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In this paper we study the single-item single-stocking location non-stationary stochastic lot sizing prob-
lem for a perishable product. We consider fixed and proportional ordering cost, holding cost, and penalty
cost. The item features a limited shelf life, therefore we also take into account a variable cost of disposal.
We derive exact analytical expressions to determine the expected value of the inventory of different
ages. We also discuss a good approximation for the case in which the shelf-life is limited. To tackle
this problem we introduce two new heuristics that extend Silver’s heuristic and compare them to an
optimal Stochastic Dynamic Programming (SDP) policy in the context of a numerical study. Our results
demonstrate the effectiveness of our approach.

Keywords: Stochastic models; Monte Carlo method; Silver’s heuristic; perishable inventory control;
lot sizing;

1. Introduction

According to the Food and Agriculture Organisation of the United Nations (FAO), around one
third of the food that is produced worldwide for human consumption is lost or wasted every
year; this amounts to about 1.3 billion tons per year. This loss can be translated into a waste of
different valuable resources such as land, water or energy. For this reason, research in perishable
item inventory control represents an area of increasing interest.

Lot sizing problems have been long and widely studied due to their important role in economy.
Dynamic lot sizing was first introduced by Wagner and Whitin (1958), who discuss a polynomial
time exact solution method. Many efficient heuristics appeared over the years in the literature, see
e.g. the linear time heuristic introduced in Silver and Meal (1973).

Models considering uncertainty for the demand appeared later in the literature. Silver (1978)
presented an heuristic that looks only one cycle ahead and that is based on three different stages:
deciding when to order, the number of periods of the cycle and the order quantity. The heuris-
tic introduced in Askin (1981) determines the replenishment levels minimising the incurred cost
per period. Bollapragada and Morton (1999) improve the latter both in cost and computational
time. Bookbinder and Tan (1988) proposed a heuristic in which first the replenishment periods
are decided and after that the quantities are fixed. In Tarim and Kingsman (2006) an MILP
(Mixed-Integer Linear Programming) model is used to decide replenishment moments and quan-
tities simultaneously; Rossi, Kilic, and Tarim (2015) generalise Tarim and Kingsman’s model to
handle a range of service level measures as well as lost sales. Caliskan-Demirag, Chen, and Yang
(2012) consider ordering policies for systems in which the fixed cost is dependent on the order size,
in a step function for two or multiple values, deriving policies for these cases. Yang, Chen, and
Zhou (2014) determine a joint ordering and dynamic pricing strategy for three different models
and characterize the optimal policy when inventory cost-rate functions are convex or quasi convex.

This work is an extended version of Rossi (2013)
∗Corresponding author.
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All aforementioned works operate under a non-stationary demand assumption; the importance of
developing models that are able to compute optimal or near-optimal non-stationary policies has
been discussed by Tunc et al. (2011).

A review of the early literature on lot sizing for perishable items is provided in Nahmias (1982);
it surveys ordering policies from 1960 to 1982. Karaesmen, Scheller-Wolf, and Deniz (2011) make
an extensive review of more recent literature for perishable products with fixed or random lifetimes
and considering both discrete and continuous models. Bakker, Riezebos, and Teunter (2012) review
perishable models since 2001.

In lot sizing for perishable items the structure of the optimal replenishment policy is typically
complex: the replenishment quantity depends on the individual age categories of current invento-
ries, as well as on all outstanding orders; for this reason developing effective heuristic policies is of
great practical importance in inventory systems for perishable items. According to the above re-
views, over the last ten years several inventory models have been derived for controlling perishable
item inventory systems. For instance, Minner and Transchel (2010) present a model similar to the
one discussed in this paper dealing with a periodic review with service-level constraints; however
the role of the fixed ordering cost is not considered in their work. More recently, Hendrix et al.
(2012) introduces an SDP approach for a single perishable item subject to non-stationary demand
and an α service level constraint. Li and Yu (2014) apply multi-modularity to three dynamic in-
ventory problems; they consider perishability in one of them, for clearance sales, following FIFO
(first in, first out) issuance. Chen, Pang, and Pan (2014) analize a joint pricing and inventory
control problem for perishables, considering both backlogging case and lost-sales case; they allow
that inventory can be discarded before it is perished. Pauls-Worm et al. (2014) present an MILP
approximation model for a YS policy — in this policy Yt is an indicator variable that is set to
one if there is a replenishment up to inventory level St in period t — for an inventory control
problem under α service level constraints, non-stationary demand and a single item with a fixed
shelf life. Alcoba et al. (2015) discuss an YQ policy — in this policy Yt is an indicator variable
that is set to one if there is a replenishment of size Qt in period t — for a similar setting in which,
however, a service level constraint is imposed on lost sales. Pauls-Worm et al. (2015) present an
MILP approximation for a YQ policy obtaining costs that are less than 5% higher than those of
the optimal policy.

This paper, which extends and complements the discussion of Rossi (2013), focuses on the case of
a single perishable item with fixed shelf-life. We consider fixed and variable ordering costs as well as
holding and penalty costs for backordered products; the demand is non-stationary over a finite set
of periods; inventory is issued following the FIFO policy. A major difference with respect to Rossi
(2013) is the adoption of a penalty cost scheme in place of a service level constraint; furthermore,
we present a broader set of instances and we assessed the quality of our new heuristics against
optimal solutions obtained via stochastic dynamic programming.

We make the following contribution to the literature on perishable item non-stationary stochastic
lot sizing.

• We introduce exact analytical expressions to compute the expected value of the inventory
for different product ages when a product can age indefinitely; the expressions work under
discrete as well as continuous demand distributions.
• We derive an analytical approximation for the case in which the product age is discrete and

finite.
• By using the former results, we extend Silver’s heuristic (Silver 1978) to the case in which the

product is perishable; in particular we introduce analytical and simulation-based variants of
the approach.
• We conduct an extensive numerical study which demonstrates that our new heuristics lead

to a cost that, on average, is 5% higher than the optimal cost.

The rest of this work is structured as follows. Section 2 describes the problem setting and the
stochastic dynamic programming model. Section 3 discusses various theoretical results that are
then employed, in Section 4, to develop an analytical extension of Silver’s heuristic; moreover, in
the same section we develop a more accurate but computationally less efficient heuristic approach.
A computational study and its results are detailed in Section 5; finally, Section 6 draws conclusions.

2
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2. Problem and model description

We consider a single-item, single-stock location, production planning problem over a time horizon
of T periods. The product we consider is perishable and its age, in periods, is denoted by a ∈
{1, . . . , A}; a = 1 denotes fresh products delivered at the beginning of the current period. At the
end of a given period t, all items of age A are scrapped; we will consider A < T to ensure that
perishability has an effect in the model.

The stochastic demand we consider is non-stationary, which means its distribution varies from
one period to the next. Demand in period t is represented by means of a non-negative random
variable Dt with known cumulative distribution function Ft. Random demand is assumed to be
independent over the periods. The system operates under a FIFO product issuing policy. Unmet
demand at any given period is backordered and satisfied as soon as a replenishment arrives. The
sellback of excess stock is not allowed.

For ease of exposition, we assume that delivery of products is instantaneous, i.e. lead time is zero;
both our heuristics can be extended to situations in which lead-time is positive and deterministic,
this extension will be briefly discussed in the Appendix. There is a fixed ordering cost o for placing
a replenishment and a variable ordering cost v proportional to the order quantity; a variable
inventory holding cost h is charged on every product unit carried from one period to the next,
regardless of its age; a variable penalty cost p is charged for each back-ordered unit at the end
of each period during which it remains unsatisfied; a variable wastage cost w is charged for every
item of age A discarded at the end of a period. Our aim is to find a replenishment plan that
minimizes the expected total cost, which is composed of ordering costs, holding costs, penalty and
waste costs over a T -period planning horizon.

Let the net inventory denote the on-hand stock minus backorders. The model assumes that
the sequence of events in each period is as follows. At the beginning of a period the decision
maker checks the net inventory for different product ages that has been carried over from the
former period. Since we are dealing with complete backlogging, this quantity may be negative.
However, note that only fresh products can be backordered, since the supplier only delivers fresh
products. On the basis of this information, if necessary, the decision maker issues an order. Then
the random demand is observed and items are issued to meet demand according to a FIFO policy.
After demand is realised at the end of the period inventory ages and if the net inventory is positive,
any item of age A that remains in stock is discarded and waste cost is incurred. Items of age 1 to
A − 1 that remain in stock are carried over to the next period and holding costs are incurred. If
the net inventory is negative, penalty cost is incurred on any unit backordered.

For convenience, the notation adopted in the rest of this work is summarized in Table 2. The
problem can be naturally modeled as a stochastic dynamic problem by considering the following
components.

States. The system state at the beginning of period t is represented by the vector It−1 =
(I1

t−1, . . . , I
A−1
t−1 ); note that this is also the system state at the end of period t − 1, and that

the waste Wt−1 (i.e. IAt−1) does not determine future decisions; inventory of age 1 is the only value
in the state vector that can take negative values to denote state of the cumulated backorders.

Actions. The action is the order quantity Qt for period t given initial inventory It−1.

State Transition Function. The state transition follows FIFO dynamics. The inventory at the
end of period t is determined by the inventory from the previous period, the realised demand Dt

and the delivery of the ordered quantity Qt. The notation (·)+ = max(·, 0) is used to shorten the
expressions. Given state It−1 and action Qt, the state transition of the system is described by the
following expressions. Waste, i.e. items of age A, at the end of period t is defined as

Wt = (IA−1
t−1 −Dt)

+, t = 1, . . . , T. (1)

3



May 10, 2016 International Journal of Production Research IJPR˙rev2

Indices
t period index, t = 1, . . . , T, with T the time horizon
a age index, a = 1, . . . , A, with A the fixed shelf life

Problem parameters
o fixed ordering cost
v unit procurement cost
h unit inventory cost
p unit penalty cost
w unit disposal cost
ia initial inventory of age a at the beginning of the planning horizon

Random variables
Dt random demand in period t with cumulative distribution function Ft

State variables
It system state (i.e. inventory vector) at end of period t
Iat inventory of age a at end of period t, where Iat ≥ 0 for a = 2, . . . , A
Wt waste at the end of period t (i.e. IAt )

Decision variables

Qt order quantity at the beginning of period t given inventory I1
t−1, . . . , I

A−1
t−1

Table 1. Notation adopted in this work.

Inventory of age a ∈ {2, . . . , A− 1} that can still be used in the next period follows from

Iat =

Ia−1
t−1 − (Dt −

A−1∑
j=a

Ijt−1)+

+

, t = 1, . . . , T ; a = 2, . . . , A− 1. (2)

Finally, inventory of fresh products/backorders follows from

I1
t = Qt − (Dt −

A−1∑
a=1

Iat−1)+, t = 1, . . . , T. (3)

Immediate Costs. Given state It−1 and the described transformation towards state It as a
consequence of action Qt, the immediate costs are given by

C(It−1, Qt) = g(Qt) + E

(
h

A−1∑
a=1

(Iat )+ + p(−I1
t )+ + w Wt

)
, (4)

where E denotes the expectation taken with respect to random demand Dt and function g is
defined as:

g(Q) =

{
o+ vQ if Q > 0
0 if Q = 0.

(5)

Objective Function. The objective is to find an order policy that minimizes the expected total
cost over the T period planning horizon, that is

min
Q1

(
C(I0, Q1) + min

Q2

(
C(I1, Q2) + · · ·+ min

QT

C(IT−1, QT )

))
. (6)

4
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3. Perishable stock dynamics: theoretical results

The purpose of this Section is to provide exact analytical expressions for the expected inventory
level at different ages for the case where items can age indefinitely. These results are used to provide
a good approximation of the expected value of the inventory levels for the case where items perish
after A periods.

Consider the single-item single-stocking location inventory system over a single period t subject
to a random demand D with known cumulative distribution F, probability density function f, and
expected value µ. Since we refer to a single period problem, in order to keep notation compact,
we have dropped the index t from Dt, Ft, ft and µt.

We have seen that only I1
t can take a negative value, whereas older age inventory is bound to be

nonnegative. For convenience, we introduce I0
t−1 = Qt, so that we can denote the overall inventory

available at the beginning of the period as

Y =

A−1∑
a=0

Iat−1;

we also exploit notation IAt to denote the waste Wt.
Our aim is to find analytical expressions for E(Iat ), i.e. the expected value of Iat , for a = 1, . . . , A.

The following Lemmas provide analytical expresions to calculate the expected value of inventory
levels of different ages, when they can age indefinetly, both for discrete and continous demand
support.

Lemma 1. Let D be a random variable defined over a continuous support and Y =
∑A−1

a=0 I
a
t−1,

E(−I1
t )+ =

∫ Y

0
(Y − x)f(x) dx− (Y − µ).

Proof. See Rossi et al. (2014), Lemma 3

Lemma 2. Let D be a random variable defined over a discrete support S ⊆ N with a positive prob-
ability mass function f(x) = F (x)−F (x−1) for x ∈ S and zero elsewhere. Let Ya =

∑A−1
j=a−1 I

j
t−1,

Ya+1 =
∑A−1

j=a I
j
t−1, and YA+1 = 0, then for a = 1, . . . , A

E(Iat )+ =

Ya−1∑
x=0

F (x)−
Ya+1−1∑
x=0

F (x).

Proof. Note that Ia−1
t−1 = Ya − Ya+1; moreover, for any value Y ∈ S we have

∑Y
x=0(Y − x)f(x) =∑Y−1

x=0 F (x) (Rossi et al. 2014). Following the introduced symbols and inventory dynamics of

5
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Equations (1), (2) and (3), we have

E(Iat )+ =

Ya∑
x=0

(Ia−1
t−1 − (x− Ya+1)+)f(x)

=

Ya∑
x=0

(Ya − Ya+1 − (x− Ya+1)+)f(x)

=

Ya+1∑
x=0

(Ya − Ya+1)f(x) +

Ya∑
x=Ya+1+1

(Ya − x)f(x)

=

Ya+1∑
x=0

(Ya − Ya+1)f(x) +

Ya∑
x=0

(Ya − x)f(x)−
Ya+1∑
x=0

(Ya − x)f(x)

=

Ya∑
x=0

(Ya − x)f(x)−
Ya+1∑
x=0

(Ya+1 − x)f(x)

=

Ya−1∑
x=0

F (x)−
Ya+1−1∑
x=0

F (x).

Lemma 3. Let D be a random variable defined over a continuous support, Ya =
∑A−1

j=a−1 I
j
t−1,

Ya+1 =
∑A−1

j=a I
j
t−1, and YA+1 = 0, then for i = 1, . . . , A

E(Iat )+ =

∫ Ya

0
(Ya − x)f(x) dx−

∫ Ya+1

0
(Ya+1 − x)f(x) dx.

Proof. Follows from Ia−1
t−1 = Ya − Ya+1 and a similar reasoning to the one presented in Lemma

2.

Lemma 4. E(Iat ) = E(Iat )+ − E(−Iat )+.

Proof. Follows from the definition of expectation.

Lemma 5. For a = 2, . . . , A,

E(Iat ) = E(Iat )+.

Proof. Follows from the fact that only fresh products can be back-ordered.

We now consider a horizon comprising T time periods with random demand Dt in each period
t = 1, . . . , T. Items carried over from one period to the next age and become one time period
older. We first analyse the case where items can age indefinitely. Our aim is to compute E(Iat ),
i.e. the expected value of Iat , for t = 1, . . . , T and a = t, . . . , A + a − 1. This question is easy to
handle if we reduce a t-period problem to a single-period problem subject to cumulative demand
D = D1 + . . . + Dt. Consider E(Iat ) for this new single-period problem, as previously obtained,
and note that the value obtained corresponds to E(It+a−1

t ) for the t-period problem.

Example. Consider a T = 2 periods planning horizon. Demand Dt in each period t follows
a Poisson distribution with rate λt = 50. The initial inventory is It−1 = (I0

t−1, I
1
t−1, I

2
t−1) =

(25, 50, 50). This means there are 25 fresh items that have just been produced; 50 items that were
produced a period before and 50 items that were produced two periods before, which are still in
stock at the beginning of the planning horizon. To determine E(Ia1 ), a = 1, . . . , A we apply the
results just presented, in particular Lemma 2, which lead to E(I1) = (25, 47.18, 2.81). The value

6
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of E(Ia2 ) for a = 2, . . . , A + 1 can be derived considering the 2-period problem as a single-period
problem subject to a Poisson demand with rate λ = 100 and we apply once more the results just
presented and Lemma 2. This leads to the vector E(I2) = (0, 21.04, 3.98). Since we do not place
an order in period 2, the expected number of fresh items at the end of period 2 is zero. Items of
age 3 at the end of period 1 have aged.

The case in which items of age A — i.e. items that were produced A − 1 periods before —
are discarded at the end of a period, complicates the exact analytical derivation of E(Iat ) for
t = 1, . . . , T and a = t, . . . , A + t − 1. We shall therefore proceed in a pragmatic manner, by
introducing a simple and yet powerful approximation that reuses as much as possible results
developed so far. We will demonstrate the effectiveness of this approximation in our computational
study.

The key intuition leading to our approximation is an inductive argument. Our base case is the
determination of E(Iat ), which can be carried out analytically for t = 1 and a = t, . . . , A (with IAt =
Wt) by using the results presented so far. In principle it is also possible to determine analytically
the higher moments of the distribution of Iat , e.g. the variance Var(Iat ) for t = 1. To approximate
E(Iat ), we first operate as if items can age indefinitely, i.e. they are never discarded, and we reduce
the t-period problem to a single period problem with demand D = D1 + . . .+Dt+W1 + . . .+Wt−1,
where distributions of W1, . . . ,Wt−1 are derived at previous induction steps. Once this new demand
distribution is obtained, values for E(Iaj ) for j < t and a = t, . . . , A−1 can be computed iteratively
by reusing results developed so far. Once more, one should note that the value E(Iat ) obtained
for this new single-period problem corresponds to E(It+a−1

t ) for the t-period problem; of course,
E(Iat ) = 0 for a > A.

Example. Consider a problem in which Dt follows a Poisson distribution with rate λt for t =
1, . . . , T and the shelf life is A = 3. The approach is based on an approximation of the distribution
of Iat by fitting an appropriate first moment (i.e. mean) to a Poisson distribution.1 This means
that in period t, after having carried out the induction over periods 1, . . . , t − 1, we will reduce
the t-period problem to a single period problem subject to Poisson demand with expected value
E(D1) + . . . + E(Dt) + E(W1) + . . . + E(Wt−1). More specifically, we refer to the same problem
analysed in the previous example. However, now the shelf life is limited to A = 3. We first compute
E(I1) = (25, 47.18, 2.81), for which the computation is identical to the one carried out under
the previous example setting. By exploiting this information, and in particular E(I3

1 ) = 2.81,
we reduce the two-period problem to a single period problem under Poisson demand with rate
λ = 50 + 50 + 2.81 and exploit once more Lemma 2 to compute the approximation (0, 19.47, 2.77).
This vector is close to the actual vector E(I2) = (0, 20.219, 1.993) which can be found carrying out
an exact convolution.

If the demand distribution is not uniquely determined by its mean, higher order moments can be
obtained and matched in a similar fashion, for instance to a normal distribution.

4. Two new heuristics

In this section, we present two heuristics that exploit the mathematical properties just presented:
an analytical extension of Silver’s heuristic and a simulation-optimisation heuristic.

An analytical extension of Silver’s heuristic. Silver’s heuristic (Silver 1978) extends the
well-known Silver-Meal lot sizing heuristic (Silver and Meal 1973) to a probabilistic setting. The
key idea behind the Silver-Meal lot sizing heuristic is to determine the average cost per period as
a function of the number of periods that can be covered by the current order. Exploiting the fact
that this function is convex with respect to the number of periods, it is possible to determine the

1In general, one may want to use more advanced distribution fitting techniques.
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Algorithm 1: Analytical extension of Silver’s heuristic

Data: the current period t; initial inventory It−1 at the beginning of period t
Result: the optimal order quantity, Q∗ ≥ 0

1 r ← t;
2 c∗ ←∞;
3 do
4 Q← argminQ≥0[C(It−1, Q) + C(It, 0) + . . .+ C(Ir−1, 0)];

5 c← (C(It−1, Q) + C(It, 0) + . . .+ C(Ir−1, 0))/(r − t+1);
6 if c ≤ c∗ then
7 c∗ ← c;
8 Q∗ ← Q;

9 end
10 r ← r + 1;

11 while c ≤ c∗ and r < t+A;

optimal length of the next replenishment cycle. Next, we briefly illustrate how the results presented
in Section 3 can be used to extend Silver’s heuristic to the case in which inventory comprises items
of different age classes. We shall first formally define the concept of replenishment cycle.

Definition 1. A replenishment cycle (t, r) denotes the time interval between two consecutive re-
plenishments executed at period t and at period r + 1.

Consider a replenishment cycle (t, r) where order quantity Qt aims to cover demand of periods
t, . . . , r. The following lemma extends findings in Federgruen and Wang (2015).

Lemma 6. The expected total cost defined by equations (1). . . (4) during replenishment cycle (t, r)
given starting inventory It−1 is convex in Qt for Qt > 0.

Proof. No order is placed in periods t+ 1, . . . , r, the total costs of the replenishment cycle is

C(It−1, Qt) + C(It, 0) + . . .+ C(Ir−1, 0).

This function is separable, and its separable components are all increasing or decreasing convex
piecewise linear functions of Qt: the unit ordering cost, holding and waste costs increase with Qt,
the penalty cost decreases with Qt; this function is therefore convex in Qt.

Our heuristic exploits the results in Section 3 to compute, for a given starting inventory It−1, the
inventory levels E(It) during the replenishment cycle t ∈ {t, . . . , r}. Using Lemma 6 it computes
the optimal order quantity Qt for replenishment cycle (t, r) as well as the associated expected
total cost per period. As in Silver’s heuristic, we increase the value of r, starting from t, until the
expected total cost per period associated with replenishment cycle (t, r) first increases. Let r+1 be
such value. The optimal action in period t is to order a quantity Qt which minimizes the expected
total cost for replenishment cycle (t, r). A pseudocode of the algorithm is given in Algorithm 1.
We implement this heuristic in a rolling horizon framework: if the planning horizon comprises T
periods, at the beginning of each period t = 1, . . . , T we run the procedure described in Algorithm
1 to determine if an order must be issued and, if so, the respective order quantity. It should be
noted that Algorithm 1 is equivalent to Silver’s heuristic provided A =∞ and w = 0.

Example. Consider an instance over a planning horizon of T = 3 periods, with shelf life A = 3.
Demand in each period t is Poisson distributed with rate λt, where λ ∈ {4, 3, 3}. Fixed ordering
cost o is set to 10, holding cost is set to 1, waste cost w is set to 2, penalty cost p is set to 5. Initial
inventory is I0 = (I1

0 , I
2
0 ) = (1, 1). We consider replenishment cycles (t, r) of increasing length:

• for (t, r) = (1, 1) the optimal action is to not order (Q = 0) and use existing inventory to
cover demand in period 1, the expected total cost per period of this policy is 10.67 — note

8
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Algorithm 2: Simulation-optimisation heuristic

Data: the current period t; initial inventory It−1 at the beginning of period t
Result: the optimal order quantity, Q∗ ≥ 0

1 r ← t;
2 c∗ ←∞;
3 do

4 Q← argminQ≥0[ĈN
t,r(It−1, Q)];

5 c← (ĈN
t,r(It−1, Q))/(r − t− 1);

6 if c ≤ c∗ then
7 c∗ ← c;
8 Q∗ ← Q;

9 end
10 r ← r + 1;

11 while c ≤ c∗ and r < t+A;

that, if we decided to place an order, the optimal order quantity to cover demand in period
1 would be Q = 3.96 and the expected total cost per period would increase to 13.21;
• for (t, r) = (1, 2) the optimal action is to place an order Q = 6.04, the expected total cost

per period of this policy is 9.56, since this is less than 10.67 we proceed and consider the
next possible replenishment cycle length;
• for (t, r) = (1, 3) the optimal action is to order Q = 7.99, the expected total cost per period

of this policy is 9.68; since this is greater than 9.56, we conclude that the optimal action
in period 1 is to order Q = 6.04 and incur an expected total cost per period of 9.56. After
observing actual demand in period 1, the procedure can be iterated to determine order
quantities in following periods.

Simulation-optimisation heuristic. The approach discussed so far extends Silver’s heuristic by
using an analytical approximation for the expected value of the inventory levels (Section 3). The
second approach uses Monte Carlo simulation to approximate E(It) in a replenishment cycle. Using
this sample-based approximation we can estimate the expected total cost of replenishment cycles
and therefore develop a simulation-based extension of Silver’s heuristic. The heuristic obtained
is independent of the specific demand distribution under scrutiny. More precisely, given a cycle
(t, r), the method draws N independent samples of the demand for each period k = t, . . . , r. It

then generates sample average estimates Ê(Ik) of E(Ik), for k = t, . . . , r, as a function of the order
quantity Q and of the initial inventory It−1, by relying on the inventory dynamics described in Eq.

(1), (2) and (3). These estimates Ê(Ik) can be immediately translated into a Monte Carlo estimate

ĈN
t,r(It−1, Q) of the expected total cost for cycle (t, r)

ĈN
t,r(It−1, Q) =

r∑
k=t

(
hÊ(I1

k)+ + h

A−1∑
a=2

Ê(Iak ) + pÊ(−I1
k)+ + wÊ(IAk )

)
.

This cost estimate can be readily used in the context of an algorithm (Algorithm 2) that mimics
the one previously presented for the computation of the optimal order quantity Q∗.

Finally, it is worth sparing some words on the computational complexity of the two approaches.
Both our heuristics are extension of Silver’s heuristic and computationally speaking they are similar
to it. This can be clearly observed by contrasting Algorithms 1 and 2. However, while Algorithm
1, by leveraging on our analytical approximations, features complexity O(AT logQ); i.e. in the
worst case, for each period t = 1, . . . , T, we need to minimize a convex function involving at most
A age categories over domain 0, . . . ,Q, where Q = εQ̄, ε denotes the selected error threshold (i.e.
discretization step), and Q̄ denotes an upper bound for the order quantity; Algorithm 2 relies on

9



May 10, 2016 International Journal of Production Research IJPR˙rev2

a sample-based approach exploiting N samples to compute the optimal order quantity at each
period t = 1, . . . , T, therefore its complexity only increases linearly in N and is O(ATN logQ).

5. Computational study

In this section we present a computational study that investigates the effectiveness of our heuristics.
Section 5.1 outlines the experimental design; Section 5.2 presents the cost differences reached by
the heuristics; and Section 5.3 discusses our findings.

5.1 Experimental design

To study the goodness of the heuristics presented in Section 4, we follow the experimental setup
originally presented in Rossi, Kilic, and Tarim (2015) in which the authors employ a test bed
comprising ten different stochastic demand patterns over a time horizon of T = 15 periods and
a shelf life of the items of A = 3 periods. The demand patterns include a stationary demand
instance (STA), two life cycle instances (LCY1 and LCY2), two sinusoidal (SIN1 and SIN2), and
four empirical (EMP1,. . . , EMP4) patterns of expected demand; these patterns are displayed in
Figure 1 — full numerical details are provided in Appendix II. The stochastic demand in each
period t follows a Poisson distribution mean λt; to ensure that the state space is finite in the SDP
implementation we considered the cumulative distribution of the demand over the whole horizon
and we limited the support to the values between 0 and the upper 99% quantile of this distribution.

The values of the parameters of the objective function (Eq. 6) have been varied in a systematic
way. Note that the unit procurement cost is directly related to the penalty cost p and disposal cost
w. Variation of all of them may lead to a colinear design. Moreover, the inventory holding cost h
and setup cost o define the length of the replenishment cycle, so only one of them has to be varied.
Therefore the value of the procurement cost has been fixed to v = 0 while the unit inventory cost
is set to h = 1. For penalty and disposal costs, values p ∈ {2, 5, 10} and w ∈ {2, 5, 10} have been
considered. Finally, the fixed ordering cost is set to the sum of mean demand of all the periods
of the instance multiplied by a scale factor lo ∈ {1, 2.5, 5}. The Monte Carlo approximation of
the order quantity (Algorithm 2) is based on N = 300 samples. To estimate the cost of our
heuristics we rely on 500 rolling horizon simulation runs. The full Cartesian space of the different
ten demand patterns and the different values for penalty, wastage and fixed costs results into a
set of 270 scenarios. The experimental design is based on randomly selecting 20% of them to test
the extension of Silver’s heuristic against the optimal solution provided by the stochastic dynamic
programming model. Table 4 shows the parameter values of the scenarios of the experimental
design. Appendix II reports the 54 instances systematically selected in the context of our study.

5.2 Results

Table 2 summarises the results obtained for our computational study when pivoting on different
parameters of the test bed: the problem instance, the order cost level lo ∈ {1, 2.5, 5}, the penalty
cost p ∈ {2, 5, 10} and the waste cost w ∈ {2, 5, 10}. The first column of Table 2 (heading “An-
alytical”) shows the MPE (Mean Percentage Error) from the optimal cost obtained by an exact
SDP model to the cost obtained using our analytical extension of Silver’s heuristic and its 95%
CI (Confidence Interval), while the second column (heading “Simulation-optimization”) shows the
same figures using our Monte Carlo simulation-optimisation heuristic.

5.3 Discussion of results

From Table 2 follows that the simulation-optimization heuristic performs, in general, better than
the analytical approximation. However, the latter runs about 10 times faster than the first. On
average, the analytical heuristic reaches a cost that is 5.96% higher than the optimal cost for the
54 tested instances, while for the simulation-optimization heuristic the cost difference reduces to
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Figure 1. Demand patterns used in our computational study; the values denote E[Dt] in each period t ∈ {1, . . . , T}

11
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Table 2. Pivot table for the computational study

Analytical Simulation-optimization Observations
MPE 0.95 CI MPE 0.95 CI

Ord cost level
1 3.06 ±1.77 2.91 ± 1.66 18
2,5 5.24 ±3.70 4.22 ± 2.33 18
5 9.59 ±6.36 7.14 ± 3.84 18
Penalty cost
2 2.37 ±1.17 2.00 ± 0.92 18
5 4.63 ±3.04 4.63 ± 2.78 18
10 10.8 ±6.51 7.65 ± 3.56 18
Waste
1 1.74 ± 0.59 2,13 ± 0.75 18
5 3.68 ± 2.03 3.44 ± 1.60 18
10 12.4 ± 6.45 8.71 ± 3.99 18
Demand pattern
EMP1 8.62 ± 7.33 6.47 ± 5.13 10
EMP2 3.53 ±4.97 3.13 ± 4.83 5
EMP3 8.78 ±10.1 7.34 ± 5.78 9
EMP4 23.8 ±205 11.9 ± 102 2
LCY1 2.42 ±3.44 2.55 ±3.27 5
LCY2 1.06 ± 2.32 1.32 ± 3.80 3
RAND 14.6 ±12.1 12.9 ± 21.1 2
SIN1 2.58 ± 2.74 3.32 ± 3.71 5
SIN2 3.20 ± 2.97 2.91 ± 2.31 5
STA 2.25 ± 2.84 1.95 ± 2.75 8

General 5.96 ± 2.47 4.76 ± 1.57 54
Time (aprox.) 5 secs 50 secs

2 3 4

10%

20%

30%

40%

A

M
P

D

Figure 2. Mean Percentage Difference (MPD) of the optimal solutions of the test bed (Table 4) for A = 2, 3, 4 compared to

the non-perishable case

4.76%. It can be observed that when any of the pivoting parameters is larger in comparison to the
remaining ones, the heuristics perform worse. For example, for the order cost level, the simulation-
optimization heuristic heuristic gives 2.91% of difference with the optimal cost for a level equal
to 1, while that percentage is 7.144% for level 5. When considering the demand patterns, the cost
difference is generally lower than 4%. However, the random pattern (RAND) and empirical patterns
(EMP1, EMP3, and EMP4) produce larger differences. In particular, the largest difference, which
amounts to 23.8% for the analytical heuristic and 11.9% for the simulation-optimization heuristic
is observed for EMP4. The reader should nevertheless note that there are only two observations
of this pattern and the associated confidence interval is therefore very large.

By using our exact stochastic dynamic programming approach, we also computed the optimal
policy for the instances of the test bed discussed in Section 5.1 when A = 2, 3, 4, and compared
their costs to the non-perishable case. As it can be seen in Figure 2, the difference to the non-
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perishable case quickly decreases as A increases. This means that for A > 4, the advantage of
adopting a model that accounts for perishability quickly becomes negligible.

6. Conclusions

In this paper, we presented an inventory control model for perishable items with a fixed shelf-
life. After discussing a number of analytical results concerning the dynamics of perishable stock
in the inventory system under scrutiny, we introduced two extensions of Silver’s heuristic: an
analytical approximation and a Monte Carlo simulation-optimisation approach. We demonstrated
the effectiveness of these heuristics in an comprehensive numerical study that focused on a number
of different demand patterns, as well as on a range of different values for the ordering cost, the
penalty cost and the waste cost. Our results show that the simulation-optimisation approach
features a better cost performance that, on average, is 5% above the optimal cost, the respective
figure for our analytical approximation is 6% .
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Appendix

Appendix I discusses an extension of our heuristics to the case in which lead time is deterministic
and positive and Appendix II provides further details on our computational study.

Appendix I: extension to the case in which lead time is deterministic and postive

We refer to a positive and deterministic leadtime L. For both the heuristics discussed in Section
4 the extension is relatively simple and proceeds as follows.

First, it is necessary to clarify if items are fresh when they are shipped or when they are delivered,
but this assumption does not substantially affect our reasoning.

The inventory vector It must be expanded to accomodate L additional stock categories, so the
state dimension increases, but it increases linearly in L. If shelf life is A the vector now features
A+L possible stock categories, where categories 1, . . . , L now denote items that will be delivered
in L,L−1, . . . , 1 periods, respectively. Categories L+1, . . . , L+A denote fresh items just delivered
(L+ 1), items that are one period old (L+ 2), and so on and so forth.

When both heuristics try to determine the order quantity at period t, the initial inventory
level in the expressions will have to be replaced by the inventory position, i.e. on hand stock plus
pending orders not yet delivered, minus backorders.

Computation of the expected cost for the replenishment cycle starting at period t and ending
at period t+k will have to take into account the fact that the next order placed in period t+k+1
will only be delivered in period t+k+L; in practice, this amounts to extending the replenishment
cycle by L periods and thus taking into account demand over lead time and associated expected
costs (holding, penalty, etc) in periods t + k + 1, . . . , t + k + L. Depending on how we define our
holding cost accounting — i.e. if we should charge or not holding cost on pending orders not yet
delivered — holding cost may or may not be charged on stock categories 1, . . . , L. In any case,
since the cost function is separable (Lemma 6) and we are able to approximate individual E[Iat ]
as discussed in Section 3, these are all easy adjustments to the two algorithms presented.

For a more detailed discussion on accommodating a deterministic lead time in the context of
inventory systems similar to the one discussed in this work we redirect the reader to Rossi et al.
(2010), in particular to their Appendix A.1.
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Appendix II: further details on our computational study

In this section we provide a table with details on the demand patterns used in our computational
experience (Table 3) and a table of the 54 instances randomly selected in our test bed (Table 4).

Table 3. Demand patterns
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

STA 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
LCY1 0.54 0.72 0.96 1.22 1.54 1.86 2.2 2.52 2.82 3.06 3.24 3.32 3.32 3.24 3.06
LCY2 3.06 3.24 3.32 3.32 3.24 3.06 2.82 2.52 2.2 1.86 1.54 1.22 0.96 0.72 0.54
SIN1 2.42 2 1.58 1.4 1.58 2 2.42 2.6 2.42 2 1.58 1.4 1.58 2 2.42
SIN2 3.14 2 0.86 0.4 0.86 2 3.14 3.6 3.14 2 0.86 0.4 0.86 2 3.14
RAND 2.61 1.13 0.41 0.98 0.02 0.95 1.36 1.43 2.8 0.27 0.6 1.7 0.16 2.63 1.06
EMP1 0.01 0.25 0.76 2.33 1.34 2.44 2.23 1.24 1.40 1.81 0.77 1.46 1.1 0.46 0.53
EMP2 0.23 0.40 1.18 1.97 0.82 1.43 2.54 1.95 3.77 3.47 1.30 0.97 1.6 0.55 0.95
EMP3 0.22 0.58 1.32 0.72 0.73 0.99 0.37 0.91 1.02 0.57 0.82 1.59 0.59 2.41 2.67
EMP4 0.24 0.94 0.32 1.39 2.26 1.12 1.11 2.58 1.45 2.73 3.23 1.12 1.07 2.2 0.58

Table 4. The 54 instances randomly selected among the 270 in our test bed
Demand pattern Order cost level Penalty cost Waste cost Demand pattern Order cost level Penalty cost Waste cost
EMP1 2.5 2 2 LCY1 5 2 5
EMP1 1 5 2 LCY1 2.5 5 5
EMP1 5 5 2 LCY1 5 2 10
EMP1 5 10 2 LCY1 5 5 10
EMP1 1 5 5 LCY2 2.5 2 5
EMP1 1 10 5 LCY2 2.5 10 5
EMP1 5 10 5 LCY2 1 5 10
EMP1 5 2 10 RAND 2.5 10 5
EMP1 5 5 10 RAND 1 10 10
EMP1 2.5 10 10 SIN1 5 2 2
EMP2 1 10 2 SIN1 2.5 10 2
EMP2 1 2 5 SIN1 5 10 5
EMP2 2.5 2 5 SIN1 1 2 10
EMP2 1 10 5 SIN1 1 5 10
EMP2 2.5 5 10 SIN2 5 2 2
EMP3 1 2 2 SIN2 2.5 5 2
EMP3 1 5 2 SIN2 1 10 2
EMP3 5 10 2 SIN2 5 5 5
EMP3 1 2 5 SIN2 1 2 10
EMP3 1 5 5 STA 1 2 2
EMP3 5 5 5 STA 2.5 2 2
EMP3 2.5 2 10 STA 2.5 5 2
EMP3 2.5 5 10 STA 5 5 2
EMP3 5 10 10 STA 5 2 5
EMP4 1 10 10 STA 2.5 5 5
EMP4 5 10 10 STA 2.5 2 10
LCY1 2.5 10 2 STA 2.5 10 10
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