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Abstract 

This paper deals with the design and loading of Cellular Reconfigurable 

Manufacturing Systems in the presence of alternative routing and multiple time 

periods. These systems consist of multiple reconfigurable machining cells, each 

of which has Reconfigurable Machine Tools and Computer Numerical Control 

machines. Each reconfigurable machine has a library of feasible auxiliary 

machine modules for achieving particular operational capabilities, while each 

CNC machine has an automatic tool changer and a tool magazine of a limited 

capacity. The proposed approach consists of two phases: the machine cell design 

phase that involves the grouping of machines into machine cells, and the cell 

loading phase that determines the routing mix and the tool and module allocation. 

In this paper, the cell design problem is modeled as an Integer Linear 

Programming formulation considering the multiple process plans of each part 

type as if they were separate part types. Once the manufacturing cells are formed, 

a Mixed Integer Linear Programming model is developed for the cell loading 

problem considering multi-period demands for the part types and minimizing 

transportation and holding costs while keeping the machine and cell utilizations 

in each period and the system utilization across periods approximately balanced. 

An illustrative problem and experimental results are presented. 

Keywords: Cellular manufacture; Reconfigurable manufacturing systems; Mixed 

Integer Linear Programming; Cell formation; Machine loading 



1. Introduction 

Given the current turbulent and uncertain manufacturing environment, some critical 

requirements for a manufacturing system are essential to survive. Short lead times, more 

variants, low and fluctuating volumes and low prices are some of these general features 

of next generation manufacturing systems (Molina et al., 2005). Strategies designed to 

meet these requirements lead to different types of manufacturing systems such as 

Dedicated Manufacturing Systems (DMS), Cellular Manufacturing Systems (CMS) or 

Flexible Manufacturing Systems (FMS). DMS provide profitable and cost-effective 

production in a stable market, but these systems are unable to operate effectively in the 

present dynamic market scenario. CMS aim at achieving production efficiency when 

there are a variety of part types that can be grouped in part families. FMS use expensive 

Computer Numerical Control (CNC) machines with fixed hardware and software to 

produce a variety of parts, but the implementation of these systems has not been very 

successful with abrupt market fluctuations because of the lower throughput, high cost or 

complex design. An emerging paradigm in manufacturing environment defines the 

Reconfigurable Manufacturing System (RMS) concept and the Reconfigurable Machine 

Tools (RMT) technology. 

In contrast to conventional CNCs, that are general-purpose machines, RMTs are 

designed for a specific, customized range of operation requirements and may be cost-

effectively converted when the requirements change (Landers et al., 2001). An RMT is 

designed with an adjustable and modular structure that enables either machine 

scalability or machine convertibility, using some basic and auxiliary machine modules 

(Koren, 2010, pp. 211-218). When the auxiliary modules are changed, different 

operations can be performed on the new machine configuration. In response to the 

market changes, new Modular Reconfigurable Machine tools (MRM) have been 



developed (Padayachee and Bright, 2012). In an MRM the modularity and flexibility of 

the machines is achieved by adding and removing the modules, selected from 

precompiled modules and concatenated by means of a series of standardized mechanical 

interfaces, thus permitting a variety of combinations in which modules could be joined 

(Majija et al., 2013). RMTs and MRMs are generally used as part of an RMS.  

An RMS is “a manufacturing system designed at the outset for rapid changes in 

structure as well as in hardware and software components in order to quickly adjust 

production capacity and functionality within a part family in response to sudden 

changes in market or in regulatory requirements” (Koren et al., 1999). These 

manufacturing systems are configured to produce a family of different part types that 

share some similarities (Xiaobo et al., 2000). Time reduction for introducing new 

products to the market, together with high quality and low cost, is key for enterprise 

survival in the current environment. The manufacturing system must be able to yield 

different batch sizes from different product types, using the exact capacity and 

functionality required in each case. 

A CMS is based on the group technology principle of grouping similar parts into 

part families. In this type of manufacturing systems, machines are grouped into cells, 

where each cell is dedicated to process one or more part-families. There are numerous 

papers in the literature dealing with CMS, specially studying methods for cell formation 

based on graph theory (e.g. Askin and Chiu, 1990), clustering (e.g. Chandrasekharan 

and Rajagopalan, 1987), mathematical programming (e.g. Defersha and Chen, 2006), 

metaheuristics (e.g. Ying et al., 2011; Farahani and Hosseini, 2011), neural networks 

(e.g. Ateme-Nguema and Dao, 2009; Sengupta et al., 2011), etc. There are also some 

review papers on this topic (e.g. Selim, 1998; Ghosh et al., 2014). 



A CMS helps in reducing work-in-process, set-up time, manufacturing lead-time 

and material handling, and improve productivity (Wemmerlöv and Johnson, 1997). 

However, a CMS lacks flexibility and, thus, cannot respond to some requirements such 

as dynamic part mix and demand variation. Integration of modular machines within a 

CMS can help to reduce the level of performance deterioration, including some degree 

of adaptability. 

This paper is related to the cell design and loading problem in the presence of 

alternative routing and multiple time periods within a cellular manufacturing system 

containing RMT and CNC machines. Alternative routing arises when there are multiple 

process plans for each part type, giving rise to the generalized group technology (GGT) 

concept (Kusiak, 1987). An Integer Linear Programming (ILP) model for cell design 

and a new Mixed-Integer Linear Programming (MILP) model for multi-period cell 

loading have been developed in that framework, including as basic objectives the 

minimization of total intercellular transportation and holding costs and workload 

imbalances, and considering production limitations on tools and modules.  

Several methods have been proposed for cell design and loading with alternative 

routing as part of the GGT literature. Many authors have developed methods for 

grouping parts into families or machines into cells but considering only one of the 

alternative process plans (Logendran et al. 1994; Sofianopoulou, 1999). This approach 

makes only partial use of the flexibility provided by the multiplicity of process plans. 

Some studies have imposed machine capacity constraints (Choobineh, 1998; Kang and 

Wemmerlöv, 1993), without considering the workload distribution. Some researchers 

(Kumar and Shanker, 2000; Swarnkar and Tiwari, 2004) have addressed the loading 

problem using a bi-criteria approach (minimizing system unbalance and maximizing the 

throughput), but not taking into account alternative routing. 



Methods in the literature specifically aimed at cell formation using 

reconfigurable machines can be found in Pattanaik et al. (2007) and Pattanaik and 

Kumar (2010). In these works a methodology is presented to design machine cells with 

modular machines using characteristics of reconfigurable manufacturing. The 

methodology is based on the clustering approaches used in group technology, grouping 

machines into cells but without dealing with the loading problem. 

Xing et al. (2009) developed an artificial neural network to solve the cell 

formation problem in a Cellular Reconfigurable Manufacturing Systems (CRMS), 

which are defined as a set of reconfigurable manufacturing cells (RMC) with the 

following advantages compared with traditional manufacturing cells: machines are 

logically, instead of physically, organized in a RMC, the RMC is changeable during a 

production plan horizon, and machines can be shared by different RMC. This paper is 

focused on the cell formation problem. 

Eguia et al. (2013) also centred their studies in CRMS but considering a new 

approach to simultaneously solve the cell formation and the scheduling of part families 

for an effective working of a CRMS. The approach consists of a MILP model to 

represent both problems at the same time with the objective of minimizing production 

costs and the development of a tabu search algorithm for solving large instances. 

To the best of our knowledge, only one research (Yu et al. 2012) regards to part 

grouping and loading in CRMS. These authors considered multiple cells, each of which 

has CNC machines with tool limitations, and presented a MILP model to solve both 

problems at the same time with the objective of minimizing the maximum workload 

assigned to machines. The methodology to be presented in this paper extends the 

formulation of Yu et al. (2012) considering: multiple process plans for each part type, 

RMT with a library of auxiliary modules, multi-period demands for the part types, 



transportation and holding costs as main objective function and balancing workloads as 

secondary objective. 

This paper is organized as follows. In the next section, the cell design problem 

for CRMS with alternative process plans for each part type is described in detail 

together with its mathematical formulation and methods from the literature that can be 

used to solve the problem. In Section 3, the multiple-period loading problem for CRMS 

is presented and formulated. In Section 4, numerical results from a case study are 

reported. The last section summarizes and concludes. 

2. Reconfigurable manufacturing cells design 

A CRMS consists of multiple reconfigurable manufacturing cells (RMC), each of which 

has RMT and/or CNC machines, a setup station, and an automatic material handling and 

storage system. Each CNC machine within an RMC has an automatic tool changer and a 

tool magazine with limited capacity. The automatic tool changer gives flexibility to the 

CNC machine so that it can perform various types of operations without requiring a 

great effort in switching from one operation to another. Each RMT within an RMC has 

a library of basic and auxiliary modules. The basic modules are structural in nature 

(such as base, columns, slideways and tables) and auxiliary modules are kinematical or 

motion-giving (such as spindles, tool changers, etc). A particular combination of 

different basic and auxiliary modules provides a particular set of operational capabilities 

to the RMT. Figure 1 shows a schematic description of a CRMS with two different 

RMC. 

============================= Figure 1 ========================== 

The RMC design problem involves the grouping of machines (RMT and CNC 

machines) into machine cells using the information on the sequence of operations for 

the different process plans of each part type. For conventional manufacturing cell design 



problems, two alternatives are considered in the literature: either the alternative process 

plans are treated as if they were separate part types; or aggregate part types are built 

from the alternative process plans of each part type. 

In the first case, the problem transforms itself into a conventional (i.e. without 

alternative routing) cell formation problem, except that instead of grouping machines 

and part types, what must be grouped are machines and process plans. The objective is 

to find clusters of machines and process plans so that the maximum number of 

operations of each process plan family can be performed within the cell. Most cell 

formation methods from the literature use as input data the information on the sequence 

of operations for each process plan, and then generate a binary machine/process plan 

incidence matrix. Some of these methods assume that the number of cells to form is 

given. Also, some methods have the possibility of imposing a limit on the number of 

machines per cell. Most of these methods assume that there is only one machine of each 

type. 

Alternatively, when a binary machine/process plan incidence matrix is given, the 

multiple process plans of each part type can be aggregated in order to form virtual part 

types. One way is to form a non-binary machine/virtual part type incidence matrix with 

the average use of each machine per each unit part type and then apply a fuzzy 

clustering technique. 

Different mathematical formulations for the cell formation problem have been 

proposed in the literature to solve the problem optimally. Some of these formulations 

consider indirect measures such as similarity, bond energy, ranking etc., to obtain a 

block diagonal form from the part-machine incidence matrix using a sequential 

approach (Kusiak, 1987; Srinivasan et al., 1990). In such approaches, the machine 

groups and part families formed are such that the number of exceptional elements and 



voids is minimized. But in a manufacturing situation, the costs of voids and exceptional 

elements may vary, indicating that the importance of voids and exceptional elements 

might be considered explicitly. 

In this paper, an ILP model for the simultaneous grouping of machines and 

alternative process plans is developed using the alternative process plans as if they were 

separate part types. The problem is transforms itself into a standard cell formation 

problem (i.e. without alternative routing), except that it is machines and process plans 

that must be grouped instead of machines and part types. This formulation is based on 

the nonlinear mathematical model proposed by Adil et al. (1993) and the ILP model 

proposed by Boctor (1991). 

The notation used in the ILP model to solve the simultaneous cell formation 

problem with alternative routing is the following: 

Indexes and input data: 

• Part types: i=1,…,N 

• Process plans of each part type: r=1,…, PPi (PPi is the number of process plans 

of part type i) 

• CNC machines (set NM) and RMT (set RM): k=1,…,M 

• Cells: c=1,…,C (C is the maximum number of cells to be formed) 

• akir: machine/process plan binary incidence matrix (=1 if machine type k is 

required for any operation of the r-th process plan of part type i, and 0 

otherwise) 

• q: weighting parameter that measures the importance of voids versus exceptional 

elements ( 10 ≤≤ q ) 

Decision variables of cell formation: 



• Xkc=1 if machine type k is assigned to cell c 

• Yirc=1 if r-th process plan of part type i is assigned to cell c 

• Ekirc=1 (exceptional element) if r-th process plan of part type i requires a 

machine type k outside of the cell c to which that process plan is assigned 

• Hkirc=1 (void) if r-th process plan of part type i does not require a machine type 

k inside of the cell c to which that process plan is assigned 

The cell formation problem that identify machine groups and process plan 

families simultaneously can be formulated as the following ILP model. 
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The objective function (1) minimizes the weighted sum of intracellular voids 

and intercellular movements. Constraints (2) ensure that each machine is allocated to a 

cell. Similarly, constraints (3) guarantee that each process plan is assigned to a cell. 

Constraints (4) indicate that if a machine type k is not assigned to cell c ( 0=kcX ), the 

number of times that machine type k is required to complete parts in the process plans 

assigned to cell c, that is, the corresponding number of exceptional elements (

1

=

=
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kir kirc

r i
a E ), must be greater than or equal to the number of operations requiring 

that machine in all the process plans assigned to cell c (
1

=

=
∑ ∑

r PPi
kir irc

r i
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constraints (5) imply that if a machine type k is assigned to cell c ( 1=kcX ), the number 

of times that machine type k is not required in any of the process plans assigned to cell 

c, that is, the corresponding number of voids (
1

1
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than or equal to the number of process plans assigned to the cell c that do not use that 

machine type (
1

1
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r i
( a )Y ). Finally, constraints (6) and (7) are added to 

guarantee that if any machine type is assigned to a cell c then at least one process plan 

must be assigned to this cell, and vice versa. Binary restrictions on the variables are 

imposed by constraints (8). The value of C is an upper bound on the number of cells to 

be formed. 

If the machine/process plan binary incidence matrix is small, the above model 

can be optimally solved using appropriate optimization software. But for the efficient 



solution of larger problems, heuristics approaches are needed. There are a number of 

heuristic techniques to solve the standard cell formation problem efficiently. Some of 

the solution methods try to rearrange the binary machine/part incidence matrix (akir) in 

order to bring the non-zero elements around the diagonal. There are also clustering 

techniques that identify clusters of either parts or machines. A third group of methods 

use graph decomposition techniques to find the manufacturing cells. Also, several 

multi-step or iterative ad-hoc heuristics have been proposed in the literature. Finally, 

other methods to efficiently solve the manufacturing cell formation problem include 

metaheuristics: Tabu Search, Simulated Annealing or Genetic Algorithms. 

In this paper, in addition to solving the model optimally, and for the sake of 

comparison, some existing cell formation heuristics and metaheuristics from the 

literature have also been applied, namely ZODIAC (Chandrasekharan and Rajagopalan, 

1987), GRAFICS (Srinivasan and Narendran, 1991), MST (Srinivasan, 1994), 

Simulated Annealing (Boctor, 1991; Chen et al., 1995), Tabu Search (Sun et al. 1995) 

and Self-Organizing Neural Network - SONN (Lozano et al., 1998). MST is a greedy 

heuristic which can handle cell size constraints while the other two heuristics (ZODIAC 

and GRAFICS) are two commonly used, non-hierarchical clustering approaches for 

manufacturing cell formation. In these heuristics the information about the binary 

machine/process plan incidence matrix (akir) is used for grouping machines into cells 

maximizing the sum of similarity coefficients between every two machines in a cell 

(with similarity measured according to the number of process plans which use both 

machines). Process plans are then assigned to the cell in which the majority of its 

operations are performed. Simulated Annealing and Tabu Search are two well-known 

metaheuristics applied to solve a large number of combinatorial problems, and, in 

particular, they have been used to solve the cell formation problem. Both methods start 



with an initial feasible solution and repeatedly generate neighboring solutions. Both 

methods differ in the mechanism to generate the neighborhood and to select the new 

solution. Finally, in SONN a fuzzy aggregate part-machine incidence matrix is 

computed using equation (9). The assignment of process plans to machine cells is 

performed using the same criterion as in the previous heuristics. 
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3. Multi-period cell loading problem 

Once the cell design problem has been solved, the resulting cells can be physically 

implemented and the cell loading planned. The cell loading consists in determining the 

routing mix and the tool and module allocation, i.e., which quantity of each part type to 

be assigned to each alternative route in each time period and how many auxiliary 

modules and tools of each available type to be assigned to each RMT and CNC machine 

in each period. To do this a MILP model, formulated below, is proposed. The basic 

objectives of this phase are to minimize total intercellular transportation and holding 

costs of parts as well as to balance machine and cell utilizations. 

Let us introduce additional notation to be used in the cell loading problem. 

Indexes and basic input data: 

• Time periods: t=1,…,T (T is the planning horizon) 

• Di
t: demand for part type i in period t 

• Tool types (set TT) and auxiliary module types (set AM): z=1,…,Z 

• szk: number of tool slots required by tool type z in CNC machine k 

• TMCk: tool magazine capacity of CNC machine k (k∈NM) 



• MNAk: maximum number of auxiliary modules for RMT k (k∈RM) 

• TCz
t: number of available units of tool type z (z∈TT) in period t 

• TAz
t: number of available units of auxiliary module type z (z∈AM) in period t 

• TLz: tool life of tool type z (z∈TT) 

• ALz: average life of auxiliary module type z (z∈AM) 

• dijrz=1 if j-th operation of r-th process plan of part type i requires tool type z, and 

0 otherwise 

• pijrk: processing time of j-th operation of r-th process plan of part type i at 

machine k 

• Hk
t: maximum workload available for machine k in period t 

• α: maximum inter-cell utilization imbalance 

• β: maximum intra-cell utilization imbalance 

• γ: maximum inter-period utilization imbalance 

• CM: unit intercellular transportation cost 

• CHt: unit holding cost in period t 

Additional input data from cell design 

• nir: number of inter-cell movements along route r of part type i (obtained from 

phase 1 Xkc and airk) 

• bkc=1 if machine type k belongs to cell c (obtained from phase 1 Xkc) 

• qc: number of machines in cell c (obtained from phase 1 Xkc) 

Decision variables of cell loading 

• xir
t: quantity of part type i to be assigned to route r in period t 

• Ii
t: inventory of part type i at the end of period t 



• εzk
t: number of tools of type z (z∈TT) assigned to CNC machine k (k∈NM) in 

period t and number of auxiliary modules of type z (z∈AM) assigned to RMT k 

(k∈RM) in period t 

• uk
t: workload of machine k in period t 

• wc
t: total workload of machines in cell c in period t 

The cell loading problem can be formulated as the following MILP model. 
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The objective function (10) minimizes total costs, including both intercellular 

transportation costs and inventory holding costs. Constraints (11) compute inventories 

at the end of each period and impose that the part demand of each period must be 

satisfied. Constraints (12) impose a zero inventory at end of the planning horizon for all 

part types. The limitations on the tool magazine capacity of each CNC machine and the 

physical limitations on the number of auxiliary modules that can be attached to each 

RMT are represented by constraints (13) and (14), respectively. Constraints (15) and 

(16) impose the limitations on the number of available tools and auxiliary modules. 

Constraints (17) and (18) imply that for each tool type (respectively, auxiliary module 

type) the total life corresponding to the number of tools (respectively, auxiliary 

modules) assigned to each machine should be larger than or equal to the corresponding 



workloads for that tool type (respectively, auxiliary module type) on that machine. 

Constraints (19) compute the workload of each machine in each period while 

constraints (20) compute the workload of each cell in each period as the sum of the 

workloads of machines assigned to the cell. Constraints (21) correspond to the 

maximum workload allowed for each machine. Workload balancing in each period is 

considered through constraints (22), (23) and (24), which bound for each period, the 

deviation of each cell workload, of each machine workload and of the system workload 

with respect to their average values. Constraints (25) declare that all variables are 

continuous except for the integer variables εzk
t. 

The above model is different from other approaches in that not only it considers 

the total costs as main objective function but also balancing the workload as secondary 

objective function. The latter objective seeks that all machines in the same cell be 

approximately equally loaded, that the average utilization of the machines in each cell 

be approximately the same for all the cells in each period, and that the average system 

utilization for each period be similar. This objective helps prevent bottlenecks and thus 

increases throughput. Also this model includes RMT and auxiliary modules as part of 

the CRMS, considering limitations on the number of modules per machine and on the 

total number of module copies of each auxiliary module type. 

A MILP formulation is a natural approach for this problem. The number of 

integer variables depends on the degree of tool and module commonality between 

operations and in any case cannot exceed the number of machine types times the 

number of tool types. Constraints (13)-(16) are multiknapsack, which implies that the 

problem may not be easily solved in the worst case. Although in the illustration 

presented in the next section, given its moderate size, the model has been solved 



optimally, more efficient solution strategies (e.g. metaheuristic approaches) may have to 

be developed for larger sized problems. 

4. Illustration 

This section considers a manufacturing system involving 14 machines (of which 11 

CNC machines, numbered 1-11, and 3 RMT, numbered 12-14), and 10 part types. Table 

1 shows the sequence of operations of the alternative process plans of each part type. 

Note that there are a total of 23 alternative routes (ranging from 1 to 6 operations per 

route) and using 6 tool types (numbered 1-6) and 3 auxiliary module types (numbered 

7-9). 

============================== Table 1 ========================== 

From the Table 1, the machine/process plan incidence matrix is generated using 

only the first attribute (i.e. machine type) of each operation. Table 2 shows the 

corresponding binary machine/process plan incidence matrix (akir). 

============================== Table 2 ========================== 

The cell design model [P1] has been solved optimally using the linear 

programming software LINGO® v.9 on a 3.3 GHz Intel® Core(TM) i5-2400 CPU. 

Table 3 shows the machine cells and associated process plan families obtained by the 

optimization software for different values of the weighting parameter q from 0 to 1 (in 

steps of 0.1) and a maximum number of 6 cells (C). According to these results, the 

minimum number of intracellular voids obtained is 6 and occurs when q=1 and the 14 

machines are grouped into the maximum number of 6 cells while the minimum number 

of exceptional elements is 0 corresponding to q=0 and 3 cells formed. For intermediate 

values of the weighting parameter q, the number of cells, voids and exceptional 

elements vary between the above limits. In this illustration, choosing a value for the 

relative weight of voids and exceptional elements q=0.1 is reasonable due to the 



resulting cell sizes (between 3 and 4 machines per cell) and the number of formed cells 

(4 cells). 

============================== Table 3 ========================== 

As mentioned in section 2, three ad-hoc heuristics (MST, ZODIAC and 

GRAFICS), three metaheuristics (SA-Boctor, SA-Chen and TS-Sun) and a fuzzy neural 

network (SONN) have also been applied to solve this cell design problem. In order to be 

able to compare these methods with the optimal ILP model results, a cell size limit has 

not been considered and the same objective function has been used. The comparison has 

been carried out for a value of q=0.1. The three ad-hoc heuristics do not need the 

number of cells to be fixed a priori and process plans are assigned to the cell in which 

the impact on the objective function is lowest. For the other four methods, a maximum 

number of C=4 cells has been established. The cell design results for these seven 

heuristic methods are shown in table 4. Note that six of the methods have also obtained 

the optimal solution, while ZODIAC has grouped the 14 machines into 6 cells. Note 

that, in the optimal four cell configuration, many part types (e.g. 1, 3, 4, 7, 8, 9 and 10) 

have process plans that are assigned to different cells, thus increasing the flexibility for 

the cell loading phase. Let us assume that the four-cell solution that appears in both 

Tables 3 and 4 is selected. This CRMS configuration is shown in Figure 2. 

============================== Table 4 ========================== 

============================= Figure 2 ========================== 

The cell loading model [P2] has been solved for the optimal four cell solution. 

In order to analyse the performance of the proposed approach in a dynamic environment 

four time periods have been considered, with production requirements shown in Tables 

5 and 6. 

============================== Table 5 ========================== 



============================== Table 6 ========================= 

MILP model [P2] has been solved using the linear programming software 

LINGO® v.9 with on a 3.3 GHz Intel® Core(TM) i5-2400 CPU, taking 7 seconds. 

Tables 7-10 show the optimal solution computed, which has an objective function value 

of 17.53 (representing total intercellular transportation and inventory holding costs). 

Solving the problem imposing additional integrality constraints on the xir
t variables took 

longer than 8 min and gave an optimal objective function value of 20.71, i.e. a 18.1% 

gap. Note that the rounding errors for not imposing integrality constraints on the xir
t 

variables are less important the higher the values of the demands. 

============================== Table 7 ========================== 

============================== Table 8 ========================== 

============================== Table 9 ========================== 

=============================  Table 10 ========================== 

Note that although part types 2, 3, 4 and 5 have similar production requirements 

in periods 1 and 2, their corresponding production plan varies completely for each 

period. Thus, although the proposed CRMS uses the same cell configuration for the 

whole planning horizon, the flexibility provided by the possibility of selecting different 

process plans allows meeting dynamic production requirements with high system 

performance. 

The problem has also been solved assuming that for each part type only one of 

the alternative routes can be used along the whole planning horizon. That approach is 

quite common in the literature. The criterion that has been used for selecting the route is 

the minimization of total intercellular transportation and inventory holding costs in the 

loading phase. That means adding to model [P2] some binary variables δir (=1 if route r 



of part type i is selected, 0 otherwise) and the following constraints, which may also use 

upper bounds of the total quantity of each part type to be produced: 

1δ ≤ ∀∑ ir
r

i   (26) 

≤ δ ⋅ ∀ ∀∑ ∑t t
ir ir i

t t
x D i, r   (27) 

For this single-route variant, the optimal objective function value that results is 

103.68 (104.31 if the values of the variables xir
t are forced to be integer). Note how 

allowing more than one route per part type, using the same resources (CNC and RMT, 

tools and auxiliary modules) and balancing the workloads, costs have been greatly 

reduced due to flexibility. Actually, most of the potential flexibility associated to the 

existence of alternative routing is lost if, as many approaches do, only one of the 

alternative routes of each part type is selected in the cell design phase. 

Finally, the problem has also been solved using all routes but forcing the 

selection of just one route per part type in each period, that is, all alternative routes are 

available for the cell loading phase, but in each time period only one route per part type 

can be selected. In this case, not all the flexibility is lost. This variant involves adding to 

model [P2] some binary variables δir
t (=1 if route r of part type i is selected in period t, 

0 otherwise) and constraints similar to (26)-(27) for each period. The optimal objective 

function value obtained is 100.64 (100.91 if the values of the variables xir
t are forced to 

be integer). Table 11 summarizes these results. 

=============================  Table 11 ========================== 

5. Conclusions 

This study has considered the cell design and multi-period loading problem for CRMS 



with CNC machines and RMT, taking into account the presence of alternative process 

plans for each part type. Alternative routing is recognized as an effective means of 

coping with the loss of flexibility inherent to dedicated machines in CMS. The 

methodology proposed in this paper has handled both problems sequentially; first 

solving the cell design once and for all, and then carrying out cell loading for each 

planning horizon using the solution from the cell design step. 

For cell design, an ILP model has been presented that minimizes a weighted 

linear combination of intercellular movements and intracellular voids. This model has 

been solved optimally and with some heuristic methods from the group 

technology/cellular manufacturing literature on an illustrative example. In some of the 

heuristic methods, process plans are treated as if they were separate part types, and 

families of process plans and associated machine cells are formed. In one of these 

methods (namely, SONN), however, the different process plans of each part type are 

used to form aggregate part types and to group machines using these aggregate part 

types. 

For multi-period cell loading, a MILP model for assigning parts to the 

alternative routes is proposed, minimizing total intercellular transportation and 

inventory holding costs while keeping intra-cellular, inter-cellular and inter-period 

utilization approximately balanced. Constraints on tool magazine capacity, number of 

auxiliary modules per RMT, number of tool and auxiliary modules available, tool and 

module life restrictions, and finite machine capacity are imposed. 

The proposed approach has been applied to a small example for the purpose of 

illustration and has been confirmed that cell design and cell loading for CRMS, 

considering specific production features of CNC machines and RMT, can be handled as 

sequential problems, which can therefore be solved separately. As for the cell design 



phase, apart from solving the proposed model optimally, some existing cell formation 

methods have been applied, provided that they do not exclude the subsequent use of any 

route. As for the cell loading phase, it has been modelled as a MILP aiming at two 

objectives (i.e. inter-cell flow and workload balancing), allowing in each period the 

selection of more than one route for each part type in order to take maximum advantage 

of the existing flexibility. 

The machine loading solution obtained using the proposed approach could be 

validated through simulation, which represents a topic for further research. Thus, 

simulating the system configuration, part routing and workloads computed, the system 

performance for the multiple-period production plan may be assessed. Moreover, 

considering random machine failures and disturbances would allow studying also the 

robustness of the proposed solution. 

Finally, in this paper the solution approach is based on exact methods. However, 

computing an optimal solution for this type of MILP may become impractical for large 

size problems due to the excessive computation time required. This means that for 

larger problems a metaheuristic solution algorithm would have to be developed. Such 

approximate solution approach can be validated comparing the known optimal solutions 

for the smaller-sized problems. This is also a topic for further research. 
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Figure 1. RMC and CRMS: schematic description 
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Figure 2. Visual representation of the cell design solution 
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Table 1. Routing data 

Part  ty
pe Route  Operation sequence (machine, processing time, tool/module) 

i r j=1 j=2 j=3 j=4 j=5 j=6 
1 1-1 (6,5,2) (5,12,3) (6,7,5)       
  1-2 (4,8,1) (13,6,9) (3,5,6) (4,5,1) (13,6,9)   
  1-3 (3,10,6) (13,5,8) (3,10,2) (13,8,9) (4,4,2)   
2 2-1 (14,6,8) (1,5,3) (8,4,5) (14,5,7) (8,5,5) (1,5,1) 
  2-2 (8,3,1) (2,9,4) (8,5,6) (1,10,3)     
3 3-1 (6,2,3) (7,8,5) (6,3,5)     
  3-2 (10,9,1) (12,7,9) (10,9,3)     
  3-3 (9,8,2) (12,4,9) (9,6,6) (13,4,8) (10,4,6) (12,5,7) 
4 4-1 (10,7,6) (9,10,6) (10,6,1)       
  4-2 (7,7,1) (6,4,2) (11,12,4) (7,9,4) (6,5,3) (5,8,5) 
5 5-1 (11,4,4) (5,6,6) (11,4,6)     
  5-2 (6,4,2) (5,4,5) (7,4,1) (6,4,5) (7,5,5)   
6 6-1 (11,3,4) (7,6,4)         
  6-2 (5,8,6) (6,7,3)         
7 7-1 (6,4,2) (7,3,4) (5,5,6) (6,6,3) (7,3,5) (11,5,4) 
  7-2 (6,5,5) (5,4,5)      
  7-3 (4,7,4) (3,8,2) (13,5,8) (4,6,1)    
8 8-1 (10,7,3)           
  8-2 (3,6,3)           
9 9-1 (4,6,2) (3,6,6) (13,5,9)     
  9-2 (2,4,1) (8,3,6) (2,6,5)     

10 10-1 (4,5,4) (3,5,6) (10,5,1) (4,7,2) (3,5,3)   
  10-2 (14,10,7)           

 

  



Table 2. Machine/process plan incidence matrix 

 Part-Process Plan (i-r)  
Machin
e type 

(k) 

1
-
1 

1
-
2 

1
-
3 

2
-
1 

2
-
2 

3
-
1 

3
-
2 

3
-
3

4
-
1

4
-
2

5
-
1

5
-
2

6
-
1

6
-
2

7
-
1

7
-
2

7
-
3

8
-
1

8
-
2 

9
-
1 

9
-
2 

10
-1 

10
-2

1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
3 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 
4 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 
5 1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 
6 1 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 
7 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 
8 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
9 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
10 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 
11 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 
12 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
13 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 
14 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

  



 

 

 

  



 

 

 

 

  



Table 5. Demand scenario for cell loading 

 Part type 

 1 2 3 4 5 6 7 8 9 10 

Demand for period 1 - 18 15 8 9 - 16 12 18 - 

Demand for period 2 10 18 18 8 10 8 - - - 12 

Demand for period 3 12 18 - - - 12 18 8 15 14 

Demand for period 4 - 10 16 12 8 - - 15 12 10 

 

 

  



Table 6. Additional data 

Tool slots per tool type (∀z∈TT, ∀k∈NM)) szk 1 

Tool magazine capacity (∀k∈NM) TMCk 3 

Number of auxiliary modules (∀k∈RM) MNAk 2 

Number of available tool copies (∀z∈TT) TCz
t 6 

Number of available module copies (∀z∈AM) TAz
t 2 

Tool life (∀z∈TT) TLz 120 

Auxiliary module life (∀z∈AM) ALz 120 

Maximum workload for machine (∀k∈NM, ∀t) Hk
t 240 

Maximum inter-cell imbalance α 0.30 

Maximum intra-cell imbalance β 0.60 

Maximum inter-period system utilization imbalance γ 0.30 

Unit intercellular transportation cost CM 1 

Unit holding cost ∀t CHt 0.1 

 

  



Table 7. Optimal cell loading solution: production plan (xir
t) 

Part-Process Plan Production plan 
(i-r) xir

1 xir
2 xir

3 xir
4 

1-1  0.646 4.865  

1-2  1.478 3.750  

1-3  11.261 0.000  

2-1 3.486 0.000 0.000 0.000 

2-2 16.997 18.126 15.494 9.897 

3-1 9.599 12.360  7.065 

3-2 3.358 3.506  2.525 

3-3 2.043 2.134  1.427 

4-1 7.613 7.950  4.177 

4-2 0.387 0.050  0.800 

5-1 9.000 5.775  3.707 

5-2 0.000 4.225  4.293 

6-1  0.000 12.000  

6-2  8.000 0.000  

7-1 5.841  0.811  

7-2 10.159  17.189  

7-3 0.000  0.000  

8-1 0.000  0.000 0.000 

8-2 12.000  8.770 14.230 

9-1 18.000  15.000 12.000 

9-2 0.000  0.000 0.000 

10-1  0.000 0.000 0.000 

10-2  12.000 12.000 10.000 

 
  



Table 8. Optimal cell loading solution: inventories (Ii
t) 

Part type (i) Ii
1 Ii

2 Ii
3 Ii

4 

1  3.385 0  

2 2.483 2.609 0.103 0 

3 0 0  0 

4 0 0  0 

5 0 0  0 

6  0 0  

7 0  0  

8 0  0.770 0 

9 0  0 0 

10  2.000 0 0 

 

  



Table 9. Optimal cell loading solution: workloads (uk
t; wc

t) 

Cell (c) Machine (k) uk
1 uk

2 uk
3 uk

4 

I 

3 180 232.61 161.367 157.383 

4 108 64.259 138.75 72 

13 98.173 172.665 127.541 65.71 

Total (wc
t) 386.173 469.534 427.658 295.093 

II 

9 104.732 109.378 96.623 61.758 

10 167.571 175.005 154.597 105.461 

12 41.893 43.751 38.649 30.521 

Total (wc
t) 314.196 328.135 289.869 197.739 

III 

5 126.941 123.702 131.189 45.81 

6 160.69 159.797 152.432 76.866 

7 118.041 137.696 76.865 107.951 

11 105.857 46.799 40.054 39.25 

Total (wc
t) 511.53 467.994 400.541 269.877 

IV 

1 204.832 181.257 154.937 98.974 

2 152.971 163.131 139.443 89.077 

8 167.352 145.005 123.949 79.179 

14 58.351 120 120 100 

Total (wc
t) 583.507 609.393 538.329 367.23 

Average 403.55 448.851 468.764 414.099 282.485 

 
  



Table 10. Optimal cell loading solution: number of tools, modules and tool magazine slots 
used 

Tool type (z∈TT) ∑k εzk
1 ∑k εzk

2 ∑k εzk
3 ∑k εzk

4 

1 4 4 3 3 

2 3 4 3 3 

3 5 5 6 4 

4 4 4 4 3 

5 4 3 3 3 

6 6 6 5 6 

Module type (z∈AM) ∑k εzk
1 ∑k εzk

2 ∑k εzk
3 ∑k εzk

4 

7 2 2 2 2 

8 2 1 1 1 

9 2 2 2 2 

CNC Machine (k∈NM) ∑z szkεzk
1 ∑z szkεzk

2 ∑z szkεzk
3 ∑z szkεzk

4 

1 3 2 2 1 

2 2 2 2 1 

3 2 2 2 2 

4 1 2 2 1 

5 2 3 3 2 

6 3 3 3 3 

7 3 3 2 3 

8 3 2 2 2 

9 2 2 2 2 

10 3 3 3 3 

11 2 2 1 2 

Reconf. Mach. Tool 
(k∈RM) ∑z szkεzk

1 ∑z szkεzk
2 ∑z szkεzk

3 ∑z szkεzk
4 

12 2 2 2 2 

13 2 2 2 2 

14 2 1 1 1 
 

  



Table 11. Optimal cell loading solution: comparison with other approaches 

 
Without integrality 
constraints on xir

t 
 With integrality 
constraints on xir

t 

 
Objective 
function 

CPU time 
(hh:mm:ss) 

Objective 
function 

CPU time 
(hh:mm:ss) 

Proposed approach 17.527 0:00:07 20.712 0:08:47 

Single-route selection 103.677 0:00:03 104.310 0:00:10 

Multiple-route, single 
assignment per period 100.643 0:00:38 100.911 5:36:51 

 

 

 


