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ABSTRACT

A dynamic estimation and control problem with a strategic sensor is considered.
The strategic sensor may provide corrupted messages about the state measurements
of a discrete-time linear time-invariant dynamical system to the system operator
(or the controller). The system operator then uses this information to construct an
estimate of the state of the system (and perhaps private variables of the sensor). The
estimate is used to control the system to achieve the operator’s desired objective.
The problem is formulated as a game, which might be conflicting to that of the
strategic sensor. An equilibrium of the game is computed and its properties are
investigated.
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1. Introduction

Traditional infrastructure operators most often rely on sensors installed and main-
tained by themselves for estimating the states of the system. The constant connected-
ness provided by networked smart devices has enabled the use of emerging technolo-
gies, such as crowd sensing, in systems. This helps to improve the quality of service
provided by existing infrastructure with low investment costs. For instance, in trans-
portation systems, the infrastructure operator can monitor the movements of recruited
participants to estimate the traffic flow (as in, e.g., Waze). The challenges associated
with these non-traditional sensors arise from the limited authority of the operator over
the behaviour of the users. The undesirable effects can only be worsened by the fact
that the crowd might have different objectives to that of the infrastructure operator
(e.g., generating personal income rather than guaranteeing smooth operation of the
system). Further, noting that the infrastructure is a valued target for adversaries and
malicious agents, the crowd-sensing systems can be infiltrated by hackers with possibly
devastating consequences for the society. Therefore, there is a need for developing a
comprehensive framework for investigating the problem of dynamic estimation with
strategic sensors and the use of such state estimates in the closed-loop performance of
the system.

In this paper, we consider the dynamic estimation and control problem in Figure 1,
where a strategic sensor S provides possibly dishonest messages about the state mea-
surements of a discrete-time linear time-invariant dynamical system P to the system
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Figure 1. Interconnection pattern between the dynamical system P, the sensor S, and the system operator
O.

operator O (which may be also referred to as the controller). The system operator
then uses this information to construct an estimate of the state of the system (and
other hidden or private variables of the sensor). The state estimate is subsequently
used to control the system to achieve the desired objectives of the system operator.
Noting that the sensor and the system operator might have conflicting objectives, the
problem is formulated as a game (see , e.g., (Başar and Olsder, 1998)). An equilibria
of the game is computed and its properties are investigated.

The problem of strategic communication between a receiver and a better informed
sender, known as the cheap-talk game, has been studied in the economics litera-
ture (Crawford and Sobel, 1982; Battaglini, 2002). This problem has more recently
attracted attention in the engineering community, where it has application in privacy-
constrained communication and cyber-security (Farokhi et al., 2015, 2017) and esti-
mation (Dobakhshari et al., 2016; Westenbroek et al., 2017). These studies mostly
consider static estimation problems. In (Farokhi et al., 2017), a dynamic estimation
setup is considered; however, the sensor and the receiver act myopically (i.e., they
do not consider the effects of their actions in the future). This could be reasonable
for monitoring purposes but conservative in control formulations (as the sensor would
not consider the effects of its actions in the future). It is worth mentioning that the
problem of dynamic cheap-talk games has been recently studied in the economics lit-
erature (Golosov et al., 2014). In contrast with (Golosov et al., 2014), in this paper,
we restrict the problem formulation to Gaussian random variables and quadratic cost
functions. Thus, our model is much closer to the assumptions typically made in the
control and estimation community. Further, this allows us to explicitly compute the
equilibrium and study its properties. Finally, note that all the above-mentioned studies
only focus on estimation issues and the effects of control are mostly unexplored.

The problem studied in this paper is closer to the the study of security of networked
control systems (Mo and Sinopoli, 2009; Sandberg et al., 2010; Hendrickx et al., 2014;
Teixeira et al., 2013; Pasqualetti et al., 2013; Cardenas et al., 2008). Those however
mostly consider the case where the attacker wants to disrupt the operation of the
system rather than steering it towards its selfish goals.

The rest of the paper is organized as follows. A motivating example is provided
in Section 2. The problem formulation and the results are, respectively, presented
in Sections 3 and 4. A numerical example is provided in Section 5. Finally, some
concluding remarks are presented in Section 6.

2. Motivating Example

Consider the simplest robot in a two dimensional space modelled as

x[k + 1] =

[
1 0
0 1

]

x[k] + u[k] + w[k], x[0] = 0,
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Figure 2. The closed-loop trajectory of the robot with a honest sensor (black), strategic sensor without
compensation (blue), and strategic sensor compensated using the method of this paper (red). The path that
the strategic sensor wants the robot to follows is shown by the dashed blue curve.

where x[k] ∈ R
n is the position of the robot in the chosen two-dimensional coordinate

frame, u[k] ∈ R
m is the trust generated in each direction, and w[k] ∈ R

n is the unknown
effect of the environment, e.g., wind, modelled by an i.i.d.1 zero-mean Gaussian random
variable with variance W = 0.5I. The operator wishes that the robot stays around
the origin over the horizon {0, . . . , T} with T = 10. Noting that the robot is only
marginally stable if it is not controlled, it would aimlessly drift in the space (i.e., the
model of the robot resembles that of random walk). Assume that the robot request (or
asks) its position measurements from a sensor and uses a linear quadratic Gaussian
(LQG) controller with the design parameters from its quadratic cost function given
by Q = 10I and R = 0.1I. The black curve in Figure 2 illustrates the trajectory
of the robot with a honest sensor as a reference. Evidently, in this case, the robot
stays fairly close to the origin. Now, assume that the sensor acts strategically. In fact,
the sensor wants the robot to deviate from the origin (i.e., its safe place) so that the
sensor (perhaps cooperating with an adversary) can capture it2. The solid blue curve
in Figure 2 shows the case where the strategic sensor can send any arbitrary message
to the system operator and the operator does not compensate for the strategic nature
of the sensor. This way, the sensor can make sure that the robot closely follows its
desired path shown by the dashed blue curve in Figure 2, which is generated randomly,
to get far from the origin. However, if the receiver reacts “optimally” (in a specific
sense appropriately defined in the next section) to the transmitted messages of the
sensor, it will follow the path illustrated by the red curve in Figure 2. This path
clearly outperforms the blue one; however, it is not as good as the case with a honest
sensor. This degradation in closed-loop performance is the price of strategicness of the
sensor. In the remainder of this paper, this problem is formally introduced and its
solution is presented.

1i.i.d. stands for independently and identically distributed.
2A story reminiscent of https://www.wired.com/2011/12/iran-drone-hack-gps/
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3. Problem Formulation

Consider the discrete-time linear time-invariant dynamical system, denoted by P in
Figure 1, of the form

x[k + 1] = Ax[k] +Bu[k] + w[k], x[0] = 0, (1)

where x[k] ∈ R
n is the state of system, u[k] ∈ R

m is the control input, and w[k] ∈ R
n

is the process noise. Here, the pair A and B are model matrices of the system (i.e.,
matrices containing the parameter of the system modelling its state transition). The
process noise models the unknown effects of the environment or the uncertainties of the
system and is assumed to be a sequence of i.i.d. zero-mean Gaussian random variable
with variance W ∈ Sn++. The system operator, denoted by O in Figure 1, wishes to
minimize the cost function

Jc = E

{ T∑

k=0

x[k]⊤Qx[k] +

T−1∑

k=0

u[k]⊤Ru[k]

}

, (2)

where Q ∈ Sn+ and R ∈ Sn++ with Sn+ and Sn++, respectively, denoting the sets of
positive semi-definite and positive definite matrices. To achieve this task, the system
operator O deploys a possibly strategic sensor, denoted by S in Figure 1, to report the
measurements of the states of the dynamical system P. The sensor measures the state
x[k] ∈ R

n directly and sends a message y[k] ∈ R
p to the operator. The assumption

that the sensor has access to the perfect full state measurements of the state is rather
conservative; however, the results based on this assumption provide the worst case
analysis of the performance of the closed-loop system in the presence of a strategic
sensor. This can be used as a stepping stone towards understanding the problem and
relaxing this assumption in the future. The cost function of the sensor is assumed to
be of the form

Js = E

{ T∑

k=0

[
x[k]
θ[k]

]⊤

Qs

[
x[k]
θ[k]

]

+

T−1∑

k=0

u[k]⊤Rsu[k]

}

, (3)

where Qs ∈ Sn+ns

+ and Rs ∈ Sm+ are weighting matrices and θ[k] ∈ R
ns is the private

state of the sensor governed by

θ[k + 1] = Asθ[k] + Fx[k] +Bsu[k] + v[k], θ[0] = 0, (4)

where v[k] ∈ R
ns denotes the process noise, which is assumed to be a sequence of i.i.d.

zero-mean Gaussian random variable with variance V ∈ Sns

++. The sensor is interested
in minimizing the cost function in (3). For instance, if the sensor S has the desire that
the states of the system P follows its private state θ[k] (evidently in the case where
ns = n), it must select

Qs =

[
I −I
−I I

]

, Rs = 0, F = 0, Bs = 0.
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Alternatively, if the sensor is benevolent, it must select

Qs =

[
Q 0
0 0

]

, Rs = R,As = 0, F = 0, Bs = 0. (5)

Clearly, many other cases can fit the above description and are not discussed.
The timing of the game is as follows. The sensor S uses the conditional probability

density function γk(y[k]|x[0], . . . , x[k], θ[0], . . . , θ[k], y[1], . . . , y[k − 1]) to determine its
message y[k] at time step k ∈ {1, . . . , T − 1}. Note that the sensor does not transmit
any message at k = 0 as x[0] is deterministically known to be zero and thus the system
operator would not listen to it anyhow. Let γ := (γ1, . . . , γT−1) denote the tuple of
the conditional probability density functions over the entire horizon. The set of all
such tuples of conditional probability density functions is denoted by Γ. At time step
k ∈ {0, . . . , T − 1}, the system operator O uses the conditional probability density
function ξk(u[k]|x[0], θ[0], y[1], . . . , y[k]) to determine its control action u[k]. Note that
the ultimate goal of the system operator is to control the system but, as a by-product,
it also extracts an estimate of the state of the system. Similarly, let ξ := (ξ0, . . . , ξT−1)
and denote the set of all such tuples of conditional probability density functions by Ξ.
Clearly, both cost functions in (2) and (3) are functions of the policies of the sensor
γ and the system operator ξ. Considering possibly randomized control policies is an
unorthodox choice as, most often in the literature, controllers are assumed to be fixed
and deterministic. However, it should be noted that deterministic control policies are
a subset of randomized ones (deterministic policies select the preferred control signal
with probability one and selecting the rest of the options with probability zero). In fact,
as later proved in this paper, the equilibrium consist of only deterministic policies. This
observation extends the earlier results from estimation with strategic sensors in which
it was also proved that the optimal policies are deterministic (Farokhi et al., 2017).
Therefore, the notations Jc(γ, ξ) and Js(γ, ξ) is used to denote these cost functions.
Let ΞΓ denote the sets of all mappings from Γ to Ξ. Hence, for any ψ ∈ ΞΓ and any
given γ, ψ(γ) is a bundle of conditional probability density functions in Ξ. Now, we
are ready to define the equilibria of the game.

Definition 1. A tuple (ψ∗, γ∗) ∈ ΞΓ × Γ constitutes an equilibrium if

ψ∗ ∈ argmin
ψ∈ΞΓ

Jc(γ
∗, ψ(γ∗)), (6a)

γ∗ ∈ argmin
γ∈Γ

Js(γ, ψ
∗(γ)). (6b)

The equilibrium describes the best way that the sensor S can persuade the sys-
tem operator O to achieve its goals and the best strategy of the system operator to
counteract the strategic nature of the sensor. It should be noted that the equilibrium
notion in Definition 1 corresponds to a pure strategy Nash equilibrium rather than a
Stackelberg equilibrium. In this paper, instead of the usual decision space of control
laws Ξ, the system operator selects a function from ΞΓ (i.e., its action space is much
larger and thus can be more robust to the strategic sensor). This function can be seen
as a response to the sensor’s policy because the implemented control law ψ(γ) is in fact
a function of γ. For the Stackelberg equilibrium, the response of the system operator
must be optimal for all choices of γ, i.e., ψ∗ ∈ argminψ∈ΞΓ Jc(γ, ψ(γ)),∀γ ∈ Γ, rather
than optimality for just γ∗ as in (6a). This observation places the notion of equilibrium
in Definition 1 between the Nash equilibrium (where the action space of the system
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operator is only the set of permissible control laws) and the Stackelberg equilibrium.
With these definitions in hand, we are ready to construct an equilibrium of the game
and study its properties.

4. Main Results

Similar to other signalling games, e.g., (Farokhi et al., 2015; Sobel, 2012), the de-
scribed game can also admit a babbling equilibrium, i.e., an equilibrium in which the
sensor does not provide any useful information (i.e., y[k] is statistically independent
of x[1], . . . , x[k]) and the system operator completely ignores the sensor (u[k] is statis-
tically independent of y[1], . . . , y[k]). We are not interested in any of those equilibria.
In the next theorem, we construct a non-trivial equilibrium for the game.

Theorem 1. Let K[k] ∈ R
m×n, L[k] ∈ R

(n+ns)×p, C[k] ∈ R
p×(n+ns), X[k] ∈ Sn+,

Y [k] ∈ Sn+ns

+ , and P [k] ∈ S2n+2ns

+ be a joint solution (if any exists) of the following
set of non-linear equations:

K[k] =−(BX[k + 1]B⊤ +R)−1B⊤X[k + 1]A, (7a)

X[k] =Q+A⊤X[k + 1]A−A⊤X[k + 1]B(BX[k + 1]B⊤+R)−1B⊤X[k + 1]A, (7b)

X[T ] =Q, (7c)

L[k] =− Y [k]C[k]⊤(C[k]Y [k]C[k]⊤)−1 (7d)

Y [k] =

[
A+BK[k − 1] 0

F As

]⊤

Y [k]

[
A+BK[k − 1] 0

F As

]

+W [k], (7e)

Y [k + 1] =(I + L[k]C[k])Y [k], Y [1] = 0, (7f)

C[k] =B[k]⊤P [k + 1]A[k]

[
In+ns

0(n+ns)×(n+ns)

]

, (7g)

P [k] =Q[k] +A[k]⊤P [k + 1]A[k]−A[k]⊤P [k + 1]B[k](B[k]⊤P [k + 1]B[k])†

×B[k]⊤P [k + 1]A[k], P (T ) = Q[T ], (7h)

with B[k], A[k], Q[k] defined as in

A[k] :=







A 0
F As

[
B

Bs

]

K[k]
[
I + Lx[k]Cx[k] Lx[k]Cθ[k]

]

0 0 I + Lx[k]Cx[k] Lx[k]Cθ[k]
0 0 Lθ[k]Cx[k] I + Lθ[k]Cθ[k]













I 0 0 0
0 I 0 0
0 0 A 0
0 0 F As






, (8a)

B[k] :=−





BK[k]Lx[k]
BsK[k]Lx[k]

L[k]



, (8b)

Q[k] :=







Qs 0

0

[
(I + Lx[k]Cx[k])

⊤

Cθ[k]
⊤Lx[k]

⊤

]

K[k]⊤RsK[k]

[
(I + Lx[k]Cx[k])

⊤

Cθ[k]
⊤Lx[k]

⊤

]⊤






. (8c)

Then, there exists an equilibrium (γ∗, ψ∗) in which the system operator employs the
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policy ψ∗ such that, with probability one, the control signal is given by

u[k]=K[k]x̂[k], (9a)
[
x̂[k]

θ̂[k]

]

=(I + L[k]C[k])

([
A 0
F As

] [
x̂[k − 1]

θ̂[k − 1]

]

+

[
B

Bs

]

u[k − 1]

)

+

[
Lx[k]
Lθ[k]

]

y[k],

[
x̂[−1]

θ̂[−1]

]

=

[
0
0

]

(9b)

and the sensor employs the policy γ∗ such that, with probability one, the transmitted
message is given by

y[k] = C[k]

[
x[k]
θ[k]

]

. (10)

Further, all pairs of policies (γ∗, ψ∗) constructed by scaling the transmitted message
y[k] using an invertible matrix Φ[k] ∈ R

p×p with probability one are still equilibria of
the game.

Proof. If the system operator follows the policy in the statement of the theorem, we
get







x[k + 1]
θ[k + 1]
x̂[k]

θ̂[k]






=A[k]







x[k]
θ[k]

x̂[k − 1]

θ̂[k − 1]






+B[k]y[k],







x[0]
θ[0]
x̂[−1]

θ̂[−1]






=







0
0
0
0






,

where A[k] and B[k] are given in (8). Therefore, the problem of finding the optimal
message y[k] for the sensor becomes an optimal control problem of the system above
with the cost function

T∑

k=0







x[k]
θ[k]

x̂[k − 1]

θ̂[k − 1]







⊤

Q[k]







x[k]
θ[k]

x̂[k − 1]

θ̂[k − 1]






,

where Q[k] is given in (8). Note that a full state feedback policy can be calculated

as the sensor can construct x̂[k] and θ̂[k] as it has access to more information as the
system operator (i.e., it knows at least what the system operator knows). The solution
to this problem is a linear state feedback policy of the form

y[k] =
[
Cx[k] Cθ[k] Cx̂[k] C

θ̂
[k]

]

︸ ︷︷ ︸

:=C[k]







x[k]
θ[k]

x̂[k − 1]

θ̂[k − 1]






,

where

C[k] = −(B[k]⊤P [k + 1]B[k])†B[k]⊤P [k + 1]A[k],
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with X† denoting the Moore-Penrose pseudoinverse of any square matrix X with the
convention that 0† = 0 and P [k] defined using the reverse discrete Riccati equation

P [k] =Q[k] +A[k]⊤P [k + 1]A[k]−A[k]⊤P [k + 1]B[k](B[k]⊤P [k + 1]B[k])†

×B[k]⊤P [k + 1]A[k], P (T ) = Q[T ].

The fact that the matrix B[k]⊤P [k+1]B[k] is potentially not invertible does not create
an issue in our setup as we are only considering the finite horizon problem and stability
is not a problem (in fact a similar approach as in (Ferrante and Ntogramatzidis, 2015)
to our problem). Noting the system operator can always subtract Cx̂[k]x̂[k − 1] +

C
θ̂
[k]θ̂[k − 1] from the transmitted message, the sensor without the loss of generality

can transmit

y[k] =
[
Cx[k] Cθ[k]

]
[
x[k]
θ[k]

]

.

Clearly, in response to this message, the system operator employs the control law

u[k] = K[k]x̂[k],

where x̂[k] = E{x[k]|y[0], . . . , y[k]} and

K[k] = −(BX[k + 1]B⊤ +R)−1B⊤X[k + 1]A,

with X[k] defined using the reverse discrete Riccati equation

X[k]=Q+A⊤X[k + 1]A−A⊤X[k + 1]B(BX[k + 1]B⊤+R)−1B⊤X[k + 1]A,

with X[T ] = Q. To estimate the state, the system operator uses the Kalman filter of
the form

[
x̂[k]

θ̂[k]

]

=

(

I +

[
Lx[k]
Lθ[k]

]
[
Cx[k] Cθ[k]

]
)

×

([
A 0
F As

] [
x̂[k − 1]

θ̂[k − 1]

]

+

[
B

Bs

]

u[k − 1]

)

+

[
Lx[k]
Lθ[k]

]

y[k],

[
x̂[−1]

θ̂[−1]

]

=

[
0
0

]

,

where

[
Lx[k]
Lθ[k]

]

=−Y [k]

[
Cx[k]

⊤

Cθ[k]
⊤

]([
Cx[k]

⊤

Cθ[k]
⊤

]⊤

Y [k]

[
Cx[k]

⊤

Cθ[k]
⊤

])−1

,

Y [k]=

[
A 0
F As

]⊤

Y [k]

[
A 0
F As

]

+W [k],

Y [k + 1]=

(

I +

[
Lx[k]
Lθ[k]

]
[
Cx[k] Cθ[k]

]
)

Y [k].

This shows that both the sensor and the system operator are responding optimally to
each other’s policies. Therefore, none of them have an incentive to deviate from their
respective policies. This concludes the proof.
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Remark 1 (Numerical Complexities). The set of nonlinear equations in (7) can be
solved using the Newton’s method given that the algorithm can be initialized in the
vicinity of the solution. We can also switch between solving the set of linear equations
in (7a)-(7f) (when fixing C[k]) and the set of linear equations in (7g)-(7h) (when fixing
K[k] and L[k]). This method is easier to implement but does not have any convergence
guarantees in general. For the case where Js = −Jc (i.e., the game is zero sum),
the convergence of this method may not be guaranteed because the convexity-concavity
assumption required for the convergence of the best response learning methods (see,
e.g., (Hofbauer and Sorin, 2006)) no longer holds. In general, convergence requires
existence of a convex potential function, which might hold for the setup of this paper.
We have used this method in the numerical examples of the paper.

Remark 2 (Benevolent Sensor). It can be easily shown that if the sensor is benevolent,
e.g., see (5), the equilibrium in Theorem 1 takes a specific form that, with probability
one, y[k] = x[k] and u[k] = K[k]y[k].

Now that we can calculate the equilibrium, we are ready to investigate some of its
numerical properties in the following section.

5. Numerical Example

In this section, we revisit the motivating example in Section 2 and further investigate
the properties of the equilibrium for various objectives of the sensor. To be complete,
we first discuss some aspects of the example that were not described at that stage (due
to its preliminary nature). Firstly, in this example, we consider the following model

θ[k + 1] =

[
1.1 0
0 1.1

]

θ[k] + v[k], θ[0] = 0, (11)

where θ[k] denotes the path that the sensor wants the robot to follow and v[k] is a
sequence of i.i.d. zero-mean Gaussian random variable with variance V = I. The fact
that the sensor wants the robot to follow its private path of θ[k] is captured by the
cost function in (3) with

Qs =

[
I −I
−I I

]

, Rs = 0.

Due to the symmetry of the problem, there exists an equilibrium at which, C[k] in (7g)
takes the special form

C[k] =

[
c1[k] 0 c2[k] 0
0 c1[k] 0 c2[k]

]

.

The gains c1[k] and c2[k] are shown in Figure 3. Evidently, the strategic sensor never
flat out lies as, in that case, the system operator would ignore its messages completely
and it achieves nothing towards minimizing its cost. Therefore, it is best for the sensor
to combine its hidden agenda with the truth to convince the system operator.

The performance degradation caused by the strategic nature of the sensor can be
captured by the ratio of the cost of the system operator if the sensor was completely
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Figure 3. The gains c1[k] (black colour) and c2[k] (red colour) versus k.
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Figure 4. The gains c1[k] (black colour) and c2[k] (red colour) versus k.

honest versus the cost of the system operator when it follows the policy of Theorem 1.
This ratio in this example (for the described setup) is 6.25. However, this is far better
than the case where the system operator does not follow the strategy in Theorem 1;
see Figure 2 for comparison.

Now, we can consider the case where the sensor is benevolent, e.g., see (5). As
expected, the equilibrium in Theorem 1 (calculated numerically) takes a specific form
that, with probability one, y[k] = x[k] and u[k] = K[k]y[k]. This is shown in Figure 4.

6. Conclusions and Future Work

This paper considered the problem of feedback control using a strategic sensor. The
sensor can manipulate the state measurements transmitted to the system operator to
steer the system towards its goals. The problem is formulated as a game. An equi-
librium of the game is constructed and its properties are investigated. Interestingly,
the strategic sensor does not completely lie so as the system operator does not ignore
its messages. Future work can focus on the case where several strategic sensors with
possibly conflicting objectives communicate with the system operator.
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