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63173 Aubière Cedex, France

()

In this paper, we are interested in the controller design for constrained production systems subject
to uncertainties on the demand and the production delays. The case study focuses on the inventory
regulation problem in production systems which must respond to the customer demands of finite products.
Such systems are characterized by the presence of delays due to production processes, the saturation of
the input command and the constraints due to the finite capacities of stocks. In our study, we assume
that (i) the customer demands are considered to be unknown but bounded by a given value, (ii) both
the control input and the inventory output are subject to assigned constraints, and (iii) the production
delay is defined with an uncertainty interval. Our model includes two factors that commonly have an
impact on the supply chain performances and cause the bullwhip effect: the variability of the customer
demand and the uncertainty on the lead time.
The proposed approach is based on a saturated predictor-feedback structure, in which the constraints
and the physical limitations of the production system are taken into account. The concepts used in this
approach are the BIBO-stability and the D-invariance properties. We examine then the bullwhip effect
phenomenon, which is an important observation in supply chain management. In order to study the
robustness of the control system state feedback, the proposed approach gives necessary and sufficient
conditions on the controller parameters, for which the system requirements will be completely met, and
permits to ensure the bounds of solutions for the control parameters. The accuracy of the proposed
methodology is illustrated through simulation result which demonstrates that the bullwhip effect can
be reduced, but not completely eliminated, by using a saturated command and a predictor-feedback
structure.

Keywords: Inventory control, BIBO-stability, D-invariance properties, time-delay systems, robust
control, predictor-feedback structure.

1. Introduction

1.1 About the inventory regulation problem

The paper deals with the inventory regulation problem in logistical systems. A logistical system
is a network of elementary devices, that interact between them, exchanging goods, money, and
information. The aim of each component of the system, is to answer demands arising from each
other. The demand is rapidly variable, and, since production takes time, this variation generates
oscillations of the inventory levels. In (Forrester, 1973), the author analyzed the dynamics of indus-
trial systems, and showed that unstable oscillations may happen in supply chains, which is called
bullwhip effect. He recommended managing demand-driven policies that permit to coordinate the

∗Corresponding author. Email: Rosa.Abbou@irccyn.ec-nantes.fr

1



different actors of a supply chain, thanks to the exchange of information. Such policies may be
seen as stabilizing inventory control laws as initially remarked by (Simon, 1952). (Riddalls and
Bennett, 2002) proposed a control structure based on a feedback structure using a smoothing of
the expected demand. They used an approximation of the delay operator by a first-order system.
(Sipahi and Delice, 2008) showed that such an approximation may induce an erroneous evaluation
of the stability of the system, and developed numerical methods for a precise estimation of the
stability regions in the space of the control parameters.

The paper deals with the methodology of control design for constrained production systems
within an uncertainty on the production delay. Because of the presence of the delay, those systems
are named delayed systems, also called systems with after effect or dead-time, memory systems
or hereditary systems, systems with deviating argument or differential-difference equations. They
belong to the class of functional differential equations which are infinite dimensional, as opposed to
ordinary differential equations (Richard, 2003). The class of delay systems include systems having a
phenomenon of delay in their dynamics. Additionally, some systems would be particularly sensitive
to the presence of delay, and even a small delay may drastically affect how they behave. However,
although these phenomena of delays have complex effects on the properties of the system, and
although they are often a source of instability, they are also known for stabilizing effects. That
is why the delay in command signals is a serious issue for dynamic system that needs to act in
real-time.

These features have generated a great curiosity on the part of the community of automation
engineers. From the state of art, one can refer, for instance, to special issues such as (Richard,
2003), (Dion et al., 2001), (Loiseau and Rabah, 1997) and (Richard and Kolmanovskii, 1998). There
are also some survey papers such as (Kharitonov, 1998), (Loiseau, 1998), (Niculescu et al., 1997),
(Olbrot, 1998), (Richard, 2000), (Niculescu and Gu, 2004), (Chiasson and Loiseau, 2007), (Loiseau
et al., 2009), (Krstic, 2010), (Sipahi et al., 2011). Beyond the therorical interest for the study of
such models, the interest that is paid to this class of systems is justified in many applied problems.
Whether applications in the fields of biology, economics, transport or telecommunications network
((Bocharov and Rihan, 2000), (Chiasson and Loiseau, 2007), (Normey-Rico and Camacho, 2007)),
the time-delay models allow for more realistic modeling of the dynamics that govern processes,
formalizing effects delays that are present.

1.2 Our contribution

In this study, the production delay is considered with an uncertainty expressed by an interval. Our
objective is to study the robustness of the control law. We propose in this paper a control law based
on a predictor-feedback structure as developed in (Abbou et al., 2013) and (Moussaoui et al., 2014)
taking into account the uncertainty on the delay. The use of a predictor-based feedback loop is a
classical idea to control time-delay systems. It was first proposed in (Manitius and Olbrot, 1979).
It permits pole placement, and was shown to be a basic structure for robust control of time-delay
systems (Mirkin and Raskin, 2003).

The main advantage of the controller proposed in this work is it permits the analysis and control
of the variations of the instantaneous inventory level and production level, in presence of a demand
that is variable (unknown) and bounded. We note that the delay and the storage and production
capacities are taken into account exactly. The financial benefits of this approach can be measured
by the fact to meet customer demand without incurring the penalties of breaking the stock, and
also by optimizing storage costs by adopting a production strategy just in time.

Another extension, that we are interested in, was its use in disturbance attenuation. In logistic
systems, the perturbation corresponds to the customers demand. The regulation aims to attenuate
this perturbation effect on the inventory level. The use of a prediction has an interesting interpreta-
tion when applied to the considered systems. In that case, it comes to the consideration of the Work
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in Process (WIP) on line to determine the production level, which is widely used in production
management. Indeed, in a production process, it is quite common to have the WIP which includes
the unfinished items which are being fabricated but are not yet completed. Moreover, when the
systems are subject to actuators saturations, the use of a saturated command is necessary to solve
the control problem of those systems. Also, we analyze the robustness of the control law and give
the robustness margin. For more reading, one can refers to the works of (Hu and Lin, 2001), (Kapila
and Grigoriadis, 2002) and (Tarbouriech et al., 2011), to name but a few, which dealt with this
topic.

In this paper, a methodology for designing a robust control for production systems with input-
time delay is developed. As results, the obtained results on the necessary and sufficient conditions
on the controller parameters are summarized, under any unknown but bounded customer demand.
The paper is complemented by the study of the robustness of the proposed control law due to the
uncertainty of delay. The remainder of this paper is organized as follows. Section 2 describes the
problem statement and the characteristics of the considered production system. In section 3, the
inventory control structure is described. The case study being devoted to the inventory control
problem taking into account the saturation of the command, the methodology for the controller
design is recalled and summarized in the section 4, wherein the conditions on the controller param-
eters are given. In order to ensure the bounds of solutions for the control parameters, an analysis of
the variation of the delay is used to study the robustness of the control system state feedback and
described in the section 5. The paper concludes with some experimental results and discussions of
using the proposed approach developed in the section 6, as well as directions for future work.

2. Problem statement

2.1 Inventory control problem

We consider an elementary production system composed of a supplying unit and a storage one. A
supplying unit is characterized by a delay θ which corresponds to the time needed to accomplish
the task, and by an order rate denoted u(t), wich is limited by a maximum supplying order rate
denoted Umax. The storage unit is characterized by a maximum storage capacity noted Ymax. In
this study, the demands are supposed to be unknown but bounded by a certain value dmax.

In the following, we define basic variables: the production order u(t), the inventory level y(t),
and the consumer demand d(t). Those three variables are varying throughout the time, and we
consider them as real variables. The dynamic of the inventory level can be described by the following
differential equation:

ẏ(t) =

{
u(t− θ)− d(t) for t ≥ θ ,
φ(t)− d(t) for 0 ≤ t < θ .

(1)

The production order u(t) and the consumer demand d(t) are homogeneous to flows, in unit per
second. The inventory level y(t) is a cumulative flow, taking values in number of units. So they are
functions of the time t that can take exclusively non-negative values. In terms of control, u(t) is the
control input, d(t) is an external perturbation, and y(t) is the output to be controlled. One remarks
that the control is delayed, which comes from the fact the production of goods or services takes
time presented by θ. We consider with this simple model that the delay θ is a positive constant,
characteristic of the considered production system.

It is important to remark that the equation (1) is well defined for t ≥ 0, since the control
is defined from t = 0. For 0 ≤ t < θ, the inventory evolution depends on a function φ(t) that
represents the initial work in process of the system. Its support is the interval [0, θ[. To evaluate

3



the inventory level function is also needed the initial value, that is y0 = y(0).
The system (1) being given, one would like to define a management policy that permits the

considered economical entity to satisfactorily answer the consumer demand. It comes down to a
control problem, that consists in calculating on line the production order u(t), so that the inventory
level y(t) be well regulated, and its oscillations due to the variations of the consumer demand d(t)
be well attenuated. The controller should also meet the non-negative constraints on the system
variable. Mathematically, it comes down to constraints on the system variables that are interpreted
as specifications of the control system, as follows.

The maximal production rate of the system is denoted Umax, the maximal inventory capacity is
denoted Ymax, and we denote dmax the maximal demand rate. The controller should be designed
such that, for all t ≥ 0:

0 ≤ y(t) ≤ Ymax , (2)

with

0 ≤ u(t) ≤ Umax , (3)

and for every demand function satisfying

0 ≤ d(t) ≤ dmax . (4)

2.2 Methodology of controller design

In automatic field, the system design or any process involves determining the characteristics of
resources, such as the system sizing, as well as the development of a command to a properly func-
tioning process. To do this, we first treat the task of developing the control, taking into account
the requirements and constraints of the system, and thus address the parameterization of the con-
troller. Once the parameters are defined a priori, with this parameterization system architecture,
the design is focused on the choice of different resources or system components according to speci-
fications, and also the controller parameterization obtained in the previous phase. This method of
generic design, introduced by (Karcanias, 1994) and (Karcanias, 1995), is useful in our problem-
atic of controller design. We showed in (Abbou et al., 2013) and in (Moussaoui et al., 2014) the
interpretation of this methodology, for logistics systems. This leads to design and parameterize the
various resources of the logistics system, such as choosing the rate of production or transportation,
and storage capacities, depending on the needs and constraints of the system, as we shall resume
in the next section.

2.3 Management insights of the proposed approach

In this paper, we are interested on the inventory control of production systems taking into account
production delays and the specific constraints of the logistical system, under unknown demand. The
proposed approach is based on the feedback predictor structure, using a saturated command, which
permits the elimination of the delay impacts on the closed loop behavior. The exposed approach is
applied for the inventory regulation of each production unit. A first advantage is the consideration of
the saturation and the positivity constraints of the system in the methodology of controller design.
The second advantage is to give necessary and sufficient conditions on the controller parameters,
for which the system requirements will be completely met. The third advantage, which is sought in
the study of industrial cases, is how can we consider the work in process in the decision making, in
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order to reduce - or eliminate if it’s possible - the bullwhip effect on the logistical system because
of the uncertainty on the customers demand.

3. Inventory control structure

As developed in (Moussaoui et al., 2014) and extended in (Abbou et al., 2015a) and (Abbou et al.,
2015b), our proposed approach to control systems with delayed inputs is based on a predictor
based feedback structure. This structure permits to stabilize the system and to compensate
the delay effects present in the loop. The specifications of the production system are introduced
as constraints imposed to the controller, so as to forbid any overruns on the production rates or
on the inventory levels, which can cause the saturation of the production unit. The role of the
controller is then to keep the production rate and so, the inventory level, as far as possible within
their limits.

Linear systems with saturation functions in theirs closed loop schema are non-linear systems.
Introducing a saturation function noted sat, the control law u(t) takes the following form:

u(t) = sat
[um,uM ]

[f(t)] =


uM if f(t) ≥ uM ,

f(t) ifum ≤ f(t) ≤ uM ,

um if f(t) ≤ um .

As can be seen, taking into account the saturation function involves introducing a non-linearity in
the model. The non-linearity property is due to the fact that the system will switch between different
operating modes, having different dynamics, depending on whether the command is saturated or
not. As mentioned in (Tarbouriech et al., 2011), (Kapila and Grigoriadis, 2002) and (Hu and Lin,
2001), the effects induced by the saturation on the system stability and performances, should be
carefully considered.

In this section, we are going to summarize the methodology to define the parameters of the
controller law of our system as shows Figure 1, and study its effects on the closed loop behavior.

3.1 Controller law

Regarding to the system constraints, and the nature of the system, the control law we propose to
apply is a saturated command based on a feedback predictor structure. Indeed, saturated commands
are commonly used for systems with saturating actuators, and permit to take into account theirs
specific limitations. It was shown to be more efficient and realistic than a linear constraint control
((Tarbouriech et al., 2011), (Hu and Lin, 2001)). On the other hand, the use of a saturated controller
introduces non-linearity in the closed-loop scheme of the system, due to the sat function defined
as previously. For such non-linear systems, stability conditions can be obtained by computing
invariant sets in which the system trajectory remains, and in which the saturation constraints are
met.

The system dynamics of the inventory be given by the relation (1) with non-zero initial condi-
tions, the control schema of our system with a saturation command is shown on Figure 1, where
the command u(t) is given by:

u(t) = sat
[0,Umax]

[K(yc − z(t)]. (5)

The parameter K is the controller gain which is used to adjust the order rates placed in each
level. yc is the reference signal of the system, which corresponds to the reference level for the
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Figure 1. Closed loop schem of the system including a saturation function

inventory. z(t) is the prediction of the future state of the system, that corresponds to the inventory
level at t + θ, as it is shown in the sequel. The feedback predictor part of the command, is used
to handle the delays and the stability properties of the infinite-dimensional system, by allowing
the assignment of the closed-loop system poles, in a finite number of locations in the complex
plan ((Manitius and Olbrot, 1979), (Kwon and Pearson, 1980)). Also known as model reduction
or Artstein reduction (Artstein, 1982), the basic idea of state prediction is to compensate the time
delay θ by generating a control law that enables one to directly use the corresponding delay-free
system, thanks to the prediction defined by z(t) which is a prediction of the inventory level at time
(t+ θ), given by:

z(t) =

{
y(t) +

∫ t
t−θ u(τ)dτ for t ≥ θ

y(t) +
∫ θ
t φ(τ)dτ +

∫ t
0 u(τ)dτ for 0 ≤ t < θ

(6)

The distributed delay
∫ t
t−θ u(τ)dτ corresponds to the WIP during the interval [t − θ, t] . The

term
∫ θ
t φ(τ)dτ represents the initial WIP.

The prediction z(t) can be rewritten, using the expression (1), as follows

z(t) = y(t+ θ) +

∫ t+θ

t
d(τ)dτ , for t ≥ 0. (7)

3.2 Analysis of the closed-loop system

We recall that the inventory and the production rate are physical resources with finite capacities.
Both y(t) and u(t) should take exclusively non negative values, limited by the maximal capacity
of the inventory Ymax and of the maximum production rate Umax respectively. Namely, y(t) and
u(t) should be such that, for all t ≥ 0, y(t) ∈ [0, Ymax] and u(t) ∈ [0, Umax], for all d(t) ∈ [0, dmax].
By time derivation of the equation (1), one can see that the resulting system

ż(t) = u(t)− d(t) , for t ≥ 0 , (8)

is delay-free. The system (9) is the reduced model of the system (1)-(4). Artstein (Artstein, 1982)
demonstrated that the control low u(t) is admissible for the closed loop system (1)-(5) if and only if
it is admissible for the system (9)-(5), and that the two systems have the same dynamics properties.
Our approach is then based on the use of the reduced system (9) to design the controller such that
the system constraints and requirements (2) and (3) will be fully met.
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The dynamics of the closed-loop system (9)-(5) is given by the following expression.

ż(t) = sat
[0,Umax]

[K(yc − z(t)]− d(t) , for t ≥ 0 . (9)

The stability analysis of this system is then performed by computing an invariant interval for
the trajectories of system (9), in which the system constraints are met, and the BIBO stability
property of the system is warranted. By studying the dynamic of z(t), it is deduced that the
constraint y(t) ∈ [0, Ymax] is satisfied, for every d(t) ∈ [0, dmax], if, and only if the following
condition holds:

z(t) ∈ [θdmax, Ymax] with θdmax ≤ Ymax . (10)

For more details, the reader can refer to (Moussaoui et al., 2014). In the next section, we give only
the main results on controller design.

4. Summary on controller design

4.1 Necessary and sufficient conditions on the controller parameters

The controller design consists in determining suitable gain K and inventory reference level yc for
each elementary stage of the supply chain, such that the system constraints and specifications are
fully met.Two main issues are to be considered. First, for given systems parameters, namely the
maximum capacities Umax and Ymax, the question to ask is: ”is it possible to find a controller
which will fully meet the constraints and the system requirements?”. Then, if such a controller is
indeed feasible, the second issue is about the choice of the command parameters K and yc under
the system constraints and specifications. This is the parameterization phase.

Our proposal is to determine some necessary and sufficient conditions on the controller param-
eters, to impose the D-invariance property of the interval (10), so that the BIBO stability of the
system and the constraints are all satisfied. These conditions are given through the following The-
orem 4.1. A corollary is then formulated, which gives further results concerning the closed-loop
system dynamics under Theorem 4.1 assumptions.

Theorem 4.1. Being given a system of the form (1), there exists a command of the form (5), for
which the system is BIBO-stable and the constraints (2) and (3) are fulfilled, for any d(t) ∈ [0, dmax]
if and only if the following conditions hold true

θdmax < Ymax, (11)

and

dmax ≤ Umax. (12)

In addition, if the conditions (11) et (12) are met, the constraints (2) and (3) are satisfied under
the control law (5) if and only if the controller parameters (K, yc) are such that:

θdmax +
dmax
K
≤ yc ≤ Ymax (13)

Proof. The dynamics of the closed-loop system (5)-(9) is given by the following expression.

ż(t) = sat
[0,Umax]

[K(yc − z(t)]− d(t) , for t ≥ 0 . (14)
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The controller of the reduced system (14) should be designed such that the constraint (10) is
fulfilled. The existence of the controller is then linked with the non-empty property of the interval
]θ dmax, Ymax], which is true only when θ dmax < Ymax. This later shows the necessity of the
condition (11), its sufficiency being obvious.

The conditions (12) and (13) come from the fact that, verifying the constraint (10) at any time
t ≥ 0 implies that, the closed interval [zmin, zmax] is D-invariant for the system trajectories. The
D-invariance property is defined as follows.

Definition 4.1 (D-Invariance Property). Let consider a dynamic system described by ẋ(t) =
f(x, d, t), with x(0) = x0 and d(t) an input of the system. A nonempty closed interval [x1, x2] is
named D-invariant for the system described by x(t) if and only if for any initial state x(0) ∈ [x1, x2],
and d(t) ∈ D, D being a set, we have x(t) ∈ [x1, x2], for all t ≥ 0.
Formally, this property is warranted if and only if the following implications are true, for all t ≥ 0 :

x(t) = x1 ⇒ ẋ(t) ≥ 0 , and x(t) = x2 ⇒ ẋ(t) ≤ 0 .

Using the expression of ż(t) given by (14), and provided that (4) is true, these inequalities are
rewritten respectively:

sat
[0,Umax]

[K(yc − zmin)] ≥ dmax , (15)

and

sat
[0,Umax]

[K(yc − zmax)] ≤ 0 . (16)

Using the sat function definition, one can see that the inequality (15) is solvable if and
only if Umax ≥ dmax, that shows the sufficiency and necessity of condition (12), and thus yc
is such that zmin + dmax/K ≤ yc , which, together with the condition (11) and the equality
zmin = θdmax , establishes the sufficiency of the left part of the condition (13) of Theorem 4.1.
It is necessity comes from the fact that for yc < zmin+dmax/K, the inequality (15) has no solution.

The same analysis is applied for the inequality (16). This latter is solvable if and only if
yc ≤ zmax , which, together with equality zmax = Ymax shows that yc ≤ Ymax . This establishes
the sufficiency and the necessity of the right member of the condition (13) of Theorem 4.1, and
completes the proof.

The analysis of the closed-loop system dynamics shows that, under the conditions of Theorem
4.1, the system constraints and specifications are truly met. Any satisfactory controller actually
permits to fill more restrictive constraints on the system variables. We describe these restrictions
in the following Corollary.

Corollary 4.1. Being given a system of the form (1), with a control law of the form (5) and suitable
initial conditions, such that the conditions (11), (12) and (13) are verified, then the following holds
true

y(t) ∈
[
yc −

dmax
K
− θ dmax , yc

]
(17)

and

u(t) ∈ [0 , dmax] (18)
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for all t ≥ 0 and d(t) ∈ [0 , dmax].

Proof. From expression (9), one can observe that, under Theorem 4.1 assumptions, the following
implications are true for all t ≥ 0:

z(t) ≥ yc ⇒ ż(t) ≤ 0 and z(t) ≤ yc −
dmax
K
⇒ ż(t) ≥ 0 .

These implications show that the effective interval of variation of z(t) is such that

z(t) ∈
[
yc −

dmax
K

, yc

]
(19)

which represents an invariant interval for the system (9). It is seen that, under Theorem 4.1
assumptions, the interval given in (19) is included in the interval given by (10). Thus, using the
expressions (5), (12) and (13), one can compute the effective interval of y(t) and u(t) variations
which are given by the expressions (17) and (18) respectively.

The zone of admissible parameters (K, yc) characterized by (13) is represented in Figure 2.

Figure 2. Zone of admissible parameters of the controller

4.2 Admissible initial conditions

In this study, we considered constrained systems with input-time delay as expressed by the relation
(1). It follows that the inventory level evolution in the interval [0, θ[, depends only on the initial
conditions φ(t) and y0, and the demand d(t). In fact, the inventory level y(t) is expressed by:

y(t) = y0 +

∫ t

0
φ(τ)dτ −

∫ t

0
d(τ)dτ , for 0 ≤ t < θ,

with y0 the initial inventory at t = 0 and
∫ t

0 φ(τ)dτ represents the intitial WIP.

We recall that y(t) must also be in [0, Ymax] for 0 ≤ t < θ. Considering that
∫ t

0 d(τ)dτ ∈ [0, θdmax],
an admissible zone for the initial conditions, in which the system constraints are fulfilled, can be
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characterized by the following inequalities

t.dmax ≤ y0 +

∫ t

0
φ(τ)dτ ≤ Ymax, for 0 ≤ t < θ.

that are readily seen to be true if and only if

θdmax ≤ y0 +

∫ θ

0
φ(τ)dτ ≤ Ymax

5. Study of the robustness of the control law

In this study, we consider that the real time delay of the production entity expressed by θr is not
well known but defined with an uncertainty, and bounded by θ1 and θ2 such that θr ∈ [θ1, θ2], θ1

and θ2 being known. We consider then an estimated delay of θr, expressed by θ0, assumed to be
known. We recall that our objective is to design a robust control law that satisfies the constraints
of the system under the variation of the demand and the uncertainty on the real time delay.

5.1 About robust control

The robust control is a part of control theory whose approach to controller design explicitly deals
with uncertainty. Robust control methods are designed to function properly provided that uncertain
parameters or disturbances are found within some set. Also, robust methods aim to achieve robust
performance and/or stability in the presence of bounded modeling errors. The controller is then
designed to work assuming that certain variables will be unknown but bounded. In our case, the
uncertainty on variables comes both from the customers demand and the production delay.

5.2 Analysis of the closed-loop system

The behavior of the inventory of the studied system, with non-zero initial conditions, is described
by the equation:

ẏ(t) =

{
u(t− θr)− d(t) for t ≥ θr,
φ(t)− d(t) for 0 ≤ t < θr .

(20)

Regarding to the system constraints, the control law we propose to apply is the same as studied
in (Moussaoui et al., 2014), which is a saturated command based on a feedback predictor structure.
The command u(t) is given by:

u(t) = sat
[0,Umax]

[K(yc − z0(t))] , for t ≥ 0. (21)

The parameter K is the controller gain which is used to adjust the rate of production orders. yc
is the reference level for the inventory. z0(t) is the prediction of the inventory level at time (t+ θ0).
We can deduce that the behavior of the inventory can be expressed by:

y(t+ θr) = y(t) +

∫ t

t−θr
u(τ)dτ −

∫ t+θr

t
d(τ)dτ. (22)
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As the prediction z0(t) is based on the estimated delay θ0, z0(t) is defined by :

z0(t) =

{
y(t) +

∫ t
t−θ0 u(τ)dτ for t ≥ θ0 ,

y(t) +
∫ θ0
t φ(τ)dτ +

∫ t
0 u(τ)dτ for t < θ0 .

(23)

For t ≥ θ0, we deduce that:

z0(t) = y(t) +

∫ t

t−θ0
u(τ)dτ (24)

From the relation (24), we obtain:

ż0(t) = u(t)− d(t) + u(t− θr)− u(t− θ0) (25)

From the definition of u(t) expressed by the relation (21), ż0(t) is rewritten:

ż0(t) = sat
[0,Umax]

[K(yc− z0(t))]− d(t) + sat
[0,Umax]

[K(yc− z0(t− θr))]− sat
[0,Umax]

[K(yc− z0(t− θ0))] (26)

We can remark that the relation (26) is a nonlinear and delayed equation, containing two delays,
with one delay being unknown. Those delays may not be commensurable, making the study of the
stability more complex, even when the system is linear, as shown in (Sipahi and Delice, 2008). To
avoid this complexity, we replace the expression of y(t) in the equation (22), and by definition of
the prediction z0(t) based on the estimated time delay θ0 , we can rewrite the dynamic of y(t) as
follows:

y(t+ θr) = z0(t)−
∫ t+θr

t
d(τ)dτ +

∫ t−θ0

t−θr
u(τ)dτ (27)

The term
∫ t−θ0
t−θr u(τ)dτ corresponds to the error produced by the uncertainty on the delay θr.

We denote zr(t) the prediction of the inventory level at time (t+θr) considering the real time delay
θr, which is formulated by:

zr(t) = y(t) +

∫ t

t−θr
u(τ)dτ . (28)

From the definition of zr(t), we can summarize some properties.

Proposition 1. The variable zr(t) defined by (28) verifies the following properties:

(i) zr(t) = y(t+ θr) +
∫ t+θr
t d(τ)dτ ,

(ii) zr(t) = z0(t) +
∫ t−θ0
t−θr u(τ)dτ ,

(iii) żr(t) = sat[0,Umax](K(yc − zr(t) +
∫ t−θ0
t−θr u(τ)dτ))− d(t) .

Proof. The expression (i) is equivalent to the definition of the real prediction zr(t).
The expression (ii) can be deduced form the relations (24) and (28). The expression (iii) is

obtained by deriving the relation (28). Considering the system described by (20), we obtain żr(t) =
u(t) − d(t). Using the definition of u(t), we obtain then the expression (iii). That completes the
proof of the Proposition.

11



5.3 Some results on the D-invariance properties

In this section, we resume some results obtained on the bounds of variables, based on the D-
invariance properties.

The first D-invariance property concerns the term
∫ t−θ0
t−θr u(τ)dτ which is given in the following

Lemma.

Lemma 1. Let consider α as non-negative real number. For all θr ∈ [θ1, θ2] and an unspecified
variable θ0, we have:

u(t) ∈ [0, α]⇒
∫ t−θ0

t−θr
u(τ)dτ ∈ [min (0, (θ1 − θ0)α),max (0, (θ2 − θ0)α)] ,

In addition, these bounds are exact.

Proof. We can consider three cases:

Case 1: θ0 > θ2 : If θ0 is more than θ2, that means θ0 is also more than θ1. Therefore, the integral∫ t−θ0
t−θr u(τ)dτ is positive. This term is bounded by 0 corresponding to the lower bound and

by (θ0 − θ1)α, corresponding to the upper bound. in addition, those bounds are reached for,
respectively, u(t) = 0 and u(τ) = α, θr = θ1.

Case 2: θ0 < θ1 : If θ0 is less than θ1, the integral
∫ t−θ0
t−θr u(τ)dτ is negative and evolves between

−(θ1− θ0)α and 0 depending on the function u and the value of θr. The bound (−(θ1− θ0)α)
is meet when θr = θ2 and u(τ) = α. With the same manner, the bound 0 is meet taking
u(τ) = 0.

Case 3: θ1 ≤ θ0 ≤ θ2 : The third case corresponds when θ0 ∈ [θ1, θ2]. In this case, the integral∫ t−θ0
t−θr u(τ)dτ will take negative values if θr is in the interval [θ1, θ0], and positive values if θr

is in the interval [θ0, θ2]. Taking u(τ) = α and θr = θ1, the integral meets the lower bound
which is −(θ0 − θ1)α, and taking θr = θ2, it meets the upper bound which is (θ2 − θ0)α.

That completes the proof of the Lemma.

Based on those results obtained using the D-invariance properties, we can generalize them
through the following Lemma.

Lemma 2. Let α and β be two real numbers such that α ≤ β. If dmax ≤ Umax and∫ t−θ0
t−θr u(τ)dτ ∈ [α, β], then:

zr(t) ∈ [yc −
dmax

K
+ α, yc + β] , for t ≥ 0.

Proof. We apply the principle of the D-invariance. From the relation (iii) of the Proposition (1),
one can remark that żr(t) ≥ 0, for every demand d(t) ∈ [0, dmax] if the inequalities Umax ≥ dmax and

K(yc− zr(t) +
∫ t−θ0
t−θr u(τ)dτ) ≥ dmax are satisfied. That corresponds to the conditions Umax ≥ dmax

and zr(t) ≤ yc − dmax

K + α.
With the same manner, one can remark that żr(t) ≤ 0 if zr(t) ≥ yc + β. By applying the D-

invariance property, we can deduce that the interval [yc− dmax

K +α, yc + β] is invariant for zr(t) for
t ≥ 0, under admissible initial conditions verifying this constraint. This completes the proof of the
Lemma.
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5.4 Study of robust control

To return to our robustness study of the control law, we must ensure that there exists a control
law u(t) such that the output system y(t) remains bounded, in order to maintain the property of
BIBO-stability and the constraints on y(t) are met. Based on the previous results, we can first
summarize the principal results on the bounds of the variables u(t), zr(t) and y(t) in the following
Proposition.

Proposition 2. Being given a system of the form (20), with an uncertainty on the real time delay
expressed by θr ∈ [θ1, θ2], θ1 and θ2 being known. This system must respond to a demand verifying
(4) with dmax ≤ Umax. We apply on this system a control law of the form (21, 24). The following
invariant sets for u(t), zr(t) and y(t), respectively, are obtained:
(i) u(t) ∈ [0, ω] ,
(ii) zr(t) ∈ [yc − dmax

K −min (0, (θ1 − θ0)ω), yc + max (0, (θ2 − θ0)ω)] ,

(iii) y(t) ∈ [yc − dmax

K − θ2dmax + min (0, (θ1 − θ0)ω), yc + max (0, (θ2 − θ0)ω)] ,

with ω =

{
Umax , if Kγ ≥ Umax−dmax

Umax
,

dmax

1−Kγ , ifKγ < Umax−dmax

Umax
,

and γ = max (θ0 − θ1, θ2 − θ1, θ2 − θ0).

In addition, we verify that dmax ≤ ω ≤ Umax, and γ ≥ θ2 − θ1.

Proof. Let be a recursive sequence αi defined by the following recurrence:{
α0 = Umax ,

αi+1 = min(Umax, dmax +Kαiγ) , for i ≥ 0 ,

and γ = max (θ0 − θ1, θ2 − θ1, θ2 − θ0)). We will demonstrate by recurrence that u(t) ∈ [0, αi], for
t ≥ 0 and i ≥ 0.

First, for i = 0, one can remark that the hypothesis u(t) = Umax is well verified because of the
definition of the sat[0,Umax] function. Now, we suppose that u(t) ∈ [0, αi], for t ≥ 0. By applying

Lemma 1, we deduce that
∫ t−θ0
t−θr u(τ)dτ ∈ [min (0, (θ1 − θ0)αi),max (0, (θ2 − θ0)αi)]. Now, by ap-

plying the Lemma (2), we obtain zr(t) ∈ [yc− dmax

K + min (0, (θ1− θ0)αi), yc + max (0, (θ2− θ0)αi)].
Considering this last interval in the the relation (ii) of the Proposition (1), we deduce that
z0(t) ∈ [yc − dmax

K + min (0, (θ1 − θ0)αi) − max (0, (θ2 − θ0)αi), yc + max (0, (θ2 − θ0)αi) −
min (0, (θ1 − θ0)αi)]. We define γ = max (θ0 − θ1, θ2 − θ1, θ2 − θ0), and we observe that
γ = max (0, (θ2 − θ0)αi) − min (0, (θ1 − θ0)αi). We deduce that z0(t) can be rewritten such as
z0(t) ∈ [yc − dmax

K − αiγ, yc + αiγ]. By consequence, we deduce that yc − z(t) ∈ [−αiγ, dmax

K + αiγ],
and u(t) ∈ [0,min(Umax, dmax +Kαiγ)].

From this last upper bound of u(t), two cases can be considered:

• if K ≥ Umax−dmax

γUmax
, we verify with simplicity that u(t) is bounded by an upper bound which is

Umax.
• if K < Umax−dmax

γUmax
, that means Kγ < 1, and (1 − Kγ) 6= 0 . We can deduce that dmax ≤

dmax(1 − Kγ)−1 ≤ Umax. From this relation, we verify that u(t) ≤ dmax + Kγαi, which
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permits to demonstrate the recurrence. So, in this case, u(t) is bounded by αi, for every
integer i, by consequence bounded by the limit of the recursive sequence αi, which equal to
dmax(1−Kγ)−1.

In conclusion, the recurrence u(t) ∈ [0, αi], for t ≥ 0 and for i ≥ 0, is well verified. We deduce
that u(t) ∈ [0, ω], for t ≥ 0, with ω is the limit of a series αi as the number of iterations i tends to
infinity. This proves the relation (i) of the Proposition (2).

By applying Lemma 1 with the new bounds of u(t), we obtain other new bounds of the term∫ t−θ0
t−θr u(τ). One can deduce that

∫ t−θ0
t−θr u(τ)dτ ∈ [min (0, (θ1 − θ0)ω),max (0, (θ2 − θ0)ω)]. We obtain

then the relation (ii) of Proposition 2 by applying Lemma 2. The relation (iii) of Proposition 2
can be obtained with the new bounds of zr(t) and by applying the relation (i) of Proposition 2.
This completes the proof of the Proposition.

The necessary conditions to finding the parameters K and yc, depending on θ0, of a robust
controller are expressed in the following Theorem, based on the results given in Proposition 2.

Theorem 5.1. Being given a system of the form (20), with an uncertainty on the real time delay
θr ∈ [θ1, θ2], θ1 and θ2 being known, there exists a command of the form (5) and (24), for which
the system is BIBO-stable and the constraints (2) and (3) are fulfilled, for any d(t) ∈ [0, dmax] if
the following conditions hold true:

(i) dmax ≤ Umax ,
(ii) dmax

K + θ2dmax + ωmin (0, θ1 − θ0) ≤ yc ,
(iii) yc + ωmax(0, θ2 − θ0) ≤ Ymax .

ω being defined as described in the Proposition 2.

Proof. The conditions expressed in the Theorem 5.1 derived from the properties given in the
Proposition (2). In fact, the condition (i) comes from the necessary to satisfy the Proposition (2).
In addition, y(t) evolving in [0, ymax] implies that this latter contains the invariant set of y(t)
expressed in the relation (iii) of the Proposition 2. The condition (ii) results from the relations
(ii) and (iii) of the Proposition 2. This completes the proof of this Theorem.

We can reformulate the results from the Theorem 5.1 in the following corollary, which gives
further results concerning the choice of those command parameters yc, θ0 and K.

Corollary 5.1. Being given a system of the form (20), with an uncertainty on the real time delay
θr ∈ [θ1, θ2], θ1 and θ2 being known, and under Theorem 5.1 assumptions, there exist yc which
verifies the conditions expressed on the Theorem 5.1 if and only if the following conditions hold
true:

(i) dmax ≤ Umax,
(ii) dmax

K + θ2dmax + ωγ ≤ Ymax .

In addition, under these conditions, yc can be chosen in the interval:

yc ∈ [
dmax

K
+ θ2dmax + ωmin (0, θ1 − θ0), Ymax − ωmax(0, θ2 − θ0)] .

Proof. The relation (i) is obvious which is necessary to the Theorem 5.1. From the relations (ii) and
(iii) of the Theorem 5.1, one can obtain dmax

K +θ2dmax+ωmin (0, θ1−θ0) ≤ yc ≤ Ymax−ωmax(0, θ2−
θ0). That permits to establish the relation (ii) of the Corollary 5.1, taking into account the definition
of γ = max(0, θ2−θ0)−min (0, θ1−θ0). On the other hand, we can verify that, under the conditions
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of the Corollary 5.1, dmax

K + θ2dmax + min (0, (θ1 − θ0)ω) ≤ Ymax −max(0, (θ2 − θ0)ω) ≤ Ymax. We
deduce that choosing yc within the range thus defined makes it possible to check the conditions
(ii) and (iii) of the Theorem 5.1. This completes the proof of this Corollary.

5.5 Design of robust controller

In the case of the presence of an uncertainty of the delay θr, the controller design consists in
determining suitable gain K and inventory reference level yc, depending on the value of θ0, for
each elementary stage of the supply chain, such that the system constraints and specifications
are fully met. As explained in the section (4), the first step consists in verifying the existence
of a controller which will fully meet the constraints. Then, if such a controller is indeed feasible,
the second issue is about the choice of the command parameters under the system constraints
and specifications. Our proposal is to determine some necessary and sufficient conditions on the
controller parameters so that the BIBO-stability of the system and the constraints are all met.
These conditions to choose the command parameters optimally are given through the following
Theorem 5.2.

5.5.1 Choice of command parameters θ0, K and yc

Theorem 5.2. Being given a system of the form (20), with an estimated time delay θ0 and an
uncertainty on the real time delay θr ∈ [θ1, θ2], θ1 and θ2 being known, and under Theorem 5.1
assumptions, there exists controller parameters (K, yc, θ0) for a command of the form (5) and (24),
for which the system is BIBO-stable and the constraints (2) and (3) are fulfilled, under admissible
initial conditions, for any d(t) ∈ [0, dmax] if and only if the following condition hold true:

(i) dmax ≤ Umax,
(ii) θ2dmax + (θ2 − θ1)Umax < Ymax .

Under these conditions, the command parameters θ0, K and yc are determined optimally as follows:

• We choose θ0 ∈ [θ1, θ2].
• We set K such as K ≥ K−, the coefficient K− being defined by dmax

K− + θ2dmax +ω(θ2− θ1) =
Ymax , with ω as expressed in the Proposition 2.
• The parameter yc can be chosen in the smallest interval expressed by yc ∈ [dmax

K− + θ2dmax +
ωmin (0, θ1 − θ0), Ymax − ωmax(0, θ2 − θ0)] .

Proof. From the relation (ii) of the Proposition 2, the control law must be designed such that
the constraint on the prediction zr(t) must be respected. The existence of an admissible controller
is linked to the existence of non-empty interval within evolves y(t) as expressed in the relation
(iii) of the Proposition 2, and depending on yc, θ0 and K. From the definition of γ = max (θ0 −
θ1, θ2 − θ1, θ2 − θ0), we remark that the minimum value of γ of the Proposition 2 corresponds
when θ0 ∈ [θ1, θ2], and therefore γ = θ2 − θ1. In this case, and based on the relation (ii) from the
Corollary 5.1, we deduce that dmax

K + θ2dmax + ω(θ2 − θ1) ≤ Ymax . The minimum value of K,

named K−, is expressed by K− = Inf{K ≥ 0|dmax

K + θ2dmax + ω(θ2 − θ1) ≤ Ymax} . Concerning
the parameter yc, its interval thus defined has previously been demonstrated in the Corollary 5.1.
The smallest interval is obtained by replacing K by K−. We deduce that the condition (ii) of the
Theorem 5.2 is the necessary and sufficient condition for the existence of a solution (θ0,K, yc),
with dmax ≤ Umax.
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5.5.2 Choice of system constraints Umax and Ymax

Under the conditions of Theorem 5.2, the analysis of the closed-loop system dynamics shows that
the system constraints and specifications are truly met. Any satisfactory controller actually permits
to fill more restrictive constraints on the system variables. We describe these restrictions in the
following Theorem to choose the system constraints Umax and Ymax depending on dmax, θ1 and θ2

which are assumed to be known and imposed.

Theorem 5.3. Being given a system of the form (20), with an uncertainty on the real time delay
θr ∈ [θ1, θ2], θ1 and θ2 being known, and for which the demand d(t) ∈ [0, dmax] must be satisfied,
with dmax being known too. To ensure that this system could be controlled, it is necessary to choose
the system constraints as follows:

Ymax > (2θ2 − θ1)dmax, and then Umax ∈ [dmax,
Ymax − θ2dmax

θ2 − θ1
[.

Proof. One can remark that the choice of system constraints Umax and Ymax is interdependent.
In fact, from the relations (i) and (ii) of the Theorem 5.2, we deduce that Ymax must be chosen
such that Ymax > (2θ2−θ1)dmax. Furthermore, from the same relations of the Theorem 5.2, we can
deduce that Umax must be chosen such that Umax ∈ [dmax,

Ymax−θ2dmax

θ2−θ1 [. This completes the proof
of this Theorem.

5.6 Admissible initial conditions

In this study, we considered constrained systems with input-time delay as expressed by the relation
(20). It follows that the inventory level evolution in the interval [0, θr[, depends only on the initial
conditions φ(t) and y0, and the demand d(t). In fact, the inventory level y(t) is expressed by:

y(t) = y0 +

∫ t

0
φ(τ)dτ −

∫ t

0
d(τ)dτ , for 0 ≤ t < θr,

with y0 the initial inventory at t = 0 and
∫ t

0 φ(τ)dτ represents the intitial WIP.
We recall that y(t) must also be in [0, Ymax] for 0 ≤ t < θr. Considering that θr ∈ [θ1, θ2], we

can deduce that
∫ t

0 d(τ)dτ ∈ [0, θ2dmax]. An admissible zone for the initial conditions, in which the
system constraints are fulfilled, can be characterized by the following inequalities

t.dmax ≤ y0 +

∫ t

0
φ(τ)dτ ≤ Ymax, for 0 ≤ t < θr.

6. Results analysis and discussions

In this section we illustrate the application of the different obtained results on a production unit. We
use the Simulink-Matlab environment to construct a simulation model of the production system.
In our case, Two cases are studied: (i) the real time delay is well defined, (ii) the real time delay is
expressed with an uncertainty. For the two cases, we suppose that the initial conditions are satisfied
and chosen such that the transitory behavior of the system is avoided.

The parameters of the studied system is as follows. The customer demand is modeled by a
rectangular signal occurring between 15 and 140 time units, with dmax = 240. The maximum
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storage capacity and production are Ymax = 2920 and Umax = 300 respectively. The couple of
controller parameters (K, yc) are determined basing on the previous theorems.

6.1 Case 1: Time delay well estimated

We suppose in this case that the real time delay, named θ is well known, for example θ = 6. We
choose K = 0, 6 and in accordance with the condition (13), we choose yc = 1840. The obtained
results are shown on figure (3).

Figure 3. Results for θ = 6, K = 0, 6 and yc = 1840.

From the results, we can see that the bounds obtained in the Corollary (4.1) are met. In fact,
for the fixed controller parameters, we can remark that y(t) ∈ [0 , 1840] and u(t) ∈ [0 , 240]. We can
also see that the impact of the delay is optimally compensated in the sense that the dynamic of
the inventory level is fully controlled, eliminating the bullwhip effect. Furthermore, the positivity,
capacity and saturation constraints are met. Another interest of the analysis when the real time
delay is known is to see the impact of varying K and yc on the system behavior, and verify the
accuracy of the conditions obtained on the controllers. The impact of the demand distribution is
also investigated.

On the controller parameters

From the results, one observes that the region of the acceptable controller parameters obtained
for the considered control law, gives a margin for choosing those parameters. For a production
system, with given values of Umax , Ymax , dmax and θ, the choice of the couple (K, yc) belonging to
the admissible zone of the parameters, is guided by the production strategy aimed. For example,
choosing the set-point value for the inventory level yc on the lower limits of the admissible area
corresponds to apply the JIT (Just In Time) strategy 1. However, increasing yc improves the system
robustness, but the inventory storage costs are also increased.

In the same way, increasing the static feedkack K reduces the response time and improves system
reactivity, which requires higher technology costs. Simulated results for some values of K are shown
on Figure 4. It can be noted among other that if the condition on the choice of the value of K is
not satisfied (which is the case when K = 1.5), the system constraint is not respected (we obtain
y < 0).

1JIT is a production strategy that strives to improve a business return on investment by reducing in-process inventory and

associated carrying costs.
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Figure 4. System outputs with variations of K

About the demand effects

Figure 5. System outputs with variations of the demand d(t)

In this study, we supposed that the consumer demand d(t) is unknown but bounded by the
value dmax. The system response follows closely the demand signal whether this latter is smooth
or rapidly changing (Figure 5). In practical level, such tracking of the demand is not feasible: even
if the production machine can bear the maximal rate of the incoming demand, the production
rate cannot be changed as fast as the demand do, for technological limitation reasons. For that,
the customer demand is usually forecasted and treated using a smoothing method before to be
considered.

6.2 Case 2: Time delay estimated with an uncertainty

The second part of the simulation covers the uncertain case. The real time delay θr is expressed
by an interval [θ1 , θ2] = [6 , 8], and the estimated time delay is fixed θ0 = 7. Before, we verify that

18



the previous values of Ymax and Umax are admissible by the conditions on the theorem 2. In this
case, we choose the values of K and yc according to the conditions expressed in the Theorem 5.2.
We take K = 0, 6 and yc = 2620.
The results are obtained according to various values of θr, the objective is to verify the obtained
bounds expressed in the Theorem 5.2, and to analyze the impact on uncertainty on the real time
delay on the dynamic behavior of the system, and therefore the bullwhip effect. Then, we consider
3 case studies:

• When θr = 7, that means the real time delay is well estimated. One can remark, from the
figure (6) that y(t) ∈ [540 , 2620] and corresponds to the result obtained in the nominal case.

Figure 6. Results for : yc = 2620, θr = θ0 = 7.

• For θr = 6, the result illustrated on figure (7) shows that y(t) ∈ [540 , 2620]. The minimum
limit is reached, it corresponds to the lower bound given by the relation (iii) of the Proposition
(2). We can also see short-term fluctuations on the stock level. Once the steady state is
reached, these fluctuations disappear without significant overshoot.

Figure 7. Results for: yc = 2620, θ0 = 7 and θr = 6.

• For θr = 8, we can remark that y(t) ∈ [540 , 2860]. In this case, it is the upper bound given
in the relation (iii) of the Proposition (2), which is reached as shown in Figure (8).

We can again see the emergence of fluctuations in the stock level before stabilizing, it is
important to note that the fluctuations induced on the level of production u(t) are not growing
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(instead of the case of bullwhip effect, where the fluctuations are growing), the maximum
amplitude of these fluctuations is an increase of almost 21% with respect to d(t).

From these results, we deduce the importance to take into account the delay with maximum
of precision. Indeed, in the nominal case when the delay is well estimated, the compensation
of the delay by the prediction is optimal, there is no fluctuation nor overshoot observed. Such
control structure helps to eliminate the bullwhip effect. In the case with uncertainty, we could
test the robustness of the proposed control law. We observed the apparition of fluctuations
in the stock level, as well as production orders. These fluctuations are correlated with the
difference between the real delay and its estimation. It is important to notice that the control
law we applied can reduce fluctuations, prevent their amplification, thus avoid the occurrence
of the bullwhip effect, despite an uncertainty on the delay. On the other hand, the simulation
results permit to verify the validity of the bounds obtained in the Theorems 5.2 and 5.3, and
show that they are indeed met by choosing various values of the parameters of the system.

Figure 8. Results for: yc = 2620, θ0 = 7 and θr = 8.

7. Managerial advantages of the proposed approach: Case study

As mentioned above, a first contribution is the consideration of the saturation and the positivity
constraints of the system in the methodology of controller design. The second contribution is to give
necessary and sufficient conditions on the controller parameters, for which the system requirements
will be completely met. The third contribution, which is sought in the study of industrial cases, is
how can we consider the work in process in the decision making, in order to reduce - or eliminate
if it’s possible - the bullwhip effect on the logistical system because of the uncertainties on the
customers demand and the production delay.

For that, let us consider a single logistic system. The main measure of the impact of the demand
uncertainty on the bullwhip effect is variation ratio denoted λ = dx

dy
, where dx corresponds to the

variation of the production order, with a maximal bound denoted ω, dy corresponds to the variation
of the customer demand, that is bounded by dmax. We can then define λ = ω

dmax
. Depending on the

value of λ, three cases can be considered. When λ < 1, dampening of the bullwhip effect is observed,
indicating a push rather than pull supply chain. If λ = 1, there is no variance amplification.
Otherwise, λ > 1 corresponds to the presence of the bullwhip effect in the supply chain. In our
example, two cases are considered: (1) the lead time is known exactly, (2) the lead time is defined
with uncertainty.
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7.1 Case of exact lead time

When θ is well defined, we proved in (Moussaoui et al., 2014) that if the condition dmax ≤ Umax,
the control law u(t) evolves in [0, dmax], so that ω = dmax. In this case, we obtain λ = 1. That
means there is no variance amplification and the bullwhip effect is eliminated. This results from
the use of a control law based on predictive and saturated feedback structure.

• Illustration Example

The simulation example aims at highlighting the efficiency of the proposed inventory control to
eliminate the bullwhip effect. We consider a single production system with θ0 = θ = 6, yc = 1840.
The figure 9 shows that, when the demand is null, the inventory level is replenished to its reference
level. Also, we can see that the saturating constraint on the production order impacts the dynamics,
such as the supplying process takes more time, but the demand is always fulfilled. However, the
bullwhip effect is well eliminated due to the fact that there is no variance amplification.

Figure 9. Impact of the demand uncertainty on the Bullwhip Effect- Case of exact lead time

7.2 Case of lead time uncertainty

In this case, when the lead time is defined with an uncertainty interval [θ1, θ2], θ1 < θ2, and from
the results expressed in Proposition 2, we deduce that

λ =
ω

dmax
=

{
1 , if K(θ2 − θ1) ≥ Umax−dmax

Umax
1

1−K(θ2−θ1) , ifK(θ2 − θ1) < Umax−dmax

Umax

If the condition dmax ≤ Umax is verified, one can remark that the impact of the lead time
uncertainty on the bullwhip effect expressed by λ can be bounded such that 1 ≤ λ ≤ Umax

dmax
. This

means that although we can not completely eliminate the bullwhip effect, however, it is possible
to reduce it by adjusting the value of K. In order to minimize the bullwhip effect, and according
to the values of Umax, Ymax and dmax, after development of the results obtained in Theorem 5.1,
we obtain the following cases.

• if Umax(θ2 − θ1) + θ2dmax < Ymax < 4dmax(θ2 − θ1) + θ2dmax then λ = Umax

dmax
;

• if 4dmax(θ2−θ1)+θ2dmax < Ymax <
U2

max

Umax−Dmax
(θ2−θ1)+θ2dmax then λ = Umax

dmax
or λ ∈ [λ1, λ2];

• if 4dmax(θ2 − θ1) + θ2dmax ≤ Ymax then λ ∈ [λ1,
Umax

dmax
];
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From those results, we can minimize the bullwhip effect by choosing the minimum value of λ,
named λmin, such as summarized in the following Proposition.

Proposition 3. Being given a system of the form (20), and under the Theorem 5.1 assumptions,
the minimum value of the variation ratio denoted λmin is calculated as follows

λmin =


Umax

dmax
if Y1 < Ymax < Y2

1

1−K(θ2 − θ1)
if Y2 ≤ Ymax

with

Y1 = Umax(θ2 − θ1) + θ2dmax, Y2 = 4dmax(θ2 − θ1) + θ2dmax

K =
1

2(θ2 − θ1)
[1−

√
1− 4dmax (θ2 − θ1)

Ymax − θ2 dmax
],

• Illustration Example

We take the same simulation example with, in this case, θ0 = 6, θ = 8, yc = 2620. As we can
see on the figure 10, because of the uncertainty on the lead time, the reference level yc must be
designed to cope with lead time uncertainty, in order to satisfy the demand without exceeding the
maximum storage capacity. In addition, despite the presence of demand and delay uncertainties,
the bullwhip effect is reduced.

Figure 10. Impact of the demand uncertainty on the Bullwhip Effect- Case of uncertainty on the lead time

8. Conclusion

In this paper, we are interested in the inventory control of production systems, taking into account
production delays expressed by an uncertainty and specific constraints of the production system.
The proposed approach is based on the feedback predictor structure, using a saturated command,
which permits the elimination of the delay impacts on the closed loop behavior. The developed
approach is applied for the inventory regulation of a production unit. A first contribution is the
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consideration of the work in process in the decision making, while satisfying constraints of the
system (the positivity of variables, the consideration of the maximal capacities, ...). The second
contribution is to give necessary and sufficient conditions on the controller parameters, for which
the system requirements will be completely met, in the presence of a pure delay θ.

The third contribution consists in the study of the robustness of the control law. We considered
that the real delay is not exactly well known but expressed by a uncertainty interval. We conclude
that the proposed control law can reduce the fluctuations in the stock level, as well as production
orders, and thus prevent their amplification and avoid the occurrence of the bullwhip effect, despite
an uncertainty on the delay. Furthermore, the simulation examples show that, when the lead times
are known exactly, the bullwhip effect is eliminated. However, when the lead times are defined with
an uncertainty, the bullwhip effect is not eliminated but can be reduced at a minimum value. The
financial benefits of this approach can be measured by the fact to meet customer demand without
incurring the penalties of breaking the stock, and also by optimizing storage costs by adopting a
production strategy just in time.

In our case, we considered one type of component at each node of the supply line. Further
study is required to develop the proposed approach for multiple components in a node such as
assembly/disassembly systems. Also, as research perspectives, it is interesting to forecast the fu-
ture customers demands and integrate them in the predictive feedback structure, which should
permit to ameliorate the control performance, and to have a better attenuation of the inventory
oscillations. Also, it is interesting to extend the applicability of the method for the case of multiple
interconnected units, by considering several actors such as suppliers, distributors, etc., and to reach
the study of the Supply Chain dynamics as a whole.
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