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This paper deals with the production scheduling problem with customer-driven demand substitution.
We distinguish between the so-called long-term product assortment, that is the whole set of alternative

product options that a system is able to produce in the long term, and the short-term product assortment,
that is the subset of options that are currently available. In such a context, typical of fields where high-
variety strategies are applied, the first-choice option of the customer could be unavailable at a certain
time instant. In that case, we assume that the customer has the possibility to substitute with other
options or, if he/she is not willing to substitute, either a lost sale occurs or a backorder is placed.

Thus, this paper proposes two mixed-integer linear programming models (for both the lost sale case
and the backorder case) for optimizing the production schedule and, consequently, the short-term product
assortment, by jointly considering (i) capacity and production constraints and costs on one hand, (ii)
and demand substitution issues on the other hand.

An extensive experimental analysis has allowed us to evaluate the models’ behaviour in a wide variety
of operative scenarios and to draw some concluding remarks.

Keywords: Product mix; Scheduling; Linear programming; Demand substitution; Product assortment

1. Introduction

Nowadays, customer expectations and buying behaviour should be taken into consideration not
only in the final stages, but along all the processes that are needed to provide the customer with
value-added products and services. Such a statement is emphasized by the widespread application
of the so-called high-variety strategies (see Kahn 1998, for more detail), which take the form of
customization strategies, aiming at producing exactly the product option that the customer desires,
and variety-seeking strategies, aiming at producing more variety in a product category in order to
allow each consumer to enjoy a diversity of options over time.

In particular, the notion of customer-driven demand substitution, strictly related to customiza-
tion and variety, should already be considered in the production management process. However, to
the authors’ knowledge, while these concepts are widely investigated in the literature on retailing
(and marketing in general), it is much less common to include product substitution and product
assortment issues in production planning and control.

Thus, this paper aims at contributing to the literature by addressing the production scheduling
problem under substitutable demand. Specifically, the focus is on the optimal allocation of the
available production resources over time by considering (i) capacity and production constraints and
costs on one hand, and (ii) product assortment requirements on the other hand, when demand-
substitution effects dominate.

In particular, a manufacturing system able to produce a variety of alternative options (or vari-
ants) of the same product category is studied under a dynamic perspective. In such a system we
can distinguish between:
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• long-term product assortment: the whole set of options that the system is able to produce in
the long term (according to its production resources);

• short-term product assortment: the subset of options that the system offers to its customers
at a time.

In many real-world systems the short-term product assortment does not always coincide with
the long-term product assortment. This can be due to reasons of cost (e.g., inventory holding and
setup costs) and/or capacity constraints, so that only a subset of the possible product options are
available at the same time. On the other hand, as stated above, it is always important (i) to meet
the customer’s expectations by offering his/her favourite option (the first-choice) or a similar one
and (ii) to rotate the products in the short term so that all the product options can be eventually
offered to the customer. In this way, the customer is satisfied (or, at least, partially satisfied) in the
short term (according to the customization strategies) and he/she has the opportunity of choosing
among a wider variety of products in the long term (according to variety-seeking strategies).

Hence, the problem is to dynamically optimize the short-term product assortment under a given
long-term product assortment by jointly considering capacity and production constraints, economic
issues and customer-driven demand substitution.

An early study of this problem can be found in Gebennini et al. (2015) where the production
schedule and, consequently, the short-term product assortment are optimized for an application in
the brewery industry. In that case the lost sales, that may occur if a product is not available and
the customer is not willing to substitute, have been taken into account by introducing “dummy”
products.

In the present paper, two distinct operative situations in which the manufacturing system under
study can operate are addressed separately, i.e.,

• the situation with lost sales, where any demand that is not satisfied in a period (by the first-
choice option or substitutive options) is considered lost: the model proposed in this paper
(see Section 3) improves on the model in Gebennini et al. (2015) by taking explicitly into
consideration the amount of lost sales of each option in each period;

• the situation with backorders, where any demand that is not satisfied in a period (by the first-
choice option or substitutive options) is backordered: a new optimization model is proposed
in this paper (see Section 4).

1.1 Literature review

In this study the concept of “substitutable demand” plays a fundamental role.
The benefits of product substitution have long been recognized in several studies. For example,

product substitution may offer opportunities for economies of scale or the possibility of inventory
pooling to hedge against demand uncertainties and to help reduce safety stocks (Hsu et al. 2005).

The literature about substitutable demand distinguishes between one-way substitution and two-
way substitution. One-way substitution assumes that products can be ordered based on an at-
tribute, such as quality or speed of service, so that products with higher levels of the attribute can
substitute for products with lower levels of the attribute. This kind of substitution is also called
“hierarchical substitution” (see, e.g. Bitran and Dasu 1992; Bassok et al. 1999; Rao et al. 2004;
Stavrulaki 2011). On the other hand, models that allow two-way substitutability enable customers
to substitute among products within the same category. Two-way substitution is the perspective
that we adopt in this paper. Note that in case of hierarchical substitution an adaptation cost should
be taken into consideration (Tripathy et al. 1999; Jans and Degraeve 2008). Such a cost can be seen
as a more general substitution cost in case of two-way substitution, as in the case under analysis
where products are not characterized through quality.

Another interesting distinction that can be found in literature is between stockout-based sub-
stitution and assortment-based substitution (see, e.g., Kök and Fisher 2007; Yücel et al. 2009).
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Stockout-based or dynamic substitution occurs when the customer replaces his/her favourite option
with another one because it is stocked-out at the moment of the purchase decision; assortment-
based or static substitution behaviour occurs when the favourite product is not in the assortment
(i.e., in the portfolio of products). According with these definitions, the problem addressed in this
paper should refer to the stockout-based substitution. However, in our case this distinction is not
conclusive. This is because the long-term assortment is given and it is supposed to meet the cus-
tomers’ preferences on the whole. The objective is to optimize the short-term assortment, i.e., to
choose the options of the long-term assortment that must be available (not stocked-out) at a certain
instant of time. Thus, both inventory and assortment issues are jointly taken into consideration.

The number of substitution attempts is another feature that differentiates the models involving
demand substitution issues. In general, since Kök and Fisher (2007) shows that a multi attempts
model can be approximated with a single attempt substitution model with increased rates, most
of the literature proposes single attempt models. On the contrary, in the present study multiple
substitution attempts are taken into account in order to avoid any approximation error.

An interesting point is that while product substitution issues are widely discussed in the retail
sector (see, e.g. Mantrala et al. 2009; Drezner et al. 1995), works regarding manufacturing aspects
are mainly restricted to the inventory control problem (see, e.g. Bassok et al. 1999; Rao et al. 2004;
Gallego et al. 2006). In fact, to the authors’ knowledge, few studies include product substitution
issues into production scheduling and control.

Thus, by taking inspiration from Yücel et al. (2009) (which dealt with the product assortment
problem in the retail sector) and by significantly extending Gebennini et al. (2015), we developed
two mixed-integer linear programming models that dynamically optimize the production schedule
(and, consequently, the short-term product assortment) under substitutable demand, by consider-
ing both the lost sale case and the backorder case. The optimal solution is generated by minimizing
the sum of setup costs, holding costs, substitution costs and lost-sale/backorder costs.

The remainder of this paper is organized as follows. Section 2 describes the problem and the main
assumptions. Section 3 presents the mathematical model for the lost sale case, while in Section 4 a
new model is proposed where backorders are allowed. Section 5 presents and discusses an extensive
experimental analysis, and some conclusions are drawn in Section 6.

2. Problem statement

In this study we distinguish between long-term product assortment and short-term product assort-
ment.

The long-term product assortment, that is the whole set of product options that can be produced
and offered to the customers on a planning horizon of several periods, is supposed to be fixed and
given.

On the other hand, the subset of options available (not stocked-out) at a certain instant of time,
called the short-term product assortment, is supposed to vary over the planning horizon. In such
a way, a proper rotation of product options is guaranteed, according to the high-variety strategies

(this constraint is called “rotation requirement” in the sequel).
We assume here that, if an option is not in the short-term product assortment at a certain

instant of time, it can be substituted by another one. Specifically, for each couple of options of the
long-term product assortment a substitution rate is defined. On the other hand, if the customer is
not willing to substitute when his/her first-choice option is not available, either a lost sale occurs or
a backorder is placed. These two distinct operative situations are addressed separately throughout
the paper.

Anyway, in both situations (lost sales or backorders) the objective is to schedule the produc-
tion orders so that the short-term product assortment is optimized over the planning horizon by
considering set-up costs, inventory holding costs, substitution costs and lost-sale/backorder costs.
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The remaining assumptions and conventions of the two mixed-integer linear programming
(MILP) models proposed in this paper can be summarized as follows:

• Time is discrete.
• The demand of all the products of the long-term product assortment is known and determin-

istic for each time unit.
• The substitution rates are known and fixed for each couple of product options. This assump-

tion is common in stockout-based substitution models (see, e.g., Netessine and Rudi 2003).
In this way we do not attempt to model the decision process of the individual customer,
but we consider the aggregate customers’ behaviour. Then, according to Smith and Agrawal
(2000), we assume that customers choose independently of each other and the substitution
rates are independent of the total number of customers in any time unit.

• Multi-level substitution is allowed. Thus, when a product options is not available its demand
is redistributed in a number of distribution attempts (see Yücel et al. 2009). In particular, for
each product option we have to consider: (i) the first-choice demand incoming to that option,
(ii) the substitution demand incoming to that option, one for each level of substitution and
(iii) the substituted demand outgoing from that option, one for each level of substitution.

• There is a given number of production resources (or stations) that work in a parallel manner
and the following aspects are taken into consideration: (i) batch capacity (depending on the
specific production resource), (ii) production lead time (depending on the specific option),
(iii) single product option per batch.

• When a certain quantity of a product option becomes available either it is sold to the customer
in that time unit or it is stored. The timing convention used to mathematically treat the
products’ flows is as follows: the demand is realized at the beginning of any time unit while
changes in the inventory levels occur at the end of the time unit. The present formulation of
the problem does not include storage capacity constraints.

• The following (linear) costs are considered:
◦ set-up costs;
◦ inventory holding costs;
◦ substitution costs;
◦ lost-sale costs (for the model proposed in Section 3) or backorder costs (for the model

proposed in Section 4);
where the last two types of costs are related to the lower degree of customer satisfaction.

The objective is to minimize the sum of these costs over the planning horizon, both in the
lost sale case (see Section 3) and the backorder case (see Section 4).

3. Model with lost sales

In this section a MILP model is proposed for the production scheduling problem under customer-
driven demand substitution with lost sales. Hence, in any time unit t, if a product is not in the
short-term product assortment or if it has run out of stock in that time unit, whether the customer
substitutes the product with another one or a lost sale occurs.

3.1 Notation

The following notation is adopted:

Indexes

• t = 1, . . . , T : time units along the planning horizon;

4
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• j = 1, . . . , J : product options of the long-term product assortment;
• s = 1, . . . , S: production stations;
• m = 1, . . . ,M : levels (or attempts) of substitution (with M ≤ J);

Variables

• xjst: quantity of product option j that becomes available from station s at the beginning of
time unit t;

• x0jt: amount of satisfied demand of product option j (without substitution) in time unit t;
• xsmjkt: amount of product option j used to satisfy the m-th level of substitution from option

k in time unit t.
• xlmjt: lost sales of product option j at the m-th level of substitution in time unit t.
• Ijt: inventory level of product option j at the end of time unit t;
• yjst: 1, if a production order of product option j is scheduled and launched on station s in

time unit t; 0, otherwise;
• zjst: 1, if station s is occupied by product option j in time unit t (except for the first time

unit when the production order is launched); 0, otherwise.

Input Data

• djt: demand of product option j in time unit t;
• I0j : inventory level of product option j at the beginning of the planning horizon;
• Cs: batch capacity of station s;
• LTj : production lead time (in number of time units) of product option j;
• wjk: substitution rate, i.e., proportion of customers whose preference is product option k that

substitute option k with option j (wjj = 0);
• wl

k: proportion of customers whose preference is product option k and that refuse to substitute
option k with any other option;

• T r: maximum number of time units between two production order of a given product option
(this parameter defines the product rotation requirement);

• csetup: unit setup cost;
• chj : unit holding cost for product option j;

• csubmj : penalty cost of the m-th level of substitution from product option j;

• clostmj : penalty cost of the lost sales of product option j at the m-th level of substitution.

3.2 Model formulation

The MILP model is formulated as follows:

min TC = TCP + TCH + TCS + TCL (1)

subject to

TCP =

T
∑

t=1

J
∑

j=1

S
∑

s=1

yjst c
setup, (2)

TCH =
J
∑

j=1

I0j +
∑S

s=1 xjs1 + Ij1

2
chj+
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+

T
∑

t=2

J
∑

j=1

Ij,t−1 +
∑S

s=1 xjst + Ijt
2

chj , (3)

TCS =
T
∑

t=1

M
∑

m=1

J
∑

j=1

J
∑

k=1
k 6=j

xsmjkt c
sub
mj , (4)

TCL =
T
∑

t=1

M
∑

m=1

J
∑

j=1

xlmjt c
lost
mj , (5)

x0j1 +

M
∑

m=1

J
∑

k=1
k 6=j

xsmjk1 + Ij1 = I0j +

S
∑

s=1

xjs1 , ∀j , (6)

x0jt +

M
∑

m=1

J
∑

k=1
i 6=j

xsmjkt + Ijt = Ij,t−1 +

S
∑

s=1

xjst , ∀j,∀t > 1 , (7)

x0jt +

M
∑

m=1

J
∑

k=1
i 6=j

xsmkjt +

M
∑

m=1

xlmjt = djt , ∀j,∀t , (8)

xs1jkt ≤ (dkt − x0kt) wjk , ∀j, k, with k 6= j,∀t , (9)

xl1kt ≤ (dkt − x0kt) w
l
k , ∀k ,∀t , (10)

xs2jkt ≤ (dkt − x0kt −
J
∑

r=1
r 6=j,k

xs1rkt − xl1kt)
J
∑

r=1
r 6=j,k

wrkwjr ,

∀j, k, with k 6= j,∀t , (11)

xl2kt ≤ (dkt − x0kt −
J
∑

r=1
r 6=j,k

xs1rkt − xl1kt)
J
∑

r=1
r 6=k

wrkw
l
r ,

∀j, k, with k 6= j,∀t , (12)

t−1
∑

τ=t−LTj+1

zjsτ = (LTj − 1) yjs(t−LTj) , ∀j , ∀s , ∀t > LTj , (13)

yjst ≤
(

1−

J
∑

j=1

zjst

)

, ∀j , ∀s , ∀t , (14)

J
∑

j=1

yjst ≤ 1 , ∀s , ∀t , (15)

J
∑

j=1

zjst ≤ 1 , ∀s , ∀t , (16)

xjst = Cs yjs(t−LTj) , ∀j , ∀s , ∀t > LTj , (17)

t
∑

τ=t−T r+1

S
∑

s=1

yjsτ ≥ 1 , ∀j , ∀t ≥ T r , (18)

xjst ≥ 0 , ∀j , ∀s , ∀t , (19)
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Ijt , ∀j , ∀t , (20)

x0jt , ∀j , ∀t , (21)

xsmjkt ≥ 0 , ∀j , ∀j, k (with k 6= j) , ∀t , (22)

yjst ∈ [0, 1] ∀j , ∀s , ∀t , (23)

zjst ∈ [0, 1] ∀j , ∀s , ∀t . (24)

where:

• constraint (2) defines the total setup cost;
• constraint (3) defines the total inventory holding cost, where expected inventory is calculated

as the average of the initial and the final inventory levels for each time unit;
• constraint (4) defines the total substitution cost, where a unit cost is paid for the demand

portion satisfied by the substitutive option;
• constraint (5) defines the total lost sale cost;
• constraints (6)-(7) guarantee the conservation of material flow for each product and time

unit;
• constraint (8) states that the demand for a product option can be satisfied by the very

product or with substitution, and the potential unsatisfied demand results into lost sales;
• constraints (9)-(12) represent the substitution inequalities and the lost-sales inequalities. For

any level of substitution, the amount of option j that substitutes for product option k is less
than or equal to a certain proportion of the unsatisfied demand of product option k. This
proportion depends on the substitution rates. The remaining unsatisfied demand results into
a lost sale. Substitution and lost-sales inequalities are written for each of the M levels of
substitution. For the sake of clarity, as in Yücel et al. (2009), only the two substitution and
lost-sales inequalities are provided;

• constraints (13)-(14) guarantee that when a production order is launched on a station, the
station is occupied by that product option until the production is completed (i.e., for a
number of time units equal to the product lead time) and no other production orders can
be launched. Note that variable yjst is 1 only when the production of product j begins on
station s (i.e., the first time unit of the lead time). Variable zjst is set to 1 for all the time
units of the lead time except the first one (where yjst = 1).

• constraints (15)-(16) guarantee that when a product option is in process on a station, that
station is devoted to that option only;

• constraint (17) states that if a product option j becomes available at a certain time t, the
corresponding production order must have been scheduled LTj time units in advance. Then,
the quantity of product option j that becomes available depends on the batch capacity related
to that station;

• constraint (18) represents the rotation requirement. For each product option, at least one
production order must be scheduled every T r time units. This prevents that product options
that are highly substitutable and/or with a low demand are never, or rarely, produced (with
the objective of preserving the variety in the long term);

• constraints (19)-(24) define non-negative and binary variables.

The objective function is in the form of a cost minimization. The costs taken into account are
the total setup cost (TCP ), the total inventory holding cost (TCH), the total substitution cost
(TCS) and the total lost-sale cost (TCL).

The solution of the model provides the decision maker with:

• the schedule of the production orders over the planning horizon: variable yjst states, for each
time unit, the production orders that should be launched on the available stations;
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• the short-term product assortment J short-term
t for any time unit t in the planning horizon:

J short-term
t =

{

j ∈ J :

S
∑

s=1

xjst + Ij(t−1) > 0
}

, (25)

that, in words, represents the subset of product options that are available at the beginning
of time unit t.

4. Model with backorders

In this section the model proposed in Section 3 is extended in order to allow backorders. Thus,
in any time unit t, if a product is not in the short-term product assortment or if it has run out
of stock in that time unit, whether the customer substitutes the product with another one or a
backorder is placed.

4.1 Notation

The notation proposed in Section 3 is here retained, except for the parameters referring to the lost
sales. Then, new parameters referring to backorders are introduced as follows:

• the variable xbmjt, indicating the amount of product option j backordered at the m-th level
of substitution in time unit t;

• the backorder rate wb
j of any product option j, with wb

j = 1−
∑J

k=1
k 6=j

wkj;

• the unit backlogging cost cbackmj at the m-th level of substitution from product option j.

4.2 Model formulation

The MILP model is formulated as follows:

min TC = TCP + TCH + TCS + TCB (26)

subject to

Constraints (2)− (4) ,

TCB =
T
∑

t=1

M
∑

m=1

J
∑

j=1

xbmjt c
back
mj , (27)

Constraints (6)− (7) ,

x0j1 +

M
∑

m=1

(

J
∑

k=1
k 6=j

xsmkj1 + xbmj1

)

= djt , ∀j, (28)

x0jt +

M
∑

m=1

(

J
∑

k=1
k 6=j

xsmkjt + xbmjt

)

= djt +

M
∑

m=1

xbmj,t−1 , ∀j,∀t > 1 , (29)

xs1jkt ≤
(

dkt +

M
∑

m=1

xbmk,t−1 − x0kt

)

wjk , ∀j, k, with k 6= j,∀t , (30)
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xb1kt ≤
(

dkt +

M
∑

m=1

xbmk,t−1 − x0kt

)

wb
k , ∀k,∀t , (31)

xs2jkt ≤
(

dkt +
M
∑

m=1

xbmk,t−1 − x0kt −
J
∑

r=1
r 6=j,k

xs1rkt − xb1kt

)

J
∑

r=1
r 6=j,k

wrkwjr ,

∀j, k, with k 6= j,∀t , (32)

xb2kt ≤
(

dkt +
M
∑

m=1

xbmk,t−1 − x0kt −
J
∑

r=1
r 6=k

xs1rkt − xb1kt

)

J
∑

r=1
r 6=k

wrkw
b
r ,

∀k,∀t , (33)

Constraints (13) − (18) ,

xbmjt ≥ 0 , ∀m, ∀j , ∀t , (34)

Constraints (19) − (24) ,

where the new constraints are as follows:

• constraint (27) defines the total backlogging cost;
• constraints (28)-(29) are the balance equations, modified to take into account that the actual

request for product option j in any time unit t is given by both its demand in that time unit
and the backorders of the previous time unit. Then, backorders can be placed for the current
time unit also;

• substitution inequalities (30) and (32) have been modified (with respect to Section 3) to take
into account the backorders of the previous time unit and the backorders of the previous
substitution levels;

• constraint (31) (similar to constraint 30) and constraint (33) (similar to constraint 32) rep-
resent the backorder inequalities. For any level of substitution, the amount of product option
k that is backordered is less than or equal to a certain proportion of the unsatisfied demand
of product k. Similarly as for the substitution inequalities, this proportion depends on the
substitution rates and the backorder rate of that product. Also the backorder inequalities
are written for each of the M levels of substitution. Once again, only the first two backorder
inequalities are provided;

• constraint (34) defines xbmjt as a non-negative variable.

The objective function is still in the form of cost minimization where the total backlogging cost
(TCB) replaces the total lost-sale cost in the model of Section 3.

Similarly as in Section 3, by solving this MILP model, we obtain the optimal schedule of the
production orders and the short-term product assortment over the planning horizon. In particular,
note that Eq. (25) remains valid here.

5. Numerical examples

The mixed-integer linear programming models proposed in Section 3 and Section 4 for the produc-
tion scheduling problem under product substitution (with lost sales and with backorders) are here
applied to a set of random instances, with the objective of evaluating the models’ behaviour in a
wide variety of operative scenarios.

The set of random instances was generated similarly as in the experimental analysis proposed
by Yücel et al. (2009) for the product assortment problem in the retail sector.

9
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In particular, we discretized the planning horizon into 10 time units. The long-term product
assortment is composed of 5 different product options that can be produced on 4 capacitated
stations. We considered 3 levels of substitution, that is a reasonable value since substitution rates
tend to become very small at higher levels.

Then, we adopted the same functions used in Yücel et al. (2009) to define the substitution costs.
Specifically, the substitution costs for each product option j are assumed to be linear functions of
the substitution level, m, and the margin of the very product, mgj . Thus,

csubmj = θ · m · mgj , (35)

where θ > 0 is a parameter to be set by the decision maker depending on the category under
consideration and the customer expectations.

We introduced also the lost-sale or backorder costs as:

clostmj /c
back
mj = β · mgj , (36)

where β = max{3θ; 1} in order to guarantee that the penalty for lost sales or backorders is at least
equal to that of the last (e.g., third) substitution level.

The remaining model parameters are reported in Table 1, where those parameters that we have
in common with Yücel et al. (2009) (i.e., wjk, dj , c

setup, chj , mgj) have been generated according to
the same distributions. The capacity of each station Cs has been generated by the same distribution
that Yücel et al. (2009) used for the order quantity in an application to the retail sector.

[PUT HERE TABLE 1]

The experimental analysis has been carried out by generating 100 random data sets according to
the provided distributions. The 100 data sets have been tested by considering both the operative
situations investigated in this paper (i.e. lost sales and backorders) and by varying the parameter
θ (and, consequently β), in order to obtain different scenarios with increasing substitution costs.

The average of the investigated values over these 100 data sets are provided as test results. All
runs were performed using the mixed-integer programming solver ILOG-CPLEX 12.6 on an Intel
Core-i7 3.0 GHz PC.

5.1 A single illustrative instance

In the sequel, the proposed mathematical models are applied to one of the random instances from
the data set generated in the present experimental analysis.

As explained above, we consider a planning horizon of 10 time units and a long-term product
assortment of 5 different product options (called P1, P2, . . . , P5). The demand of each option per
time unit is reported in Table 2.

[PUT HERE TABLE 2]

For each couple of options the matrix of substitution rates is given in Table 3, along with the
lost-sale or backorder rates.

[PUT HERE TABLE 3]

The capacities, expressed in number of units, of the four production resources (denoted as R1,
R2, R3 and R4) are as in Table 4, while the remaining input data, generated as described above,
are not reported due to space limitations.

[PUT HERE TABLE 4]
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For both the analysed operative situations (lost sales and backorders), the solution can be
discussed in terms of production schedule and short-term product assortment.

5.1.1 Lost sales

By applying the MILP model of Section 3, we obtain the optimal production schedule depicted in
Figure 1 case a), where it can be seen that products properly rotate over the planning horizon.

[PUT HERE FIGURE 1]

For a brief discussion about the short-term product assortment, we can focus on a particular
time unit, e.g., time unit t = 4 (when a production order started in t = 2 is completed).

As explained in more detail below, the short-term product assortment in t = 4 is composed
of only 3 product options (i.e., P1, P4, P5) out of the five constituting the long-term product
assortment. In particular, Table 5 reports the product options on the rows while on the columns
we have the demand in t = 4 (taken from Table 2 and repeated here for the sake of clearness) and
the optimal values of the following variables:

• The inventory level at the beginning of time unit t = 4 (i.e., the inventory level at the end of
the previous time unit, IPi 3).

• The quantity that becomes available in that time unit from all the production resources
(depending on the scheduling of production orders), where XPi 4 =

∑4
s=1 xPi,Rs, t=4 according

to the notation of Section 3. In Figure 1 (case a) we can see that a production order of option
P4, launched at time t = 2 on R2, completes in the time unit of interest, while there is
neither inventory nor production for options P2 and P3 that, consequently, do not belong to
the short-term product assortment in t = 4.

• The quantity of other options that substitutes for each Pi in t = 4, where

XsfromPi 4 =

3
∑

m=1

5
∑

j=1
j 6=i

xsm,Pj, Pi, t=4 ,

according to the notation of Section 3. For example, the demand of P2 (250 units) is partially
satisfied (207 units) by the other substitutive options, according to the substitution rate
matrix, while the remaining unsatisfied demand (250 − 207 = 43 units) are lost sales. A
similar reasoning can be applied to option P3.

• The quantity of each option Pi used to substitute other demands in t = 4, where

XstoPi 4 =

3
∑

m=1

5
∑

j=1
j 6=i

xsm,Pi, Pj , t=4 ,

according to the notation of Section 3. In this case, there are positive values for P1, P4 and
P5 that substitute for P2 and P3.

• The inventory level at the end of the time unit, IPi 4.
• The lost sales in t = 4, where XlPi 4 =

∑3
m=1 xlm,Pi, t=4. In this case, we have a certain

amount of lost sales only for options P2 and P3.

Finally, it can be noted that the flow-balance relations are satisfied for each product options.

[PUT HERE TABLE 5]
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Similar solutions are obtained for each time unit of the planning horizon demonstrating the
ability of the proposed model to take into consideration both inventory and product assortment
issues in case of demand substitution.

5.1.2 Backorders

The model of Section 4 is suitable for the operative situation where backorders are allowed.
In this case, the optimal production schedule is depicted in Figure 1, case b).
Similarly as in Section 5.1.1, we can discuss the short-term product assortment in a specific

time unit. By selecting t = 4 again, it is composed of four out of the five options (P1, P3, P4, P5)
and, specifically, Table 6 reports the values of the variable of interest in the optimal solution. The
columns of Table 6 are the same as in Table 5, except for the second and the last columns that
refer to the amount of backorders, where XbPi t =

∑3
m=1 xbm,Pi, t for each option Pi.

By reasoning similarly as in Section 5.1.1 for lost sales, we can here limit our explanation to one
of the product options. For example, let us consider option P3 which shows the most interesting
behaviour. Since there are no backorders from the previous time unit (XbP3 3 = 0), the quantity of
P3 requested in t = 4 is equal to the demand in that time unit (6 700 units). The initial inventory
(2 940 units) is used in large part to satisfy its own demand (for 2 396 units), but a portion (544
units) is also used to substitute for P2. Thus, the amount of demand of P3 that is not satisfied by
the very option is 4 304 units (6 700 - 2 396). A significant portion is satisfied by the substitutive
options (3 812 units) and the remaining part is a backorder (492 = 4 304 - 3 812).

[PUT HERE TABLE 6]

5.2 Experimental results

Table 7 reports the costs that have been minimized by applying both the models proposed in this
paper, with lost sales and with backorders. These values are obtained by averaging the results from
the 100 random data sets discussed above over different scenarios which differ from each other by
the operative situation (i.e., lost sales or backorders) and by the level of the substitution and lost-
sale/backorder costs. Both in the case where backorders are allowed and in the case with lost sales,
the parameters θ and β have been varied in order to understand the behaviour as the substitution
costs, together with the backorder/lost-sale costs, increase. Note that, for a given value of θ, the
value of β is the same for both backorders and lost sales, meaning that their weight is the same in
the two situations.

[PUT HERE TABLE 7]

Table 7 shows that scenarios with backorders generally involve lower setup costs but higher
inventory and substitution costs. This is because the unsatisfied demand of any time unit is not
lost and must be eventually fulfilled (and, consequently, the material flows along the planning
horizon are higher than in the scenarios with lost sales).

Then, it can be noted that as substitution costs increase, the optimal solution extends the short-
term product assortment. This result is inferred by observing the increase of both the total setup
costs and the total inventory costs. In particular, if we consider the sum of setup and inventory
costs we have:

• Backorders:
◦ if θ = 0, C(Setup+Inventory)= 469 935 + 731 362 = 1 201 296
◦ if θ = 1, C(Setup+Inventory)= 478 113 + 881 530 = 1 359 643

• Lost Sales:
◦ if θ = 0, C(Setup+Inventory)= 470 369 + 726 819 = 1 197 189
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◦ if θ = 1, C(Setup+Inventory)= 479 287 + 866 253 = 1 354 540

Thus, the sum of setup and inventory costs increases of more than 10% as θ passes from 0 to 1
in both situations, backorders and lost sales.

Moreover, we can see that the extension of the short-term product assortment can even lead to
a reduction of the amount of backorders, whose costs reduces from 21 208 e to 18 173 e in our
experimental analysis.

In order to better understand how demand substitution can help reducing backorders and lost
sales (and, consequently, increasing customer satisfaction) it is now interesting to reason not only
in terms of costs, but in terms of satisfied demand and amount of backorders or lost sales.

Table 8 shows, for both the considered situations and increasing substitution and lost-
sale/backorder costs, the following information:

• Scenarios where substitution is allowed (and, consequently the proposed models can be ap-
plied in the form of Section 3 and Section 4):

◦ %ds is the first-choice demand satisfied over the planning horizon, i.e., the percentage
of the product demand that has been satisfied by offering to the customers that very
option;

◦ %sub is the percentage of the product demand that has been satisfied with substitutive
options (by satisfying, even if partially, the customers which are willing to substitute);

◦ %ls/%bk is the percentage of backorders or lost sales;
• Scenarios where substitution is not allowed (and, consequently a simpler version of the models

where only the balance equations are retained can be applied): %ds and %ls/%bk have the
same meaning as above, but the factor %sub is no more applicable (since the demand of a
certain product option can be satisfied by that very option only)

• Difference ∆ of backorders/lost sales when substitution is allowed and when it is not al-
lowed (negative values mean a reduction of the percentage of backorders or lost sales when
substitution is allowed).

As expected, as the substitution and lost-sale/backorder costs increase the percentage of first-
choice demand satisfied increases as well, while backorders and lost sales decrease. But the most
interesting result is that allowing substitution always helps in reducing backorders or lost sales.
Such a reduction can even be of about 30% when the substitution costs are low in our experimental
analysis.

Hence we can conclude that it is important to study the customers’ buying behaviour and
understand if they are willing to substitute between different product options. If so, it is possible
to obtain significant benefits in terms of reduction of backorders or lost sales.

[PUT HERE TABLE 8]

6. Conclusions

In this paper two mixed-integer linear programming models for the production scheduling under
customer-driven demand substitution are proposed. In the first model, if a product is not available
in that time unit, whether the customer substitutes the product with another one or a lost sale
occurs. In the second model backorders are allowed.

The proposed models could support the production planning especially when it is not econom-
ically or technically suitable to have all the product options of the long-term product assortment
available at the same time. The subset of products that can be offered to the customers at a time
is here called short-term product assortment.

An extensive experimental analysis has underlined the importance of including demand substi-
tution issues in the production planning. In particular, we have found that when the customers are
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willing to substitute between different product options it is possible to obtain significant benefits
in terms of reduction of backorders or lost sales.

Further possible extensions of the models are related to the possibility of considering differ-
ent product categories (i.e., different sets of substitutable product options). The introduction of
additional production stages could also lead to more realistic models.
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Figure 1. Optimal production schedule.
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Table 1. Model parameters.

Parameter Distribution

wjk Uniform distribution, where
∑J

k=1wjk = 1 and 0 ≤ wjk ≤ 1,
∀j, k

wl
j wb

j wl
j = wb

j = 1−
∑J

k=1wjk = 1, ∀j

djt djt = αjt· 10 000, where αjt has uniform distribution, with
0 ≤ αjt ≤ 1, ∀j

Cs Uniform distribution, where 4 000 ≤ Cs ≤ 34 000, ∀s
csetup Uniform distribution, where 30 000 ≤ csetup ≤ 50 000 (it is

the same for all stations in a given instance)
chj chj = hj ·mgj , where hj has an uniform distribution, with

0.3 ≤ hj ≤ 1, and mgj is the margin of product j, ∀j
mgj Normal distribution with mean 6 and deviation 2, ∀j
LTj 2 time units, ∀j
T r 6 time units
I0j Initial inventory able to cover the demand of each product

for 2 time units (e.g., the production lead time).

So, I0j =
∑2

t=1 = djt
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Table 2. Demand per time unit [units].

1 2 3 4 5 6 7 8 9 10
P1 8300 9700 3600 8200 5700 7400 2900 6200 3300 200
P2 3100 7400 5600 250 9000 3600 8000 9800 17900 9500
P3 7200 1700 12100 6700 12100 15000 7300 1100 2800 13520
P4 6300 2700 7700 12700 4500 5500 4100 12600 7000 8100
P5 7000 5300 300 3900 3800 4900 12000 1500 1000 3400
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Table 3. Substitution rates matrix.

P1 P2 P3 P4 P5 lost-sale/backorder
P1 - 0.17 0.31 0.28 0.15 0.09
P2 0.37 - 0.15 0.15 0.2 0.13
P3 0.25 0.45 - 0 0.18 0.12
P4 0.32 0.21 0.09 - 0.23 0.15
P5 0.11 0.13 0.48 0.18 - 0.1
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Table 4. Capacities of the production resources.

R1 R2 R3 R4
Capacity [units] 9947 22314 15491 19071
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Table 5. Optimal solution for t = 4.

dPi 4 IPi 3 XPi 4 x0Pi 4 XsfromPi 4
XstoPi 4

IPi 4 XlPi 4

P1 82 00 10 438 0 8 200 0 1 430 808 0
P2 250 0 0 0 207 0 0 43
P3 6 700 0 0 0 5 778 0 0 922
P4 12 700 0 22 314 12 700 0 1 081 8 533 0
P5 3 900 7 375 0 3 900 0 3 475 0 0
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Table 6. Optimal solution for t = 4.

dPi 4 XbPi 3 IPi 3 XPi 4 x0Pi 4 XsfromPi 4
XstoPi 4

IPi 4 XbPi 4

P1 8 200 478 0 15 491 8 678 0 1 841 4 972 0
P2 250 846 0 0 0 1 086 0 0 10
P3 6 700 0 2940 0 2 396 3 812 544 0 492
P4 12 700 0 12 715 0 12 700 0 15 0 0
P5 3 900 0 7 700 0 3 900 0 2 498 1 302 0
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Table 7. Optimal solutions (model parameters generated according to Table 1).

Costs [e]
Teta Beta Setup Inventory Substitution Lost-sale Backorder Total

Backorders 0 1 469 935 731 362 - - 21 208 1 222 504
0.2 1 466 798 750 940 97 186 - 18 921 1 333 844
0.4 1.2 469 297 772 613 163 855 - 20 297 1 426 061
0.6 1.8 473 424 811 635 202 079 - 19 860 1 506 999
0.8 2.4 474 175 845 530 235 767 - 19 290 1 574 762
1 3 478 113 881 530 256 002 - 18 173 1 633 818

Lost Sales 0 1 470 369 726 819 - 21 991 - 1 219 180
0.2 1 468 162 741 633 95 831 21 900 - 1 327 527
0.4 1.2 470 929 764 935 157 434 25 196 - 1 418 494
0.6 1.8 475 208 801 185 198 346 26 534 - 1 501 273
0.8 2.4 476 286 835 319 230 500 29 041 - 1 571 146
1 3 479 287 866 253 258 927 28 189 - 1 632 656
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Table 8. Comparison with the case where substitution is not allowed.

with substitution no substitution Delta
Teta Beta %ds %subs %ls /%bk %ds %ls /%bk %ls/%bk

Backorders 0 1 68.04% 31.96% 1.72% 100.00% 29.89% -28.17%
0.2 1 73.36% 26.64% 1.52% 100.00% 29.89% -28.36%
0.4 1.2 76.66% 23.34% 1.36% 100.00% 24.70% -23.34%
0.6 1.8 80.22% 19.78% 0.91% 100.00% 16.24% -15.34%
0.8 2.4 82.19% 17.81% 0.66% 100.00% 13.13% -12.47%
1 3 84.36% 15.64% 0.52% 100.00% 11.24% -10.72%

Lost Sales 0 1 67.54% 30.72% 1.74% 66.21% 33.79% -32.05%
0.2 1 72.41% 25.85% 1.74% 66.21% 33.79% -32.05%
0.4 1.2 76.03% 22.31% 1.66% 72.33% 27.67% -26.01%
0.6 1.8 79.50% 19.29% 1.21% 83.80% 16.20% -14.99%
0.8 2.4 81.48% 17.51% 1.00% 88.28% 11.72% -10.72%
1 3 83.37% 15.84% 0.79% 91.46% 8.54% -7.75%
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