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Abstract

This paper develops an observer-based predictive repetitive control system to track periodic reference signals or
reject disturbances with band limited frequency content. The new design complements exist-ing approaches to pre-
dictive control, where a model of the periodic disturbance is embedded in the controller. In particular, the new design,
based on a novel combination of repetitive control and a disturbance observer, results in a significant improvement
in design transparency and implementation simplicity. Although the design is undertaken using a state-space-model,
frequency response analysis based on the sensitivity and complementary functions is used to demonstrate the char-
acteristics of the repetitive control system for disturbance rejection, reference following and measurement noise
attenuation. Moreover, operational constraints can be included in the design for applications where this feature
is required. Simulation studies are given to highlight the closed-loop performance achievable in the presence of
constraints.Experimental validation results from application to a two-joint robotic arm are also given and discussed.
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1. INTRODUCTION

Repetitive control (RC) is a well-established design method for tracking periodic signals and/or rejecting periodic
disturbances, see, e.g. Hara et al. (1988) and exploits the internal model principle, see, e.g. (Francis and Wonham,
1976). In RC design, the plant input signal, considering the single-input single-output case for ease of presentation,
is commonly generated by a controller described in transfer-function form, see, e.g. (Hara et al., 1988). If the
reference signal has multiple-frequency content then by the internal model principle, these must be included as
modes in the controller. The number of frequencies is proportional to the period and inversely proportional to the
sampling interval. The result can be a very high order control system, especially under fast sampling, which, in
turn, could lead to numerical sensitivity, noise amplification, sensitivity to modelling errors and other undesirable
phenomena commonly encountered in practical applications.

A transparent way of limiting the controller order is based on selecting the dominant frequencies in the reference
and/or disturbance signal and including only these in the controller. One method that can be used is frequency
sampling filter models, see, e.g. Bitmead and Anderson (1981). Given the dominant frequencies, a repetitive control
design has been developed where, as in model predictive control, operational constraints can be imposed if required.
This approach to RC design has been termed repetitive predictive design. Preliminary application results on this
approach were reported in, e.g. (Wang et. el, 2012) and followed through to comprehensive experimental validation
on a 2-joint robot (Wang et al., 2013, 2016), industrial electrical drives and a power converter (Wang et al., 2015).
(A tutorial overview of this approach to control design can be found in (Wang, 2016)).

This paper develops an alternative repetitive predictive design which is based on estimating the periodic distur-
bance signal using a suitably structured observer, and then subtracting it from an optimized control signal. This novel
approach provides significant advantages in terms of implementational efficiency, design transparency and ease of
analysis. This approach is related to control system design using an extended disturbance observer, and constitutes
its first application to the field of RC. Such an approach has been developed for engine-induced vibrations in the
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context of estimation of the sinusoidal disturbances and their cancelation (Bohn et al., 2004). In (Bodson., 2005;
Jia., 2009), an adaptive frequency estimation technique is incorporated into traditional disturbance observer methods
to estimate the disturbance frequency online. A transfer-function based approach using a disturbance observer for
controlling magnetic disk drives was developed in (White et al., 2000). A similar approach was used together with
online estimation of disturbance frequency in (Zhen and Tomizuka., 2008). The methods for analysis and design of
extended disturbance observers were surveyed in a recent paper (Madońsk and Herman., 2015).

The next section of this paper develops the new disturbance observer-based control system design using as a
setting for analysis state-space and disturbance models obtained from previous work, e.g., (Wang et al., 2010, 2012,
2013, 2016). The control system is then developed in the following section using a model predictive control setting
that enables operational constraints to be included. Sections describing experimental evaluation of the design on a
two-input two-output robotic system executing a pick and place task and conclusions and further work, respectively,
complete the paper.

2. DISTURBANCE OBSERVER based PREDICTIVE-REPETITIVE CONTROL SYSTEM DESIGN

Let q−1 denote the backward shift operator. Then a standing assumption is that a disturbance model, denoted by
D(q−1), is available that represents the frequency characteristics of the signal considered. In some cases, this model
is immediate from the signal description, e.g., for a known piece-wise constant reference signal D(q−1) = 1−q−1.
If D(q−1) cannot be constructed from knowledge of the signal then methods have been developed including the
frequency sampling filters (Bitmead and Anderson, 1981) discussed in the previous section. Recent experimental
validation of this approach can be found in (Wang et al., 2016).

The plant to be controlled is assumed to have the same number, m, of inputs and outputs, and state-space model

xm(k+1) = Amxm(k)+Bmu(k), (1)

y(k) = Cmxm(k), (2)

where xm(k) is the n1× 1 state vector, u(k) is the m× 1 input vector, y(k) is m× 1 output vector. For design, the
state-space model matrices (Am,Bm,Cm) together with D(q−1) are assumed to be available. A number of ways exist
of satisfying the internal model principle for this case and the one used here is to add a vector to the state dynamics
and then write a state-space model for the resulting dynamics and use this resulting model for analysis.

Let µ(k) is a vector that has the same dimension as the control signal and in the case of a single disturbance or
reference signal chose ith entry as

µi(k) =
εi(k)

D(q−1)
(3)

where εi(k) is a white noise sequence with zero mean and variance σi, 1 ≤ i ≤ m. For more than one disturbance
and/or reference signal, the frequency sampling filter analysis is applied to each signal, the least common denomi-
nator of the resulting polynomials is computed and forms D(z) in this last equation. The term Bmµ(k) is then added
to the state equation in (1).

The polynomial D(q−1) is assumed to contain the dominant modes in the corresponding signal(s). Assuming
that it is of degree γ, this polynomial can be written as

D(q−1) = 1+d1q−1 +d2q−2 +d3q−3 + . . .+dγq−γ (4)

Moreover, write µ(k+1) as

µ(k+1) = −d1µ(k)−d2µ(k−1)− . . .−
−dγ−1µ(k− γ+2)−dγµ(k− γ+1)+ ε(k)
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where the compatibly dimensioned vector ε(k) has as each entry zero mean white noise. Also introduce

z(k) =
[

xT
m(k) µT (k) . . . µT (k− γ+1)

]T
.

Then observer design will be based on the following state-space model

z(k+1) = Aoz(k)+Bou(k)+ B̄oε(k) (5)

y(k) = Coz(k)

where

Ao =

[
Am B̄m

0 Ad

]
,

Ad =


−d1I −d2I . . . −dγ−1I −dγI

I 0 0 . . . 0
0 I 0 . . . 0
...

. . . . . . . . .
...

0 0 . . . I 0

 .

B̄m =
[

Bm 0
]

where for the remainder of this paper 0 and I denote the compatibley dimensioned null and identity matrices, respec-
tively, and

Bo =

[
Bm

0

]
, B̄o =

[
0
I

]
Co =

[
Cm O

]
Observability of the pair (Ao,Co) follows if this property holds for (Am,Cm). To estimate the augmented state

vector z(k), suppose that an observer gain matrix Kob is chosen such that the closed-loop observer error system state
matrix (Ao−KobCo) is stable with a desired response speed. Then the augmented state vector z(k) is estimated using

ẑ(k+1) = Aoẑ(k)+Bou(k)+Kob(y(k)−Coẑ(k)), (6)

and the estimated disturbance vector µ̂(k) is obtained. In many applications, the state vector entries can be measured,
e.g. in electrical drives and power converters, the current and voltage variables are measured by the respective
sensors. In such cases, only the disturbance vector µ(k) requires estimation and reduces the complexity of the design
(arguably More relevant) implementation. This case is considered in the remainder of this paper, starting with the
observer design.

Using (1) and (2) results in

y(k+1) = Cmxm(k+1)

= CmAmxm(k)+CmBmu(k)+CmBmµ(k) (7)

and hence
CmBmµ(k) = y(k+1)−CmAmxm(k)−CmBmu(k) = ζ(k) (8)

and the estimation of µ(k) without estimating the state vector xm(k) is through the system

µ(k+1) = Adµ(k)+ ε(k) (9)

ζ(k) = CmBmµ(k) (10)
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Assume that (9) is observable and that an observer gain matric Kr
ob has been designed such that the resulting

observer error dynamics are stable. Then the µ(k) is estimated using the following observer structure :

µ̂(k+1) = Ad µ̂(k)+Kr
ob(ζ(k)−CmBmµ̂(k))

= Ad µ̂(k)+Kr
ob
(
y(k+1)

− CmAmxm(k)−CmBmu(k)−CmBmµ̂(k)
)
. (11)

This observer requires y(k+1), which is one step ahead of the measurement at the sampling instant k, which com-
plicates its implementation. Alternatively, introduce

β̂(k) = µ̂(k)−Kr
oby(k) (12)

and add and subtract the term (Ad−Kr
obCmBm)Kr

oby(k) from the left-hand side of (11) followed by routine manipu-
lations enable (11) to be written as

β̂(k+1) = (Ad−Kr
obCmBm)β̂(k)+(Ad−Kr

obCmBm)Kr
oby(k),

− Kr
obCmAmxm(k)−Kr

obCmBmu(k). (13)

This last observer equation can be implemented where at k = 0, an initial condition for β̂(0) is selected and
the disturbance µ̂(0) = β̂(0)+Kr

oby(0). Together with the measurements of states, outputs, and control signals at
sampling instant k, the estimation of β̂(k+ 1) is performed. Additionally, µ̂(k) = β̂(k)+Kr

oby(k) is calculated for
repetitive predictive control system.

3. Control System Design

Introduce
ũ(k) = u(k)+µ(k)

and then (1) can be written as
xm(k+1) = Amxm(k)+Bmũ(k). (14)

Suppose also the pair (Am,Bm) is controllable, then there exists a control law ũ(k) =−BmKxm(k) such that

xm(k+1) = (Am−BmK)xm(k) (15)

is stable. Hence the future trajectory of the control vector ũ(k) can be modelled using a sequence of the pulse
functions or a set of Laguerre functions (Wang, 2009) since, for the stable system described by (15) with bounded
initial conditions, limk→∞ ũ(k) → 0. This step is essential if a limited number of parameters are to be used to
parameterize the future control trajectories in model predictive control design.

The current plant information at any sample instant is given in the vector k xm(k) whose construction was detailed
in the previous section. Also define the future optimal control vector Ũ as

Ũ =
[

ũ(k)T ũ(k+1)T . . . ũ(k+Nc−1)T
]T

where Nc is the control horizon, i.e., the number of parameters used to describe the future control trajectory. Given
this information, the future state vectors are predicted for Np samples, where Np is the prediction horizon and
Nc ≤ Np. Suppose also that after Nc samples, the control vector ũ(k) = 0 for k ≥ Nc and write the resulting state
vectors as

X =
[

xm(k+1 | k)T . . . xm(k+Np | k)T
]T

.
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Using (14), the future state vectors are, given sUs, computed as

X = Fxxm(k)+ΦsŨ , (16)

where

Fx =


Am
A2

m
...
...

ANp
m

Φs =


Bm 0 .. 0

AmBm Bm .. 0
A2

mBm AmBm .. 0
...

... ..
...

ANp−1
m Bm ANp−2

m Bm .. ANp−Nc
m Bm


The design criterion for the predictive repetitive controller is to find Ũ to minimize the cost function

J = XT Q̄X +ŨT R̄Ũ ,

where Q̄ is a block diagonal matrix with identical block diagonal matrix entries Q, where Q is a symmetric positive
semi-definite matrix and R̄ is block diagonal matrix with identical block diagonal matrix entries R, where R is a
positive definite matrix.

Combining (16) and the cost function gives

J =ŨT (ΦT
s Q̄Φs + R̄)Ũ +2ŨT

Φ
T
s Q̄Fxxm(ki)

+ xm(k)T FT
x QFxxm(k). (17)

and the solution of this optimal control problem is

Ũ =−(ΦT
s Q̄Φs + R̄)−1

Φ
T
s Q̄Fxxm(k). (18)

If the state vector xm(k) is not measurable, the observer specified by (6) is used to estimate the augmented state
vector ẑ(k, from which x̂m(k) is obtained and used instead of xm(ki). The actual control vector at sampling instant k
is given by

u(k) = ũ(k)− µ̂(k)

where µ̂(k) is calculated using the observer of (6) or (13).
In this design the disturbance model is embedded through the observer and therefore the reference vector should

enter the system as an output disturbance with a negative sign. Otherwise, the control system will have steady-state
errors when used for reference tracking. Given the reference vector r(k), the observer (6) can be rewritten as

ẑ(k+1) = Aoẑ(k)+Bou(k)+Kob(y(k)− r(k)−Coẑ(k)) (19)

if the state vector xm(k) can be measured, the reference vector enters the system through the reduced order observer
as

µ̂(k) = β̂(k)+Kr
ob(y(k)− r(k)) (20)

β̂(k+1) = (Ad−Kr
obCmBm)β̂(k)

+ (Ad−Kr
obCmBm)Kr

ob(y(k)− r(k))

− Kr
obCmAmxm(k)−Kr

obCmBmu(k). (21)

3.1. Constrained Design
This section extends the design of the previous section to include input and output operational constraints in the

design. The method used leads to a real-time optimization problem. The central idea is to minimize the objective
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function J as in (17) subject to linear inequality constraints.
If an integrator is to be included in the observer, the input constraints are somewhat more complicated because

they will involve the estimated disturbance µ̂(k). For example, a control amplitude constraint can be written as

umin ≤ u(k)≤ umax

or, in terms of ũ(k),
umin + µ̂(k)≤ ũ(k)≤ umax + µ̂(k)

and the rate of change of the input as

∆umin +u(k−1)+ µ̂(k)≤ ũ(k)≤ ∆umax +u(k−1)+ µ̂(k. (22)

Also ũ(k) is the first entry in Ũ , these input constraints are converted into inequality constraints in terms of Ũ .
The constraints for the output or states are formulated using (16). Once the constraints are formulated, a quadratic

programming algorithm can be used to solve the constrained predictive control problem.

4. Experimental evaluation

The preceeding control design has been implemented on an anthropomorphic robot arm performing a ‘pick and
place’ task in a horizontal plane using two joints, as shown in Fig. 1. Its end-effector travels between the pick and
place locations along a straight line using joint reference trajectories which minimize the acceleration of the end-
effector. After reaching the ‘place’ location, the robot then returns back to the starting ‘pick’ location. The overall
two-input, two-output system model has been identified from frequency domain test data, and is described by the
transfer-function matrix given in (23). [

y1
y2

]
=

[
G11G12
G21G22

][
u1
u2

]
, (23)

G11(s) =
0.16s9 +14.51s8 +578.2s7 +1.392e4s6 +2.26e5s5 +2.58e6s4 +2.09e7s3 +1.17e8s2 +4.21e8s+7.6e8

5.25e−5s12 +0.01463s11 +0.91s10 +31.2s9 +714.1s8 +1.19e4s7 +1.45e5s6 +1.4e6s5 +1.01e7s4 +5.7e7s3 +2.3e8s2 +5.9e8s+7.6e8
,

G12(s) =
−0.022s7−3.24s6−88.3s5−1347s4−1.06e4s3−4.52e4s2

5.25e−5s10+0.014s9 +0.72s8 +20s7 +363s6 +4645s5 +4.3e4s4 +2.9e005s3 +1.4e6s2 +4.18e6s+6.323e6
,

G21(s) =
−0.16s7−8.7s6−194s5−2498s4−1.78e4s3−6.64e4s2

5.25e−5s10 +0.014s9 +0.67s8 +17.9s7 +316s6 +3963s5 +3.6e4s4 +2.42e5s3 +1.1e6s2 +3.5e6s+5.3e6
,

G22(s) =
0.027s9 +4.95s8 +264s7 +7394s6 +1.3e5s5 +1.69e6s4 +1.5e7s3 +9.4e7s2 +3.8e8s+7.6e8

5.25e−5s12 +0.014s11 +0.9s10 +31s9 +714.1s8 +1.19e4s7 +1.48e5s6 +1.4e6s5 +1.04e7s4 +5.7e7s3 +2.3e8s2 +5.9e8s+7.6e8
.

Figure 1: Anthropomorphic robot arm showing pick and place locations.
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Np 20
Nc 6
rc 0.1
rob 10000

Table 1: Choice of performance parameters

The continuous-time system is sampled using the sampling interval ∆t = 0.05 (sec). The reference trajectories
for output y1 and y2 are, respectively, shown in the upper plots of Figures 2a) and b), and the control objective is for
each output to follow the corresponding reference signal as closely as possible in presence of measurement noise
and model uncertainty. The reference signals for the outputs y1 and y2 each have a period of 20 seconds. With
the sampling interval chosen to be 0.05 (sec), the number of samples for each period is 20

0.05 = 400. From previous
analysis (see (Wang et al., 2013)), the polynomial D(z−1) is selected as

D(z) = (1− z−1)(1−2cos(
2π

400
)z−1 + z−2)×

(1−2cos(
4π

400
)z−1 + z−2) (24)

In this case, when the experimentally determined transfer-function matrix entries are used to construct a state-
space model, the resulting state variables have no physical meaning. Thus, a full order observer is required to
estimate both the state vector xm(k) and the disturbance µ(k). In the design of the observer, weQob = I and Rob = robI
with rob being adjustable has been used. For the predictive repetitive controller design, Q =CT

mCm and R = rcI with
rc being adjustable was selected.. Table 1 shows the performance parameters used in the predictive repetitive control
system design.

The performance parameters for the observer must be chosen carefully to ensure satisfactory performance. For
instance, increasing the parameter rob produces improved tracking accuracy, as confirmed by the experimental results
shown in Figure 3. However, when the weighting coefficient rob is reduced to 1000, the closed-loop predictive
repetitive control system becomes unstable as shown in Figure 4. When the parameter rob is reduced, the dynamic
response speed of the observer error system is increased, which consequently reduces the robustness of the observer
error system because there are inevitable modelling errors in the robotic system. However, when the weighting
coefficient rob is reduced to 1000, the closed-loop predictive repetitive control system becomes unstable as shown in
Figure 4. When the parameter rob is reduced, the dynamic response speed of the observer error system is increased,
which consequently reduces the robustness of the observer error system because there are inevitable modelling errors
in the robotic system.

5. CONCLUSIONS

This paper has developed a novel observer based predictive repetitive control system design which establishes
the use of disturbance observers within RC. This design is based on the assumption of the existence of a input
periodic disturbance and an observer is designed to estimate such a periodic disturbance. The structure embeds both
design transparency and implementational efficiency compared with exisiting alternative approaches. Together with
the model predictive controller, the resultant control system is shown experimentally to have the capability to track
complex reference signals.
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Figure 2: Experimental results using the performance parameters in Table 1.
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Figure 3: Experimental results using the performance parameters in Table 1 except rob = 100000.
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