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On the estimation of on-hand stocks for base-stock policies and lost 

sales systems and its impact on service measures 

Abstract: This paper focuses on computing on-hand stock levels at the beginning 

of a replenishment cycle for a lost sales inventory system with periodic reviews 

and discrete demand. A base-stock policy is used for replenishments. The 

literature provides an Exact method which requires a huge computational effort, 

and two closed-form approximate methods that arise from the backordering case, 

the Non-stockout and the Bijvank&Johansen. In this paper we propose three new 

and closed-form approaches that explicitly consider the lost sales assumptions: 

the Adjusted Non-stockout, the Polar Opposite and the 1-Step methods. Existing 

and proposed methods are evaluated in terms of their accuracy when computing 

the cycle service level and the fill rate. In this sense, results show that the 

Bijvank&Johansen and 1-Step methods provide similar performance but present 

different behaviours in terms of under or over estimating service measures that 

have different implications on the design of stock policies. 
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1. Introduction 

When an item is temporarily out of stock, there are two extreme control 

procedures: (i) backordering unfulfilled demand and fulfilling it as soon as the 

replenishment order arrives or (ii) losing the entire unfilled demand. Although the 

problem of lost sales was formulated more than 50 years ago by (Karlin and Scarf 

1958), inventory research has traditionally focused on systems where excess demand is 

backordered. This is mainly because it is much harder to formulate the characteristics of 

an optimal policy when demand is lost rather than backordered (Bijvank et al. 2014; 

Zipkin 2008a; Zipkin 2008b). However, the assumption of excess demand being lost is 

of practical importance in sectors where customers are impatient and they will go to 

other sources to satisfy their requirements if they do not find the product. Examples are 

highly competitive sectors such as retail (Gruen, Corsten, and Bharadwaj 2002), 



machinery spare parts, service sector (Diels and Wiebach 2011) or on-line commerce 

(Breugelmans, Campo, and Gijsbrechts 2006). Hence, having implementable and 

appropriate expressions to design inventory policies for the lost sales case becomes 

necessary for practitioners.  

One of the challenges in lost sales models is the computation of on-hand stock 

levels that are necessary to characterize base-stock inventory systems. For the inventory 

managers, this knowledge is necessary to determine service levels and to establish the 

control parameters of the inventory policy that will lead to determine total costs of the 

system. Backordering models use the inventory position (i.e. net stock plus stock on 

order) as an indicator of the inventory status. The net stock level is the on-hand 

inventory level minus any backorders. This means that negative values represent 

stockouts. In contrast, lost sales models do not allow negative net stocks such that the 

inventory position is computed by means of the on-hand stock. Note that, in this case, 

the inventory position does not decrease when a stockout takes place (Bijvank and Vis 

2011). Therefore it is necessary to know the probability distribution for the on-hand 

stock level at a crucial point in time, just after an order delivery (we refer to this time 

point as the beginning of the replenishment cycle). A new replenishment cycle starts 

just after a replenishment order arrives (a replenishment cycle is defined as the time 

between two consecutive order deliveries), so it is important to know what is the on-

hand stock level at the beginning of the cycle to satisfied future demands. This paper 

focuses on this issue for the lost sales system, discrete demands and periodic review, 

which is quite straightforward in backordering models but is much more complex when 

dealing with lost sales models.  

In the literature we find only a few papers that deal with the problem of how to 

compute the on-hand stock levels in the context of lost sales. (Cardós, Miralles, and Ros 



2006) propose an exact method to compute the on-hand stock levels to compute the 

cycle service level in a discrete demand context. In this approach, which we refer to as 

Exact Method below, the probability transition matrices of the on-hand stock levels are 

computed from the beginning of each cycle to its end, and whose convergence gives the 

on-hand probability vector at the beginning of the cycle. (Cardós and Babiloni 2011) 

propose an approximation of the cycle service level based on approximating on-hand 

stock levels at the beginning of the cycle assuming that there are no stockouts during the 

lead time so that the probability vector of the on-hand stock levels at the beginning of 

the cycle is computed as in the backordering case. This method, which we call Non-

Stockout henceforth, can be used for any discrete demand distribution. (Bijvank and 

Johansen 2012) study optimal replenishment policies and derive an approximation 

procedure to compute the average on-hand stock when demand is (compound) Poisson. 

The authors develop a closed-form expression to compute the probability of on-hand 

stocks as in the backordering case by means of a correcting factor in order to avoid 

negative net stocks. This approach is referred to as Bijvank&Johansen from here on.  

These works are not directly focused on the computation of the on-hand stock 

probabilities, but they propose several methods to calculate them in order to analyze lost 

sales inventory systems (either through costs or service level). The Exact Method is 

very useful for reference purposes; however its computation requires a huge effort and 

may be time consuming. For this reason, its implementation in practical environments 

may be rejected by practitioners as, from a practical perspective, ʹan understandable 

decision rule that improves somewhat on current conditions is almost certainly better 

than the optimal solution that is neither understood nor accepted by managementʹ 

(Silver 2008). The impact of using the Non-Stockout and the Bijvank&Johansen 



methods to approximate the probability vector of the on-hand stock levels at the 

beginning of the cycle will be also evaluated. 

The objective of this paper is to derive and evaluate procedures to compute on-

hand stock levels at order delivery, which are specifically targeted at the lost sales 

assumption, and any discrete demand distribution that can also be easily implemented in 

practical environments. To this end we firstly derive three different closed-form 

expressions to approximate the probability distribution of the on-hand stock at the 

beginning of the replenishment cycle. Secondly, we state the importance of accurate 

estimation of the on-hand stock levels by means of evaluating the impact of using 

approximate methods on the computation of two service measures: the cycle service 

level and the fill rate. Thirdly we illustrate, through the use of a suitable example, the 

practical implications of using any of the approximate methods when determining the 

base-stock level of the policy based on a target fill rate. 

The rest of the paper is organized as follows. Section 2 presents the basic 

notation and assumptions of this paper. Section 3 proposes three new and closed-form 

approaches to approximate the on-hand stock level probabilities at the beginning of the 

cycle.  Section 4 illustrates the performance of the new approximation procedures 

proposed in this paper and compares them to existing procedures in terms of the impact 

on service measures. Section 5 shows an illustrative example of the practical 

implications of using the approximations derived in this paper when determining the 

base-stock level. Finally, Section 6 highlights the most relevant conclusions of this 

research and presents directions for further research. 

2. Notation and Assumptions 

In general, periodic review policies place replenishment orders every R fixed 

time periods such that the inventory position reaches the base-stock level S. The order is 



received L time periods later. Figure 1 shows an example of the evolution of the on-

hand stock, the net stock and the inventory position in a periodic review system. The 

notation in Figure 1 and in the rest of the paper is as follows: 

S = base-stock level, 

R = review period corresponding to the time between two consecutive reviews 

and replenishment cycle corresponding to the time between two 

consecutive deliveries, 

L = lead time for the replenishment order, 

OHt = on-hand stock at time t, 

IPt = inventory position at time t, 

NSt = net stock at time t, 

Dt = accumulated demand during t consecutive periods, 

X+ 

= 
maximum {X, 0} for any expression X, 

ft(·) = probability mass function of demand at t, 

Ft(·) = cumulative distribution function of demand during t periods. 

[f]Figure 1 near here[/f] 

General assumptions of this paper are: (i) time is discrete and is organized in a 

numerable and infinite succession of equally spaced instants; (ii) the lead time, L, and 

the review period, R, are constant and known; (iii) there is never more than one order 

outstanding, this requirement is fulfilled as long as L<R; (iv) the replenishment order is 

added to the on-hand stock L instants after been launched; (v) demand during a period is 

fulfilled with the on-hand stock at the beginning of the period; (vi) the demand process 

is considered stationary and i.i.d., and defined by any discrete distribution function; and 

(vii) unfilled demand is lost. Note that assumption (iii) is widely used both in the 

literature and in practice since if it is not the case the numerical difficulties are 



insurmountable (Schneider 1981), which is explained in detail by (Hadley and Whitin 

1963). In practice, this assumption applies in common situations such as replenishments 

of a store from a general warehouse in the retail sector where backlog is not allowed. 

On the other hand, the assumption of stationary and i.i.d. demand is also a common 

assumption in inventory research that can be extended for the non-stationary demand 

scenario when forecast errors of the demand are i.i.d.  

3. Proposed Methods 

3.1. Adjusted Non-stockout approximation 

This first approach proposed is based on the Non-stockout approximation which 

assumes that there are no stockouts during L. We follow the same rationale but modify 

it to force the sum of probabilities equal to 1. The on-hand stock balance at order 

delivery, can be easily computed as 

 [ ]R R L L R L R L L R L LOH OH D S OH OH D S OH S D+
- - - -= - + - » - + - = -  (1) 

and then 

 ( ) ( ) ( ) ( ) [ ]0,R L L LP OH j P j S D P D S j f S j j S= = = − = = − = − ∀ ∈  (2) 

Note that using expression (2) can lead to the situation in which the sum of the 

components of the probability vector of the on-hand stock levels at order delivery is not 

1 when DL > OHR-L. To overcome this shortcoming, we propose adjusting the 

probability of not having any on-hand stock at the beginning of the cycle, i.e.

( )0RP OH = . This situation entails that: (i) the on-hand stock at the review moment is 

exactly equal to the base-stock level, i.e. OHR-L=S and (ii) the demand during the 

replenishment cycle is equal or greater than the on-hand stock at the review moment, 



i.e. DL≥ S (see Figure 1.b). However, computing ( )0RP OH =  through expression (2) is 

the same as assuming DL =S. We adjust ( )0RP OH =  computing it as the complement 

of the sum of probabilities of OHR>0, so that cases where DL > S are included. Then, the 

adjusted vector is defined as 

 ( ) ( ) ( ) ( )1 1 1 0R L L LP OH F S f S fé ù» - - -ë û (3) 

the sum of whose probabilities is 1.  

Note that this approach is the same as Bijvank&Johansen when the correcting factor is 

set to 1. 

3.2 Polar Opposites Approximation 

The approximation derived in the previous Section considers the most 

favourable situation found when managing inventories: there are no stockouts during L, 

i.e. OHR-L≥DL (which we refer to as NOOS case). On the other hand, the most 

unfavourable situation is being always out of stock during the replenishment cycle, 

which implies that OHR-L<DL (referred to as OOS case henceforth). In this Section we 

propose a closed-form approximation (named Polar Opposites from here on) based on 

these two opposing cases. First of all, we need to compute the probability on-hand stock 

vector that results from the NOOS and the OOS cases. After that, we weigh both vectors 

with their respective probabilities of occurrence, i.e. 

( ) ( ) ( ) ( ) ( )R R RNOOS OOS
P OH P NOOS P OH P OOS P OH» × + ×   (4) 

where ( )R NOOS
P OH = ( )RP OH  from expression (3). 

In the OOS case the on-hand stock balance just after the order arrives is  

[ ]R R L L R L R LOH OH D S OH S OH+
- - -= - + - = -     (5) 



where the on-hand stock balance at the review is 

 [ ]0R L R LOH OH D +
- -= -  (6) 

At this point, we make the following assumptions: (i) OH0=S and (ii) DR-L≤OH0 

and therefore the on-hand stock at the review is positive or equal to zero, i.e. OHR-L≥0. 

Under these assumptions: 

 ( )R R L R LOH S S D D− −≈ − − =  (7) 

and therefore the probability of the on-hand stock at order delivery is 

 ( ) ( )
( )

      0
1 1

R L
R

R L

f j j S
P OH j

F S j S
−

−

≤ <= ≈  − − =
 (8) 

Hence, 

 ( ) ( ) ( ) ( )0 1 1R R L R L R LOOS
P OH f f i F S- - -

é ù» - -ë û  (9) 

Then, all that is left is to know the probability of having no stockouts during L: 

 ( ) ( ) ( ) ( ) ( )R L L R L L R RP NOOS P OH D P S D D P D S F S- -= ³ » - ³ = £ = (10) 

and complementary  

 ( ) ( )1 RP OOS F S= -  (11) 

3.3. 1-Step Approximation 

This method is based on modelling the on-hand stock evolution as an ergodic 

Markov chain with a set of states{ }0,1, , S . (Cardós, Miralles, and Ros 2006) define 



R L ijM m-
é ù= ê úë û and L jkM sé ù= ê úë ûas the probability transition matrices of the on-hand stock 

levels from the order delivery to the review and from the review to the next order 

delivery respectively. Taking into account the on-hand stock balance at R-L (expression 

(6)), the R LM - can be computed as 

 
( ) ( )
( ) ( )

1 1 0
0

R L R L
ij

R L R L

P D i F i j
m

P D i j f i j j
- -

- -

ìï ³ = - - =ï= íï = - = - >ïî
 (12) 

Following the same reasoning, knowing the on-hand stock balance at R is: 

 [ ]R R L L R LOH OH D S OH+
- -= - + -  (13) 

Thus,  

( ) ( ) ( )
( ) ( ) ( )

0 0
1 1 0

0
jk L L

L L L L

k j S
s P k S j P D j F j k j S

P k j D S j S D P D S k f S k k j S

ìï + - <ïïï= = - = ³ = - - + - =íïï = - + - = - = = - = - + - >ïïî

 (14) 

Then, R R L LM M M-= ×  is the transition matrix between two consecutive 

replenishment cycles. We know that for ergodic Markov chains  

 lim
n

Rn
u M v

→∞
⋅ =  (15) 

where u  is an arbitrary vector and v  is the principal left eigenvector of M , i.e. 

the probability vector of the on-hand stock levels.  

The 1-Step Approximation consists of: (1) initializing the method with an on-

hand stock level at order delivery equal to S and therefore ( )0,0, ,1u =  ; and (2) taking 

the first steady state probabilities as an estimation of v . Then, 



 ( )R R L LP OH u M M−≈ ⋅ ⋅  (16) 

And therefore 

( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

0

0 1 1 0

1 1 1

0 1 1 1

R L L

R L R L R L L

L R L R L

f F S i

P OH i f S i F i f i F S i i S

f F S F S i S

−

− −

− −

<

 ⋅ − − =  = ≈ − ⋅ − + ⋅ − + − <   
 ⋅ − + − − =   

 (17) 

4. Numerical illustration and experimental results 

The goal of this Section is twofold. Firstly we present an illustrative example of 

the ( )RP OH  computed with the different approximations proposed in this paper and 

the methods available in the literature (the Exact Method, the Non-Stockout approach 

and the Bijvank& Johansen expression). After that, we present a wide ranging 

experiment with different demand patterns in order to compare the performance of these 

approximate methods when they are used to compute two of the service metrics most 

used: the cycle service level and the fill rate. 

4.1 Computing the probability of the on-hand stock levels with approximate and 

exact methods: an illustrative example 

We assume that demand is pure Poisson with 1λ = , R=5, L=3 and S=5. Results 

are summarized in Table 1.  

[t]Table 1 near here[/t] 

First of all we observe that each method provides a different vector. The pattern 

also differs from the Exact to the approximate methods. In this example the Exact 

methods presents the largest probability associated to i=5 whereas for the approximate 

methods the largest probability is for i=2 or i=3.  



Furthermore the sum of the components of the vector obtained by the Non-

Stockout approach does not equal 1. This can be explained by the fact that this method 

adapts the estimation of the on-hand stock level at the beginning of the cycle from the 

backordering to the lost sales case. As Section 3.1 points out the Non-Stockout assumes 

( ) ( )0R LP OH P D S= = = , whereas the NOOS uses ( ) ( )0R LP OH P D S= = ≥ . So the 

difference between 1 and 0.916 is the probability of DL > S. In the case of 

Bijvank&Johansen negative net stocks are avoided by a correcting factor that leads to a 

negative probability when i=0. 

After this analysis the question is how to measure the performance of 

approximate methods since comparing the positions of the vector does not seem to be 

very useful in practice. As has been explained in the Introduction, the on-hand 

probability vector at the beginning of the cycle is needed to estimate customer service 

metrics such as the cycle service level (α) and the fill rate (β). Then, a way to measure 

the performance of the approximate methods is by analysing the impact of using them 

when estimating α and β. The next Section is dedicated to this issue. 

4.2 Impact of how to compute the probability of the on-hand stock levels on the 

estimation of service measures 

4.2.1 Experiment design 

With the aim of covering as many realistic situations as possible, we consider as 

input data different demand patterns that cover the smooth, intermittent, erratic and 

lumpy categories suggested by (Syntetos, Boylan, and Croston 2005), as shown in 

Figure 2. For the purpose of this experiment, we select the Poisson and the Negative 

Binomial distributions. The latest can fulfil the four demand categories mentioned 

above and can also be understood as a compound Poisson distribution. Furthermore, an 



extensive range of values for R, L and S is selected with the aim of providing realistic 

values of α and β (at least from 0.5 to 0.99). Table 2 presents the set of data, whose 

feasible combination results in 12,348 cases (excluding cases where L≥R). Then, the on-

hand probability vector ( )RP OH is calculated by applying, on one hand, the current 

methods available in the literature: the Exact, the Non-stockout and the 

Bijvank&Johansen methods and, on the other hand, the new approaches developed in 

this paper: the Adjusted Non-stockout (expression (3)), the Polar Opposites (expression 

(4)) and the 1-Step methods (expression (17)). Once the ( )RP OH  per method is 

obtained, we compute α and β  by means of the following expressions: 

 ( ) ( ) ( )
( )0

0
1 0

S
R R

R
i R

F i F
P OH i

F
α

=

−
= = ⋅

−∑  (18) 

 
( ) ( ) ( )

( )
0 1

1

1

S

R R
i j i

R
j

P OH i j i f j

j f j
β

∞

= = +
∞

=

= ⋅ − ⋅
= −

⋅

∑ ∑

∑
 (19) 

[f]Figure 2[/f] 

Note that both expressions are exact and derived for the lost sales case and 

discrete demand patterns (Cardós, Miralles, and Ros 2006; Guijarro, Cardós, and 

Babiloni 2012). Therefore, deviations depend only up on the method used to estimate 

the on-hand stock probability vector. We obtain the absolute errors for α and β as the 

difference between the Exact Method and the corresponding approximate approach. For 

this analysis we only retain the cases for which service measures are between 0.50 and 

0.99 (Table 3 and Table 4). Furthermore it was carried out using the aggregate data, 

since in a previous analysis we realized that the performance of all the methods is 

similar for each demand category and random variable. 



[t]Table 2 near here[/t] 

4.2.2 Results and discussion for α 

Figure 3 compares the Exact and the approximate methods. It shows that: (i) all 

approximations show good performance for high values of α. (ii) The Non-stockout and 

the Adjusted Non-stockout approximation exhibit the same behaviour because 

expression (18) does not take into account the ( )0RP OH = . (ii) The Non-stockout, 

Adjusted Non-stockout, Polar Opposite and 1-Step approximations show only positive 

deviations and therefore underestimate α. This fact can be explained if we come back to 

the rationale behind these approximations. Non-stockout and the Adjusted Non-stockout 

assume that there are no stockouts during L, thus these approximations underestimate 

the on-hand stock level at the beginning of the cycle and therefore the cycle service 

level. The Polar Opposites method neglects the possibility of being out of stock before 

reaching the review instant, which entails an underestimation of the on-hand stock level 

and therefore of the service measures. The 1-Step approach arises from the assumption 

that the on-hand stock level in the first state is equal to S, which is the maximum level 

possible. Therefore the next state tends to underestimate the on-hand stock level and the 

service level is underestimated. (iii) The Bijvank&Johansen method shows positive and 

negative deviations, i.e. it underestimates but also overestimates α. Based on the same 

distribution pattern of the on-hand stock level as in the backordering case, this method 

modifies these probabilities to avoid negative net stocks and by applying Little´s Law in 

order to estimate properly the average on-hand stock. Deviations of this method come 

from situations in which the proposed inventory profile is significantly different from 

the real inventory profile. Unfortunately these circumstances are not easy to recognize 

for an inventory manager. This leads to underestimation but also overestimation of the 



on-hand stock levels and therefore the service metric may be underestimated but also 

overestimated. (iv) As expected, the behaviour of the Polar Opposites approximation is 

better in extreme situations (i.e. α near to 0 or 1), however its deviations are greater 

when 0.3 ≤ α ≤0.7. 

[f]Figure 3 near here[/f] 

Table 3 presents the maximum, minimum, average and standard deviations of 

errors. As well as the results that we have already discussed above, we can see that: (i) 

all the approximations show very small deviations when α is near 1; (ii) the Polar 

Opposites shows the largest deviations compared to the simplest Non-stockout, and 

therefore is not a suitable approximation in any case; (iii) Bijvank&Johansen exhibits 

the lowest average and standard deviation of errors and for this reason is the best 

method from this point of view, with 1-Step second ranked; (iv) Bijvank&Johansen 

method may overestimate but also underestimate α, so, if used to determine the base-

stock level, unexpected stockout occasions may occur; and (v) the 1-Step approach also 

presents very low average and standard deviations and underestimates α . Therefore the 

1-Step method can be considered the most suitable approach to design inventory 

policies without the risk of underestimating the base-stock level. 

[t]Table 3 near here[/t] 

4.2.3 Results and discussion for β 

Figure 4 illustrates the performance of the Exact fill rate versus approximate 

expressions. It can be observed that: (i) similar to the case of α, all approximate 

methods properly estimate the fill rate when it is close to 1; (ii) the Adjusted Non-

stockout, the Polar Opposites and the 1-Step approximation always underestimate β 

whereas the Non-stockout method underestimates but also overestimates β. The 



explanation made in the previous section regarding the positive deviations shown by the 

Adjusted Non-stockout, the Polar Opposites and the 1-Step approximation also apply to 

the fill rate estimation. However, the results of the Non-Stockout are different to those 

obtained for α. This can be explained given that when calculating the fill rate with 

expression (19), the probability that the stock is equal to zero is taken into account, 

showing that the negative deviations that appear in the calculation are due to this. 

Finally, (iii) Bijvank&Johansen method always overestimates β.  

[f]Figure 4 near here[/f] 

Table 4 shows the maximum, minimum, average and standard deviations of fill 

rate errors. In addition to the results that we have commented upon above, we can 

observe that: (i) the 1-Step shows robust performance: only shows positive deviations 

which are very small (less that 1.24 % on average) when β>0.85; (ii) the performance of 

the Polar Opposites and the Adjusted Non-stockout is quite similar, with the Adjusted 

Non-stockout being mathematically simpler and more accurate for β>0.65. (iii) 

Bijvank&Johansen and 1-Step methods show very similar average deviations. 

Therefore, we reach to the same conclusion as in the case of α. 

 [t]Table 4 near here[/t] 

5. Practical implications of the probability computation method of on-hand 

stock levels on the design of inventory policies 

This Section illustrates practical implications of determining the base-stock 

level, S, using the approximate on-hand approaches and the method based on mean-

value analysis (referred to as MVA further on) proposed by (Bijvank and Vis 2012) 

which is the best approach known in the literature to set the base-stock level when there 

is a service level constraint in a lost sales inventory system. Table 5 presents an 

example of the different values of S for different fill rates when demand is intermittent 



and modeled by a pure Poisson with λ=1, R=20 and L=10. It shows that the S that we 

obtain when using the Non-stockout, Adjusted Non-stockout, Polar Opposites and 1-

Step approaches is greater than the exact S, except for the case of β =0.99 in which case 

the Non-stockout is one unit above the exact S. This type of performance in the 

determination of base-stock levels can lead to increased on-hand inventory levels but 

assures the system reaches the target fill rate. However, this is not the case when using 

the Bijvank&Johansen and the MVA methods that underestimate the base-stock level for 

any fill rate. Therefore, this performance implies that the target fill rate could not be 

achieved and as a result the system is less protected against stockout occasions than it 

might be expected. For example when a target fill rate is equal to 0.8, the exact method 

provides a base-stock level equal to 24 units whereas when using the Non-stockout, the 

Adjusted Non-stockout, the Polar Opposites and the 1-Step, the base-stock level is 27, 

27, 28 and 27 respectively. This type of deviations implies an increase of the holding 

costs but guarantees the target service level. However, the Bijvank&Johansen method 

sets a base-stock level equal to 18 units and the MVA approach equal to 22 which 

implies a fill rate lower than the target. Comparing the performance of all the methods, 

it can be observed that the base-stock level obtained by the MVA method is in almost all 

the cases the closest to the exact one, except when the target fill rate is greater than 0.9 

in which cases the 1-Step is the closest one. Furthermore, Adjusted Non-stockout and 

Polar Opposites methods show the same results as the 1-Step method when β≥ 0.85.  

[t]Table 5 near here[/t] 

6. Summary and Conclusions 

This paper focuses on the estimation of the on-hand stock level at the beginning 

of the cycle for the lost sales system, discrete demand and periodic review. As is well 



known, characterizing optimal policies for the lost sales case is quite complex. 

However, there are many real life situations where backordering models cannot be 

applied and it becomes necessary to have appropriate methods developed specifically 

for the lost sales assumption. In inventory systems the demand is satisfied with the 

available stock at the beginning of the cycle, i.e. just after the order arrives. The 

problem of computing the on-hand stock level at the beginning of the cycle in lost sales 

systems arises from the fact that it cannot be computed as the base-stock level minus the 

demand during the lead time (as in backordering models), thus finding the on-hand 

stock probability vector becomes a challenge. Therefore, the key question in lost sales 

models is to accurately know the on-hand stock steady probability vector which is 

required to compute service measures and design optimal inventory policies.  

In the literature we found three methods to estimate the probability vector 

associated to every feasible value of the on-hand stock: one Exact Method, which is not 

a closed-form expression and requires a huge computational effort for its 

implementation in practical environments, and two closed-form approximate 

expressions (Non-Stockout and Bijvank&Johansen methods) that adapt backorder 

formulas to the lost sales case. This paper suggests three additional approximate closed-

form estimations that are specifically based on the characteristics of the lost sales 

system. 

In order to analyze the performance of the existing methods and the new 

approaches proposed in this paper (Adjusted Non-stockout, Polar Opposites and 1-Step), 

we firstly compare the on-hand probability vector that results from each method through 

an illustrative example (Table 1). We observe that when using Non-Stockout the 

components of the vector do not add up to 1. Furthermore, the Bijvank&Johansen 

method provides negative probabilities for zero on-hand stock for low service levels. 



The approaches proposed in this paper do not suffer from any of these drawbacks. 

Secondly, we design a large experiment with the aim of analyzing the impact of using 

the approximate methods to compute the cycle service level (α) and the fill rate (β). 

With respect to α, the Bijvank&Johansen method shows the best results in terms of the 

average and standard deviations, followed by the 1-Step. However, the former 

overestimates and also underestimates the cycle service level whilst the latter only 

underestimates. Therefore the 1-Step should be preferred when the risk of not reaching 

the target cycle service level cannot be accepted. With respect to the fill rate, the 1-Step 

and the Bijvank&Johansen methods are the best performers with really small deviations. 

However, 1-Step always underestimates β whereas Bijvank&Johansen always 

overestimates this service measure.  

Regarding the other approaches, the Polar Opposites does not offer any 

advantage over the Adjusted Non-stockout which is simpler and more accurate for both 

service measures. Both approaches only underestimate α and β. The Non-stockout and 

the Adjusted Non-stockout show the same performance for α (given that this metric does 

not consider the probability of zero on-hand stock), but with respect to β the former 

shows positive and negative values. The drawbacks of the Non-stockout are overcome 

by the Adjusted Non-stockout approach. 

Section 5 presents an illustrative example to show the risks associated with 

using an approximate on-hand approach to determine the base-stock level based on a 

target fill rate including the MVA approach. In this sense, the Adjusted Non-stockout, 

Polar Opposites and 1-Step methods can lead to an increase of the stock level, albeit 

with a guarantee of achieving the target service level. The Bijvank&Johansen and the 

MVA method presents only negative deviations that leads to set base-stock levels lower 

than that necessary to achieve the target fill rate. Despite MVA method is in almost all 



the cases the closest to the exact one (except when the target fill rate is greater than 0.9) 

the inventory system would be less protected against stockouts than they might expect, 

as shown in Table 5.  

A logical further extension of this work consists of designing a huge experiment 

in order to deeply analyze the approaches presented in this paper and the approaches 

available in the literature for determining base-stock levels in the context of lost sales 

and discrete demands. Another important avenue for future research in this field will 

consist of relaxing the assumptions of stationary and i.i.d. demand and analyzing the 

performance of the proposed approximations in that case.  
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