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1. Introduction

Heterogeneous multiagent systems formed by networks of agents having different dynamics

and dimensions present a significantly broader class of multiagent systems than their hetero-

geneous and homogeneous counterparts that consist of networks of agents having different

dynamics with the same dimension and identical dynamics, respectively. Therefore, analysis

and synthesis of distributed control approaches for this class of multiagent systems that rely

on local information exchange has been an attractive research topic in the systems and control

field over the last decade.

In particular, the cooperative output regulation problem of heterogeneous (in dynamics and

dimension) linear time-invariant multiagent systems, where the output of all agents synchro-

nize to the output of the leader, over general fixed directed communication graph topologies

have been recently investigated in [1, 2, 3, 4, 5, 6, 7]. This problem can be regarded as the

generalization of the linear output regulation problem given in, for example, [8] to multiagent

systems. As a consequence, distributed control approaches to this regulation problem can be

classified into two categories:

• The first category is predicated on feedforward design methodology, where the authors of

[1, 2, 4, 6, 7] present contributions. In the presence of plant uncertainties, however, this

methodology is known to be not robust since the feedforward gain of each agent relies on

the solution of the regulator equations.

• The second category is predicated on internal model principle, where the authors of [3, 5]

present contributions. While this methodology is robust with respect to small variations

of the plant parameters as compared to feedforward design methodology, it cannot be

applied when the transmission zero condition does not hold.

The common denominator of these papers is that an exosystem, which has an unforced linear

time-invariant dynamics, generates both a reference trajectory and external disturbances to be

tracked and rejected by networks of agents. Specifically, the system matrix of the exosystem is

explicitly used by controllers of all agents in [1, 2, 4, 7] and a proper subset of agents in [6]; or

each agent incorporates a p-copy internal model of this matrix in its controller [3, 5].
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1.1. Contributions

Considering applications of the distributed control approaches in [1, 2, 3, 4, 5, 6, 7], it can be

a challenge to precisely know the system matrix of the exosystem, even the dynamical structure

of the exosystem; especially, when an external leader interacts with the network of agents or

a control designer simply injects optimized trajectory commands to the network based on, for

example, an online path planning algorithm. In order to guarantee ultimately bounded tracking

error in such cases, a new, generalized definition for the cooperative output regulation problem

is needed.

This paper focuses on heterogeneous (in dynamics and dimension) linear time-invariant

multiagent systems over general fixed directed communication graph topologies. First, we

present the generalized definition for the linear cooperative output regulation problem. Sec-

ond, we investigate the solvability of this problem for internal model based distributed dynamic

state feedback, output feedback with local measurement, and output feedback control laws. To

this end, we not only consider global conditions but also provide agent-wise local sufficient

conditions under standard assumptions. Considering large-scale applications of multiagent

systems, the agent-wise local sufficient conditions are primarily important for independent

controller design of each agent (i.e., without depending on the dynamics of other agents ).

The system-theoretical approach presented in this paper1 is relevant to the studies in [3, 5],

where they also focus on the linear cooperative output regulation problem with an internal

model based distributed dynamic state feedback control law. Specifically, [5] extends the ap-

proach in [3] to an output feedback control under an output feedback stabilizability condition.

In addition to the generalized definition of the linear cooperative output regulation problem,

the contribution of this paper differs from the studies in [3, 5] based on the following points:

• First, we note that the theoretical contribution of this paper covers not only the dynamic

state feedback problem but also the dynamic output feedback problem with local mea-

surement as well as the dynamic output feedback problem. Unlike the results presented

in [5], this paper does not assume the output feedback stabilizability for the dynamic

output feedback problem with local measurement. With regard to the dynamic output

feedback problem, the results of this paper does not require agents to access their own

1 Although they are not completely related, [9, 10] may be regarded as preliminary works of this paper.
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states or outputs.

• To prove the existence of a unique solution to the matrix equations that are crucial for the

solvability of the problem, Section III in [3] (Theorem 4 in [5]) decomposes these matrix

equations, which consist of the overall dynamics of the multiagent system, into matrix

equations, which deal with the dynamics of each agent separately. In contrast, we do

not decompose these matrix equations; see the sixth paragraph of Appendix A for the

advantage. In particular, Lemma 3 of this paper, which is also applicable to dynamic

output feedback cases, guarantees that these matrix equations have a unique solution

without requiring their decompositions.

• A considerable number of gaps in the related results of [3, 5] is illustrated by counterex-

amples in Appendices and fixed in Appendices as well as in Section 4.1.

1.2. Organization

The rest of the paper is organized as follows. Section 2 presents the notation and the essen-

tial mathematical preliminaries. Section 3 formulates the linear cooperative output regulation

problem considered in this paper. The solvability of this problem is investigated in Section 4

and two illustrative numerical examples are presented in Section 5. Finally, Section 6 concludes

the paper.

2. Mathematical Preliminaries

A standard notation is used in this paper. Specifically, R, Rn , and Rn×m respectively denote

the sets of all real numbers, n × 1 real column vectors, and n ×m real matrices2; 1n and In

respectively denote the n ×1 vector of all ones and the n ×n identity matrix; and “,” denotes

equality by definition. We write (·)T for the transpose and ‖ · ‖2 for the induced two norm of

a matrix; σ(·) for the spectrum3 and ρ(·) for the spectral radius of a square matrix; (·)−1 for

the inverse of a nonsingular matrix; and ⊗ for the Kronecker product. We also write A ≤ B for

A ∈ Rn×m , B ∈ Rn×m if entries ai j ≤ bi j for all ordered pairs (i , j ). Finally, diag(A1, . . . , An) is a

block-diagonal matrix with matrix entries A1, . . . , An on its diagonal.

2 In this paper, all real matrices are defined over the field of complex numbers.
3 We follow Definition 4.4.4 in [11].
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We now concisely state the graph theoretical notation used in this paper, which is based

on [12]. In particular, consider a fixed (i.e., time-invariant) directed graph G = (V ,E), where

V =
{

v1, . . . , vN

}

is a nonempty finite set of N nodes and E ⊂ V ×V is a set of edges. Each

node in V corresponds to a follower agent. There is an edge rooted at node v j and ended at

vi (i.e., (v j , vi ) ∈ E) if and only if vi receives information from v j . A = [ai j ] ∈ RN×N denotes

the adjacency matrix, which describes the graph structure; that is, ai j > 0 ⇔ (v j , vi ) ∈ E and

ai j = 0 otherwise. Repeated edges and self loops are not allowed; that is, ai i = 0, ∀i ∈N with

N =
{

1, . . . , N
}

. The set of neighbors of node vi is denoted as Ni =
{

j | (v j , vi ) ∈ E
}

. In-degree

matrix is defined by D = diag(d1, . . . ,dN ) with di =
∑

j∈Ni
ai j . A directed path from node vi to

node v j is a sequence of successive edges in the form
{

(vi , vp ), (vp , vq ), . . . , (vr , v j )
}

. If vi = v j ,

then the directed path is called a loop. A directed graph is said to have a spanning tree if there

is a root node such that it has directed paths to all other nodes in the graph. A fixed augmented

directed graph is defined as Ḡ = (V̄ , Ē), where V̄ =
{

v0, v1, . . . , vN

}

is the set of N +1 nodes, in-

cluding leader node v0 and all nodes in V , and Ē = E∪E ′ is the set of edges with E ′ consisting of

some edges in the form of (v0, vi ), i ∈N .

The concept of internal model introduced next slightly modifies Definition 1.22 and Remark

1.24 in [8].

Definition 1. Given any square matrix A0, a triple of matrices (M1, M2, M3) is said to incor-

porate a p-copy internal model of the matrix A0 if

M1 = T

[

S1 S2

0 G1

]

T −1, M2 = T

[

S3

G2

]

, M3 = T

[

S4

0

]

, (1)

or

M1 =G1, M2 =G2, M3 = 0, (2)

where Sl , l = 1,2,3,4, is any matrix with an appropriate dimension, T is any nonsingular matrix

with an appropriate dimension, the zero matrix in M3 has as many rows as those of G1, and

G1 = diag(β1, . . . ,βp ), G2 = diag(σ1, . . . ,σp ),

where for l = 1, . . . , p, βl ∈Rsl×sl and σl ∈R sl satisfy the following conditions:

a) The pair (βl ,σl ) is controllable.

b) The minimal polynomial of A0 is equal to the characteristic polynomial of βl .

4



3. Problem Formulation

Consider a system of N (follower) agents with heterogeneous linear time-invariant dynamics

subject to external disturbances over a fixed directed communication graph topology G. The

dynamics of agent i ∈N is given by

ẋi (t ) = Ai xi (t )+Bi ui (t )+δi (t ), xi (0)= xi 0, t ≥ 0,

yi (t ) = Ci xi (t )+Di ui (t ),

with state xi (t ) ∈ Rni , input ui (t ) ∈ Rmi , output yi (t ) ∈ Rp , and external disturbance δi (t ) =

Eδi
δ(t ) ∈Rni , whereδ(t ) ∈Rqδ is a solution to the unknown disturbance dynamics with an initial

condition. In addition, the reference trajectory to be tracked is denoted by y0(t ) = Rrr0(t ) ∈ Rp ,

where r0(t ) ∈Rqr is a solution to the unknown leader dynamics with an initial condition.

Let ω(t ) , [r T
0 (t ),δT(t )]T ∈ Rq be the solution of the unknown exosystem, where q = qr + qδ.

Instead of assuming that the exosystem has an unforced linear time-invariant dynamics with

a known system matrix (e.g., see [1, 3, 5]), we consider that the exosystem has an unknown

dynamics. From this perspective, the exosystem can represent any (e.g., linear or nonlinear)

dynamics provided that its solution is unique and satisfies the conditions given later in Assump-

tions 1 and 2.

Define Ei , [0 Eδi
] and R , [Rr 0]. Furthermore, let ei (t ) , yi (t )− y0(t ) be the tracking error.

We can then write the dynamics of each agent and its tracking error as

ẋi (t ) = Ai xi (t )+Bi ui (t )+Eiω(t ), xi (0) = xi 0, t ≥ 0, (3)

ei (t ) = Ci xi (t )+Di ui (t )−Rω(t ). (4)

In this paper, the tracking error ei (t ) is available to a nonempty proper subset of agents4. In

particular, if node vi observes the leader node v0, then there exists an edge (v0, vi ) with weight-

ing gain ki > 0; otherwise ki = 0. Each agent has also access to the relative output error; that is,

yi (t )− y j (t ) for all j ∈ Ni . Similar to [5], the local virtual tracking error can be defined as

evi (t ) ,
1

di +ki

[

∑

j∈Ni

ai j

(

yi (t )− y j (t )
)

+ki

(

yi (t )− y0(t )
)

]

. (5)

4 If all agents observe the leader, decentralized controllers can be designed for each agent even though the dis-

tributed controllers proposed here are still applicable.
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Now, we define three classes of distributed control laws based on additional available infor-

mation to each agent:

1) Dynamic State Feedback. If each agent has full access to its own state xi (t ), then the dy-

namic state feedback control law is given by

ui (t ) = K1i xi (t )+K2i zi (t ), (6)

żi (t ) = G1i zi (t )+G2i evi (t ), zi (0) = zi 0, t ≥ 0, (7)

where zi (t ) ∈ Rnz1i is the controller state and the quadruple (K1i ,K2i ,G1i ,G2i ) is specified in

Section 4.1.

2) Dynamic Output Feedback with Local Measurement. If each agent has local measure-

ment output ymi (t ) ∈Rpi of the form

ymi (t ) = Cmi xi (t )+Dmi ui (t ), (8)

then the dynamic output feedback control law with local measurement is given by

ui (t ) = K̄i zi (t ), (9)

żi (t ) = M1i zi (t )+M2i evi (t )+M3i ymi (t ), zi (0) = zi 0, t ≥ 0, (10)

where zi (t ) ∈ Rnz2i is the controller state and the quadruple (K̄i , M1i , M2i , M3i ) is specified in

Section 4.2.

3) Dynamic Output Feedback. If each agent does not have additional information; that is,

the local virtual tracking error evi (t ) is the only available information to it, then the dynamic

output feedback control law is given by

ui (t ) = K̄i zi (t ), (11)

żi (t ) = M1i zi (t )+M2i evi (t ), zi (0)= zi 0, t ≥ 0, (12)

where zi (t ) ∈Rnz2i is the controller state and the triple (K̄i , M1i , M2i ) is specified in Section 4.3.

We now introduce the first and the second assumptions before defining the problem.

Assumption 1. A0 ∈Rq×q has no eigenvalues with negative real parts.

Assumption 2. There exists κ> 0 such that

‖A0ω(t )− ω̇(t )‖2 ≤ κ<∞, ∀t ≥ 0,
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where ω̇(t ) is a piecewise continuous function5 of t .

Assumption 1 is standard in linear output regulation theory (e.g., see Remark 1.3 in [8]). As-

sumption 2 is required to show the ultimate boundedness of the tracking error and it automat-

ically holds if the exosystem has an unforced linear time-invariant dynamics with the system

matrix A0. Note that these assumptions do not imply the exact knowledge of the exosystem. We

refer to Remarks 2 and 3 for further discussions and Section 5 for illustrative examples on this

point.

Based on the definition of the linear cooperative output regulation problem in [1, 3], the prob-

lem considered in this paper is defined as follows.

Definition 2. Given the system in (3) and (4) together with the exosystem, which satisfies

Assumptions 1 and 2, and the fixed augmented directed graph Ḡ, find a distributed control law

of the form (6) and (7), or (9) and (10), or (11) and (12) such that:

a) The resulting closed-loop system matrix is Hurwitz.

b) The tracking error ei (t ) is ultimately bounded with ultimate bound b for all initial condi-

tions of the closed-loop system and for all i ∈N ; that is, there exists b > 0 and for each initial

condition of the closed-loop system, there is T ≥ 0 such that ‖ei (t )‖2 ≤ b, ∀t ≥ T, ∀i ∈N .

c) If limt→∞ A0ω(t )− ω̇(t ) = 0, then for all initial conditions of the closed-loop system

limt→∞ ei (t ) = 0, ∀i ∈N .

This paper makes the following additional assumptions to solve this problem.

Assumption 3. The fixed augmented directed graph Ḡ has a spanning tree with the root node

being the leader node.

Assumption 4. The pair (Ai ,Bi ) is stabilizable for all i ∈N .

Assumption 5. For all λ ∈σ(A0),

rank

[

Ai −λIni
Bi

Ci Di

]

= ni +p, ∀i ∈N .

Assumption 6. As in (2), the triple (G1i ,G2i ,0) incorporates a p-copy internal model of A0 for

all i ∈N .

Assumption 7. The pair (Ai ,Cmi ) is detectable for all i ∈N .
5 We follow the definition given in page 650 of [13].
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Assumption 8. The pair (Ai ,Ci ) is detectable for all i ∈N .

Assumption 3 is natural to solve the stated problem (e.g., see Remark 3.2 in [12]). Similar

to Assumption 1, Assumptions 4-8 are standard in linear output regulation theory (e.g., see

Chapter 1 of [8]). We use Assumptions 1-6 for dynamic state feedback. To utilize some results

from dynamic state feedback in the absence of full state information, each agent requires the

estimation of its own state. For this purpose, Assumption 7 and Assumption 8 are included for

dynamic output feedback with local measurement and dynamic output feedback, respectively.

4. Solvability of the Problem

For the three different distributed control laws introduced in Section 3, this section inves-

tigates the solvability of the problem given in Definition 2. Specifically, the approach in this

section is twofold. First, the property a) of Definition 2 is assumed and it is shown, under mild

conditions, that the properties b) and c) of Definition 2 are satisfied. Second, an agent-wise lo-

cal sufficient condition (i.e., distributed criterion) is provided for the property a) of Definition

2 (i.e., the stability of the closed-loop system matrix) under standard assumptions.

Before studying the solvability of the problem for each distributed control law, we now present

some definitions that are used throughout this section to express the closed-loop systems in

compact forms, some results related to the communication graph topology, and a key lemma

about the solvability of matrix equations, which play a crucial role on the solvability of the prob-

lem.

Define the following matrices:

Φ, diag(Φ1, . . . ,ΦN ), Φ= A,B ,C ,D,E ; Φm , diag(Φm1, . . . ,ΦmN ), Φ=C ,D;

Kl , diag(Kl 1, . . . ,Kl N ), l = 1,2; A0a , IN ⊗ A0, and Ra , IN ⊗R .

Further, let x(t ) , [xT
1 (t ), . . . , xT

N (t )]T ∈ Rn̄ , where n̄ =
∑N

i=1 ni ; e(t ) , [eT
1 (t ), . . . ,eT

N (t )]T ∈ RNp ,

ev(t ) , [eT
v1(t ), . . . ,eT

vN (t )]T ∈RNp , and ωa(t ) , 1N ⊗ω(t ) ∈RNq .

Observing yi (t )−y j (t ) = ei (t )−e j (t ) and recalling di =
∑

j∈Ni
ai j , (5) can be equivalently writ-

ten as

evi (t ) = ei (t )−
1

di +ki

∑

j∈Ni

ai j e j (t ). (13)

Let F , diag
(

1
d1+k1

, . . . , 1
dN+kN

)

and W , (IN −FA)⊗ Ip . Here, it should be noted that di +ki >

8



0, ∀i ∈N by Assumption 3; hence, F is well-defined. From (13), we have

ev(t ) = We(t ). (14)

Similar to Lemma 3.3 in [12], we next present the following lemma for IN −FA.

Lemma 1. Under Assumption 3, IN −FA is nonsingular. In addition, all its eigenvalues have

positive real parts.

Proof. Under Assumption 3, IN −FA satisfies the conditions of the theorem in [14]. Thus, it

is nonsingular. Since the singularity is eliminated, all the eigenvalues of IN −FA have positive

real parts by the Gershgorin circle theorem (e.g., see Fact 4.10.17 in [11]). �

Remark 1. Since IN −FA is nonsingular under Assumption 3, so isW by Proposition 7.1.7 in

[11]. Then, it is clear from (14) that ei (t ) is bounded for all i ∈N if and only if evi (t ) is bounded

for all i ∈N ; limt→∞ ei (t ) = 0, ∀i ∈N if and only if limt→∞ evi (t ) = 0, ∀i ∈N .

We now investigate the spectral radius of FA.

Lemma 2. Under Assumption 3, ρ(FA) < 1.

Proof. By Lemma 1, all the eigenvalues of IN −FA have positive real parts under Assumption

3. This directly implies from Fact 6.2.1.4 in [15] that the leading principal minors of IN −FA

are all positive as IN −FA is a square matrix whose off-diagonal elements are all nonpositive.

Since FA is a nonnegative square matrix and the leading principal minors of IN −FA are all

positive, ρ(FA) < 1 from Lemma 6.2.1.8 in [15]. �

Finally, we introduce the key lemma that extends the field of application of Lemma 1.27 in [8]

to heterogeneous (in dynamics and dimension) linear time-invariant multiagent systems over

general fixed directed communication graph topologies.

Lemma 3.6 Let Assumptions 1 and 3 hold. Suppose the triple (M1, M2, M3) incorporates an

N p-copy internal model of A0a. If

Ac ,

[

Â B̂

M2WĈ +M3Ĉm M1 +M2WD̂ +M3D̂m

]

6 To investigate the solvability of a matrix equation that is obtained for a different problem setting with the dis-

tributed dynamic state feedback control law, the authors of [16] utilized the same logic in the proof of Lemma

3 (see Section 3.1 in [16]).
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is Hurwitz, where Â, B̂ , Ĉ , Ĉm, D̂, and D̂m are any matrices with appropriate dimensions, then

the matrix equations

X A0a = ÂX + B̂ Z + Ê , (15)

Z A0a = M1Z +M2W(Ĉ X + D̂ Z + F̂ )+M3(ĈmX + D̂mZ ), (16)

have unique solutions X and Z for any matrices Ê and F̂ of appropriate dimensions. Further-

more, X and Z satisfy

0 = Ĉ X + D̂ Z + F̂ . (17)

In other words, the conclusion is that the matrix equations

Xc A0a = AcXc +Bc, (18)

0 = CcXc +Dc, (19)

have a unique solution Xc, where

Xc =
[

X

Z

]

, Bc =
[

Ê

M2WF̂

]

, Cc =
[

Ĉ D̂
]

, Dc = F̂ .

Proof. Note that (15) and (16) (respectively, (17)) can be equivalently written as (18) (respec-

tively, (19)). Note also that σ(A0a) = σ(A0). Since Assumption 1 holds and Ac is Hurwitz, A0a

and Ac have no eigenvalues in common. Thus, the Sylvester equation in (18) has a unique so-

lution Xc = [X T Z T]T by the first part of Proposition A.2 in [8]. In addition, we show that X and

Z also satisfy (17). To this end, let γ̄, Ĉ X + D̂ Z + F̂ . Since the triple (M1, M2, M3) incorporates

an N p-copy internal model of A0a, it has the form given by (1) or (2). If it takes the form (1),

let [θ̂T θ̄T]T , T −1Z , where θ̄ has as many rows as those of G1. Premultiplying (16) by T −1 and

using the foregoing definitions, we obtain

θ̄A0a = G1θ̄+G2Wγ̄. (20)

Note that if the triple (M1, M2, M3) takes the form (2), (16) already satisfies (20), where θ̄ = Z .

Let γ,Wγ̄; then, (20) is in the form of (1.74) in [8]. Hence, γ = 0 by the proof of Lemma 1.27

in [8]. We know from Remark 1 that W is nonsingular under Assumption 3. As a consequence,

γ= 0 implies γ̄= 0. This completes the proof of this lemma. �
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4.1. Dynamic State Feedback

Let z(t ) , [zT
1 (t ), . . . , zT

N (t )]T ∈ Rn̄z1 , where n̄z1 =
∑N

i=1 nz1i
, and Gl , diag(Gl 1, . . . ,Gl N ), l = 1,2.

Inserting (6) into (3) and (4), and using the above definitions, (3), (7), and (4) can be compactly

written as

ẋ(t ) = (A+BK1)x(t )+BK2z(t )+Eωa(t ), x(0) = x0, t ≥ 0, (21)

ż(t ) = G1z(t )+G2ev(t ), z(0) = z0, t ≥ 0, (22)

e(t ) = (C +DK1)x(t )+DK2z(t )−Raωa(t ). (23)

Next, insert (23) into (14) and replace the obtained expression with the one in (22). Define

xg(t ) , [xT(t ), zT(t )]T ∈Rn̄+n̄z1 . Then, the closed-loop system of (3)-(7) becomes

ẋg(t ) = Agxg(t )+Bgωa(t ), xg(0) = xg0, t ≥ 0, (24)

e(t ) = Cgxg(t )+Dgωa(t ), (25)

where

Ag =
[

A+BK1 BK2

G2W(C +DK1) G1 +G2WDK2

]

, Bg =
[

E

−G2WRa

]

,

Cg =
[

C +DK1 DK2

]

, Dg =−Ra.

Theorem 1. Let Assumptions 1-3 and 6 hold. If Ag is Hurwitz, then the distributed dynamic

state feedback control given by (6) and (7) solves the problem in Definition 2.

Proof. By the definition of A0a, the minimal polynomials for A0a and A0 are the same. Thus,

the triple (G1,G2,0) incorporates an N p-copy internal model of A0a under Assumption 6. Let

(M1, M2, M3), (G1,G2,0). Let also Â , A+BK1, B̂ , BK2, Ĉ ,C +DK1, Ĉm , 0, D̂ ,DK2, D̂m ,

0, Ê , E , and F̂ , −Ra. Then, the quadruple (Ag,Bg,Cg,Dg) takes the form of (Ac,Bc,Cc,Dc)

in Lemma 3. In addition, Ag is Hurwitz and Assumptions 1 and 3 hold. Hence, Lemma 3 is

applicable and it implies that the matrix equations

Xg A0a = AgXg +Bg, (26)

0 = CgXg +Dg, (27)

have a unique solution Xg. We also refer to Appendix A for additional discussions on the solv-

ability of (26) and (27).
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Under Assumption 2, ‖A0aωa(t )−ω̇a(t )‖2 ≤
p

Nκ, ∀t ≥ 0 since ‖A0aωa(t )−ω̇a(t )‖2
2 = N‖A0ω(t )

− ω̇(t )‖2
2. Let x̄g(t ) , xg(t )− Xgωa(t ). Then, using the definition of x̄g(t ) and (26) and (27), we

can rewrite (24) and (25) as

˙̄xg(t ) = Agx̄g(t )+Xg(A0aωa(t )− ω̇a(t )), x̄g(0)= x̄g0, t ≥ 0, (28)

e(t ) = Cgx̄g(t ). (29)

Now, the solution of (28) can be written as

x̄g(t ) = e Agt x̄g0 +
∫t

0
e Ag(t−τ) Xg(A0aωa(τ)− ω̇a(τ))dτ.

Since Ag is Hurwitz, there exist c > 0 andα> 0 such that ‖e Agt‖2 ≤ ce−αt , ∀t ≥ 0 (e.g., see Lecture

8.3 in [17]). Owing to this bound and the bound on ‖A0aωa(t )− ω̇a(t )‖2, we have the following

inequality

‖x̄g(t )‖2 ≤ ce−αt‖x̄g0‖2 +
c‖Xg‖2

α

p
Nκ, ∀t ≥ 0.

Using the fact ‖ei (t )‖2 ≤ ‖e(t )‖2, ∀i ∈N and observing ‖e(t )‖2 ≤ ‖Cg‖2‖x̄g(t )‖2 from (29), we

arrive

‖ei (t )‖2 ≤ ce−αt‖Cg‖2‖x̄g0‖2 +b′, ∀t ≥ 0, ∀i ∈N ,

where b′ = c‖Cg‖2‖Xg‖2

p
Nκα−1. For a given ǫ> 0, we have either c‖Cg‖2‖x̄g0‖2 > ǫ or

c‖Cg‖2‖x̄g0‖2 ≤ ǫ. In the former case, it can be readily shown that ce−αt‖Cg‖2‖x̄g0‖2 ≤ ǫ, ∀t ≥ T

with T =α−1ln
(

c‖Cg‖2‖x̄g0‖2

ǫ

)

> 0. In the latter case, the foregoing inequality trivially holds for all

t ≥ 0. Thus, ei (t ) is ultimately bounded with the ultimate bound b , b′+ ǫ for all x̄g0, which is

also true for all xg0, and for all i ∈N .

If limt→∞ A0ω(t )− ω̇(t ) = 0, then limt→∞ A0aωa(t )− ω̇a(t ) = 0. Since Ag is Hurwitz and the

system in (28) is linear time-invariant when A0aωa(t )−ω̇a(t ) is viewed as an input to the system,

(28) is input-to-state stable with respect to this piecewise continuous input (e.g., see Chapter 4.9

in [13]). Thus, limt→∞ A0aωa(t )− ω̇a(t ) = 0 implies limt→∞ x̄g(t ) = 0 for all x̄g0 (e.g., see Exercise

4.58 in [13]). Finally, it follows from (29) that for all xg0 limt→∞ ei (t ) = 0, ∀i ∈N . �

Remark 2. The ultimate bound b of the tracking error for each agent is associated with the

bound κ in Assumption 2. Specifically, as κ decreases (respectively, increases), b decreases (re-

spectively, increases). To elucidate the role of Assumptions 1 and 2 in practice, we consider the

following possible scenarios:
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a) When the piecewise continuity and boundedness of ω̇(t ) are the only information that

is available to a control designer, the triple (0, Ip ,0) incorporating a p-copy internal model of

A0 = 0 is quite natural; hence, (7) becomes a distributed integrator. Moreover, Xg in b can be

explicitly expressed in terms of Ag and Bg; that is, Xg =−A−1
g Bg by (26).

b) When the piecewise continuity and boundedness of ω̇(t ), the boundedness of ω(t ), and

some frequencies in ω(t ) are available to a control designer, the triple (G1i ,G2i ,0) incorporating

a p-copy internal model of A0, which includes these frequencies and zero eigenvalues, is an

alternative to the pure distributed integrator.

Remark 3. As it is shown in Theorem 1, asymptotic synchronization is achieved when

limt→∞ A0ω(t )− ω̇(t ) = 0. We now provide sufficient conditions to check this condition as fol-

lows7. If one of the following conditions holds

a) ω̇(t ) = A0ω(t ), ω(0) =ω0, t ≥ 0;

b) limt→∞ e A0tω0−ω(t ) = 0, where ω0 =ω(0), and A0e A0tω0−ω̇(t ) is uniformly continuous on

[0,∞),

then limt→∞ A0ω(t )− ω̇(t ) = 0. Note that a) clearly implies b). From Barbalat’s lemma given by

Lemma 8.2 in [18], b) implies that limt→∞ A0e A0tω0 − ω̇(t ) = 0. Thus, limt→∞ A0ω(t )− ω̇(t ) =

A0 limt→∞ω(t )− e A0tω0 + limt→∞ A0e A0tω0 − ω̇(t ) = 0. In general, asymptotic synchronization

results in the literature (e.g., see [1, 3, 5]) are obtained under the condition a). It is clear that this

paper covers all class of functions generated under the condition a).

To obtain an agent-wise local sufficient condition assuring the property a) of Definition 2 un-

der some standard assumptions, let ξi (t ), [xT
i

(t ), zT
i

(t )]T ∈Rni+nz1i , µi (t ) , 1
di+ki

∑

j∈Ni
ai j e j (t ),

Āi ,

[

Ai 0

G2i Ci G1i

]

, B̄i ,

[

Bi

G2i Di

]

, Bfi ,

[

0

−G2i

]

,

and C̄i , [Ci 0]. Furthermore, consider (3), (7), (13), and (4) when ω(t ) ≡ 0. We now have

ξ̇i (t ) = Āiξi (t )+ B̄i ui (t )+Bfiµi (t ), ξi (0) = ξi 0, t ≥ 0, (30)

ei (t ) = C̄iξi (t )+Di ui (t ). (31)

7 If A0 = 0, one should read limt→∞ ω̇(t) = 0 in place of limt→∞ A0ω(t)− ω̇(t) = 0; hence, ω(t) ≡ω⋆ (ω⋆ is finite)

in place of a), and limt→∞ω(t)=ω⋆ and ω̇(t) is uniformly continuous on [0,∞) in place of b).
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Next, define the matrices

Afi ,

[

Ai +Bi K1i Bi K2i

G2i (Ci +Di K1i ) G1i +G2i Di K2i

]

,

Cfi ,
[

Ci +Di K1i Di K2i

]

.

Using (6), (30) and (31) can be written as

ξ̇i (t ) = Afiξi (t )+Bfiµi (t ), ξi (0) = ξi 0, t ≥ 0, (32)

ei (t ) = Cfiξi (t ). (33)

Let, in addition, Ψf , diag(Ψf1, . . . ,ΨfN ), Ψ = A,B ,C and ξ(t ) , [ξT
1 (t ), . . . ,ξT

N (t )]T. Then, (32)

and (33) can be put into the compact form given by

ξ̇(t ) = Afξ(t )+Bf(FA⊗ Ip)w̃(t ), ξ(0) = ξ0, t ≥ 0, (34)

z̃(t ) = Cfξ(t ), (35)

where e(t ) = w̃(t ) = z̃(t ). Observe that the system in (34) and (35) takes the form of (12) in [3].

Therefore, one may think of resorting Theorem 2 in [3] at first sight. However, the statement of

Theorem 2 in [3] is not correct as it is written; we refer to Appendix B for a counterexample.

This paragraph uses the notation and the terminology from [3]. Readers are referred to (12),

Theorem 1, Theorem 2, and Lemma 8 in [3]. It should be noted that Theorem 2 relies on Theo-

rem 1 and this theorem is derived by means of Theorem 11.8 and Lemma 11.2 in [19]. According

to the mentioned results and Chapter 5.3, which is devoted to the notion of internal stability for

the system of interest, in [19], it is clear that the following condition should be added to the

hypotheses of Theorem 1: Let the realization of T (s) given by (12) be stabilizable and detectable.

With this modification, not only the theoretical gap in Theorem 1 but also the one in Theorem 2

is filled. However, a simple point in the proof of Theorem 2 still needs to be clarified. The spec-

tral radius of T̃ ( jω) in the proof of Theorem 2 is upper bounded by applying Lemma 8. Since

Lemma 8 is applied, we infer that diag(‖T1( jω)‖, . . . ,‖TN ( jω)‖) is regarded as a positive definite

diagonal matrix, but its proof is not given. The foregoing diagonal matrix is necessarily positive

semidefinite; hence, we only question8 whether Ti (s) = 0 for some i . Instead of investigating

the corresponding realizations, we extend Lemma 8 to positive semidefinite diagonal matrices

as follows.
8 Considering Kalman decomposition (e.g., see Theorem 16.3 in [17]), one can easily construct a linear time-

invariant system with Hurwitz system matrix, nonzero input and output matrices, and zero direct feed-

feedthrough matrix such that its transfer matrix is zero.
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Lemma 4. Let Q ∈ Rn×n be a nonnegative matrix. If Λ ∈ Rn×n is a positive semidefinite diag-

onal matrix, then ρ(ΛQ) ≤ ρ(Λ)ρ(Q).

Proof. Let Λ , diag(λ1, . . . ,λn) be positive semidefinite. If Λ = 0, the inequality holds triv-

ially. We therefore assume that there exists a λi > 0 for some i ; hence, ρ(Λ) > 0. Let Λ̄ ,

diag(λ̄1, . . . , λ̄n), where λ̄i = ρ(Λ) if λi = 0, λ̄i = λi otherwise. By construction, Λ ≤ Λ̄, ρ(Λ) =

ρ(Λ̄), and Λ̄ is a positive definite diagonal matrix. Since Λ≤ Λ̄ and Q is nonnegative, ΛQ ≤ Λ̄Q.

By the corollary in page 27 of [20], ρ(ΛQ) ≤ ρ(Λ̄Q). Applying Lemma 8 in [3] to Λ̄Q, we also have

ρ(Λ̄Q) ≤ ρ(Λ̄)ρ(Q). Since ρ(Λ) = ρ(Λ̄), we establish the desired inequality. �

It is well known that the system in (34) and (35) is stabilizable and detectable if Af is Hurwitz.

Thus, the new condition is satisfied if Afi is Hurwitz for all i ∈N .

Remark 4. Assumptions 4-6 ensure the stabilizability of the pair (Āi , B̄i ) for all i ∈ N by

Lemma 1.26 in [8]. Therefore, K1i and K2i can always be chosen such that Afi is Hurwitz for

all i ∈N .

Let gfi (s),Cfi (sI −Afi )−1Bfi . We now state the following theorem for the dynamic state feed-

back case.

Theorem 2. Let Assumption 3 hold and Afi be Hurwitz for all i ∈N . If

‖gfi‖∞ρ(FA) < 1, ∀i ∈N , (36)

where ‖gfi‖∞ is the H∞ norm of gfi (s), then Ag is Hurwitz.

Proof. It follows from Theorem 2 in [3] and the above discussion. �

Remark 5. The inequality given by (36) is an agent-wise local sufficient condition; that is, it

paves the way for independent controller design for each agent. For the connection between

this condition and an algebraic Riccati equation (respectively, linear matrix inequality), we refer

to Lemma 9 in [3] (respectively, Theorem 6 in [5]). Moreover, we know from Lemma 2 that

ρ(FA) < 1 under Assumption 3. Therefore, we can restate Theorem 2 by replacing (36) with

‖gfi‖∞ ≤ 1, ∀i ∈N . In this statement, although the condition becomes more conservative, it

is not only agent-wise local but also graph-wise local except Assumption 3. Finally, it should

be noted that if the graph G considered in Theorem 2 contains no loop (i.e., acyclic), then the

nodes in G can be relabelled such that i > j when (v j , vi ) ∈ E . Thus, A is similar to a lower

triangular matrix with zero diagonal entries, so is FA. This implies that ρ(FA) = 0; hence,
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Theorem 2 does not require the condition given by (36) anymore. In terms of being agent-wise

and graph-wise local, this special case is consistent with the result in [21].

4.2. Dynamic Output Feedback with Local Measurement

Let zi (t ) , [x̂T
i

(t ), z̄T
i

(t )]T ∈ Rnz2i , where x̂i (t ) is the estimate of the state xi (t ), K̄i , [K1i K2i ],

and (9) have the form given by

ui (t ) = K1i x̂i (t )+K2i z̄i (t ). (37)

To estimate the state xi (t ), the following local Luenberger observer is employed

˙̂xi (t ) = Ai x̂i (t )+Bi ui (t )+Hi

(

ymi (t )−Cmi x̂i (t )−Dmi ui (t )
)

, x̂i (0) = x̂i 0, t ≥ 0, (38)

where Hi is the observer gain matrix. Using (37), we can write (38) as

˙̂xi (t ) =
(

Ai +Bi K1i −Hi (Cmi +Dmi K1i )
)

x̂i (t )+Hi ymi (t )+ (Bi −Hi Dmi )K2i z̄i (t ),

x̂i (0)= x̂i 0, t ≥ 0. (39)

Let also z̄i (t ) evolve according to the dynamics given by

˙̄zi (t ) = G1i z̄i (t )+G2i evi (t ), z̄i (0) = z̄i 0, t ≥ 0. (40)

By (39) and (40), one can define the triple (M1i , M2i , M3i ) in (10) as

M1i ,

[

Ai +Bi K1i −Hi (Cmi +Dmi K1i ) (Bi −Hi Dmi )K2i

0 G1i

]

,

M2i ,

[

0

G2i

]

, M3i ,

[

Hi

0

]

. (41)

Using (8) and (37), (38) can be rewritten as

˙̂xi (t ) = Hi Cmi xi (t )+ (Ai +Bi K1i −Hi Cmi )x̂i (t )+Bi K2i z̄i (t ), x̂i (0) = x̂i 0, t ≥ 0. (42)

Next, define x̂(t ) , [x̂T
1 (t ), . . . , x̂T

N (t )]T, z̄(t ) , [z̄T
1 (t ), . . . , z̄T

N (t )]T, and H , diag(H1, . . . , HN ). In-

serting (37) into (3) and (4), using (42), (40), and the above definitions, (3), (10), and (4) can be

compactly written as

ẋ(t ) = Ax(t )+BK1 x̂(t )+BK2z̄(t )+Eωa(t ), x(0) = x0, t ≥ 0, (43)

˙̂x(t ) = HCmx(t )+ (A+BK1 −HCm)x̂(t )+BK2 z̄(t ), x̂(0) = x̂0, t ≥ 0, (44)

˙̄z(t ) = G1 z̄(t )+G2ev(t ), z̄(0) = z̄0, t ≥ 0, (45)

e(t ) = C x(t )+DK1x̂(t )+DK2 z̄(t )−Raωa(t ). (46)
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Now, insert (46) into (14) and replace the obtained expression with the one in (45). Let η(t ) ,

[xT(t ), x̂T(t ), z̄T(t )]T ∈Rn̄+n̄z2 , where n̄z2 =
∑N

i=1 nz2i
. Then, the closed-loop system of (3)-(5) and

(8)-(10) can be represented as

η̇(t ) = Aηη(t )+Bηωa(t ), η(0) = η0, t ≥ 0, (47)

e(t ) = Cηη(t )+Dηωa(t ), (48)

where

Aη =





A BK1 BK2

HCm A+BK1 −HCm BK2

G2WC G2WDK1 G1 +G2WDK2



 ,

Bη =





E

0

−G2WRa



 , Cη =
[

C DK1 DK2

]

, Dη =−Ra.

For the following result, we define AHi , Ai − Hi Cmi and AH , A − HCm. By Assumption 7,

Hi can always be chosen such that AHi is Hurwitz for all i ∈N .

Theorem 3. Let Assumptions 1-3 and 6 hold. If Ag is Hurwitz and AHi is Hurwitz for all i ∈N ,

then the distributed dynamic output feedback control with local measurement given by (9) and

(10) solves the problem in Definition 2.

Proof. Let K , [K1 K2], Â , A, B̂ , BK , Ĉ , C , Ĉm , Cm, D̂ , DK , D̂m , DmK , Ê , E ,

F̂ ,−Ra,

M1 ,

[

A+BK1 −H(Cm +DmK1) (B −HDm)K2

0 G1

]

,

M2 ,

[

0

G2

]

, M3 ,

[

H

0

]

. (49)

Now, observe that the quadruple (Aη,Bη,Cη,Dη) takes the form of (Ac,Bc,Cc,Dc) in Lemma 3.

Recall from the proof of Theorem 1 that the triple (G1,G2,0) incorporates an N p-copy internal

model of A0a under Assumption 6. This clearly implies that the triple (M1, M2, M3) also incor-

porates an N p-copy internal model of A0a. It is given that Assumptions 1 and 3 hold. In order to

apply Lemma 3, we need to show that Aη is Hurwitz under the conditions that Ag is Hurwitz and

AHi is Hurwitz for all i ∈N . To this end, the following elementary row and column operations

are performed on Aη. First, subtract row 1 from row 2 and add column 2 to column 1. Second,
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interchange rows 2 and 3, and interchange columns 2 and 3. Thus, we obtain the matrix given

by

Āη ,





A+BK1 BK2 BK1

G2W(C +DK1) G1 +G2WDK2 G2WDK1

0 0 AH



.

Considering the performed elementary row and column operations, one can verify that Aη

is similar to Āη; hence, they have the same eigenvalues. Since Āη is upper block triangular,

σ(Āη) = σ(Ag)∪σ(AH). Note that AH is Hurwitz as AHi is Hurwitz for all i ∈N . It is also given

that Ag is Hurwitz. Thus, Aη is Hurwitz. Then, the matrix equations

XηA0a = AηXη+Bη,

0 = CηXη+Dη,

have a unique solution Xη by Lemma 3.

Following similar steps to those in the proof of Theorem 1, it can be shown under Assumption

2 that ei (t ) is ultimately bounded with an ultimate bound for all η0 and for all i ∈ N . If, in

addition, limt→∞ A0ω(t )− ω̇(t ) = 0, then for all η0 limt→∞ ei (t ) = 0, ∀i ∈N . �

Remark 6. Since the condition on AHi is both agent-wise and graph-wise local, obtaining an

agent-wise local sufficient condition that ensures the property a) of Definition 2 boils down to

finding an agent-wise local sufficient condition, under standard assumptions, for the stability

of Ag, which is already given in Theorem 2.

4.3. Dynamic Output Feedback

Define zi (t ), K̄i , and ui (t ) as in Section 4.2; that is, (11) has the form (37). Since evi (t ) is

the only available information to each agent, the following distributed observer is considered

instead of (39) to estimate the state xi (t )

˙̂xi (t ) =
(

Ai +Bi K1i −Li (Ci +Di K1i )
)

x̂i (t )+Li evi (t )+ (Bi −Li Di )K2i z̄i (t ),

x̂i (0) = x̂i 0, t ≥ 0, (50)

where Li is the observer gain matrix. Let z̄i (t ) satisfy the dynamics in (40). We can now define

the pair (M1i , M2i ) in (12) by replacing the triple (Hi ,Cmi ,Dmi ) in M1i (respectively, the zero

matrix in M2i ) given by (41) with (Li ,Ci ,Di ) (respectively, Li ).
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Define x̂(t ) and z̄(t ) as in the previous subsection and L , diag(L1, . . . ,LN ). Inserting (37) into

(3) and (4), using (50), (40), and the above definitions, (3), (12), and (4) can be expressed by (43),

˙̂x(t ) =
(

A+BK1 −L(C +DK1)
)

x̂(t )+ (B −LD)K2z̄(t )+Lev(t ), x̂(0) = x̂0, t ≥ 0, (51)

(45), and (46). Next, insert (46) into (14) and replace the obtained expression not only with the

one in (45) but also with the one in (51). In addition, define η(t ) as in Section 4.2. Then, the

closed-loop system of (3)-(5), (11), and (12) can be expressed by (47) and (48) if the second row

of Aη is replaced with

[

LWC A+BK1 −L(C +DK1 −WDK1) (B −LD +LWD)K2

]

and the second row of Bη is replaced with −LWRa.

Theorem 4. Let Assumptions 1-3 and 6 hold. If the resulting Aη is Hurwitz, then the dis-

tributed dynamic output feedback control given by (11) and (12) solves the problem in Defini-

tion 2.

Proof. Define K , Â, B̂ , Ĉ , D̂ , Ê , and F̂ as in the proof of Theorem 3. Let Ĉm , 0, D̂m , 0, and

M3 , 0. Define also the pair (M1, M2) by replacing the triple (H ,Cm,Dm) in M1 (respectively, the

zero matrix in M2) given by (49) with (L,C ,D) (respectively, L). Then, observe that the resulting

quadruple (Aη,Bη,Cη,Dη) takes the form of (Ac,Bc,Cc,Dc) in Lemma 3. By the same argument

in the proof of Theorem 3, the resulting triple (M1, M2, M3) incorporates an N p-copy internal

model of A0a under Assumption 6. Since, in addition, Assumptions 1-3 hold and Aη is Hurwitz,

the rest of the proof can be completed by following the steps given in the proof of Theorem 1. �

Now, our goal is to obtain an agent-wise local sufficient condition that assures the property a)

of Definition 2 under some standard assumptions. For this purpose, define µi (t ) as in Section

4.1 and let ζi (t ) , [xT
i

(t ), x̂T
i

(t ), z̄T
i

(t )]T ∈Rni+nz2i ,

AFi ,





Ai Bi K1i Bi K2i

Li Ci Ai +Bi K1i −Li Ci Bi K2i

G2i Ci G2i Di K1i G1i +G2i Di K2i



 ,

BFi ,





0

−Li

−G2i



 , CFi ,
[

Ci Di K1i Di K2i

]

.

Furthermore, consider (3), (12), (13), and (4) whenω(t ) ≡ 0. By inserting (11) into the considered
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equations, we have

ζ̇i (t ) = AFiζi (t )+BFiµi (t ), ζi (0) = ζi 0, t ≥ 0, (52)

ei (t ) = CFiζi (t ). (53)

Remark 7. Let ALi , Ai −LiCi . By performing the elementary row and column operations

given in the proof of Theorem 3 on AFi , one can show that σ(AFi ) = σ(Afi )∪σ(ALi ). Note that

by Assumption 8, Li can always be chosen such that ALi is Hurwitz for all i ∈N . In conjunction

with Remark 4, this shows that under Assumptions 4-6 and Assumption 8, it is always possible

to find K1i , K2i , and Li such that AFi is Hurwitz for all i ∈N .

Let gFi (s) ,CFi (sI − AFi )−1BFi . For the dynamic output feedback case, we now state the fol-

lowing theorem.

Theorem 5. Let Assumption 3 hold and AFi be Hurwitz for all i ∈N . If

‖gFi‖∞ρ(FA) < 1, ∀i ∈N , (54)

then the resulting Aη is Hurwitz.

Proof. It follows from Section 4.1 by comparing (52) and (53) with (32) and (33). �

5. Illustrative Numerical Examples

To illustrate some results from the previous section, we provide two numerical examples with

different exosystems. In particular, the first (respectively, second) example presents the dis-

tributed dynamic state (respectively, output) feedback control law. For both examples, we con-

sider five agents with the following system, input, output, and direct feedthrough matrices

Ai =
[

−1 1

0.2 0

]

, Bi =
[

1

2

]

, Ci =
[

1 0
]

, Di = 0.1, i = 1,4,5,

Ai =





0 1 0

0 2 1

0 0 0



 , Bi =





0 0

1 0

0 1



 , Ci =
[

1 0 0.4
]

, Di = 0, i = 2,3,

and the augmented graph Ḡ shown in Figure 1. With this setup, each agent satisfies Assump-

tions 4 and 8. It is also clear from Figure 1 that Assumption 3 holds. In the simulations, we set

each nonzero ai j to 1 and ki = 1, i = 1,2. Moreover, initial conditions for the agents are given

by x10 = [1, 0.6]T, x20 = [−0.5, 0, −0.2]T, x30 = [−0.2, −0.3, 0]T, x40 = [0.6, 0]T, x50 = [0, 0.5]T and

the controller states of all agents are initialized at zero.
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Figure 1: Augmented directed graph Ḡ.

5.1. Example 1

In this example, the disturbanceδ(t ) and the trajectory of the leader r0(t ) satisfy the following

dynamics

δ̇(t ) =





0 0.01 0

0 0 0

0 0 −0.05



δ(t )+





0

0

0.05



 , δ(0) =





0

−0.2

0



 , t ≥ 0,

ṙ0(t ) = −r 3
0 (t )+u0(t ), r0(0) = 0, t ≥ 0,

respectively, where

u0(t ) =















0.1t , 0 ≤ t < 100,

0.1t −2sin(0.1t )e−0.01(t−100) , 100≤ t < 200,

14+ sin(0.05(t −200)), t ≥ 200.

By the solution of the disturbance dynamics with the given initial condition, δ̇(t ) is bounded.

Since u0(t ) is piecewise continuous and bounded, r0(t ) is bounded by Example 4.25 in [13];

hence, ṙ0(t ) is piecewise continuous and bounded. Clearly, ω̇(t ) is piecewise continuous and

bounded. Furthermore, the exosystem affects the state of each agent and its tracking error

through matrices

Eδ1
=

[

0 1 0

0 0 0

]

Eδ4
=

[

0.1 0 0

0 0 −0.1

]

, Eδ5
=

[

0 0 0

−0.1 −0.2 0

]

,

Eδ2
=





0 0 1

0 0 0

0 0 0.5



 , Eδ3
=





0 −0.5 0

0 0 −1

0 0.4 0



 , Rr = 1.

Suppose the piecewise continuity and boundedness of ω̇(t ) are the only information that we

know about the exosystem. As it is suggested in the part a) of Remark 2, we then let A0 = 0

and (G1i ,G2i ) = (0,1) for all i ∈N . Thus, Assumptions 1, 2, 5, and 6 hold. With the following
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controller parameters

K1i = −
[

1.1960 0.9611
]

, K2i =−1.4142, i = 1,4,5,

K1i = −
[

4.2328 5.3904 1.4038

1.2604 1.4038 1.7115

]

, K2i =−
[

1.2788

1.3655

]

, i = 2,3,

Afi is Hurwitz for all i ∈N and the condition given by (36) is satisfied. Thus, Ag is Hurwitz by

Theorem 2. As Theorem 1 promises, ultimately bounded tracking error is observed in Figure 2.
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Figure 2: Output responses of the agents in Example 1.

5.2. Example 2

The disturbance and the trajectory of the leader satisfy

δ̇(t ) = e−0.1t , δ(0) = 1, t ≥ 0,

ṙ0(t ) =
[

0 0.5

−0.5 0

]

r0(t )+
[

te−t sin(t )

2e−t

]

, r0(0) =
[

−1

1

]

, t ≥ 0,

respectively. Moreover, Eδ1
= [1 0]T, Eδ2

= [0 1 0]T, Eδ3
= [−1.5 0 0.3]T, Eδ4

= [0 2]T,

Eδ5
= [0.2 −0.2]T, and Rr = [1 0].

Suppose the unforced parts of the given dynamics are available to a control designer and the

forcing terms are known to be piecewise continuous and convergent to zero. Then, let

A0 =





0 0.5 0

−0.5 0 0

0 0 0



 ,
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and

G1i =





0 1 0

0 0 1

0 −0.25 0



 , G2i =





0

0

1



 , ∀i ∈N .

Hence, Assumptions 1, 5, and 6 hold. In addition, limt→∞ A0ω(t )− ω̇(t ) = 0. Note that Assump-

tion 2 automatically holds since A0ω(t )− ω̇(t ) is piecewise continuous and convergent. With

the following controller parameters

K1i = −
[

5.1794 0.7932
]

, Li =
[

17 80.2
]T

,

K2i = −
[

2 5.4458 10.3182
]

, i = 1,4,5,

K1i = −
[

6.1916 5.7686 1.7835

3.9299 1.7835 2.4282

]

, Li =
[

−187 756 600
]T

,

K2i = −
[

0.4513 0.9173 3.3839

0.8924 2.2285 5.6377

]

, i = 2,3,

AFi is Hurwitz for all i ∈N and the condition given by (54) is satisfied. Thus, Aη is Hurwitz by

Theorem 5. Furthermore, it is guaranteed by Theorem 4 that limt→∞ ei (t ) = 0, ∀i ∈N and this

fact is demonstrated in Figure 3.
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Figure 3: Output responses of the agents in Example 2.

23



6. Conclusion

In this paper, we studied the cooperative output regulation problem of heterogeneous lin-

ear time-invariant multiagent systems over fixed directed communication graph topologies.

Specifically, we introduced a new definition of the linear cooperative output regulation prob-

lem (see Definition 2), which allows a broad class of functions to be tracked and rejected by a

network of agents, and focused on an internal model based distributed control approach. For

the three different distributed control laws (i.e., dynamic state feedback, dynamic output feed-

back with local measurement, and dynamic output feedback), we investigated the solvability

of this problem, which resulted in global and local sufficient conditions (see Theorems 1-5). In

addition, the provided two numerical examples illustrated the efficacy of our contributions. Fi-

nally, we reported and addressed a considerable number of gaps in the existing related literature

(see Appendices and Section 4.1).
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Appendices

Appendix A. Solvability of (26) and (27)

Section III in [3] also studies the solvability of the matrix equations in (26) and (27), which

correspond to the matrix equations given by (6) in [3], with an alternative approach. Specifi-

cally, the last paragraph of Section III in [3] lists three sufficient conditions based on Remark 3.8

of [22] to guarantee that these matrix equations have a unique solution. However, it cannot be

guaranteed as it is claimed in [3]. This section aims to present the gaps between the conditions

and the existence of a unique solution to the matrix equations, propose appropriate modifica-

tions that fill these gaps, and explain the motivation behind our approach. For this purpose, we

first focus on Definition 3.7 and Remark 3.8 in [22] to fix a problem in [22]. Then, we revisit the

conditions listed in [3] to point out the missing one. Finally, a motivational example is provided

and the difference between the approach in [3] and the one in this paper is highlighted.
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In this paragraph, the notation and the terminology in [22] are adopted and readers are re-

ferred to (3.5), (3.6), (3.8), Definition 3.7, and Remark 3.8 in [22]. The problem in [22] is that

the conditions of Remark 3.8 do not ensure the stabilizability of the pair given by (3.8). More-

over, this problem is directly transferred to [3]. To illustrate this point, we consider the following

system, input, output, and direct feedthrough matrices of the plant; and system matrix of the

exosystem

A =
[

1 2

1 0

]

, B =
[

2

0

]

, C =
[

0.5 −0.5
]

, D = 0, A1 = 0.

It can be easily checked that the plant and the exosystem above satisfy the first and the second

conditions of Remark 3.8. Note that m(s)= s is the minimal polynomial of A1. Then, choose the

pair (β1,σ1) in (3.6) as follows

β1 =
[

0 1

0 1

]

, σ1 =
[

0

1

]

.

It is obvious that the pair (β1,σ1) is controllable and the minimal polynomial of A1 divides the

characteristic polynomial of β1. Thus, the pair (G1,G2), (β1,σ1) incorporates a 1-copy internal

model of A1 according to Definition 3.7. Let us now investigate the stabilizability of the pair

in (3.8). This pair is not controllable by the controllability matrix test (e.g., see Theorem 12.1

in [17]) and the eigenvalues of the first matrix of this pair are −1, 0, 1, and 2. The eigenvector

test for stabilizability (e.g., see Theorem 14.1 in [17]) reveals that unstable eigenvalue 1 is the

uncontrollable mode; that is, the pair in (3.8) is not stabilizable. Hence, there do not exist K1

and K2 such that Ac defined in (3.5) is Hurwitz. This counterexample to Remark 3.8 is obtained

due to the fact that the constructed G1 violates Property 1.5 in [8]. In fact, J. Huang (personal

communication, June 9, 2018) recognizes the problem in Remark 3.8; hence, he adds Property

1.5 as a condition to Lemma 1.269 of [8].

In this paper, Definition 1 modifies the second property of Definition 1.22 given after (1.58)

in [8]. This modification guarantees that Property 1.5 in [8] automatically holds if Assumption

5 holds. Based on the foregoing discussions, it is clear that Remark 4 is true.

The following two paragraphs adopt the notation and the terminology from [3]. Readers are

referred to (5), (6), (7), (8), (10), Definition 2, Lemma 2, Section II.B, and Section III in [3]. It is

9 We also note that the proof of Lemma 1.26 in [8] is still valid even if Assumption 1.1 in [8] is removed from the

hypotheses of Lemma 1.26.
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shown in Section III that if the matrix equations in (8) have solutions X1i and X2i for i = 1, . . . , N ,

then the ones in (7) have solutions X1 = diag(X11, . . . , X1N ) and X2 = diag(X21, . . . , X2N ); that is,

the matrix equations in (6) have a solution X = [X T
1 X T

2 ]T. Furthermore, it is claimed that if

the three conditions10 listed in the last paragraph of Section III hold, then the matrix equations

in (8) have unique solutions X1i and X2i for i = 1, . . . , N . However, these conditions do not

guarantee the unique solutions. For, consider A1 = 0, B1 = 1, C1 = 1, D1 = 0, S = 0, R = 1, P1 = 1,

F1 = 0, and G1 = 1. It can be easily checked that the listed conditions are satisfied and Property

1.5 in [8] is not violated. Choose K1 = 0 and H1 = 0. From the first matrix equation in (8), we get

1 = 0, which is a contradiction. We now point out the problem in the claim. First, observe that

the matrix equations in (8) can be equivalently written as the matrix equations given by (1.70)

and (1.71) in [8]. Then, by Lemma 1.27 in [8], one can note that the following condition is missed

in the claim: Ãi given after (10) is Hurwitz11 for i = 1, . . . , N . It can be shown that this condition,

together with the assumption on S, ensures that zero matrices are the unique solutions to the

off-block-diagonal matrix equations in (7) by adding Gc

(

(Cc +Dc Kc)X1 +Dc Hc X2 −Rc

)

to the

left side of the second equation in (7) that gives an equivalent form of (7) and applying the first

part of Proposition A.2 in [8]. In conclusion, if the assumption on S holds, the third condition

in the list holds for i = 1, . . . , N , and Ãi is Hurwitz for i = 1, . . . , N , then the matrix equations in

(6) have a unique solution X .

According to Lemma 2, the problem in Definition 2 is solved if the assumption on S holds, Al

given after (5) is Hurwitz, and the matrix equations in (6) have a unique solution X . Although

the approach utilized during the derivation of the listed conditions does not take into account

the assumption on Al , one may wonder the answer of the following question: Let the listed

conditions hold and Al be Hurwitz. Then, can we conclude that Ãi is Hurwitz for i = 1, . . . , N?

The answer is no. That is, the missing condition cannot be satisfied by assuming that the listed

conditions hold and Al is Hurwitz. To clarify this point, consider the system parameters of the

agents, the system matrix of the exosystem, and the adjacency matrix of G∗

A1 =
[

−1 1

1 0

]

, B1 =
[

1 0.5

0 0.25

]

, C1 =
[

1 −0.5
]

, D1 = 0,

10 In Section II.B, S is assumed to have no strictly stable modes.
11 After the suggested modification above, Ki and Hi can always be chosen such that Ãi is Hurwitz under the

listed conditions.
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A2 =





0 1 0

0 0 1

0 0 0



 , B2 =





0

0

1



 , C2 =
[

1 0 0
]

, D2 = 0,

A3 = 1, B3 =−1, C3 = 1, D3 = 0, S = 0,

Q∗ =











1 0 0 0

0.5 0 0 0.5

0 0.5 0 0.5

0 0.5 0.5 0











.

Choose (Fi ,Gi ) = (0,1), i = 1,2,3. It can be easily checked that the listed conditions are satisfied

and Property 1.5 in [8] is not violated. One can also obtain W , which is required to construct Al ,

from Q∗. Then, choose the remaining parameters of the controllers as follows

K1 =
[

2.6752 9.6624

−10.6752 −24.6624

]

, H1 =
[

−6.4

6.4

]

,

K2 = −
[

104.56 57.936 14.828
]

, H2 =−80, K3 = 0.8, H3 = 1.

With this setup, it can be verified that Ã3 is not Hurwitz even though Al is Hurwitz.

Based on the previous example, the following question arises: Is the missing condition in [3]

necessary to ensure that the matrix equations given by (6) in [3] have a unique solution? In fact,

this question is the motivation behind the key lemma (i.e., Lemma 3) of this paper and the

answer is no. In contrast to Section III in [3], the approach in Lemma 3 does not decompose

matrix equations, which consist of the overall dynamics of the multiagent system, into matrix

equations, which deal with the dynamics of each agent separately; hence, the missing condi-

tion in [3] is not required in Lemma 3. Furthermore, not only dynamic state feedback but also

dynamic output feedback with local measurement and dynamic output feedback effectively

utilize Lemma 3 to solve the stated problem in Definition 2 (see Theorems 1, 3, and 4).

Since the proof of Theorem 1 and the statement of Theorem 4 in [5] use the approach in

Section III of [3], we believe that the discussion in this section will also be helpful for the readers

of the results in [5].

Appendix B. On Theorem 2 in [3]

In this section, the notation and the terminology in [3] are adopted and readers are referred

to (5), (10), (15), and Theorem 2 in [3]. Now, consider the system parameters of the agent, the
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system matrix of the exosystem, and the adjacency matrix of G∗ given by

A1 =





1 0 0

0 1 0

0 0 −1



 , B1 = I3, C1 =
[

1 0 0

0 1 0

]

, D1 = 0, S = 0, Q∗ =
[

1 0

1 0

]

.

Choose (F1,G1) = (0, I2) and

K1 =





−2 0 0

0 −2 0

0 0 2



 , H1 =





−1 0

0 −1

0 0



 .

Note that W = 1 from Q∗; hence, Al given after (5) is nothing but Ã1 given after (10). With this

setup, one can verify that T1(s) given before Theorem 2 is stable and the condition in (15) is

automatically satisfied, but Al is not Hurwitz. This counterexample is obtained because the

realization of T1(s) is neither stabilizable nor detectable. In fact, a loss of one of them is enough

to find a counterexample.

The above setup also applies to Theorem 5 in [5] since it relies on Theorem 2 and its condi-

tions are satisfied. It should be noted that although Assumptions 1-4 in [5] and Property 1.5 in

[8] are not listed in the hypotheses of Theorem 5 in [5], this counterexample does not violate

them.
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