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ABSTRACT

In this paper we address the problem of robustly stabilizing a class of linear differen-
tial algebraic systems characterized by autonomous and asymptotically stable zero
dynamics, in spite of parameter uncertainties ranging over a priori fixed bounded
sets. We take advantage of some recent results related to the structural proper-
ties and normal forms of this class of systems and propose a robust control that
asymptotically recovers, in practical terms, the performance of a nominal, though
non implementable, stabilizing control. More specifically, the proposed control com-
bines a partial output feedback control, aimed at letting the system behave as a
regular system, and a robust control, based on an extended observer, using which
the dynamic of the closed loop system is rendered arbitrarily close to the one of a
properly selected stable system. The extended observer, originally conceived in the
context of standard differential systems, is here shown to be the key ingredient for
robustly stabilizing the targeted class of differential algebraic systems, provided that
the gain of the partial output feedback control used to make the system regular is
chosen sufficiently high.
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1. Introduction

It is a pleasure to contribute an essay to this special issue dedicated to Alexander Frad-
kov on the occasion of his 70-th birthday. Professor Fradkov’s research achievements
have influenced the field of systems and control in many aspects, notably in the areas
of passive systems, adaptive control and control of chaotic systems. As an academic
leader, he has favored cross-fertilization between control theory, information theory
and physics, inspiring in this way the work of many young talents. In this article, we
present some advances in a subject that has been central in Alexander’s interests: the
synthesis of observers for robust feedback design. The target of our study is the use
of robust observers in the stabilization of systems modeled by differential-algebraic
equations (DAEs).

Representations of physical processes in the form of differential algebraic equations
characterize a large variety of systems in which the dynamics of state variables are
subject to algebraic constraints. Among the others, examples of systems motivating
the theoretical investigation of this class of representations arise in the context of
power systems (Hill and Mareels (1990), Venkatasubramanian, Schattler, and Zaborsky
(1995)), electronics (Riaza (2008, 2013)), chemical processes (Kumar and Daoutidis
(1998, 1999)) and mechanics (Eich-Soellner and Fuhrer (1998)).

Well-established methods for the analysis and control of physical processes modeled



by DAEs can be found in the book of Dai (1989). Contributions in this field cover
classical control problems, such as stabilization (Varga (1995), Xu, Dooren, Stefan, and
Lam (2002), Liu and Ho (2004), Benner (2011), Berger (2014, 2016)), output regulation
(Lin and Dai (1996), Pang, Huang, and Bai (2005)), observer design (Darouach and
Boutayeb (1995), Zimmer and Meier (1997), Hou and Müller (1999), Osorio-Gordillo,
Darouach, Astorga-Zaragoza, and Boutat-Baddas (2016), Berger and Reis (2017),)
and disturbance decoupling (Banaszuk, Kociecki, and Przy Iuski (1990), Lebret (1994),
Duan, Liu, and Thompson (2000), Y. Wang, Zhu, and Cheng (2004), Berger (2017)). In
the interesting work of Berger (2013), the notions of zero dynamics, normal forms and
invertibility - whose relevance in analysis and design of ordinary differential systems
is well-known - are developed thoroughly and analyzed for DAEs.

In this paper we consider a system modeled by a DAE, whose parameters are affected
by uncertainties ranging over a priori fixed bounded sets and we address the problem of
designing a feedback law that robustly stabilizes such a system. The point of departure
of our work is the normal form introduced by Berger (2013) for systems possessing
an autonomous zero dynamics. In particular, we reconsider the stabilization problem
addressed in Berger (2016) under a different perspective and different assumptions on
the system representation. As in Berger (2016) a partial high-gain output feedback
control is used in order to let the DAE behave as a regular system with uncertain
parameters. In addition to that, we show how the influence of the uncertainties can
be dominated by means of an extended observer. In this way, we can prove that the
performance that would have been obtained if the uncertain parameters were known
can be asymptotically recovered by means of a dynamic output feedback driven by
the available measurements. The method of the extended observer reposes on some
fundamental results originally presented in Han (1995) and Jiang and Praly (1998),
further developed by Freidovich and Khalil (2008) in the context of single-input single-
output (SISO) systems and later extended in L. Wang, Isidori, and Su (2015) to the
case of multi-input multi-output (MIMO) systems. In these works a high-gain extended
observer is employed to the purpose of obtaining a robust proxy of a nominal control
that would stabilize the system in case of exact knowledge of the parameters. The
resulting robust stabilizing control is here shown to be effective also in presence of
algebraic constraints, provided that the gain used to make the system regular is chosen
sufficiently high.

The paper is organized as follows. Section 2 summarizes some fundamental results
developed in Berger (2016), which represents the basis of our work. Section 3 introduces
the nominal stabilizing control. Section 4 discusses the proposed robust stabilizing
control, the main result of the paper and the related proof, also providing a numerical
example. Finally Section 5 is dedicated to the concluding remarks.

2. A summary of some relevant prior results

In this paper we consider linear constant coefficient DAEs of the form

Eẋ = Ax+Bu
y = Cx

(1)

in which E,A ∈ Rℓ×n, B ∈ Rℓ×m, C ∈ Rp×n and x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp.
Following Berger (2016), we do not assume that sE − A is regular, that is ℓ = n
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and det(sE −A) ∈ R[s] \ {0}. 1 The matrices E,A,B,C in (1) depend on a vector of
uncertain parameters, not explicitly indicated for notational convenience, whose values
range over a fixed compact set. The basic problem that we address is that of finding
a (possibly dynamic) feedback law that robustly stabilizes such system in spite of
parameter uncertainties. The problem in question has been addressed, under suitable
assumptions, in Berger (2013) and Berger (2016) where it is shown that high-gain
output feedback and funnel control can be profitably used to this purpose. In our paper
we still take advantage of the general framework of analysis and design developed in
Berger (2016), but we propose a somewhat different and alternative design strategy,
that requires different, perhaps milder, assumptions.

Cornerstones of Berger’s apparatus are the concepts of autonomous zero dynamics
and the developments of normal forms for DAEs possessing an autonomous zero dy-
namics.2 Specifically, Berger (2016), Proposition 3.5, proves that the zero dynamics of
(1) are autonomous if and only if

rankR[s]

(

sE −A −B
−C 0

)

= n+m. (2)

If such assumption holds, Berger (2016), Theorem 3.6, derives a change of variables
under which the equations of (1) are changed into a normal form, that can be seen as an
extension, to the case of DAEs, of the classical normal form considered in the analysis
of systems described by ODE. Under the additional assumption that rank(C) = p,
Berger (2016), Theorem 4.3, proposes a further refinement of such normal form, that
he refers to as system inversion form.

Specifically, under such assumptions, it is proven by Berger (2016) that there exist
nonsingular matrices S, T such that the matrices

Ê = SET , Â = SAT , B̂ = SB , Ĉ = CT (3)

have the following form

Ê=









Ik 0 0
0 E22 E23

0 E32 N
0 E42 E43









, Â=









A11 A12 0
A21 A22 0
0 0 In−k−p

0 A42 0









, B=









0
Im
0
0









, C=
(

0 Ip 0
)

(4)
in which N is nilpotent (with Nν = 0 and Nν−1 6= 0). The number n4 of rows of the

lower strings of blocks in Ê, Â, B̂ is equal to 3

n4 = ℓ− n+ p−m. (5)

In what follows, we consider the special case in which the integer n4 in (5) is zero.
For convenience we summarize as follows all the hypotheses considered so far.

1Throughout most of the paper, we follow the notation used in Berger (2016). Specifically, here by R[s] we
denote the ring of polynomials with coefficients in R.
2See Berger (2016) for a precise definition of the concept of an autonomous zero dynamics. Roughly speaking,

the zero dynamics are said to be autonomous if the choice of the input u(t) cannot have an influence on the
(forced) internal motions that are consistent with the constraint y(t) ≡ 0. In the case of a system modeled
by ordinary differential equations, the zero dynamics are autonomous whenever R∗, the largest controllability

subspace contained in ker(C), is {0}.
3Note, in this respect, that assumption (2) implies ℓ+ p ≥ n+m
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Assumption 1. System (1) satisfies (2), ℓ + p = n +m and rank(C) = p, for all
values of the uncertain parameters.

It is clear from all of the above that, if such Assumption holds, there exists nonsin-
gular matrices S and T such that system (1) is equivalent to the system

Ê ˙̂x = Âx̂+ B̂u

y = Ĉx̂

in which x̂ = T−1x and Ê, Â, B̂ have the form (4), where in particular the lower strings
of blocks are missing. Splitting x̂ as col(x1, x2, x3) it is seen that the system is modeled
by equations of the form

ẋ1 = A11x1 +A12x2
E22ẋ2 + E23ẋ3 = A21x1 +A22x2 + u
E32ẋ2 +Nẋ3 = x3

y = x2 ,

(6)

in which x1 ∈ Rk, x2 ∈ Rp, x3 ∈ Rn−k−p, u ∈ Rm and y ∈ Rp. Note that, since the
matrix N is nilpotent, the third equation can explicitly solved for in x2, by recursion,
yielding

x3(t) =

ν−1
∑

k=0

NkE32x
(k+1)
2 (t) .

Hence, system (6) can be rewritten as 4

ẋ1 = A11x1 +A12x2

E22ẋ2 +
∑ν−1

k=0E32N
kE23x

(k+2)
2 = A21x1 +A22x2 + u

x3 =
∑ν−1

k=0N
kE32x

(k+1)
2

y = x2 .

(7)

As anticipated at the beginning, in this paper we strongly rely upon the apparatus
developed by Berger (2016). Thus, we proceed by describing some additional assump-
tions considered in that paper when dealing with the design of a stabilizing feedback.
Suppose Assumption 1 holds and let L(s) be a left-inverse of the matrix in (2) over
R(s).5 Then, it can be shown 6 that the matrix

(

0 Im
)

L(s)

(

0
Ip

)

is independent of the choice of L(s). This being the case, we consider, as in Berger
(2016), the following hypothesis.

4Nota also that the internal dynamics consistent with the constraint y(t) ≡ 0 are those of ẋ1 = A11x1.
5Here R(s) denotes the quotient field of R[s]. The matrix L(s) is any matrix with entries in R(s) satisfying

L(s)

(

sE −A −B

−C 0

)

= In+m.

6See Berger (2016), Lemma A.1.
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Assumption 2. The matrix

Ē = −s−1 lim
s→∞

(

0 Im
)

L(s)

(

0
Ip

)

(8)

exists.

Under such additional hypothesis, Berger (2016), Lemma A.2, shows that

Ē = E22

E23N
kE32 = 0, ∀k = 0, 1, . . . , ν − 1.

Therefore, if Assumptions 1 and 2 hold, system (1) can be rewritten in equivalent form
as

ẋ1 = A11x1 +A12x2
Ēẋ2 = A21x1 +A22x2 + u

x3 =
∑ν−1

k=0N
kE32x

(k+1)
2

y = x2 .

(9)

Finally, we assume the following.

Assumption 3. The zero dynamics of (1) are asymptotically stable, i.e. σ(A11) ∈
C−.

All of the above summarizes, to some extent, the technical apparatus developed in
Berger (2016) to the purpose of designing a stabilizing feedback law. In a nutshell,
if Assumptions 1,2,3 holds, then system (1) can be brought to the equivalent form
(9), with A11 a Hurwitz matrix. Then, Berger (2016) proceeds by considering the case
of systems having the same number of inputs and outputs (i.e. m = p) and, further,
assumes that the (square) matrix Ē in (8) satisfies

Ē = ĒT ≥ 0 . (10)

Taking advantage of such assumption, Berger (2016) shows how robust stabilization
can be obtained, via output feedback, by means either pure high-gain u = −ky or
funnel control. In the present paper, we discuss an alternative stabilization scheme
that reposes on a different, perhaps milder, assumption.

3. The nominal stabilizing control

To be consistent with a good part of the literature on ordinary differential systems,
and also to avoid possible conflicts of notations induced by subsequent changes of
variables, we rewrite system (9) in the form

ż = Fz +Gx
Ēẋ = Ax+Hz + u
y = x

(11)

where, by hypothesis, F is a Hurwitz matrix. As mentioned at the end of the last
section, we replace the assumption (10) with a different assumption.
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Assumption 4. The system has the same number of inputs and outputs (i.e. m =
p). The m ×m matrix Ē has a constant rank r ≤ m for all values of the uncertain
parameters. Two permutation matrices Pℓ and Pr exist and are known such that

PℓĒPr =

(

Ē11 Ē12

Ē21 Ē22

)

(12)

in which Ē11 ∈ Rr×r is nonsingular. Moreover, a nonsingular r×r matrix B0 is known
such that, for some 0 < δ0 < 1,

‖[Ē−1
11 −B0]ΛB

−1
0 ‖ ≤ δ0 (13)

for all diagonal matrices Λ such that ‖Λ‖ ≤ 1, and for all values of the uncertain
parameters. 7 8

Since the matrices Pℓ and Pr in (12) are by hypothesis known, we can assume that,
after a permutation of state variables and equations, the matrix Ē is partitioned as in
(12), with nonsingular Ē11. In fact, to change x into P−1

r x is equivalent to reordering
the components of y, while left-multiplication of the DAE by Pℓ entails a reordering
of the components of u. Let x = y and u be partitioned accordingly, as

x =

(

x1
x2

)

=

(

y1
y2

)

, u =

(

u1
u2

)

in which x1, y1, u1 ∈ Rr,
It is straightforward to see that two matrices S0 and T0 exist such that

S =

(

Ir 0
S0 Im−r

)

T =

(

Ir T0
0 Im−r

)

satisfy

SĒT =

(

Ē11 0
0 0

)

.

If SAT is partitioned accordingly and x1 is replaced by ξ = x1 − T0x2, the system
(11) can be written in the form

ż = Fz +G1ξ +G2x2
ξ̇ = A11ξ +A12x2 +H1z +Bu1
0 = A21ξ +A22x2 +H2z + S0u1 + u2

(14)

where B = Ē−1
11 .

To develop a nominal stabilizing controller for (14) we proceed in two steps, detailed
in the reminder of this Section: in the first one, feedback from y2 is used to regularize

7The procedure described below can be extended, without difficulties, to the case m > p.

8It is worth observing that, in case m = 1, (13) reduces to
∣

∣

∣

E
−1
11 −B0

B0

∣

∣

∣
≤ δ0 < 1 which, in turn, holds if there

exists two numbers bmin, bmax such that 0 < bmin ≤ |E−1

11
| ≤ bmax. The condition in (13) can be regarded as a

multivariable version of such assumption.
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the DAE; in the second one the resulting regular DAE is stabilized. To make the
system regular it suffices to pick

u2 = hy2 . (15)

Recalling that y2 = x2, the following equations are obtained

ż = Fz +G1ξ +G2x2
ξ̇ = A11ξ +A12x2 +H1z +Bu1
0 = A21ξ + [A22 + hI]x2 +H2z + S0u1

(16)

As pointed out in Berger (2013), if h is large the system is regular, since

det(A22 + hI) 6= 0 . (17)

In fact, equation (17) guarantees that x2 is uniquely determined by the algebraic
equation as

x2 = −(A22 + hI)−1[A21ξ +H2z + S0u1] . (18)

The second step consists in using the residual control input u1 to stabilize the
nominal system (the system (16) in which we assume that no parameter is uncertain).
Since the matrix F is by assumption a Hurwitz matrix, a natural choice to obtain
stability would be to seek a control u1 for which

Bu1 = −ξ −A11ξ −A12x2 −H1z. (19)

If this were the case, in fact, the second equation of (16) would become

ξ̇ = −ξ .

It is easy to see that, if h is large, the equation (19) has a unique solution u1. To this
end, recall that – if h is large – x2 can be expressed as in (18). Hence, the equation
(19) can be written as

Bu1 = −[I +A11]ξ +A12(A22 + hI)−1[A21ξ +H2z + S0u1]−H1z.

If h is large, the matrix (B − A12(A22 + hI)−1S0) is nonsingular and u1 is seen to be
a well-defined, linear, function of z, ξ

u1 = uid(z, ξ) . (20)

In conclusion, under the control input

u =

(

uid(z, ξ)
hy2

)
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the system becomes

ż = Fz +G1ξ +G2x2
ξ̇ = −ξ
0 = A21ξ + [A22 + hI]x2 +H2z + S0uid(z, ξ) .

Such system is a system of the form

(

ż

ξ̇

)

=

(

F G1

0 −Ir

)(

z
ξ

)

+

(

G2

0

)

x2

in which x2 has the form (18), a linear function of (z, ξ). This system, in turn, can
be seen as a stable linear system (recall that F is Hurwitz) subject to a memoryless
linear state feedback x2 = x2(z, ξ). The gain matrices that characterize such feedback
can be made arbitrarily small by increasing h. Thus, from the small-gain theorem it
is concluded that if h is sufficiently large the equilibrium (z, ξ) = (0, 0) of this system
is stable.

The stabilizing controller thus found, though, can only be implemented if the “exact
cancelation” entailed by the choice of uid(z, ξ) can take place and this requires – in turn
- that all involved parameters are accurately known. Hence, the control in question is
not implementable in practice when the parameters that characterize the model are
uncertain. However, a robust “proxy” of such control can be designed, as it will be
shown in the next section.

Remark 1. It should be noticed that the approach described above requires a suf-
ficiently large value of the gain parameter h, the “minimal” value of which clearly
depends on the (compact) set where the uncertain parameters are allowed to range.
This is not the case if the robust stabilization problem is addressed via funnel control,
as in Berger (2016), where however an assumption like (10) is present.

4. The robust stabilizing control

4.1. Main result

We develop now a robust version of the control (20). In this framework, we take
specific advantage of the second part of Assumption 4, namely the availability of a
fixed matrix B0 that makes condition (13) fulfilled, assumption that has not been used
in the development of the nominal control. The stabilization result that we obtain is
a kind of “semiglobal stabilization” result, i.e. a fixed – but possibly large – arbitrary
compact set C of initial condition is given and a control law is found with the property
that, in the resulting closed loop system, the prescribed equilibrium is asymptotically
stable with a domain of attraction that contains the set C.

A basic ingredient of the proposed control is a vector-valued saturation function,
defined as follows. Let gL : R → R be a smooth function (henceforth referred to as a
“saturation function”) characterized by the following properties:

• gL(s) = s if |s| ≤ L,
• gL(s) is odd and monotonically increasing, with 0 < g ′

L(s) ≤ 1,
• lims→∞ gL(s) = L(1 + c) with 0 < c≪ 1.
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and define GL : Rr → Rr as

GL(s) = col(gL(s1), gL(s2), . . . , gL(sr)). (21)

Following the “extended observer” paradigm (see e.g. Han (1995), Jiang and Praly
(1998), Freidovich and Khalil (2008)), we propose the control

u1 = uact = GL(ψ(ξ̂, σ))

in which

ψ(ξ, σ) = B−1
0 [−ξ − σ] (22)

and (ξ̂, σ) are the states of the “extended observer”

˙̂
ξ = σ +B0GL(ψ(ξ̂, σ)) + κc1(y1 − ξ̂)

σ̇ = κ2c0(y1 − ξ̂) .
(23)

In these equations, the parameter L, the coefficient κ and c0, c1 are design parameters.
The following Theorem describes the main result of the paper.

Theorem 4.1. Consider system (11). Suppose F is a Hurwitz matrix and suppose
Assumptions 4 holds. Let the order of the components of y and u be changed so as to
bring the matrix Ē in the form (12), with Ē11 a nonsingular matrix. Let the system
be controlled by

u =

(

GL(ψ(ξ̂, σ))
hy2

)

where GL(·) is defined as in (21), ψ(ξ, σ) is defined as in (22), with B0 chosen so

as to satisfy the condition (13), and (ξ̂, σ) are states of the extended observer (23).
For every choice of a compact set C there is a choice of the design parameters L and
c0, c1, a number κ∗ and, for all κ > κ∗ a number h∗κ, such that, if κ > κ∗ and h > h∗κ,

then the equilibrium (z, ξ, ξ̂, σ) = (0, 0, 0, 0) is asymptotically stable, with a domain of
attraction A that contains the set C .

4.2. Proof of the main result

Recall that the system under consideration is a system of the form (14). The proof of
Theorem 4.1 is split in 7 steps.

Step 1. We introduce new variables defined as

e1 = κ(ξ − ξ̂)
e2 = Q(z, ξ, x2) + [B −B0]GL(ψ(ξ, σ))− σ .

(24)

in which

Q(z, ξ, x2) = A11ξ +A12x2 +H1z ,
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and we use such variables to replace ξ̂ and σ in the previous equations. To this end, we
first check that such change of variables is well-defined. In this respect, observe that
the first one of such relations can be trivially solved for ξ̂ yielding

ξ̂ = ξ − κ−1e1 . (25)

The second relation, on the other hand, can be solved for σ thanks to the following
result.

Lemma 4.2. If (13) holds, the map f : Rr → Rr defined as

s 7→ f(s) = B−1
0 [B −B0]GL(s) + s (26)

is globally invertible. As a consequence

σ = −ξ −B0f
−1(B−1

0 [−ξ −Q(z, ξ, x2) + e2]) . (27)

Proof. Since GL(s) is bounded, the map f(s) is proper (that is, ‖f(s)‖ → ∞ as
‖s‖ → ∞). Thus, according to Hadamard’s Theorem, the map f(s) has a globally
defined inverse if the Jacobian of f(s) is nowhere singular. The Jacobian of f(s) has
the following expression

∂f

∂s
= B−1

0 [B −B0]G
′
L(s) + I = B−1

0

[

[B −B0]G
′
L(s)B

−1
0 + I

]

B0 (28)

in which G ′
L(s) denotes the matrix

G ′
L(s) = diag(g ′

L(s1), g
′
L(s2), . . . , g

′
L(sm)).

Thus, the jacobian of f(s) is nonsingular if and only if

det
[

[B −B0]G
′
L(s)B

−1
0 + I

]

6= 0 ∀s ∈ R
r.

Clearly, a sufficient condition for this to be true is that ‖[B − B0]G
′
L(s)B

−1
0 ‖ < 1,

which is guaranteed by assumption (13).
Having shown this, observe – using the definition of ψ(ξ, σ) – that

e2 = Q(z, ξ, x2) + [B −B0]GL(ψ(ξ, σ)) + ξ − ξ − σ
= Q(z, ξ, x2) + [B −B0]GL(ψ(ξ, σ)) + ξ +B0ψ(ξ, σ) .

This can be rewritten as

B−1
0 [e2 −Q(z, ξ, x2)− ξ] = B−1

0 [B −B0]GL(ψ(ξ, σ)) + ψ(ξ, σ)
= f(ψ(ξ, σ))

(29)

Thus,

ψ(ξ, σ) = f−1(B−1
0 [e2 −Q(z, ξ, x2)− ξ])

from which (27) follows.
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In view of this, in what follows we can think of ξ̂ and σ as functions of (e1, e2) and
of x̄ := (z, ξ, x2).

Step 2. We compute now the dynamics of e = col(e1, e2). So long as e1 is concerned,
we have (recall that y1 = ξ + T0x2)

ė1 = κ[Q(z, ξ, x2) + [B −B0]GL(ψ(ξ̂, σ))− σ − c1e1]− κ2c1T0x2
= κ[e2 − c1e1] + κ[B −B0][GL(ψ(ξ̂, σ))−GL(ψ(ξ, σ))]− κ2c1T0x2
:= κ[e2 − c1e1] + ∆1(x̄, e)− κ2c1T0x2 ,

in which 9

∆1(x̄, e) = κ[B −B0][GL(ψ(ξ̂, σ))−GL(ψ(ξ, σ))] .

So long as e2 is concerned, we have

ė2 = Q̇(z, ξ, x2) + [B −B0]G
′
L(ψ(ξ, σ))B

−1
0 [−ξ̇ − σ̇]− σ̇ .

Tedious, but elementary, calculations show that, if one sets

∆2(x̄, e) = [A11 −A12(A22 + hI)−1A21

− [B −B0]G
′
L(ψ(ξ, σ))B

−1
0 ][A11ξ +A12x2 +H1z +BGL(ψ(ξ̂, σ))]

+ [H1 −A12(A22 + hI)−1H2][Fz +G1ξ +G2x2]

+ A12(A22 + hI)−1S0G
′
L(ψ(ξ̂, σ))B

−1
0 [σ +B0GL(ψ(ξ̂, σ))]

and

∆0(x̄, e)=[B−B0]G
′
L(ψ(ξ, σ))B

−1
0 −A12(A22+hI)

−1S0G
′
L(ψ(ξ̂, σ))B

−1
0 [1 + c1(κc0)

−1]

an equation of the form

ė2 = ∆2(x̄, e)− κ[∆0(x̄, e) + I]c0e1 − κ2c0[∆0(x̄, e) + I]T0x2

is obtained.
In summary, the dynamics of e have the form

ė = κ[A−B2∆0(x̄, e)C]e+B1∆1(x̄, e) +B2∆2(x̄, e) + κ2B3(x̄, e)x2 (30)

in which

A =

(

−c1Ir Ir
−c0Ir 0

)

, B1 =

(

Ir
0

)

, B2 =

(

0
Ir

)

,

C =
(

c0Ir 0
)

, B3(x̄, e) =

(

c1Ir
c0[∆0(x̄, e) + Ir]

)

T0 .

9Knowing that the states (ξ̂, σ) of the observer can be uniquely expressed as functions of x̄ and e, we denote
by (x̄, e) the arguments of the functions defined below.
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Step 3. We highlight some useful features of the equation (30). 10

Lemma 4.3. Suppose assumption (13) holds and κ ≥ 1. There exists a number δ1
such that

‖∆1(x̄, e)‖ ≤ δ1‖e‖ for all (x̄, e) and all κ (31)

There exist numbers 0 < δ′0 < 1 and h0 such that, if h > h0, then

‖∆0(x̄, e)‖ ≤ δ′0 < 1 for all (x̄, e) and all κ (32)

Moreover, for each R > 0 there is a number MR and a strictly decreasing continuous
function ς : R+ → R+ with limh→∞ ς(h) = 0 such that

x̄ ∈ R ⇒ ‖∆2(x̄, e)‖ ≤MR + ς(h)‖e‖ for all e ∈ R2r and all κ. (33)

Proof. The proof of (31) is identical to the proof of a similar result in Isidori (2016),
page 304. So is the proof of (32), if one bears in mind the fact that G′

L(·) is a diagonal
matrix whose norm does not exceed 1 and hence, by Assumption, there exists a number
0 < δ0 < 1 such that

‖[B −B0]G
′
L(ψ(ξ, σ))B

−1
0 ‖ ≤ δ0 .

This together with the fact that limh→∞ ‖(A22+hI)
−1‖ = 0 proves that (32) holds for

some δ′0 satisfying δ0 < δ′0 < 1 if h is large enough. Finally, observe that the variable
σ appearing in ∆2(x̄, e), thought as a function of (x̄, e), has the expression (27). Since
the function f−1(·) is globally Lypschitz, it is seen that ‖σ‖ can be bounded as

‖σ‖ ≤M0‖x̄‖+M1‖e‖ .

Using this, the fact that all other terms appearing in the expression of ∆2(x̄, e) re-
main bounded so long as x̄ ∈ BR, regardless of how κ is chosen, and the property
limh→∞ ‖(A22 + hI)−1‖ = 0, the bound (33) follows.

Lemma 4.4. Let be h large enough so that the bound (32) holds. If c1, c0 are such
that the polynomial d(λ) = λ2 + c1λ + c0 has two negative real roots, there exists a
positive definite and symmetric 2r × 2r matrix P and a number λ > 0 such that

P [A−B2∆0(x̄, e)C] + [A−B2∆0(x̄, e)C]⊤P ≤ −λI. (34)

The proof of this Lemma uses arguments identical to those used in the proof of a
similar Lemma in Isidori (2016), pages 309, and is not repeated here.

Step 4. We consider the overall system, that we express in the form

ż = Fz +G1ξ +G2x2
ξ̇ = A11ξ +A12x2 +H1z +BGL(ψ(ξ̂, σ))
ė = κ[A−B2∆0(x̄, e)C]e+B1∆1(x̄, e) +B2∆2(x̄, e) + κ2B3(x̄, e)x2
0 = A21ξ + [A22 + hI]x2 +H2z + S0GL(ψ(ξ̂, σ))

(35)

10Here and in the remaining portion of the paper, we denote by BR the closed ball of radius R, with the tacit
understanding that the space in which the ball is considered is specified by the context.
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in which the arguments (ξ̂, σ) of ψ(ξ̂, σ) are meant to be replaced by the expressions
(25)–(27).

As expected, if h is large, this (augmented) system is regular. We express this result
and a related property as follows.

Lemma 4.5. There is a number h0 such that, if h > h0, the algebraic constraint in
(35) has a unique solution x2 = X2,h(z, ξ, e). Moreover, given any pair of positive
numbers R, δ, there is a value h∗ > h0 such that, if h > h∗, then

(z, ξ) ∈ BR ×BR ⇒ ‖X2,h(z, ξ, e)‖ ≤ δ for all e ∈ R2r and all κ .

Proof. The proof of the first part of the statement uses arguments similar to those
used in Lemma 4.2. Observe that

S0GL(ψ(ξ̂, σ)) = S0GL

(

B−1
0

[

κ−1e1 +B0f
−1(B−1

0 [−ξ −Q(z, ξ, x2) + e2])
])

The equation that determines x2 is an equation of the form

[A22+hI]x2+S0GL

(

B−1
0 κ−1e1+f

−1(B−1
0 [−ξ−A11ξ−A12x2−H1z+e2])

)

= −A21ξ−H2z

If h is large, the map

f̃(s) = [A22 + hI]s+ S0GL

(

v1 + f−1(B−1
0 [v2 −A12s])

)

is globally invertible (here v1 = B−1
0 κ−1e1 and v2 = −ξ−A11ξ−H1z+ e2) and hence

x2 can be expressed uniquely in terms of z, ξ, e. The second part of the statement is a
consequence of the fact that GL(·) is a bounded function.

This Lemma is instrumental in determining solutions of (35).11 Assuming that h >
h0, we rewrite the top two equations of system (35) in more compact form as

ẋ = Fx+G∆3(x̄, e) + Lx2 , (37)

in which

x =

(

z
ξ

)

, F =

(

F G1

0 −Ir

)

, G =

(

0
Ir

)

, L =

(

G2

0

)

,

∆3(x̄, e) = [Ir +A11]ξ +A12x2 +H1z +BGL(ψ(ξ̂, σ)).

11Equation (35) is a DAE of the form

EẊ (t) = F(X (t)) (36)

in which F : Rν → Rν is locally Lypschitz and X (t) = col(z(t), ξ(t), e(t), x2(t)). Let I be an open interval of
R, containing the origin. Given X0 ∈ Rν , a continuously differentiable function X : I → Rν is a solution of the

initial value problem X (0) = X0 if X (t) satisfies (36) for all t ∈ I and X (0) = X0. The initial value X (0) is
consistent if at least one solution exists to the initial value problem X (0) = X0. It is seen from all of the above
that, if h is large, x2(t) = X2h(z(t), ξ(t), e(t)). Thus the initial value X0 = col(z0, ξ0, e0, x2,0) is consistent

if and only if x2,0 = X2h(z0, ξ0, e0). For all such consistent initial values, a solution of equation (35) can be
determined inserting x2 = X2h(z, ξ, e) in the top three equations and then solving the resulting ODE. In what
follows, we will show that – if the design parameters are appropriately chosen – a unique solution of such ODE
exists, defined over an interval I ⊃ [0,∞).

13



(where, of course, the arguments ξ̂ and σ are meant to be replaced by the expressions
(25)–(27)).

With C being the given compact set of initial conditions of the system, pick a number
R > 0 such that

(x, ξ̂, σ) ∈ C ⇒ (x, ξ̂, σ) ∈ BR ×BR ×BR .

The first design parameter which is being fixed is the “saturation” level L that
characterizes the function gL(·). To this end, observe that the matrix F in (37) is a
Hurwitz matrix, and hence there exists a matrix P = PT > 0 satisfying

PF+ FTP = −I .

Set V (x) = xTPx and pick a number c > 0 such that

Ωc := {x : V (x) ≤ c} ⊃ BR .

Then, choose for L the value

L = max
x∈Ωc+1,‖x2‖≤1

[

B−1(−Q(z, ξ, x2)− ξ)
]

+ 1 .

Moreover, with Lemma 4.5 in mind, let h∗1 be such that if h ≥ h∗1

‖x2‖ = ‖X2,h(x, e)‖ ≤ 1

for all x ∈ Ωc+1 and assume h ≥ h∗1.
With L fixed in this way, we examine the behavior of x(t) for small values of t ≥ 0.

To this end observe that, since GL(·) is a bounded function, there exists a number δ3,
such that

‖∆3(x̄, e)‖ ≤ δ3 for all x ∈ Ωc+1 and all e ∈ R2r .

Such bound δ3 does not depend on κ nor on h, so long as the latter satisfies h ≥ h∗1.
Consider now a trajectory with initial condition x(0) ∈ BR ⊂ Ωc. In view of the

above bound for ∆3(x̄, e) and of the fact that ‖x2‖ ≤ 1, it can be claimed that, so long
as x(t) ∈ Ωc+1,

V̇ (x) ≤ −‖x‖2 + 2‖x‖‖P‖
[

δ3 + ‖G2‖
]

.

Letting M := max
x∈Ωc+1

2‖x‖‖P‖
[

δ3 + ‖G2‖
]

the previous estimate yields, in particular,

V̇ (x(t)) ≤M

from which it is seen that (recall that x(0) ∈ Ωc)

V (x(t)) ≤ V (x(0)) +Mt ≤ c+Mt .

14



This inequality shows that x(t) remains in Ωc+1 at least until time T = 1/M . This
time might be very small but it is independent of κ and h, because so is M .

During the time interval [0, T ] the state e(t) remains bounded. This is seen from the
third equation of (35), using the bounds determined for ∆0(x̄, e), ∆1(x̄, e), ∆2(x̄, e)
in Lemma 4.3 and the fact that x(t) ∈ Ωc+1 for all t ∈ [0, T ]. The bound on e(t),
though, is affected by the value of κ. In fact, looking at the definitions of the various
components of e, it is seen that ‖e(0)‖ grows with κ (despite of the fact that, by

assumption, x(0) ∈ BR and (ξ̂, σ) ∈ BR ×BR).

Step 5. Having established that trajectories of the system exist on the time interval
[0, T ], we analyze next the behavior of e(t) and x(t) for times larger than T . Knowing
that x(t) ∈ Ωc+1 for all t ≤ T , let Tmax ≥ T be any number such that x(t) ∈ Ωc+1 for
all t ∈ [0, Tmax). Then the properties indicated in the following Lemma hold.

Lemma 4.6. Let the c0, c1 be such that (34) holds. Suppose x(t) ∈ Ωc+1 for all t ∈

[0, Tmax) and suppose that (ξ̂(0), σ(0)) ∈ BR × BR. Then, for every 0 < T < Tmax

and every ε > 0, there is a number κ∗ and, for all κ > κ∗ a number h∗κ, such that, if
κ > κ∗ and h > h∗κ, then

‖e(t)‖ ≤ 2ε for all t ∈ [T, Tmax).

Proof. Set U(e) = e⊤Pe and recall that

a1‖e‖
2 ≤ U(e) ≤ a2‖e‖

2 , (38)

for some pair a1, a2. Using the result of Lemma 4.3 and the bound (31), we have

U̇(e(t)) = 2e⊤P
[

κ[A−B2∆0(x̄, e)C]e+B1∆1(x̄, e) +B2∆2(x̄, e) + κ2B3(x̄, e)x2

]

≤ −κλ‖e‖2 + 2e⊤PB1∆1(x̄, e) + 2e⊤P [B2∆2(x̄, e) + κ2B3(x̄, e)x2]

≤ −(κλ− 2δ1‖P‖)‖e‖
2 + 2‖e‖‖P‖[‖∆2(x̄, e)‖+ κ2‖B3(x̄, e)‖ ‖x2‖]

Let now R′ be a number such that Ωc+1 ⊂ BR′ . Using the bound (33) we see that
there is a number N and a continuous function ς(h), with limh→∞ ς(h) = 0, such that

‖∆2(x̄, e)‖ ≤
1

2
N + ς(h)‖e‖

so long as x(t) ∈ Ωc+1. Observe also that, by construction,

‖B3(x̄, e)‖ ≤ ‖T0‖(c
2
1 + 4c20)

1

2 .

With Lemma 4.5 in mind, we know that for any N ′ and for any κ we can find number
h∗κ, that without loss of generality we assume larger than h∗1, such that, if h > h∗κ, then

‖x2‖ ≤
1

κ2
N ′ .

Choosing N ′ so that

N ′‖T0‖(c
2
1 + 4c20)

1

2 =
1

2
N
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we deduce that

‖∆2(x̄, e)‖+ κ2‖B3(x̄, e)‖ ‖x2‖ ≤ N + ς(h)‖e‖ .

Let h be large enough so that ς(h) < δ1. Then

U̇(e(t)) ≤ −(κλ− 2δ1‖P‖)‖e‖
2 + 2‖e‖‖P‖[N + ς(h)‖e‖]

≤ −(κλ− 4δ1‖P‖)‖e‖
2 + 2‖e‖‖P‖N

≤ −(κλ− 4δ1‖P‖ − µ‖P‖)‖e‖2 + ‖P‖
µ
N2 ,

in which µ is any arbitrary (positive) number. Choose now µ as

µ =
N2‖P‖

ε2

in which case we arrive at

U̇(e(t)) ≤ −(κλ− 4δ1‖P‖ − µ‖P‖)‖e‖2 + ε2 .

Bearing in mind the estimates in (38), set

ακ =
κλ− (4δ1 + µ)‖P‖

2a2
(39)

and suppose that κ is large enough so as to make

2ακa1 > 1 ,

which implies ακ > 0. Then, the inequality

U̇(e(t)) ≤ −2ακU(e(t)) + ε2,

holds, for any t ∈ [0, Tmax). From this, by means of standard arguments, it can be
concluded that 12

‖e(t)‖ ≤ Ae−ακt‖e(0)‖+ ε , in which A =
√

a2

a1
.

At this point, it is necessary to obtain a bound for ‖e(0)‖. Bearing in mind the defi-

nition of e, the fact that x(0) ∈ BR, ξ̂(0) ∈ BR, σ(0) ∈ BR, and assuming κ ≥ 1, it is
seen that

‖e(0)‖ ≤ R̂κ

12Use the comparison Lemma to get

U(t) ≤ e−2ακtU(0) +
ε2

2ακ

from which, using the estimates (38) and the fact that 2ακa1 > 1, the claimed inequality follows.
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in which R̂ is a number only depending on R. Therefore, ‖e(t)‖ is bounded as

‖e(t)‖ ≤ AR̂e−ακtκ+ ε

for all t ∈ [0, Tmax). Let now T be any time satisfying 0 < T < Tmax, and – using (39)
– observe that

AR̂e−ακTκ = AR̂e
(2δ1+µ)‖P‖T

2a2 e
− λT

2a2
κ
κ .

Clearly, the function ϑ : κ 7→ ϑ(κ) = e
− λT

2a2
κ
κ decays to 0 as κ → ∞. Thus, there is a

number κ∗ such that

AR̂e−ακTκ = AR̂e
(2δ1+µ)‖P‖T

2a2 ϑ(κ) ≤ ε .

for all κ ≥ κ∗. 13 From this, it is concluded that, for all κ ≥ κ∗,

‖e(T )‖ ≤ 2ε.

Finally, bearing in mind the fact that ακ > 0, we see that for t ∈ [T, Tmax)

‖e(t)‖ ≤ AR̂e−ακ(t−T )e−ακTκ+ ε ≤ e−ακ(t−T )ε+ ε ≤ 2ε ,

and this concludes the proof.

This result can be used to prove that, if ε is small enough, none of the components
of the control uact is “saturated” on the entire time interval t ∈ [T, Tmax).

Lemma 4.7. Suppose x(t) ∈ Ωc+1, ‖x2(t)‖ ≤ 1 and ‖e(t)‖ ≤ 2ε(t), for all t ∈
[T, Tmax). There is a number ε∗ such that, if ε < ε∗, then for all t ∈ [T, Tmax),

GL(ψ(ξ, σ)) = ψ(ξ, σ)

GL(ψ(ξ̂, σ)) = ψ(ξ̂, σ) .
(40)

Proof. Let b0 be such that ‖B−1‖ ≤ b0. Let ε satisfies

4εb0 < 1 . (41)

Then, bearing in mind the definition of e2, we obtain

‖B−1e2‖ ≤ ‖B−1‖ ‖e‖ ≤ b02ε <
1

2
,

for all t ∈ [T, Tmax), which in turn implies, because of the choice of L,

‖B−1[−ξ −Q(z, ξ, x2) + e2]‖ ≤ L−
1

2
. (42)

13Note that µ depends on ε and, actually, increases as ε decreases. This fact, however, does not affect the prior

conclusion.
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Using (29), observe that

B−1[−ξ −Q(z, ξ, x2) + e2] = B−1B0f(ψ(ξ, σ)) .

Hence, if we consider the function

f̂(s) = B−1B0f(s) = [I −B−1B0]GL(s) +B−1B0s ,

the inequality (42) can be rewritten as

‖f̂(ψ(ξ, σ))‖ ≤ L−
1

2
. (43)

The function f̂(s) is globally invertible (because so is f(s), as shown earlier in Lemma

4.2). Moreover, it can be easily seen that the function f̂(s) is an identity on the set

CL := {s ∈ R
r : |si| ≤ L, for all i = 1, . . . , r} .

In fact,

s ∈ CL ⇒ GL(s) = s ,

and this, using the expression shown above for f̂(s), proves that f̂(s) = s for all s ∈ CL.
As a consequence, the pre-image of any point p in the set CL is the point p itself. Since
the inequality (43) implies f̂(ψ(ξ, σ)) ∈ CL, it is concluded that f̂(ψ(ξ, σ)) = ψ(ξ, σ)
and hence

‖ψ(ξ, σ)‖ ≤ L−
1

2
, (44)

for all t ∈ [T, Tmax), which proves the first identity in (40). To prove the second identity,
recall that

ξ̂ = ξ −
(

κ−1Ir 0
)

e

and, without loss of generality, assume κ ≥ 1. Since, by definition,

ψ(ξ̂, σ) = ψ(ξ, σ) +B−1
0

(

κ−1 0
)

e ,

we have

‖ψ(ξ̂, σ)‖ ≤ ‖ψ(ξ, σ)‖+ ‖B−1
0 ‖‖e‖.

Suppose ε satisfies

4‖B−1
0 ‖ε < 1 . (45)

Then, using (44), we see that ‖ψ(ξ̂, σ)‖ < L, and this proves that the second identity
in (40) holds on the time interval [T, Tmax).
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Step 6. The properties indicated in the previous Lemma make it possible to obtain
simpler expression for ∆3(x̄, e) in (37). From the definition of e2, we get

e2 = Q(z, ξ, x2) + [B −B0]ψ(ξ, σ)− σ
= Q(z, ξ, x2) + [B −B0]B

−1
0 (−ξ − σ)− σ

= Q(z, ξ, x2) +BB−1
0 (−ξ − σ) + ξ

= Q(z, ξ, x2) +Bψ(ξ, σ) + ξ .

Hence

Bψ(ξ, σ) = e2 −Q(z, ξ, x2)− ξ

Bψ(ξ̂, σ) = e2 −Q(z, ξ, x2)− ξ −BB−1
0 κ−1e1 .

(46)

Since GL(ψ(ξ̂, σ)) = ψ(ξ̂, σ) for all t ∈ [T, Tmax), we obtain (using, in the last passage,
the identities (46))

∆3(x̄, e) = ξ +Q(z, ξ, x2) +BGL(ψ(ξ̂, σ))

= ξ +Q(z, ξ, x2) +Bψ(ξ̂, σ)

= ξ +Q(z, ξ, x2) +Bψ(ξ, σ)−BB−1
0 κ−1e1

= e2 −BB−1
0 κ−1e1 ,

that can be rewritten as

∆3(x̄, e) = Hκe

having defined

Hκ =
(

−BB−1
0 κ−1 Ir

)

Returning now to the equation (37), it is seen that

V̇ (x) = −‖x‖2 + 2xTP[GHκe+ Lx2]

Bearing in mind the fact that ‖e(t)‖ ≤ 2ε and that ‖x2(t)‖ can be arbitrarily lowered
by increasing h, standard manipulations can be used to show that, for any choice of a
number 0 < δ < 1 there is a number h∗2 such that, if h ≥ h∗2, an estimate of the form

V̇ (x) = −(1− δ)‖x‖2 + ε2

holds. Hence, so long as ‖x‖ > ε
1−δ

, the function V̇ (x) is decreasing. This shows, that
x(t) ∈ Ωc+1 for all t > 0 and hence Tmax = ∞.

Step 7. The properties indicated in Lemma 4.7 make also possible to simplify the
expressions of the terms ∆0(x̄, e), ∆1(x̄, e), ∆2(x̄, e), and B3(x̄, e) in the dynamics of
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e. Simple manipulations show that

∆0(x̄, e) = [BB−1
0 − I] := ∆0

∆1(x̄, e) = [BB−1
0 − I]e1 := ∆1e1

B3(x̄, e) =

(

c1I
c0BB

−1
0

)

T0 := B3

∆2(x̄, e) = Q̇(z, ξ, x2) + [I −BB−1
0 ]ξ̇ .

To find a more explicit expression for ∆2(x̄, e), it is convenient to solve first the
algebraic constraint that defines x2. The constraint in question has the form (use here
(46))

0 = A21ξ + [A22 + hI]x2 +H2z + S0B
−1[−A11ξ −A12x2 −H1z − ξ +Hκe]

that is

0 = [A21−S0B
−1(A11+I)]ξ+[H2−S0B

−1H1]z+[A22+hI−S0B
−1A12]x2+S0B

−1Hκe

which we rewrite, for convenience, as

Ā21ξ + H̄2z +Hκe = [Ā22 + hI]x2 .

Note that Ā21, Ā22 and H̄2 do not depend on the design parameters (κ, h), while Hκ,
that depends on κ because so does Hκ, is bounded for κ ≥ 1. Then

x2 = [Ā22 + hI]−1[Ā21ξ + H̄2z +Hκe] (47)

This being the case, we have

∆2(x̄, e) = Q̇(z, ξ, x2) + [I −BB−1
0 ]ξ̇

= [A11 + I −BB−1
0 ]ξ̇ +A12ẋ2 +H1ż

= [A11 + I −BB−1
0 +A12[Ā22 + hI]−1Ā21]ξ̇+

+[H1 +A12[Ā22 + hI]−1H̄2]ż +A12[Ā22 + hI]−1Hκė

that we rewrite as

∆2(x̄, e) = Dhẋ+A12[Ā22 + hI]−1Hκė

in which

Dh =

(

[A11 + I −BB−1
0 +A12[Ā22 + hI]−1Ā21]

[H1 +A12[Ā22 + hI]−1H̄2]

)

.

With the help of such notations, we obtain

ė = κ[A−B2∆0C]e+B1∆1e+B2[Dh(Fx+GHκe+Lx2)+A12[Ā22+hI]
−1Hκė]+κ

2B3x2
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that is

(I−A12[Ā22 + hI]−1Hκ)ė =

= κ[A−B2∆0C]e+ [B1∆1 +B2DhGHκ]e+B2DhFx+ [B2DhL+ κ2B3]x2

In summary, it is seen that, on the time interval [T,+∞), the system (35) can be
expressed in the form

ẋ = Fx+GHκe+ Lx2
(I −A12[Ā22 + hI]−1Hκ)ė = κ[A−B2∆0C]e+ [B1∆1 +B2DhGH]e+

+B2DhFx+ [B2DhL+ κ2B3]x2

(48)

in which x2 has the expression (47).
The “input” x2 in (48) can be interpreted as a “memoryless feedback” from (x, e).

Since the gain matrices that characterize such feedback can be made arbitrarily small
by increasing h, then – according to well-known principles – to establish stability of
the equilibrium (x, e) = (0, 0) of (48) it suffices to establish stability of the equilibrium
(x, e) = (0, 0) of the system obtained setting x2 = 0, which we rewrite as

ẋ = Fx+GHκe
ė = κ(I + Ēκ,h)[A−B2∆0C]e+Mhe+Nhx

(49)

in which

Ēκ,h = (I −A12[Ā22 + hI]−1Hκ)
−1 − I

Mh = (I + Ēκ,h)[B1∆1 +B2DhGH]
Nh = (I + Ēκ,h)B2DhF .

Note that Ēκ,h → 0 as h → ∞, while Mh and Nh can be bounded by numbers that
are independent of h (so long as κ > 1).

Recall now that the matrix A −B2∆0C has the property indicated in Lemma 4.4
and consider the Lyapunov function U(e) = eTPe. Then

U̇(e) = 2eTP (I + Ēκ,h)[κ[A−B2∆0C]e+Mhe+Nhx]

≤ −κλ‖e‖2 + [2κ‖Ēκ,h‖ ‖P‖ ‖(A−B2∆0C‖)]‖e‖2+

+2‖PMh‖ ‖e‖
2 + 2‖PNh‖ ‖e‖ ‖x‖

Pick a number d̄ such that

max{2‖PMh‖, 2‖PNh‖} ≤ d̄ .

Since Ēκ,h → 0 as h→ ∞, for any choice of κ there is a value h∗κ such that, if h > h∗κ,
then

2κ‖Ēκ,h‖ ‖P‖ ‖(A−B2∆0C‖) ≤ d̄ .

Thus, if h > h∗κ, then

V̇ (e) ≤ −κλ‖e‖2 + 2d̄‖e‖2 + d̄‖e‖ ‖x‖ .
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From this, using standard arguments, one can conclude that, given any number
c∗, there is a choice of κ∗ and, for any choice of κ > κ∗ a value of h∗κ such that, if
κ > κ∗ and h > h∗κ, then the lower subsystem of (35), viewed as a system with state
e and input x is input-to-state stable, with a linear gain function γ(s) = c∗. By the
small-gain theorem, if c∗ is sufficiently small, the equilibrium (x, e) = (0, 0) of (49) is
asymptotically stable. 14

4.3. Numerical example

We consider the example of a system modeled by a DAE of the form (9), with matrices

F = −1, G =
(

1 1 0
)

, Ē =





1 2 2
b 1 1
1 2 2



 , A =





2 −1 0
3 −2 0
0 0 0



 , H =





−1
1
1



 ,

where b is an uncertain parameter with values in the range [3, 5]. The eigenvalues of
F and A are −1 and {1,−1, 0}, respectively. The rank of the matrix Ē is r = 2 and
the matrix

Ē11 =

(

1 2
b 1

)

is nonsingular regardless of the value of b in its range. The gain of the feedback (15)
is set as h = 10. The parameters of the extended observer (23) are set as

B0 =

(

1 2
4 1

)−1

, κ = 15, c0 = 0.02, c1 = 0.3 ,

and the saturation function in (21) is defined as

• gL(s) = s if |s| ≤ L,

• gL(s) = L+ c(1− e
−s+L

c ) if s > L,

• gL(s) = −L− c(1− e
s+L

c ) if s < −L,

with L = 5 and c = 0.01. It can be verified that, with this choice for B0, the term
appearing in the left-hand side of equation (13) of Assumption 4 is bounded by 0.527
(i.e., there exist values for δ0 smaller than 1 for which (13) is satisfied).

From what is written above it is then verified that Theorem 4.1 holds and hence
the proposed robust control method can be applied. We observe that, on the contrary,
the stabilization method proposed in Berger (2016) is not applicable since Ē 6= ĒT .

Figures 1 and 2 present the results of a numerical simulation of the dynamics of the
described system and of the error dynamics (24) starting from the initial state z(0) = 1,

x1(0) =
(

1 2
)T

, x2(0) = 0.2, ξ̂(0) =
(

0 0
)T

, σ(0) =
(

0 0
)T

, with parameter b = 3.
The figures show that, in the beginning, the control uact(t) is saturated. Nonetheless,
the extended-observer errors decrease and, from about 1s on, uact(t) is not saturated,
so that the overall system behaves as a linear one. As expected, the states of the
system as well that of the observer converge to 0. Analogous results were obtained for
several values of the uncertain parameter b ∈ [3, 5].

14For the notion of input-to-state stability and the associated small-gain theorem, see e.g. Khalil (2002).
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Figure 1. DAE system and extended-observer dynamics (the dotted lines in the plot of uact(t) indicate the
saturation levels)
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Figure 2. Error dynamics
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5. Conclusions

In this paper we presented a robust stabilizing control for a class of linear differential
algebraic systems characterized by an autonomous and stable zero dynamics, in spite
of parameter uncertainties ranging over a priori fixed bounded sets.

We reconsidered the stabilization method described in Berger (2016) under different
assumptions on the system representation. The proposed robust stabilizer relies on
the idea of using a partial output feedback control to let the DAE behave as a regular
system and an extension of the high-gain extended-observer-based stabilizing control
presented in Freidovich and Khalil (2008). The proposed robust control framework,
originally conceived in the context of standard dynamical systems, has been shown to
be effective also in presence of algebraic constraints, provided that the gain used to
make the system regular is chosen sufficiently high. Among other possible applications,
the proposed stabilization method is helpful in solving also a problem of robust output
regulation for systems modeled by DAEs, as it is shown in Di Giorgio, Pietrabissa,
Delli Priscoli, and Isidori (2018).
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