conditions 2™(0,7) = f1(5), 7 > 0 and x°(i,0) = fa(4), i >
0, where the dy x 1 vector fi(j) and the ds x 1 vector fy(i) have known entries.

The Fornasini-Marchesini state-space model Fornasini and Marchesini (1978) is an
alternative representation for 2D systems over D,,,. In fact, there are a family of such
models and one of them is the first order with the structure

wi+1,j+1) = Aw(i+1,5) + Agz(i,j+1)
y(i.j) = Ca(i,j)+ Dui,j), @)

where the vectors z € R”,y € R? and u € R! are the (appropriately dimensioned)
state, output and input vectors, respectively, with the boundary conditions defined as
z(0,7) = f1(j), 7 > 0 and z(7,0) = dy(3), @ > 0, where the n x 1 vector fi(j) and the
n x 1 vector dj (i) have known entries.

A second order Fornasini-Marchesini state-space model has the structure

pi+1,5+1) = Aw(i+1,5) + Asa(inj+ 1) + Aga(i, j)
+ BBU(iaj)v
y(i,j) = Cux(i,j) + Du(i, ), (3)

where the vectors involved and the boundary conditions are as in (2). The particular
case of this state-space model that results when A3 = —A;As is known the Attasi
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Figure 1. A vehicle path under surveillance. The path is equipped with regularly spaced sensor nodes,
represented by the black circles, placed in a 1D array.

model Attasi (1973). Adding extra input terms gives the general model Kurek (1985))

w(i+1,j+1) = Aw(i+1,7)+ Aga(i,j + 1) + Asz(i, j),
+ Buu(i+1,5) + Bou(i, j + 1) + Bsu(i, j),
y(i,j) = Cux(i,j) + Du(i, j). (4)

As a physically motivated example, consider a regularly placed grid sensor network,
such as a vehicle path under surveillance, equipped with regularly spaced sensor nodes
placed in a 1D array as shown in Figure 1. In this figure, the regularly spaced sensor
nodes are denoted by black circles and the sensor number is denoted by 4. The sensor
node signals are sampled in time for discrete processing and let j denote the sample
number, resulting in a 2D discrete spatio-temporal signal.

To describe the updating structure, consider sample instance j at node 7 and assume
that the dynamics are linear. Then the sensor output, denoted by y(i+1, j), is a linear
combination of the state vector entries and the node generates the state vector at the
next time instant, i.e., (i + 1,j 4+ 1), by combining the current sample instance state
vector at node i + 1, i.e., (i + 1,7), with the current sample instance state vector
at the former node i, i.e., (4, 7), and the input or control vector to the node at the
current sample instance, i.e., u(n; + 1,n2). On completion of the computations, the
node transmits its state information to the next node and so on.

The state updating dynamics are described by the sensor network model

2(i+1,j41) = Aw(i+1,5)+ Asa(i, )+ Buu(i+1,5). (5)

Suppose also that ¢ and j are restricted to nonnegative values. Then the dynamics
described by (4) can be pictured as evolving over the positive quadrant of the 2D
plane with axes i, and j, respectively, where each node is a point in the 2D plane.

Another class of 2D models is those where there is an implicit dependence between
shifted state variables and the current counterparts. Such models represent a collec-
tion of dynamic and static dependencies and the resulting models are often termed
descriptor or singular. The singular first order Fornasini-Marchesini model has the
following state-space model where the matrix E is singular

Ez(i+1,j+1)

Alz(z + 1,]) + A2Z(é7j + 1)
+ Byu(i+1,5) + Byu(i,j+ 1),
Cz(i,7) + Du(i, j). (6)

y(i,4)



The singular second order Fornasini-Marchesini state-space model is

y(i,j) = C=z(i,j) + Du(i, j). (7)

Singular versions of the Roesser state-space model can also be defined.

Repetitive process are another class of 2D systems that are characterized by a series
of sweeps, termed passes, through a set of dynamics defined over a finite duration
known as the pass length. The state-space model for discrete linear processes has the
form

rrri(p+1) = Azpia(p) + Bugyi(p) + Boyk(p),
Ykr1(p) = Capy1(p) + Dugr1(p) + Doyk(p), (8)

for 0 < p < a— 1, where a < 0o denotes the number of samples along the pass («
times the sampling period is equal to the pass length) and on pass k, zx(p) € R™
is the state vector, yi(p) € R™2 is the pass profile vector, which serves also as the
system output and ug(p) € R” is the control input vector. Boundary conditions are
the state initial vector for each pass and the pass profile on the initial pass, i.e., k = 0.
An obvious choice is

.’L'k+1(0) :dk-l-l) kZOa yO(p) :f(p)7 OSPSCM—17 (9)

where f(p) is a given initial pass profile vector and the vector dy; has known constant
entries.

The structure of the boundary conditions for repetitive processes and especially
the state initial vector on each pass is much more complex than for 1D systems. The
boundary conditions of (9) have a state initial vector x;(0) that is independent of the
previous pass dynamics. A more general case is where the state initial vector sequence
zk+1(0), k >0, is of the form

a—1

2k11(0) = diy1 + Y Jjme(h), k >0, (10)
=0

where J;, 1 < j < a—1,is an nxXm matrix. In this case, the state initial vector on each
pass is an explicit function of samples along the previous pass profile. Combined with
the initial pass profile yo(p) of (8) the result is termed dynamic boundary conditions.

Structural similarities exist between discrete linear repetitive processes and the
Roesser and Fornasini-Marchesini state-space models. The question is: can these be
made precise and hence the possibility that results developed in one area can be applied
to the other and vice versa? The answer to this question is more complicated than it
first appears. Figure 2 gives some examples of separation-sets for the Roesser model
where the system dynamics evolve over a plane where 7 is a spatial variable and j a
temporal variable and there can be no linear ordering on the plane and hence no time
enforced separation into past, present and future. The separation set for 2D systems is
a generalization of idea where past represents already computed or known values and
future those to be computed by a recursive algorithm, starting from the values that
lie on this set.
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Figure 2. Separation sets for the Roesser and Fornasini-Marchesini state-space models. The blue lines repre-
sent these sets and the 2D system dynamics evolve over a plane, where ¢ is a spatial variable and j a temporal
variable. No linear ordering on the plane is possible and hence no time enforced separation into past, present,
and future.
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Figure 3. Evolution of the dynamics of a discrete repetitive process: * — current point, A — past points, [J —
future points.

Repetitive process dynamics evolve over an infinite number of passes £ > 0 and
finite pass length 0 < p < a—1, k > 0. Unlike Roesser and Fornasini Marches models
there is separation set partitioning past and future dynamics. For (discrete) repetitive
processes at a given sample on the current pass the past consists of all previous passes
together with those samples on the current pass already computed and the future
consists of all sample instants to the end of the current pass and all future passes, see
Figure 3. Also there are no Roesser or Fornasini-Marchesini equivalents of the dynamic
boundary conditions of (10). However, as detailed later in this paper, in some cases it
is possible to write the dynamics of discrete linear repetitive processes with boundary
conditions of the form (9) as Roesser and Fornasini-Marchesini state-space models and
vice versa and hence interchange systems theoretic concepts to mutual benefit.

\



2.2. Continuous-discrete dynamics

Certain partial differential equations can be interpreted as 2D systems. The first order
Fornasini-Marchesini state-space model has the form

o 0
a—tla—bz(tl,h) = Alaitlz(tl,h) + AQ%Z(U’Q)
) 0
—+ Blaitlu(tl,tz) +32872€2u(t17t2)7
y(t,t2) = Cz(ty,t2) + Dulty, t2), (11)

where t1,%2 € R and the vectors involved have identical definitions to those in (2). A
second order Fornasini-Marchesini state-space model has the form

. 0 : . ‘
2t i+ 1) = Ao —z(t,j) + Agz(th, j + 1) + Asz(t1,4)
3751 atl
+ B3u(t17j)
y(tl)j) = CZ(tl,j)+DU(t1,j), (12)

with compatible boundary conditions. Both independent variables in the first of these
last two models are continuous and in the second one variable is continuous and the
other discrete. Other continuous-discrete models described by ordinary differential and
discrete independent variables exist, e.g., differential linear repetitive processes where
the dynamics along a pass are governed by an ordinary differential equation.

2.3. Models for Robustness Analysis and Design

If there is uncertainty associated with the dynamics of an example then a robust-
ness analysis is required (unless the uncertainty can be ignored as not having a ma-
jor influence on the response of the controlled system). As in the 1D systems case,
the uncertainty is assumed to be modeled by one of two commonly used structures,
termed, respectively, polytopic and norm-bounded. Polytopic uncertainty for a system
described by (2) assumes that the matrices A; and As in this model lie in the polytope

N N
U = {(A1, Ag) : (A1, A9) = > Bu(Ain, Aon), D Bu=1, Br >0, (13)
h=1 h=1

where N denotes the number of vertices.
Norm-bounded uncertainty is described by the state-space model

(i, j+1) = Aaz(i+1,7) + Aoax(i,j +1) + Biaw(i, j + 1)
+ BQAw(iaj + 1)7
y(i,j) = Cux(i,j) + Dw(i, j), (14)

where in comparison to (2), w(i,j) € R? represents an exogenous input (or distur-
bance). Also it is assumed that

Aip = A1+ AAy, Aop = Ay + AAy, Bip = B+ ABy, Bop = Bo + ABy,  (15)



where AAj, AAs, ABy and DeltaBy are matrices defining the norm-bounded param-
eter uncertainties and are assumed to satisfy

[ AA; AAy; ABy AB; |=MF| Nai Na2 Npi Np |, (16)
where F' € R?%! is an unknown real matrix that satisfies
FFT <1 (17)

and M, Na1, Nas, N1 and Npo are known matrices with real constant entries and
compatible dimensions.

Note 1. In much of the nD systems literature the definition of a shift operator is
different to the 1D systems case. In particular, for 2D systems let z; denote the shift
operator for the ¢ direction and 2o that for the j direction. Then the action of z; and
z9, respectively, on, say (i, j), is defined as z12(i + 1,j) = x(4,7) and 29z (i,j + 1) =
z9x(i,7), i.e., a backward shift. In this paper the corresponding forward shifts are
denoted, respectively, by Z; and 2.

2.4. Behavioral systems models

In the behavioral systems setting for the representation and analysis of linear systems
the central object of study is the behavior B, i.e., the set of trajectories that satisfy
the laws of the system, the properties of B, and how such properties are reflected in
properties of the representations of B.

In the behavioral approach Polderman and Willems (1998); Willems (1991) a dy-
namic system is a triple ¥ = (T, W, B), where T is the index set, N* or Z" in the
case of nD systems, W is the signal space, usually R?, and B is the behavior, i.e., a
family of trajectories evolving over T and taking their values in W, which satisfy the
dynamical laws of the system.

A Fornasini-Marchesini model in the behavioral setting is interpreted as a 6 tu-
ple (Z,X,E, Fy, Fy, Fy) where Z and X are finite-dimensional linear spaces and
E . F, Fy, Fy: Z — X are linear maps such that

rank(é’légE - 21F1 — 7:’2F2 — F()) = dll’nX,

or, equivalently, this matrix has full row rank over the ring F(s1, s2) of polynomials in
two indeterminates. The spaces X and Z are, respectively, termed the space of states
and the internal variable space.

Suppose that the map E : Z — X is surjective (maps onto all of X) and write
Z = X ® F™ where @ denotes the direct sum and F is identified with the kernel of
this last map. Then for the model (4)

E=(1,0), F1 = (I,0), F1 = (A1, By1), F» = (A2, By), Fy = (Ao, Bo).

A Fornasini-Marchesini model can therefore be viewed as an autoregressive model and
the trajectories on any upper-right quadrant plane are defined using the equation

Ex(i+1,j+1) = Fia(i + 1,j) + Faa(i,j + 1) + Foa(i, j). (18)



The behavioral approach to analysis is the subject of Section 6.

3. Links between 2D systems models
The Fornasini-Marchesini and Roesser models are not completely independent of each
other. In particular, introducing the substitution

(i, 7) = (i, j + 1) — Arz(i, j), (19)

into the second order Fornasini-Marchesini state-space model (3) results in the follow-
ing Roesser type model

[f(H—l,j)} _ [Az A3+A2A1H5<?=i)}+[§]u(z‘,j),

x(i, 7+ 1) I Aq 2(i,7)
y(i,j) = [0 C] [ ﬁgi;g ] + Du(i, j). (20)

This equivalence requires, however, that the resulting Roesser model has the same
dimensions for both the vertical and horizontal state subvectors. Also the first order
Fornasini-Marchesini model is obtained from (2) on setting

= 95w @)
mo= 6] m ) =

where (%) denotes an arbitrary matrix of compatible dimensions.
Links also exist in the singular dynamics case. Introducing, as one example, the fol-
lowing substitution into the singular second order Fornasini-Marchesini state-space (7)

gives the Roesser state-space model

(4 [454] - [ A][54[
y(i,j) = [0 C] {igi% ] Duf(i, j). (23)

The singular Fornasini-Marchesini state-space model can be used in the analysis of
discrete linear repetitive processes described by (8) as detailed in Gatkowski, Rogers,
and Owens (1995). Introduce the augmented state vector for (8) as

2(k,p) = [T () yFw)]" - (24)

Then the discrete linear repetitive process state-space model can be rewritten in the



form

~

Exk+1,p+1) = Az(k+1,p)+ Asz(k,p) + Bru(k + 1, p),

u(k.p) = Cz(k.p) + Dulk.p). (25)
where
~ I 0 ~ A 0
P ol asle 4
~ o B] s [B
A3 - |:0 DO:| ’ Bl - |:]D:| ; (26)
which is a particular case of (4) with Ay = 0, By = Bs = 0, where to make

these models distinct the matrices A;, B;, i = 1,2,3,C, D have been replaced by
A;, B;, 1=1,2,3,C,D.

3.1. Nonlinear dynamics

The 2D discrete nonlinear systems considered in this section are described by the
Fornasini-Marchesini state-space model

Tit1+1 =  F(@ij1, Tig1,js Wig+1,Uit1,5), © >0, j >0, (27)

where z; ; € R"= is the local state vector, u; ; € R™ is the input vector, and f is a
vector-valued function whose entries are assumed to be such that f(0,0,0,0) = 0 and
hence an equilibrium at the origin. The boundary conditions are assumed to be of the
form

zio = &o(i), i 20, zo; =no(4), J =0, (i,5) # (0,0), (28)

where £(i) and 7(j) are vectors whose entries, respectively, are known functions of ¢
and j.

4. Stability and structural properties

The stability of 2D linear systems has a long history with many contributions,
where Huang (1972); Justice and Shanks (1973) are among the first for the input-
output description of the dynamics, i.e., a bounded input produces a bounded output
over the domain of operation, where boundedness is interpreted in terms of the norm
on the underlying function space. This form of stability for the Fornasini-Marchesini
model is discussed again later in the section. As in the 1D systems case, internal, or
state, stability, is also of interest. Let || - || denote the Euclidean norm on R™ and
introduce

Xr = {SC(Z,]) : $(lvj) € Rnu 7’+] = T}

10



and also

|| & [| = sup [Jz(r —n,n)]|.
nez

Then the definition of asymptotic stability for processes described by (5) in Fornasini
and Marchesini (1978) is as follows.

Definition 4.1. A 2D discrete linear system is asymptotically stable, assuming u = 0,
if for finite || Ap

| X%[| — 0, & — oo (29)

In physical terms, for the autonomous system the response to bounded initial condi-
tions decays to zero as k — oo.

The stability of 1D linear systems can be characterized through the characteristic
polynomial in one indeterminate and for 2D systems described by (5), the natural
generalization is the following polynomial in two indeterminates

p(Zl, Zg) = det(I — 2141 — ZQAQ) (30)

and the following result is proved as Proposition 3 in Fornasini and Marchesini (1978).

Theorem 4.2. A 2D discrete linear system described by (5) is asymptotically stable
in the sense of Definition 4.1 if and only if

p(z1,22) #0 in D, (31)
where
D={(21,22) € CxC:|z| <1, |22 <1}. (32)

Testing (31) is not feasible except a few trivial cases and this prompted a significant
volume of work on efficient stability tests in the polynomial setting and later, via
Lyapunov functions, Linear Matrix Inequalities (LMIs).

Consider the single-input single-output case for simplicity. Then applying the shift
operators z1 and 2, to (as one choice among the various Fornasini-Marchesini models)
in (5)( (under the assumption of zero boundary conditions) gives the 2D transfer-
function representation

Y(Zl,ZQ) = G(21,22>U(2’1,Z2), (33)

where the transfer-function G(z1, z2) is (as in the 1D systems case) the ration of two
polynomials in z; and zo of the form

p(z1, 22)

G(z1,22) = .
(21, 22) q(z1,22)

(34)

This representation has also been extensively used to study the stability of 2D lin-
ear systems, see, e.g., Huang (1972); Justice and Shanks (1973), starting from the

11



necessary and sufficient condition

q(z1,22) #0 in D, (35)

where in Huang (1972) it was shown that the requirement to check for all (21, z2) in
D is equivalent to

1) q(21,0) # 0, forall |z1] <1 and

ii) q(z1,22) #0, forall |z1] =1, |22 < 1.

These conditions are also interchangeable in terms of z; and zs.

Conditions i) and ii) allow the stability of a 2D discrete linear system to be deter-
mined by 1D linear systems stability tests, including those in the frequency domain.
Condition i) should be tested first for a given example as it is a 1D stability test and
a necessary condition. Condition ii) requires that the frequency response generated by
q(e’“1), wy € [0,27], lies inside the unit circle in the complex zo plane, which releases
1D linear systems frequency response methods for use in stability testing. By analogy
with the 1D systems case, this should also extend to control law design.

Condition ii) requires frequency attenuation over the complete frequency spectrum.
By analogy with the standard linear systems case, this may be overly stringent or not
required since the performance requirements are only imposed over finite frequency
ranges. This problem is discussed later in this paper.

A Lyapunov approach to stability analysis and control law design for 2D linear
systems and repetitive processes has been the subject of extensive research and not
restricted to single-input single-output examples. Two forms of Lyapunov equation
for such systems are possible and these are termed, respectively, 1D and 2D. The first
class uses a Lyapunov equation where the entries of the defining matrices are frequency
dependent and gives necessary and sufficient conditions. By the 1D Lyapunov equation,
the Fornasini-Marchesini state-space model (5) is stable if and only if there exists a
matrix P(e/*)) = 0 such that

P(e7°G(e*) + GT (e779)P(e/¥) < 0, (36)
where
G(Zl) = (I — ZlAl)_lAQ, w € [0,27T]. (37)
The 1D Lyapunov equation can be further developed to produce stability tests
involving matrices with constant entries. This involves the matrix Krnoecher product
and leads Agathoklis, Jury, and Mansour (1993) (where the analysis is for the Roesser
model) to the requirement that a second order polynomial matrix of the form
H()\) = \X; + AXo + X3, (38)
where \ = e/* satisfies

detH () # 0, (39)

for all w € [0, 27]. In the case of differential and discrete linear repetitive processes, the
1D equation also leads to bounds on performance Owens and Rogers (1995); Rogers

12



and Owens (1993).

The alternative 2D Lyapunov equation is defined by matrices with constant entries
and has an identical structure to the 1D linear systems case. For systems described
by (5) the stability property holds provided these exists a matrix P > 0 such that Hi-
namoto (1993)

Q:[Bé) 733]—ATPA<O, (40)

where 5,7 >0, +v=1and A = [ A A ]

A Lyapunov equation defined by matrices with constant entries has obvious attrac-
tions in terms of stability tests and control law design and was initially believed to be
necessary and sufficient for stability but in Anderson, Agathoklis, Jury, and Mansour
(1986) a counter-example and related analysis established that it was a sufficient but
not necessary condition. In a number of special cases, however, it is necessary and
sufficient, where the most physically relevant of these is single-input single-output ex-
amples. Also the 2D Lyapunov equation provides a starting point for the development
of Linear Matrix Inequality (LMI) based stability tests and hence control law design
algorithms and this is detailed below, after necessary and sufficient LMI stability tests
are considered.

In Bliman (2002) LMI based necessary and sufficient conditions were developed for
2D linear systems described by the state-space model

$1(2+1,]) — A.Il(l,j)-f—Bﬂfg(’L,j),
x2(2a]+1) = C$1(Z,j)+D$2(’L,]), (41)

which is of the form (1) with the input and output terms deleted as internal stabil-
ity is considered. Moreover, these results transfer to the Fornasini-Marchesini model
and they are based on a class of quadratic Lyapunov functions, from which the 2D
Lyapunov equation naturally arises. This link is detailed further next based on the
notation used in Bliman (2002).

Introduce the quadratic Lyapunov function for (41) as

V(la]) = x{(la])Qlwl(Z’]) + ‘/QT(ivj)Q2x2(i>j)v (42)

where Q1 > 0 and Q2 > 0 are compatibly dimensioned matrices. Also introduce

Vit(i,j) = a1 (i 4+ 1,§)Qua(i + 1,5) + a3 (i, + 1)Qawa(i, j + 1) (43)
and hence
NI 1) I R I )
Vll(zaj) V(Zh]) - ,172(2,]) R xQ(lvj) ’ (44)
where
ro | ATQA-Qu ATQB ] T CT@C CTQuD (45)
- BT, A BTQ\B DTQ,C DTQyD—Q, |’

which gives the 2D Lyapunov equation for this case when R < 0.
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Remark 1. In some applications, the Lyapunov function (42) has physical meaning.
This is the case for linear repetitive processes where the first term can be viewed as the
‘energy’ in the current pass state vector and the second the ‘energy’ in the previous
pass profile.

To obtain necessary and sufficient conditions for stability, Bliman (2002) used a non-
minimal state information where, instead of x(i, j) as above, previous state vectors are

used, i.e., { #7(i,5) 2T(i,j—1) ... 2T(i,j—h+1) } where h > 0 is an integer.
Introducing
. _ T
X)) = [ TG Tai-1) ¢ aThi-ht1) ]
T
Xon(i,j) = [gﬁg)ag@j—n Eag@j—h+n} (46)

and hence from (41)

Xip(i+1,7) = (Un®@A)X 44, 7) + (I @ B)Xou(i, 7, ),
Xop(i,j+1) = ([ @C)X4(4,7) + (In ® D)X 4(1i, 5.). (47)

Also introduce

Vi(i, 5) = XL, (i, 1) QupXi iy §) + X Xo (i, ), (48)

for some @1, > 0 and Q2 > 0. Then (44) holds with obvious substitutions for the
variables where

R — { (In® ATQuaIn ® A) — Q1 (In® AT Quu(In © B) ]
(Ih®B)TQ1,h(Ih®A) (Ih®B)TQ1’h(Ih®B)
N VQ@CV@MQ@C) (I, ® C)T Qo p(Iy ® D) ] (49)
(In@D)Y'Qia(In®C) (In® D) Qon(In ® D) — Qap |-

Only trajectories of (41) that satisfy (47) are of interest and hence there are con-
straints on &) j, and Xsp, as exploited in Bliman (2002) to form a particular version
of the matrix R in the 2D Lyapunov equation that increases in dimension with h and
let this matrix be denoted by Rjp. Then the following is the central result in Bliman
(2002).

Theorem 4.3. The following are equivalent.

(1) A 2D system described by (41) is asymptotically stable.
(2) For any (z1,22) € C?, |21 < 1, ]2 < 1=

I—ZlA —ZlB
det<|: —ZQC I—ZQD:|>#O'
(3) p(D) <1 and for any z € C

2| < 1= p(A—2(I-2D)"'C) < 1
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(4) p(A) <1 and for any z € C
|2l <1= p(xC(I - zA)"'B+ D) < 1.

(5) There exists h* such that R} < 0.
(6) There exists h* such that R} <0 for all h > h*.

This result gives a family of LMI conditions for asymptotic stability. In particular,
a 2D system is asymptotically stable if and only if there exists a Lyapunov function of
form (48), generalizing (42) and decreasing along the system trajectories. Moreover,
the conditions in this last result are easy to check but the problem is that there is no
a priori formula for computing an upper bound on h.

This result is of a similar form to that given in Fornasini and Marchesini (1980)
for (2) with no inputs, resulting in the following necessary and sufficient condition for
stability

D (1AL T Agf| < 1, (50)
i+j=h

where A; “ 1/ Ay denotes the suffle product, i.e., i times the matrix A; and j times
the matrix As. The difficulty with this result is that there is no method to determine
a priori the number of operations required to check the stability of a given example.
This result does, however, provide a family of sufficient conditions for stability whose
conservativeness vanishes asymptotically.

Another set of necessary and sufficient stability conditions follows by using the
following result from Fornasini and Marchesini (1980).

Lemma 4.4. The following are equivalent conditions

i) A 2D system described by (2) is asymptotically stable.
ii)

det(I — z1 A1 — 20A2) # 0, for all |z1] <1, |22 < 1. (51)
iii)
p(A(0)) < 1, for all 6 € [0, 2], (52)
where

A(0) = Ay + %Ay,

The LMI based tests of Ebihara, Ito, and Hagiwara (2006) require the concept of a
Guardian map, see, e.g., Barmish (1994), denoted by v, for the set of Schur stable,
i.e., all eigenvalues have modulus strictly less than unity, complex matrices. In the
case of ¢ X ¢ matrix, say M,

v(M)=det(M @ M — 1, ® I,), (53)
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where M is formed by taking the complex conjugate of each entry in M.
Using this map, the following is Lemma 2 in Ebihara et al. (2006)

Lemma 4.5. A 2D system described by (2) is asymptotically stable if and only if
i)

p(Al + Ag) < 1, (54)

det A(0) # 0, for all 0 € [0, 2], (55)

where

AB) = AO)RAO)—-IxI
= —Ae7 + Ag + A,
A = 41041 +4A—1®1,
A = A A,
A = A As. (56)

The next stage exploits the link between parameter dependent LMIs to parameter-
independent equivalents using the discrete-time positive real lemma.
Introduce the following for this last set of equations

1
Go = Q(A*—lAfl + ./48./40 + AT.AD,
G1 = AjA1+ AlA,
Gy = ATA_L (57)
Then the following is Theorem 1 in Ebihara et al. (2006).

Theorem 4.6. A 2D system described by (2) is asymptotically stable if and only if

i) (54) holds,
ii) There exist matrices Q11, Q22 and Q12 such that

0 0 gr, Qn Q12 0
0 0 G*, = | Qs Q2—Qu —Qi2 |. (58)
G2 G_1 Go+G§ 0 —Q7s —Q22

This last condition is necessary and sufficient, as opposed to sufficient, and hence
stability tests based on it should be less conservative than the alternative above. A
remaining problem is the dimension of the LMI in (58) which is 3n? and the number
of complex scalar variables is n?(2n? + 1). Hence it is not possible to apply this test
for a large dimensioned example. To reduce the computational cost, LMIs of smaller
dimensions results can be derived using the generalized S procedure, see, .e.g, Ebihara
et al. (2006), leading to the following result established as Theorem 2 in Ebihara et
al. (2006).

Theorem 4.7. A 2D system described by (2) is asymptotically stable if and only if
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i) (54) holds,
it) there exists matrices Q11, Q22 and Q12 such that

AT, + Qn Q12 0 AL o
AL Q12 Q22— Qu —Q12 AT <0, (59)
AT 0 Q12 —Qn AT

where 1 denotes the orthogonal complement.

This result has the same number of scalar variables as (58) but the dimension of the

LMI has been reduced from 3n? to 3n? — r, where r = rank [ A1 Ay Aq ]T . More-
over, if Ay or A; is nonsingular, the LMI dimension is 2n? and furtheer development
is possible.

The condition of (51) is equivalent to

det(I — [ al ZSI} [ﬂ [ A Ay ] #0, for all [z <1, || <1.  (60)

and applying D-scaling with scaling matrix

w=| " Y w0, w0, (61)

gives that asymptotic stability holds if

A{(Wl + WQ)Al — WA Aclr(Wl + WQ)AQ

AT(W + W)) Ay AT (W, + W)) As — W) ] <0, Wiy =0, Wo = 0. (62)
This LMI condition was developed in, e.g., Galkowski, Rogers, Xu, Lam, and Owens
(2002); Ooba (2000) without D-scaling and has proved the basis for iterative learning
control law designs that have been experimentally verified, e.g., Hladowski et al. (2010,
2012), Paszke, Rogers, and Galkowski (2016), where the latter result also makes use
of the generalized KYP lemma. This topic and, in particular, the debate about use of
sufficient as opposed to necessary and sufficient stability conditions, is returned to in
a later section of this paper on control law design, where more recent work Bachelier,
Paszke, Yeganefar, Mehdi, and Cherifi (2016, 2017); Chesi and Middleton (2014) on
necessary and sufficient stability conditions will also be discussed.

5. Systems Theoretic Properties — State-space and System Matrix
Approaches

As in the case of 1D linear systems, an extensive volume of research has considered
the definition and characterization of properties such as controllability, observability,
system equivalences poles and zeros and realization theory. The analysis has used the
state-space and polynomial settings for analysis. One desirable feature of such theory
is that it should link to control/regulation theory. For example, is it the case for 2D
linear systems that controllability gives a solution to pole placement (if such a concept
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exists) as in the 1D linear systems case? This section gives an overview of the main
results currently available with particular emphasis on the link to control/regulation
of the dynamics.

5.1. State-space Model Analysis

Controllability for 2D linear systems can be split into local, which refers to a single
local state, and global, which refers to infinite sets of local states lying on a separation
set, where for 1D systems, the separation between past and future is given by a single
time instant, i.e., a point. Hence the recursive computation of a 1D system trajectory
consists of updating values on successive points of the domain. The situation is more
complex in the 2D case, see also the discussion re separation sets associated with
Figure 2.

One way to define these properties is in terms of the state dynamics and the following
partial ordering of two tuple integers is required.

(4,4)
(4,4)
(4,4)

Any of the Fornasini-Marchesini models is said to be locally reachable in the rectan-
gle [(0,0), (p1,p2)] if, corresponding to any initial states and any state z* € R™, there
exist control input sequence u (i, j) on (0,0) < (4,5) < (p1, p2) such that z(p1,p2) = 2*.
Choosing z* as the zero vector defines the controllability property. Moreover, one
method of obtaining conditions for the existence of this property is to use the 2D sys-
tems version of the transition matrix, also termed the fundamental matrix sequence
in some of the literature, see, e.g., Kaczorek (1985).

A great many results have been produced based on this approach and in this paper
one example is given. Consider the Fornasini Marchesini model (25), which also has
been be used in the analysis of discrete linear repetitive processes. The fundamental
matrix sequence, denoted by Ty, n,, is Gatkowski, Rogers, and Owens (1998)

IN

(p17p2) iff i§p17 j§p27
(p1,p2) iff i=p1, j=po,
(p1,p2) iff (4,5) < (p1.p2), (i,7) # (p1,p2). (63)

A

/T3T71,71 + AvlTO,fl +1 i1=73=0,

P T i#0 and/or j#0 . (64)

ETij =

and the following result gives conditions for local controllability and reachabil-
ity Gatkowski et al. (1998).

Theorem 5.1. The singular 2D Fornasini Marchesini state-space model (25) is locally
reachable in the rectangle [(0,0), (p1,p2)] if and only if

rankR,, ,, =7, (65)
where

Ry po = [Mo-1 Moo -+ Mop,—1 My 1 -+ My, _1p, 1] (66)
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and
Myj=TijBi, 1<i<p1, 1<j<po. (67)

Unlike the 1D systems case, analysis of this form has found very limited use in
formulation and solution of control problems.

Another form of controllability and observability is termed global. Consider the time
set T' = 7Z x 7Z, where Z x 7 has the partial order stated above, and the past of the
point (ni,n2) is P(ni,n2) = {(I,m) : (I,m) < (n1,n2)} and the future is F(i,j) =
{(l,m) : (i,7) < (I,m)}. Let U be the space of past inputs for the example considered,
Y the space of future outputs, and X the global state. Then the controllability map,

denoted by C, is

C:u(-) €U — Xyp) € X, (68)
and the observability map is

O: Xoo €X = V.)€V (69)

The example under consideration is globally controllable if and only if C is a surjective
map, and globally observable if and only if © is an injective map. In the 1D case,
these global concepts are closely linked to the properties of surjectivity and injectivity
for the state-space factorization of the input-output map Kalman, Falb, and Arbib
(1969).

For 2D systems, again there is no link with minimality of the state-space model or
to a direct link with the existence of control laws. In particular, there is no counterpart
of the 1D systems result that controllability of the state-space model is a necessary
and sufficient condition for the existence of a stabilizing state feedback control law.
In Gatkowski et al. (1998) the singular Fornasini-Marchesini state-space model rep-
resentation is used to obtain necessary and sufficient conditions for the properties of
local reachability and controllability of discrete linear repetitive processes in terms
of matrix rank based tests. For discrete linear repetitive processes there is also the
property of pass profile controllability that has no Roesser or Fornasini Marchesini
state-space model equivalent but does ‘recover’ the 1D systems result that one form
of stabilization for these properties is possible if and only if pass profile controllability
holds Dymkov, Gaishun, Rogers, Galkowski, and Owens (2003).

5.2. Systems Maitrixz Approaches

The concept of strict system equivalence is fundamental to the study of 1D linear
dynamics. The original work for such systems is given in (Rosenbrock, 1970) with a
subsequent generalization in Fuhrmann (1977). This property describes the connec-
tion between all least order realizations of a transfer-function matrix, starting the
polynomial system

Tr = Uu,
y = Vo+ Wu, (70)

where T, U,V and W are polynomial matrices in one indeterminate, arising from a set
of linear differential or difference equations.
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The strict system equivalence property has also been studied for 2D systems, see,
e.g., Frost and Boudellioua (1989) and Pugh, McInerney, Boudellioua, Johnston, and
Hayton (1998), where the underlying approach was to generalize the results for the
1D systems case, for which the background can be found in, e.g., Rosenbrock (1970).
This approach starts from the natural generalization of (70), i.e.,

T(z1,20)x = U(z1,22)u,
y = V(z,22)z+W(2,22)u, (71)

where x € R" is the state vector, u € R? is the input vector and y € R™ is the output
vector, T, U,V and W are polynomial matrices with elements in R[z1, 22] of dimensions
rXr,rXxpmxland m X p respectively.
Using (71), the system matrix in the general form is:
T(z1,22) U(z1,22)
P = ’ ’ 2
(21, 22) [ —V(z1,20) Wi(z1,22) |’ (72)

where
P(z1, 2) [ e ] = [ _0 } . (73)

If T'(21, 22) is invertible, the system matrix in (72) is said to be regular. In this case
the transfer-function matrix corresponding to the system matrix in (72) is given by

G(Zl, 22) = V(Zl, ZQ)T_l(Zl, ZQ)U(Zl, 22) + W(Zl, 22). (74)

In the particular case of the Fornasini-Marchesini state-space model (2), with D = 0
for simplicity,

2129l — 21 A1 — 2949 21Bo + 29B9

P(Zl,ZQ): —C 0

(75)

Generalizing 1D systems results directly to nD systems algebraically is, in general,
non-trivial due, see also the discussion in the introduction of this paper, to significant
differences between the ring of polynomials in one indeterminate and that in two or
more. Also nD systems results developed for one model may not transfer to another
and results that hold for 2D systems may not hold for nD systems, where n > 2.

In the transfer function description of the dynamics a 1D differential or discrete
linear system a common factor between the numerator and denominator polynomi-
als is a pole-zero cancelation and its effects on subsequent analysis are understood.
The absence of common factors for two or more polynomials means that they are co-
prime. Also equivalent characterizations of the coprimeness property exist, including
the Bezout identity.

Algebraically, 1D polynomial-based systems theory is underpinned by ring-theory,
where polynomials in one indeterminate have a division algorithm for Euclidean rings.
This result forms the basis for the algorithmic derivation of canonical forms and solu-
tion techniques in 1D systems theory, such as the Smith form, and the solution of 1D
polynomial equations, see, e.g., Kailath (1980). In nD linear systems, see the intro-
duction section of this paper, three forms of coprimeness, namely, factor, minor, and
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zero, respectively, exist and two are distinct properties for n = 2 and for n > 3 all are
distinct properties.

Another standard tool in 1D systems theory is that elementary matrices are a
sub-class of unimodular matrices over a ring, where all unimodular matrices can be
formed as a product of elementary matrices. For rings, F'[z1, 29, , 25, n > 2, not all
unimodular matrices can be formed as a product of elementary matrices. In the case
n > 2 progress is possible by treating each polynomial ring as a sub-ring of a larger ring
with a division algorithm. The mechanism is to favor one of the indeterminates and
consider elements of the ring to be polynomial in this indeterminate with coefficients
rational in the other indeterminates.

Despite the analysis problems summarized above, progress has been reported in a
number of areas, where, as examples, the following are considered.

Definition 5.2. (Pugh et al., 1998) Let T(m, n) denote the class of (r+m) X (r +n)
rational matrices where r > min(m,n). The subset P(m,n) of T(m,n) obtained by
requiring » > 0 represents the 2D rational system matrices. Two system matrices
Pi(z1,22) and Ps(z1,22) € P(m,n), are said to be I/O equivalent if they have the
same transfer-function matrix, i.e.,

G1(21,22) = Ga(z1, 22)- (76)

Definition 5.3. Two admissible systems (T3, U;, V;, W;) are said to be system equiv-
alent if there exist rational matrices @, R;, @, R, of compatible dimensions such that

Q 0 U | _| T U Qr Ry (77)
R 1 - W Vo W 0o I |-
The following result, Theorem 1 in Zerz (2000a), generalizes the 1D result that

systems equivalence is the same as equality of the transfer-functions.

Theorem 5.4. Two admissible systems are realizations of the same transfer-function
18 and only if they are system equivalent.

Strict system equivalence is defined as follows, Definition 4 in (Zerz, 2000a).

Definition 5.5. Two admissible systems ¥; and Yo are strictly system equivalent in
the sense of Rosenbrock if (77) holds with polynomial interwinning matrices and @
and @), that are unimodular.

Theorem 5.6. Two systems that are FSSE give rise to the same transfer-function
and have the same determinantal ideal.

In the case of 2D systems with n > 2 further complications arise and for this
case Zerz (2000b) gives a comprehensive treatment and is also a starting point for
results obtained after the publication of this monograph.
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6. Systems Theoretic Properties — Behavioral Analysis

6.1. Background

As described in Section 2.4, in the behavioral systems setting for the representation
and analysis of linear systems the central object of study is the behavior B, i.e., the
set of trajectories that satisfy the laws of the system, the properties of B, and how
such properties are reflected in properties of the representations of B. Linear differ-
ence behaviors are defined as the solution set of a system of linear partial difference
equations. Equivalently, a linear difference behavior B can be interpreted as the ker-
nel of a polynomial partial difference operator represented by a polynomial matrix.
In the 2D case B = kerR(z1, 22, 22), where R is a p X ¢ Laurent polynomial matrix
in the indeterminates zi, 29, 21, 22. This setting for the discrete case also extends to

continuous-time systems.
The representation (70), which includes the Fornasini Marchesini model as a par-
ticular case, can be treated as a behavior in the kernel form as
Bx,u,y = kel“A < g M(/] _OI ) ) (78)

where A is the signal space and is a vector space over a field, which is taken to be R
or C. Use of this setting has led to a very large volume of results on properties such
as controllability, observability, poles and zeros and control by interconnection.

The behavioral approach to systems analysis draws on very powerful algebraic tools
in module theory and especially the theory of finitely generated modules, i.e., a finite
generating set, modules over a ring, where for further background if required, see,
e.g., Lang (1997). Moreover, a duality theory exists see, e.g., Malgrange (1962/63);
Oberst (1990). Next some consequences of this theory relative to 2D (and nD) systems
theory are given (with others related to stabilization considered in Section 8).

6.2. Controllability, Obervability and Input-Output Representations

Consider a 1D linear system with kernel representation 5 = ker R. Then controllabil-
ity Polderman and Willems (1998) is defined as an intrinsic system property that does
not depend on the choice of a particular representation. The behavior B is termed
controllable if for all wy,wy € B there exists a T and w € B such that

w(t) :{ wl(t)v t<0 (79)

wa(t), t >t 7

for which equivalent definitions exist. This property implies that within the behavior
it is possible to switch form one trajectory to another provided a delay is allowed.

The 2D systems definition of controllability in the behavioral setting, see, e.g. Wood,
Rogers, and Owens (1999) is the natural generalization of the 1D case. Moreover, a
comprehensive set of results is available on conditions for its existence. Likewise for
observability, which for a 1D linear system in the behavioral (Polderman & Willems,
1998) setting starts from a partition (where z denotes the forward shift operator in
1D linear systems theory)

Rl(z)wl = RQ(Z)’U)Q, (80)

22



of the system laws R(z)w = 0, and ws is said to be observable from w, if knowledge
of wy yields knowledge of ws. Equivalently, by linearity, w; = 0 implies wo = 0 or Ry
is right-prime. The definition of observability from (80) generalizes, see. e.g., Rocha
(1990) to 2D behaviors.

T T

In a partition w = [ w{ w3 ]T of the system variables with corresponding de-
composition Ryw; = Rowsy of the system laws, ws is termed strongly observable from
w if it is uniquely determined by w;. Equivalently, Rs is zero right-prime. A weaker
observability definition arises when R is a right factor-prime matrix, where w; de-
termines wy up to a finite-dimensional real vector space, see, e.g., Rocha and Willems
(1991); Wood et al. (1999); Zerz (2000b).

Input-output structures in the behavioral setting have an algebraic characterization
and if (u,y) is an input-output structure then, given a polynomial matrix R such
that B = ker R, there exists Polderman and Willems (1998) a permutation II of the
columns of R such that RII = [ -Q P ], where P is full column rank. The columns
of @ correspond to the input variables u, and the columns of P to the output variables
y. Moreover, the number of inputs is necessarily equal to m(B), the maximum size of
a set of free variables, which is independent of the input-output structure. From the
definition of input and output and from the input-output representation, the definition
of a transfer-function matrix G is

PG = Q. (81)

Quarter-plane causality of the Fornasini-Marchesini state-space model described
by (25) imposes the condition that

i J
y(i,5) = Y > hi—1,j—kuli,j), (82)

l=—0 k=—0

i.e., a particular structure or preferred direction of updating on the computation of
the state and output vectors. In the case when all variables of an 2D (or nD, n > 3)
system are temporal, the causality requirement can be removed by allowing singular
systems models.

Treating the concept of state in a behavioral setting for 2D (or nD, n > 3) systems
leads to first-order state-space models without a preferred direction, which, in turn,
requires a formalization of the concepts of past, future, and of the independence of
the future of a trajectory given the past, see, e.g. Rocha and Willems (1991); Zerz
(2000b). In the 2D systems case the result is discrete state-space models defined by
equations with the structure

Eix + Fiziz 0, (83)

Eox + Gozoxr = 0, (84)

Esx + Fyz1x + Gszow + Hyzi2900 = 0, (85)
Nz +Mw = 0, (86)

where x is the state variable vector and the matrices E1, Eo, E3, F1, F3, Go,Gs, Hs, M,
and N have additional properties Rocha and Willems (1989). The state equations (83),
(84), and (85) are first-order in = and zeroth order in w, where these properties are
not postulated a priori as is the case for both the Roesser and Fornasini-Marchesini
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state-space models. Instead they are a consequence of the Markovianity of the variable
x.

The behavioral setting can also be extended to systems whose dynamics are not
restricted to the positive quadrant of the 2D plane and consequently a stability theory
is required for systems not restricted to this quadrant. Using behavioral representations
of the dynamics, it is possible to consider systems that evolve over all four quadrants (if
required). Moreover, one way to obtain a more generally applicable stability theory is to
be more flexible in the prescription of past and future of such trajectories. It is possible
to give a meaningful definition of stability for behaviors, where trajectory evolution
is not restricted to the positive quadrant, using proper characteristic cones Valcher
(2000) as a setting for analysis.

6.3. Poles and Zeros

Behavioral theory gives a definition Wood, Oberst, Rogers, and Owens (2000) of a
finite pole of a linear system that agrees with the 1D linear systems case and allows a
direct extension to nD linear systems, where a division of the poles into controllable
and uncontrollable is possible. In the case of linear repetitive processes, the behavioral
definition of a pole produces a generalization of the exponential frequency interpreta-
tion of a pole for 1D linear systems.

Consider the 2D polynomial matrix

T -U
P(z1,29) = [ v oW ] , (87)
arising from a 2D linear system. Then a possible characteristic polynomial is
det P(z1,22) =0, (88)

and the reasoning is that (87) defines the poles of the 2D linear system.

Definition 6.1. The poles of a 2D discrete linear systems are the component-wise
nonzero points in 2D complex space where the matrix of (87) fails to have full rank,
i.e., they are given by the set

V = {(a1,a2) € C* | detp(ar, as) = 0}. (89)

The pole variety V for 2D linear system is given by the vanishing of a single 2D
non-unit polynomial, and is therefore guaranteed to be a one-dimensional geometric
set in 2D complex space, i.e., a curve. In particular, the pole variety cannot be zero-
dimensional, i.e., finite. The pole variety is a complex variety, even though the entries
of the matrices defining the state-space model are real and is required to capture the
full exponential-type dynamics of the system.

Assume that (a1,as) € C? is such that (88) is satisfied for 21 = a1 and 2o = ag,
and write a; = me?", ay = r9e??, with 7 = 0 for a; = 0 and ry = 0 for as = 0.
Equivalently, discrete linear repetitive process under consideration has Wood et al.
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(2000) an exponential trajectory of the form

zy(p) = 95007"17“2 5 cos(01p + O2k)

+ x00r1r2 sin(61p + 62k), (90)
ye(p) = y007“17"2 5 cos(01p + O2k)

+ yoorlrQ N sin(61p + Oak), (91)

up(p) = 0, (92)

where a:éo, mgo e R, yéo, ygo € R™, and at least one of these four is nonzero. The form
of exponential trajectory arising can be characterized algebraically Oberst (1995).
Conversely, the existence of such a trajectory implies that p(rlewl,r267’92) =0, i.e.,
the frequency (rie't, roe®?) is a pole of the system.

Consider a discrete linear repetitive process described by (8). The using (90), (91),
and (92)in this case, it follows that if |az] = 7 > 1 then a nonzero exponential, or
sinusoidal, state-output trajectory exists in the system, which tends to infinity as the
pass number increases but may remain stable along each given pass. Conversely, if
las| = r < 1 for all poles (a1, as), then no trajectory tends to infinity for a given value
of p as the pass number increases, but there may be trajectories tending to infinity
along-the-pass. In order to exclude trajectories of the form (90), (91), and (92) that
are unstable either along-the-pass or in the k-direction, poles (a1, a2) with |a1] > 1
must also be excluded. Equivalently, the characteristic variety (89) of the zero-input
behavior must lie inside

Pri= {(s1,22) € C ¢ [aa] < 1, |2 < 1}, (93)

Hence stability is equivalent to all poles lying in P;.

The use of the behavioral setting to define zeros for nD linear systems and repetitive
processes leads to a generalization of the blocking frequency interpretation from 1D
linear systems, see, e.g. Zaris, Wood, and Rogers (2001).

7. Other Systems Theoretic Analysis

Realization theory is a central part of 1D linear systems theory and a basic result is
that a state-space realization constructed from a transfer-function (or transfer-function
matrix) is minimal if and only if it is controllable and observable. This problem is
much more complex for the 2D/nD case and again the absence of a single concept of
primeness is at the core of the issue and no definitive answer is known. Research in
this area continues using, e.g., elementary operations, for background see Galkowski
(2001) and other approaches. Results in this area also include those in Dubi (2009);
Yan, Xu, Zhao, and Tian (2014).

Positive systems has been the subject of considerable analysis in the control systems
literature, including the 2D Fornasini-Marchesini model. The most commonly accepted
definition of a positive system is where the input, state and output variables take
positive, or at least nonnegative, values. In the case of the state-space model (2)
positvity means that the entries in x, u and y take nonnegative values as do the entries
in the matrices and the vectors defining the boundary conditions. One motivation
for this analysis is that some physical systems, see Fornasini and Valcher (2005),
all internal variables are intrinsically nonnegative as they represent concentrations,
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pressures, number of vehicles and so on. Those that can be described by a quarter
plane causal 2D model include river pollution modeling, which was an early proposed
application for the 2D Fornasini-Marchesini model Fornasini (1991).

In common with the 1D linear systems case, positivity of the input sequence is a
strong constraint in the sense that, e.g., it could prevent local/global reachability of
nonnegative states that could be reached by using an unconstrained input sequence,
i.e., allowing nonnegative entries. For these systems, structural properties have a com-
binatorial nature and this has meant that a graph theoretic approach to the analysis
of structural properties as in Fornasini and Valcher (2005). Positive 2D systems re-
main a topic of interest in the research community, see, e.g., Kaczorek (2001) and the
literature since the publication of this research text.

Research has also been reported on finite region stability and stabilization of 2D
linear systems, where for systems described by (2), a finite region is defined, for a
finite positive integer N, as {(i,j) : i + 7 < N, and N. Recent results include Zhang,
Trentelman, Wamg, and Gao (2017). This formulation includes iterative learning con-
trol where the trial length is finite and in applications only a finite number of trials
will ever be completed. However, in a repetitive process the pass length is finite by
definition and the property of strong practical stability Paszke, Dabkowski, Rogers,
and Galkowski (2015) has been used in design for applications.

Fault detection and isolation is an important and well researched topic in 1D systems
theory and there has been research reported on the same problem for 2D /nD linear
systems. In particular, there has been work on the 3D Fornasini-Marchesini state-space
model with two spatial and one temporal indeterminate. A motivating factor for this
research is that such models can be used to represent the dynamics of certain classes
of distributed grid sensor networks Sumanasena and Bauer (2011). The 3D structure
of this problem requires two spatial independent variables for the plane of operation
and one temporal. Moreover, a 4D model is required if the network is operating in 3D
space.

Applications such as those in the agricultural and environmental monitoring sectors
and, in particular, contaminant propagation detection and structural health monitor-
ing are suitable for grid or mesh topologies and this has, in turn, led to the grid
sensor approach. To be of use, such networks must have high reliability and using dis-
tributed schemes for signal/information processing in these networks has immediate
and signicant benets in terms energy consumption and data throughput. Distributed
algorithms also support applications where local actuation is required in response to
local detection and hence minimum response delays when compared with a centralized
approach.

Among the many techniques for fault detection and isolation for 1D linear systems
is the use of geometric control theory, see, e.g., Massoumnia (1986), where several
dierent formulations of this general problem were considered. The general problem is
to dene functions, known as residuals, such that they are close to zero when no fault
is present and their directional properties give information on the presence of a fault
when failure has occurred. The geometric approach to fault detection and isolation
for the 3D Fornasini-Marchesini state-space model with two spatial and one temporal
indeterminate has been considered in Maleki, Rapisarda, Ntogramatzidis, and Rogers
(2015) as discussed briey next.

Let z(i,7,q) € R™ be the local state vector, y(i,j,q) € R™ the output vector and
u(i,7,q) € R the input vector of the system state-space model. Following the notation
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used in Maleki et al. (2015), introduce the shift operating on a vector, say w, as

(01w>(i,j, q) - UJ(Z—|- 17j7 Q)7
(o2w)(i,3,q) = w(i,j+1,q),
(U3w>(iaja Q) = w(i,j,q+ 1)- (94)

Then the 3D Fornasini-Marchesini state-space model has the form

010903 = Ajo903x + Asoro3x + Azoioaw
+ Bjoeosu + Byojosu + Bsoioau,
y = Cx (95)

and is assumed to describe the nominal, or fault-free, system. To model the system dy-
namics after a sensor or actuator failure has occurred the nominal model is augmented
with additional terms to represent the failure mode, i.e.,

0102038 = Ajo203% + As01037 + Azoio9x
- 1A
my
1 ki1 .
+ Bjogosu + [ Ly ... Ly ]0203 :
| my!
- m% -
+ Byojosu + [ L% ng ]0103 :
mé” ]
m}
+ Bsojoou + + [ L%’ L’g?’ ]0'102
m§3
ny
y = Cx+[JV ..o g7 ]| |, (96)
n?

where (dropping the superscripts and subscripts for ease of notation) the scalars m,n, p
and the matrices L and J are termed, respectively, the actuator- and sensor signa-
tures. In Maleki et al. (2015) this model structure is used to design an asymptotic
observer (see also the next section on observers for the control of 2D systems described
by the Fornasini-Marchesini state-space model) for the nominal (95) and the failure
model (96) that takes as inputs the input and output systems variables and produces
as the output a residual that asymptotically provides information about the presence
and location of the failure. This analysis is in the geometric setting and further de-
velopment would be required for application to an example. Another setting for fault
detection of these systems is to uses polynomial-algebraic tools, see, e.g., Bisisacco and
Valcher (2006).
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8. Controller Design

Controller design for 2D linear systems has seen a very large volume of research using
various representations and settings for analysis. In this section, the structure of the
control laws used is first considered and then their design is considered.

A state feedback law for a system described by (5) (discarding the output equation)
has the form

u(i, j) = Kz(i, j), (97)
resulting in the controlled dynamics state-space model
2(i+1,5+1) = (A1 + BiK)a(i+1,5) + (A2 + BoK)a(i,j + 1). (98)

The design of K for stabilization of the controlled dynamics has been a common topic
since after the Fornasini Marchesini model was published. Early contributions can be
fund in, e.g., Kaczorek (1985); Lu and Lee (1983). A significant part of this work is
for single-input single-output examples.

A significant volume of research on the he design of state feedback control for this
case started from (34) where the conditions due to Huang (1972) enables the 2D design
problem to be formulated in 1D linear systems terms. The design of a control law of
the form (97) is still a subject of fundamental importance, see, eg., Bachelier, Chuzeau,
Davod, and Yeganefar (2017) but with the emphasis on stabilization as opposed to
stabilization and control.

The results referred to above seek necessary and sufficient conditions for stabiliz-
ability but much progress is also possible via the 2D Lyapunov equation, resulting in
LMI based designs. If all entries in the state vector are not available then one option is
to use an observer to reconstruct the state vector. Moreover, the design of an observer
for a 2D linear system follows the same general approach as for 1D linear systems,
i.e.,use input/output data to reconstruct the state vector and early work on problem
includes Bisiacco (1985a, 1986).

Consider state-space model (3) and let & denote the observer state vector. Then the
system

Bi41j+1) = F1£(z‘+1,j)+F2:i;(z’,j+1)+G1[Zgiizgg]
u(i,j+1)
* GQ{y(z‘,jH)}
iid) = Hitig)+ 7| W0 | (99)

is said to be Bisiacco (1985a) an exact observer for (3) if: i) it has the finite memory
property detailed below ii) and the estimation error

vanishes for ¢ 4 j sufficiently large for all initial conditions.

A system described by (3) is said to have finite memory if the free state, i.e., no
input, evolution vanishes for all state initial conditions and ¢ + j sufficiently large.
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Moreover, the finite memory property is equivalent to
det(I — 21A1 — ZQAQ) =1. (101)

A synthesis procedure for an exact observer is also given in Bisiacco (1985a) based on
the requirement that (3) is causally reconstructible, i.e., the possibility of computing
the state using past values of the inputs and outputs. where for 1D linear systems
this property is impled by observability. One necessary and sufficient property for this
property to hold for systems described by (3) is that there exist polynomial matrices
P(z1,29) and Q(z1, 22) that satisfy the Bezout identity

Q(Zl, ZQ)(I —z21A — ZQAQ) + P(Zl, ZQ)C =1. (102)

Then Theorem 2 in Bisiacco (1985a) gives that a system described by (3) is causally
reconstructible if and only if it admits and exact observer of the form (99).

In the 1D linear systems case, the observer when it exists is a copy of the original
system driven by static control laws acting, respectively, on the output and estimation
error. For systems described by (3), the corresponding structure is

zi+1,7+1) = Aiz(i+1,7) 4+ Az(i,j+ 1)
Biu(i+1,7) + Bau(i,j + 1)
Lie(i+1,7) + Loe(i,j + 1),
y(i,7) — Du(i, j) — C2(i, ), (103)

-

e(i, j)

for some choice of the constant matrices Ly and Ly. The dynamics of e(i, j) are given
by

e(i + 1,j + 1) = (Al — LlC)e(z + 1,]) + (A2 — LQC)B(i,j + 1) (104)

and an exact observer of the form (103) exists if and only if

det(I - (Al - ZlLl)C — ZQ(AQ — LQC)) =1. (105)

In 1D linear systems theory the geometric approach has provided a setting for
solving, in terms of conditions under which a solution exists, of a number of critical
problems, such as disturbance decoupling and almost disturbance decoupling with in-
ternal stability, see, e.g., Weiland and Willems (1989); Wonham (1974). The geometric
approach has also been applied to 2D linear systems, see, e.g., Ntogramatzidis (2012);
Ntogramatzidis and Cantoni (2012) (in addition to the fault detection and isolation
analysis discussed in Section 7).

8.1. Optimal Control

Linear Quadratic Optimal (LQR) control is a well known method and extensively
applied method for computing a stabilizing state feedback control law for 1D linear
systems. An obvious question then is: can this approach be extended to 2D systems.
This problem has received significant attention the literature, see e.g., Bisiacco (1995);
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Bisiacco and Fornasini (1990); Li and Fladali (1995). Focusing on the state equation
of (2), a quadratic cost function is

J =3 x(i, )" Qu(i, j) + u (i, j) Ruli, j)), (106)

1+5>0

where @Q = 0 and R > 0 are given weighting matrices.

The solution of this problem was extensively investigated in the cited references
above in the 1980’s and 1990’s with significant progress but substantial differences
exist with the 1D linear systems case. For example, unlike the 1D case, it is not always
possible to write the 2D linear quadratic optimal control in terms of state feedback.
Moreover, differences exist between the Roesser and Fornasini-Marchesini model cases.
Also (106) is the infinite frame case and there are again substantial differences in
the finite frame case, see, e.g. Ntogramatzidis and Cantoni (2009) (for the Roesser
model). Also there has been work on stochastic optimal control for 2D linear systems,
including Sebek and Kraus (1995) for the Fornasini-Marchesini model.

More recent work on state feedback control of Fornasini-Marchesini models includes-
Bachelier, Chuzeau, et al. (2017) where the behavorial systems setting is used to de-
velop an approach to stabilization based on equivalence transforms and the property
of structural stability. In this case, however, the resulting controlled dynamics are de-
scribed by a state-space model that is implicit input-free but the corresponding Roesser
model is of the standard form. In applications terms, this is an obvious drawback.

An alternative approach to control law design for 2D linear systems is based on
LMIs, which leads on to formulas for calculating the stabilizing control law matrix.
The potential drawback is, however, that the stability condition is sucient but not
necessary and hence the prospect of conservativeness in the design. In particular, an
LMI based design could fail to produce a stabilizing control law when such a law exists
for a given example.

Despite this limitation, the LMI setting has been used to great effect in the design
of control laws for linear repetitive processes and also iterative learning control laws
designed using this setting have been experimentally validated, see, e.g., Hladowski
et al. (2010, 2012). Moreover, an extension to the case of uncertainty in the system
dynamics is straightforward as discussed further below. The LMI approach to sta-
bilization of Roesser and Fornasini Marchesini models has been the subject of many
research publication in recent years but the starting point in most cases is based on the
2D Lyapunov equation. On example is the following, which is Theorem 2 in Galkowski
et al. (2002).

Theorem 8.1. A 2D discrete linear system described by (3) is stable if there exist
matrices P > 0 and Q > 0 such that the following LMI is feasible

ATPAI+Q - P ATPA,
ATPA,  ATPA,—q | 0 (107)

The link to the 2D Lyapunov equation is immediate from this result.

Another approach to stabilizing corol law design is to formulate the problem as a
condition that ensures that the controlled dynamics have a particular property. The
positive realness property plays an important role in 1D control and systems theory
and applications, e.g., stability analysis for linear systems and the analysis of electrical
circuits. In the 2D linear systems case a suitable definition of this property results in

30



a stabilizing state feedback control law design with an extension to robust control.
Positive realness for 2D Fornasini-Marchesini systems Xu, Lam, Liu, and Galkowski
(2002) is defined as follows.

Definition 8.2. A 2D discrete linear system described by the Fornasini-Marchesini
state-space model (2) is said to be:

(1) positive real (PR) if its transfer-function matrix G(z1,22) is analytic in |z1] >
1,|2z2] > 1 and satisfies G(z1, z2) + G* (21, 22) = 0 for all |z1]| > 1,|22] > 1.

(2) strictly positive real (SPR) if its transfer-function matrix G(21, 22) is analytic
in |21] > 1,]22] > 1 and satisfies G(e/%,€7%) + G* (e, e/92) = 0 for all 01,0 €
[0, 27).

(3) extended positive real (ESPR) if it is SPR and G(00,00) + GT (00, 00) = 0.

The following results are established in Xu et al. (2002).

Theorem 8.3. A 2D discrete linear system described by (2) is asymptotically stable
and has the ESPR property if there exist matrices P = 0,Q > 0 and W > 0 the
following LMI is feasible.

ATPA,+Q—-P  ATPA, CcT — ATPB; ~ATPB,
ATPA, ATPAy - Q ~-ATPB ~ATPB, -0
C — B{PA; -Bf'rAy  —(D+DT-BfPB,-W)  BIPB; '
-BI'rA, —BIPA, BIPB BIPB, - W
(108)

The analysis extends to examples with norm bounded uncertainty as defined by (14)-
(17).

Theorem 8.4. A 2D discrete linear system described by (14)-(17) is asymptotically
stable and has the ESPR property if there exists a scalar € > 0 and matrices X >
0,QY = 0 and W = 0 the following LMI is feasible.

[Y-X 0 xcT 0 XAT XNE T
0 -Y 0 0 XAT XN1,
CX 0 —-(D+D'-w) o -BY —NL,
0 0 0 _w Bl N | 0. (109)
X AX -B —By, eMMT-X 0
L NAlX NAQX *NBl *NBQ 0 —el i

The following result, stated for the robust control case, shows that the SBR property
can give a state stabilizing control law.

Theorem 8.5. Suppose that a control law of the form (97) is applied to a system
described by (14)-(17). Suppose also that there exists a scalar € > 0 and matrices
X>=0,Y>=0,W >0 and Z such that

H HT HT
Hy eMM"-X 0 | =<0, (110)
HQ 0 —el
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where

Y-X 0 xoT 0
q o— 0 -Y 0 0
- cXx 0 —-DO+D'-w) o |’
0 0 0 -W
Hy = [ AiX + Np1uZ AsX +BpaZ —B1 —B; |,
Hy = [ NaiX+NpiuZ NaoX + NpuZ —Npi —Npy |,

then the controlled dynamics are asymptotically stable and the EPSR property holds.
Also a stabilizing control law matriz is

K =ZX (i, j). (111)

8.2. Output Feedback Control

If a stabilizing state feedback control law exists for a given example, it can only be
directly implemented if all entries in the state vector are available for measurement.
One alternative is to use an observer to reconstruct the state vector (or only those
entries that cannot be directly measured) as discussed previously in this section. An
alternative is to use static output feedback or a dynamic controller.

A static output feedback control law for (2) replaces the state vector by the output
vector, i.e., u(i,j) = Hy(i,j). The design of this form of control law has received
much attention in the literature together with the links to state feedback control and
other systems theoretic properties, see, e.g., Bisiacco (1985b) for substantial early
work on the latter aspect and for static output feedback design see, as one of many
contributions, Feng, Xu, Wu, and She (2011). Static output feedback control of discrete
linear repetitive processes has also been considered, see, e.g., Sulikowski, Galkowski,
Rogers, and Owens (2004).

If static control action is insufficient then a dynamic controller is required. For a
system described by (2), a dynamic controller has the structure

2°(i+1,7+1) = Afz(i+1,j)+ ASz(i,7+ 1)+ B{y(i+1,75) + Bsy(i,j + 1)
w(i,j) = C(i,j) + DY(i, j). (112)

Also, see Bisiacco (1985b), this dynamic controller corresponds to the assumption that
the input u(i, j) satisfies a 2D recursive equation of the form

i4750
i4750

Significant progress on the design of this form of controller has been reported with
recent results including Chesi and Middleton (2014) (for mixed differential-discrete sys-
tems) and Hladowski, Galkowski, Nowicka, and Rogers (2016) in the iterative learning
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control application area with experimental verification. Very recent results in this area
are in Chesi and Middleton (2018) (again for the mixed case).

8.3. Hoo and Ho Control

As in 1D linear systems, the Ho, and Hs settings have been extensively researched for
2D linear systems. Early work in this area included Du and Xie (2002) and two major
areas covered are disturbance rejection and robust control. These are considered in
turn next.

Consider the state-space model

z(i+1,5+1) Az(i+1,5) + Asx(i,j + 1) + Bniw(i + 1,5) + Brow(i,j + 1),
y(i,j) = Cuw(i,j) + Bw(i, j), (114)

with boundary conditions of the form of those for (2) and w(i,j), which is a 2D
exogenous signal representing disturbances. The 2D transfer-function matrix G4(z1, 22)
relating Yy(z1, 22) to W(z1, 22) is

Gy(z1,22) = C(z1201 — 21 A1 — ZQAQ)_I(ZlBll + 29B12) + E (115)

and the H, norm of this transfer-function matrix for an asymptotically stable example
is

HGd(ZlaZQ)Hoo = sup JmaX(Gd(ejW1aejw2))a (116)
UJ1,OJ2€[0727T]

where opax(+) denotes the maximum singular value of its matrix argument.

Under zero boundary conditions, an example described by (114) is said to have H
disturbance attenuation ~ if it is asymptotically stable and its f5 induced norm is
bounded by this scalar, i.e.,

[lyall2

<y & ||Galz1, 22) |00 < 7, (117)
0#wely H'U)HQ

where the 9 norm of w(z, ) is

lwlle = | DD (lw(i+ 1717 + [lw(i, j + D> (118)

i=05=0
Many LMI based results for this property are known. One of them from Du and

Xie (2002) is that an example has H~, norm bound = if there exist P > 0 and @ > 0
such that

P-Q 0
T T T T
APA—[ ; Q]Jrcc CTE + ATPB 0. 19)

BTPA+ ETC ETE+ BT"PB —~°I

WithA:[Al AQ],B:[BII Blg].
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This last analysis can be extended to the case when a control law is applied. Consider
the Fornasini-Marchesini state-space model

x(i+1,4+41) = Awx(i+1,5)+ Asx(i,j+ 1)+ Briw(i + 1, 5) + Brow(i, j + 1),
+ DBoju(i+1,j) + Bau(i,j + 1),
y(i,j) = Cix(i,j) + Duw(i, j) + Diau(i, j), (120)

to which the control law w(i,j) = Kuz(i,j) is applied, resulting in the controlled
dynamics

2(i+1,j+1) = (A +BuK)a(i+1,5) + (A2 + BpK)a(i,j + 1)
+ Bllw(z+17])+312w(17j+1)7

Also this system has H., performance bound -~ if there exist matrices W > 0 and
Z » 0 such that

A B
{ c D ] <0, (122)
where
[ w AW + Boy N AW + BooN By Bio
A = | WAT + NT By, Z-W 0 o 0 |,
| WAL + NT By, 0 —Z 0 0
i 0 0
wcl + NT DY 0
B = 0 wcol + NTDL, |,
D% 0
I 0 Di
C 0 ChiW + DyyN 0 Dy 0
0 0 CiW +DisN 0 Dy |’
—I 0
b= { 0 -1 ] '

If the LMI of (122) holds, a stabilizing K is given by K = NW L.
The analysis also extends to H, design for uncertain systems and to Ho and mixed
Ho/Hoo design, where the results include those in Chesi and Middleton (2015, 2016).

8.4. Control in the Behavioral Setting

Control in the behavioral setting for 1D systems takes a contrary view to the standard
approach where signal flow graphs process inputs and outputs and control action is
viewed as imposing new additional laws on the system Willems (1997). Results on the
behavioral approach to the control of nD systems includes those in Rocha and Wood
(2001). Again, differences exist in comparison to the 1D systems case. There has as
yet been relatively little research on the implementation of behavioral control designs,
some early work is in, e.g., Avelli (2009).
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9. Nonlinear Dynamics

The stability and control of nonlinear 2D /nD dynamics has attracted considerable
and increasing interest. Previous research reported includes Yeganefar, Yeganefar,
Ghamgui, and Moulay (2013) for the Roesser model structure and Kurek (2014) for
the Fornasini-Marchesini model structure. For linear systems as discussed in this pa-
per, some results developed for one representation can be applied to the other, e.g.,
Roesser to Fornasini-Marchesini and vice versa. This is much less likely for nonlinear
dynamics and theory coupled with control law design must proceed separately for each
model structure.

This section gives results on stability and control law design for systems described
by (27) and (28) where a vector Lyapunov function is employed. It is assumed that
there exist finite real numbers p > 0, 0 > 0 and 0 < &y < 1 such that

12, 0)[1* = [1&D)]1* < p¢h, i > 0, [J2(0, )| = [Im()II* < o¢f, § >0, (i,4) # (0,0).
(123)

where throughout this section ||-|| denotes the Euclidean norm on vectors. Moreover, (
represents the rate of convergence in ¢ and j of the initial local state vector sequences.
From this point onwards, all references to the boundary conditions will assume that
they satisfy (123). The nonlinear functions forming the vector-valued function on the
right-hand of (27) are assumed to be single-valued and hence for given boundary
conditions solutions are uniquely defined step by step by an explicit recursive rule.

The stability theory developed for 2D discrete linear Fornasini-Marchesini systems
has been defined in both the internal, or state, and bounded-input bounded-output
settings. Previous research on the stability of 2D discrete nonlinear systems described
by this model includes Kurek (2014), where stability and asymptotic stability were
defined and sufficient conditions for their existence obtained in a manner similar to
the second Lyapunov stability theorem. This analysis did not lead, however, to control
law design. Moreover, as in the 1D systems case, it is to be expected that a stronger
form of stability will be required in applications.

In previous work Emelianova, Pakshin, Galkowski, and Rogers (2015), the following
definition has been used for autonomous systems, i.e., no inputs.

Definition 9.1. An autonomous 2D discrete nonlinear system described by (27) is
said to be exponentially stable if for all boundary conditions satisfying (123) there
exist kK > 0 and 0 < A < 1 such that

(i, 5)|[> < kX, 4, 5 >0, (i,5) # (0,0). (124)

In the linear dynamics case, the exponential stability property was considered
in Pandolfi (1984). In (124) a common & for all boundary conditions, satisfying (123)
is considered, where the structure of these boundary conditions ensures that such a
choice is always possible. This stability theory is physically motivated by applications
where such a system would never be operated with boundary conditions that can
diverge as the dynamics evolve. For the autonomous case it requires that the state
vector decays to zero as i+ j — oo and is a strong form of stability since the boundary
conditions are required to have a uniform convergence property.

As in the 1D nonlinear case, a natural route to characterizing exponential stability
would be based on a suitably chosen Lyapunov function. This approach is based on
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properties of the function itself and for discrete dynamics of its increments. In the
2D systems case, however, the dynamics are governed by vector valued functions of
the independent variables ¢ and j. One way would be to chose a candidate Lyapunov
function as a scalar function, say V'(i,j), with the same properties as the 1D case
and then construct the gradient along the system trajectories. However, this last step
requires z(i+1,j) —x(i,j) and z(i,j+1) —x(4, j)). However, these quantities can only
be found by solving (27), but then all of the advantages of the Lyapunov approach are
lost.

As an alternative, previous work has used a vector Lyapunov function approach for
other classes of 2D nonlinear systems, see, e.g., Emelianova et al. (2015), where for
discrete dynamics a counterpart of divergence was used instead of the gradient. In
what follows, a similar setting is used to characterize the property of Definition 9.1
using a vector Lyapunov function of the form

Vi(z(i+1,5+1))

V(z(i,j+1),z(i+1,7)) = Va(wl(i+1.541)) |

(125)

where Vi(z) #0, z(i + 1,7+ 1) #0,Va(x) #0, x(i+ 1,5+ 1) # 0 and V;(0) = 0 and
V2(0) = 0. Also the counterpart of the divergence operator, referred to as the gradient
from this point onwards, of this function along the trajectories of (27) is

D(x(i,j+1),2(i,j +1)) = Vii+1,j+1) - Vi(a(i,j+1))
+ Va(z(i+1,j+1) = Va(a(i+1,5).  (126)

The following result is Theorem 2.2 in Pakshin, Emelianova, Galkowski, and Rogers
(2018).

Theorem 9.2. An autonomous 2D discrete nonlinear system described by (27) and
boundary conditions that satisfy (123) is exponentially stable in the sense of Defini-
tion 9.1 if there exists a vector function of the form (125) and positive scalars c1, co
and c3 such that
alle(i,j+ DIF < WVi(a(i,j+1) < eoflai, g+ DI,

el lz(i+ L) < Vi((i+1,5)) < ol + 1, 5)| P,
DV(x(i,j+1),2i+1,5) < —es(lloCij+ DI +[le(+1,5)I%).  (127)

Given this stability theory, the obvious follow on questions is: can this theory form
the basis for control law design? One way of addressing this question is considered
in Pakshin et al. (2018) based on passivity theory, which is well established in nonlinear
1D systems theory, see, e.g., Fradkov and Hill (1998) and Willems (1972). In recent
work Pakshin et al. (2018), a passivity approach to the stabilization of 2D nonlinear
systems described by the Fornasini-Marchesini state-space model that also makes use
of a vector storage function of the form (125) has been developed. The central results
are given next with an application to the case where the dynamics are linear and the
nonlinearity enters through the actuator dynamics, e.g., as a result of saturation.

Introduce, for passification based control law design, see also the discussion after
the definition, the auxiliary vector z(i,j) € R™ given by

2(i, ) = h(Z(i, j), uli, ), (128)
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where

2(i,5) = [ «TGj+1) 2T +1,5) ],

T

ai ) = [ul(ij+1) uT(i+1,5) ]
Also h is a nonlinear function where it is assumed that h(0,0) = 0 and hence an
equilibrium at the origin and the passivity property is defined as follows.

Definition 9.3. A 2D discrete nonlinear system described by (27) with boundary
conditions that satisfy (123) is said to be exponentially passive if there exists a vector
function (125), a vector z of the form (128) and positive scalars c1, c2 and c3 satisfying
the first two inequalities in (127) and

DV (a(i,j+1),2(i+1,)) < 2" (i, 5)Guli, j) — es(|le(i, j+ )|+ 20,5+ 1), (129)
where G is a constant matrix of compatible dimensions.

This last definition is an extension of that for 1D systems, see, e.g., Fradkov and Hill
(1998), where the vector z can be regarded as auxiliary output vector that is used to
construct a control law such that the controlled process has the passivity property. The
selection such a vector is known in the passivity theory for 1D systems as passivation
or passification. Moreover, the choice of this vector depends on the choice of a vector
storage function V and it is a separate complex problem (similar to the choice of
a Lyapunov function for a nonlinear system). The problem is to find a pair (z,V)
satisfying (129), which is then further developed for a particular applications relevant
case. The following result is Theorem 3.2 in Pakshin et al. (2018).

Theorem 9.4. Suppose that a 2D discrete nonlinear system described by (27)
and (123) is exponentially passive in the sense of Definition 9.3. Suppose also that
there exists a function 1(z) such that 1¥(0) = 0 and 2T Gy(2) > 0 if z # 0. Then the
control law

results in controlled dynamics that are exponentially stable.

The storage function (125) can be considered as a vector Lyapunov function for the
controlled process formed by applying a control law of the form (130) to (27) that
guarantees exponential stability. One particular sub-problem is now considered. This
is for the case where the dynamics are linear but nonlinearity arises in implementation,
with state-space model

+ P2(Tijr1, Tiv1,) Uit (131)
where ¢; and ¢ are compatibly dimensioned matrices with nonlinear functional en-
tries. One simple but practically relevant case is when ¢ and ¢9 are constant matrices

and then (131) is a linear Fornasini-Marchesini state-space model. This model is one
representation of the applications relevant case where the dynamics are linear, or can
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reasonably be approximated as such and in operation the actuators exhibit nonlinear-
ities such as saturation.
Introduce the notation

A=[ A1 Ay ], ¢(2(i,9) = [$1(2(i,j +1),2(i + 1,5)) ¢2((i,j + 1),2(i + 1,))].

Also choose the storage function for (131) in the form (125) with Vi(z) =
ar” Pz, Vo(z) = Bz’ Pz, P > 0 and the scalars « > 0, 3 > 0 such that o + 3 = 1.
Suppose also that P satisfies the Lyapunov-type linear matrix inequality

[ ATPA  —aP+Qu  ATPAy +Qus <0, (132)

ATPA +Qf, ATPA; — BP + Qa2

where @ = [ Q%} 812 ] > 0. Define for passification based control law design, an
12 22

auxiliary output vector for (131) as
. N | . TN
2(i,5) = 20" (36, ) P3(i, ) + 50" (23, ) Po(a(i, 5))ui, 5), (133)
where in this case

DV (x(i,j+1),2(i+1,5) = Z'(i,j) (ATPA—[QSD B%Dx(z’,j)
+ 28" (4, 5) AT P(2(i, §))ali, j)

’ ]
+ (i )o" (@0, ))al,5) < 227 (6, §)ali, §)
Ll @)lal? (134)

and Apin(@Q) > 0 denotes the smallest eigenvalue of (). Then it follows immediately
from (134) that the system described by (131)-(133) is exponentially passive with
G = 2I. Moreover, by Theorem 9.4 the control law

a(i, j) = — [T + 6" (2(i, 1)) Pe(2(i, )] ¢ (2)PAZ(i, ), (135)

applied to (131) results in a controlled system that is exponentially stable. Much
further development of the basic results in this section is possible and is an area of
ongoing research.

10. Applications

The substantial progress on the development of a systems theory for 2D linear systems
described by the Fornasini-Marchesini model has not led to a similar level of interest in
terms of applications. Early on there was the river pollution modeling Fornasini (1991)
that established a role for the Fornasini-Marchesini model but with limited follow up.
Also there continues to be research conducted on the use of 2D systems analysis for
convolutional codes, see, e.g., Pinto, Pinto, and Rocha (2014), Valcher and Fornasini
(1994) (where the second reference uses the Roesser model but links back to the 2D
realization problem discussed in Section 7).
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One application area that has seen verification studies is distributed information
processing in grid sensor networks, see, e.g., Sumanasena and Bauer (2011), which,
in turn, cites relevant nD systems theory. This research has shown that linear sys-
tems can be implemented in a distributed fashion in real-time on a grid sensor net-
work under the condition that the system equations satisfy a particular constrained
Fornasini-Marchesini model. Again this relates, in particular, to the realization prob-
lem discussed in Section 7 and also the fault detection and isolation work discussed
in this same section. An emerging application area for the results of Section 9 is laser
model deposition, see, e.g., Sammons, Gegel, Bristow, and Landers (2018), where a
linear model is an inadequate representation of the dynamics.

11. Conclusions

In the four decades since its publication, the Fornasini-Marchesini state-space model
for 2D/nD dynamics has seen a substantial body of systems theory developed from
a number of starting points. In the control systems area, however, the number of
applications where a 2D systems representation is the only possible starting point
awaits a convincing example. This is in contrast to the related areas of signal and
image processing. Application areas do exist, however, where the 2D systems theory
provides a means of answering systems theoretic/design problems, where the most
prominent of these is iterative learning control. For nonlinear dynamics, the laser
applications area is an application for suitably developed systems theory/control law
design.
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