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Abstract

In this paper, an integrated model to minimize energy consumption while maintaining desired 

productivity in Bernoulli serial lines is introduced. Exact analysis of optimal allocation of 

production capacity is carried out for small systems, such as three- and four-machine lines with 

small buffers. For medium size systems (e.g., three- and four-machine lines with larger buffers, or 

five-machine lines with small buffers), an aggregation procedure is introduced to evaluate line 

production rate, and then use it to search optimal allocation of machine efficiency to minimize 

energy usage. Insights and allocation principles are obtained through the analyses. Finally, for 

larger systems, a heuristic algorithm is proposed and validated through extensive numerical 

experiments.
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1. INTRODUCTION

Manufacturing systems need to be green. As outlined in Li et al. (2013), green 

manufacturing includes both manufacturing of green technology products, such as solar 

panels, battery cells, and other renewable energy products, and improving manufacturing 

process and control to address key performance indicators (KPIs) of energy and 

environmental concerns in existing systems (Joung et al. (2013)), such as pollution and 

emission reduction, energy consumption reduction, recycling and remanufacturing. Green 

manufacturing contributes to providing cleaner energy, reducing waste, emissions and 

greenhouse gasses, saving natural resources and energy, etc., which have substantial benefits 

to the society and economy.

*corresponding author. xxie@tsinghua.edu.cn. 

Author Manuscript
Accepted for publication in a peer-reviewed journal

National Institute of Standards and Technology • U.S. Department of Commerce

Published in final edited form as:
Int J Prod Res. 2017 ; 55: . doi:10.1080/00207543.2017.1349948.N

IS
T

 A
uthor M

anuscript
N

IS
T

 A
uthor M

anuscript
N

IS
T

 A
uthor M

anuscript



In many manufacturing processes, such as refinery, casting, painting, heating, and 

photovoltaic process, extensive energy consumption is needed. For example, petroleum 

refining industry and the chemical industry are the first and second largest users of energy in 

industry. In steel industry, which consumes about 6% of all energies, about 30% of the 

energy consumption is used in heating. In automotive industry, more than 60% of the energy 

consumption is in painting booths and ovens. Therefore, studying energy efficient and 

environment friendly (EEEF or E3F) manufacturing systems has received growing interests 

in recent years. Significant research attention is paid to improving energy efficiency in 

manufacturing process, particularly, those with energy intensive operations. However, in 

many studies, the productivity concerns are not addressed.

In another direction, substantial amount of research efforts have been devoted to 

manufacturing systems. Most of them address issues related to throughput, quality, cost, lead 

time, and demand satisfaction, etc. But energy consumption is typically not considered in 

such works. In other words, the productivity improvement and energy reduction are studied 

separately instead of taking their interdependency into analysis. However, these two areas 

are tightly coupled. The energy reduction efforts is typically carried out with the loss in 

production performance. To our best knowledge, only limited studies have addressed the 

tradeoffs between productivity and energy. Therefore, there is a strong need to develop an 

integrated model to optimize energy consumption and productivity simultaneously.

The main contribution of this paper is in presenting such an integrated model. Using which, 

the energy consumption as a sustainability KPI in manufacturing systems (NIST (2009)) is 

minimized while still maintaining the desired production rate. Specifically, we consider 

serial production lines with multiple Bernoulli machines and finite buffers. Analytical 

formulas and procedures are developed for small and medium size systems and a heuristic 

algorithm is introduced for larger systems.

The remainder of this paper is organized as follows. Section 2 reviews the related literature. 

System description and problem formulation are presented in Section 3. Section 4 focuses 

on three- and four-machine lines with small buffers, and Sections 5 and 6 analyze medium 

and large size systems, respectively. Conclusions are given in Section 7. Proofs and 

additional examples are provided in the Appendices.

2. LITERATURE REVIEW

Manufacturing systems have received substantial research attention during the last five 

decades. Numerous studies have been focusing on productivity analysis, quality 

improvement, product scheduling, cost and lead time reduction, and customer demand 

satisfaction (see, for example, monographs by Viswanadham and Narahari (1992); Buzacott 

and Shanthikumar (1993); Papadopoulos et al. (1993); Tempelmeier and Kuhn (1993); 

Gershwin (1994); Li and Meerkov (2009), reviews by Dallery and Gershwin (1992); 

Papadopoulos and Heavey (1996); Li et al. (2009)). Among all these studies, throughput 

analysis to maintain and improve system productivity has been one of the center topics. Due 

to the complexity in manufacturing systems, direct analysis may not be possible. Thus, 

various aggregation and decomposition methods have been proposed to evaluate system 
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performance, see representative papers by Gershwin (1987); Dallery et al. (1988); Jacobs 

and Meerkov (1995); Chiang et al. (2001); Li (2005); Colledani et al. (2008); Zhao et al. 
(2016).

Due to the importance of energy and environmental concerns, sustainable manufacturing has 

become more and more critical (Li et al. (2013)). Substantial amount of efforts have been 

devoted to improving energy intensive manufacturing processes. For example, as metal 

casting is an energy and materials intensive manufacturing process, Ross (2006) creates a 

material and energy flow model of the typical iron casting facility to analyze the effect of 

melting technologies on energy, materials and pollution. It is shown that the impact on 

energy and the associated carbon dioxide emissions change widely with different melting 

technologies. Mattis et al. (1996) investigate the energy expenditure in the forming process 

of designing injection-molded thermoplastic parts. The influence of component and mold 

design decisions and process parameters on the process energy efficiency is analyzed 

through a 3D solid modeling framework that integrates environment, filling and post-filling 

behavior, and an energy-based process model. Calvanese (2013) intends to minimize energy 

consumption of machine tools (CNC milling centre) during operations. The energy 

consumptions in terms of power adsorption are analyzed in a closed analytical form and then 

numerically optimized to identify the cutting conditions that satisfy the minimum energy 

criteria.

As paint shop has been the largest energy unit in automotive assembly plants, Kolta (1999) 

presents various aspects of volatile-organic-compound (VOC) emission control in 

automotive painting operations, including sources of VOC emissions, monitoring, 

equipment, processes, and materials, etc. Guerrero et al. (2011) study capacity design of 

repair facility in paint shops to reduce the energy consumption due to excessive repaints. 

Wang et al. (2011) introduce efficient scheduling algorithms for paint operations to reduce 

energy consumption without investigating on new equipments.

In addition, Sekulic (2009) uses exergy (the maximum amount of available work) as a metric 

to measure energy availability, and studies insights of sustainability and energy-related 

metric based on entropy balancing of a non-energy system. A manufacturing process of 

controlled atmosphere brazing of aluminum is used as an example, which involves mass 

production of compact heat exchangers for automotive, aerospace, and process industries. 

Based on the first and second laws of thermodynamics, Gyftopoulos and Beretta (2005) 

model manufacturing as a sequence of open thermodynamic processes. Aligning in this 

direction, Gutowski et al. (2009) use a thermodynamic framework to characterize the 

material and energy resources used in manufacturing processes. A total of 20 processes are 

analyzed and the relevances of thermodynamics (including exergy analysis) for all processes 

are illustrated. It is shown that the long-lasting focus in manufacturing on product quality 

not necessarily leads to energy/material conversion efficiency.

However, in most of these studies, issues of production performance are seldom investigated. 

As both productivity and energy have significant importance, an integrated study to maintain 

desired production performance while minimizing energy consumption has become a new 

trend in production systems research. Giret et al. (2015) present a state-of-the-art review on 
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sustainable manufacturing operations scheduling, and discuss the relevant challenges, issues 

and urgent problems. Jaehn (2016) introduces terms and definitions of sustainable operations 

by focusing on the interactions between economic, social and ecological aspects, and 

organizes them into various areas arising from a typical enterprise structure.

Along this direction, Chen et al. (2011) introduce effective scheduling and control policies 

of machine startup and shutdown to achieve energy consumption reduction in production 

systems. Transient analysis of Bernoulli serial lines with time-dependent machine 

efficiencies is carried out. Tradeoff between productivity and energy efficiency is studied 

using a constrained optimization approach. Mashaei and Lennartson (2013) derive a control 

policy to turn off the idle machines and reduce their level of energy consumption in a closed-

loop pallet system. The operation of the machines and the motion of the pallets are 

coordinated to gain the minimal energy consumption as well as to maintain the desired 

throughput. A mixed integer nonlinear minimization algorithm is developed and a heuristic 

approach is introduced to reduce time complexity. Xu and Cao (2014) consider improving 

energy efficiency through effective scheduling of maintenance operations using a discrete-

time, discrete-state homogeneous Markov chain model of machine tool deterioration and 

renewal reward algorithm of average energy efficiency and average productivity. Frigerio 

and Matta (2015) propose a framework to integrate different control policies for machine 

switching off in order to minimize the expected energy during the machine idle periods. The 

energy consumed at each machine state is modeled explicitly and a comparison of the most 

common practices in manufacturing is reported. In addition, Fernandez et al. (2011) present 

a “just-for-peak” inventory management policy to reduce electricity consumption without 

sacrificing system throughput during peak periods for manufacturing firms. The electricity 

cost is considered through balancing with inventory holding and backorder costs in 

stochastic make-to-stock manufacturing lines by Papier (2016).

In spite of these efforts, an integrated study on productivity and energy efficiency is still in 

an infant phase. More in-depth research is desirable. To improve energy efficiency and to 

maintain productivity performance simultaneously, Su et al. (2016) present an integrated 

model for two-machine Bernoulli lines. Analytical formulas to achieve optimal solutions to 

assign production capacity are derived. However, the study for longer lines is still 

unavailable. The goal of this paper is to contribute to this end.

3. PROBLEM FORMULATION

Consider a serial production line making one product type with M machines and M − 1 

buffers separating each pair of consecutive machines (see Figure 1 where the circles 

represent the machines and the rectangles are the buffers). The following assumptions 

address the machines, the buffers, the energy consumption, and their mutual interactions.

1. All machines have identical cycle time. During each cycle, machine mi, i = 1, …, 

M, has probability pi to be up and 1−pi to be down. When a machine is up, it is 

capable of processing a part, while when it is down, no production takes place. 

The status of each machine is determined at the beginning of each cycle, 

independent of the status in the previous cycle and buffer contents.
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2. Buffer bi, i = 1, …, M − 1, has a finite capacity 0 ≤ Ni < ∞. The buffer status is 

determined at the end of each cycle.

3. If buffer bi, i = 1, …, M − 1, is empty at the beginning of a cycle, then machine 

mi+1 is starved in this time slot if it is up. Machine m1 is never starved.

4. If buffer bi, i = 1, …, M − 1, is full and machine mi+1 does not take a part from bi 

at the beginning of a time slot, then machine mi is blocked during this cycle if it 

is up. Machine mM is never blocked.

5. The energy consumption of machine mi, i = 1, …, M, includes the average 

electrical power to start up and maintain the machine and environment, and the 

power used to process the parts, kipi, which is proportional to its production 

capacity pi and ki is a constant, referred to as energy consumption coefficient.

6. The desired production rate the system needs to maintain is denoted as PRd.

Remark 3.1

Bernoulli machine reliability model is assumed in this work. Such a model is typically 

suitable for assembly type systems where machine downtime is comparable to its cycle time. 

For other systems, a transformation can be introduced that

pi =
ci

cmax
·

μi
λi + μi

,

where ci is speed (or capacity) of machine mi, and cmax = maxi ci. The shortest processing 

time (1/cmax) is selected as the unit for cycle time. In addition, λi and μi are the failure and 

repair rates of mi, respectively. Thus, parameter pi represents the probability to produce a 

part during cycle time 1/cmax, and it can also be viewed as the relative efficiency or capacity 

of the machine, or the proportion of time the machine is working during a cycle. The 

Bernoulli model has been used in many manufacturing system studies successfully (see 

monograph by Li and Meerkov (2009) and papers by Lim et al. (1990); Kuo et al. (1996); Li 

and Meerkov (2001); Arinez et al. (2010); Wang and Li (2010); Zhao and Li (2014)). In 

future work, other machine reliability models will be studied.

Remark 3.2

In this study, we assume electrical power being the practical form of energy considered. 

Such energy can be divided into two categories. One is the energy to start up and keep the 

machine at an “on” or “ready” status as well as maintain the necessary environment (such as 

temperature, humidity, lights), which often require a fixed power. Another is the energy to 

operate the machine to produce a part, which typically consumes power proportional to the 

machine’s processing rate (e.g., parameter pi). In this study, we focus on the second one. 

Thus, the energy consumption for machine mi during a cycle is

Ei = kipi, i = 1, …, M . (1)
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Similar formulation is also given in Calvanese (2013), Gutowski et al. (2009) and Su et al. 
(2016).

Then the total energy consumed in a multi-machine line is

E = ∑
i = 1

M
kipi . (2)

The objective of this study is to seek the optimal allocation of machine capacity (or 

efficiency), denoted as pi
∗’s, i = 1, …, M, to minimize energy consumption E (or 

equivalently, ∑i = 1
M kipi) while ensuring the desired production rate PRd. Define PR as the 

production rate of the serial line. Then the problem to be addressed can be formulated as:

min  E = ∑
i = 1

M
kipi, (3)

s . t .  PR ≥ PRd . (4)

Remark 3.3

In general, the failure rates (λi in Remark 3.1) may not be fully controllable but predictable 

or observable. The repair rates (μi in Remark 3.1) are relatively easier to adjust and the speed 

can be controlled. For example, many machines have some freedom to adjust the processing 

time (1/ci), such as in machining and painting. In this case, it is still possible to control 

machine parameters to reach the desired pi. This has been achieved in many case studies 

(e.g., see Li and Meerkov (2009)).

To solve this problem, we first study three- and four-machine production lines with very 

small buffers to derive exact solutions. Then, for medium size systems (typical three- or 

four-machine lines with relatively large buffers), an aggregation procedure is introduced for 

production rate evaluation and then used for optimal solution search. Finally, for larger 

systems with five or more machines, a heuristic algorithm is developed.

4. EXACT ANALYSIS FOR SMALL SYSTEMS

For small systems, it is possible to develop Markov chain models to derive exact results. In 

an appropriately defined state space, transition probabilities can be defined, and steady state 

probabilities can be calculated by solving balance equations. Then the line production rate 

can be evaluated. By searching the possible scenarios, the optimal solution to minimize 

energy consumption while maintaining the desired production rate can be obtained.
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In this section, first, we analyze balanced lines with identical Ni’s, i = 1, …, M − 1, and ki’s, 

i = 1, …, M. Next, lines with unequal Ni’s but equal ki’s are studied. Finally, systems with 

nonequal ki’s are investigated.

4.1 Lines with Identical Buffers and Energy Coefficients

First, consider the simplest three-machine line L1, where energy coefficients and buffer 

capacities are assumed to be one.

L1: N1 = N2 = 1, k1:k2:k3 = 1:1:1 .

According to Li and Meerkov (2009), the states of a Bernoulli production line can be 

represented by the occupancy of the buffers. Thus, the state space of L1 can be described by 

S = {(0, 0), (1, 0), (0, 1), (1, 1)}. Let Pj,i be the transition probability from state j to state i, 
and Pi be the steady state probability. Then the corresponding transition probability matrix 

and balance equations can be obtained. Solving them we obtain:

Proposition 4.1—Under assumptions 1)–6), the steady state probabilities of Line L1 are

P(0, 0) =
(1 − p1)2p2p3

2

Λ , P(1, 0) =
p1p3(p3 + p1(1 − p2 − p3))

Λ ,

P(0, 1) =
(1 − p1)p1p2p3

Λ , P(1, 1) =
p1

2p2
Λ , (5)

where

Λ = p1
2p2(1 − p3)2 + p1

2p3(1 − p3) + p2p3
2 + p1p3(p2 + p3 − 2p2p3) . (6)

Then the line production rate can be calculated as

PRL1 = (P(0, 1) + P(1, 1))p3 =
(1 − p1)p1p2p3

2 + p1
2p2p3

Λ . (7)

Proof: See Appendix A.

Although a closed-form expression of line production rate can be obtained, finding a closed-

form solution of pi
∗’s, i = 1, 2, 3 for optimization problem (3) and (4) is impossible. 

Therefore, Mathematica is used to search the optimal pi
∗’s satisfying the desired production 

rate. The results are illustrated in Figure 2(a).

Su et al. Page 7

Int J Prod Res. Author manuscript; available in PMC 2019 April 11.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Similar analysis is applied to another three-machine line L2 with the only difference that all 

buffer capacities are increased by 1, and the optimal allocations of pi’s are shown in Figure 

2(b).

L2: N1 = N2 = 2, k1:k2:k3 = 1:1:1 .

For both lines, p1
∗ and p3

∗ are always equal and smaller than p2
∗, indicating that there exists an 

inverted bowl pattern for the optimal allocation of production capacity. In addition, the 

difference between p1
∗ (or p3

∗) and p2
∗ is typically small, less than 0.05, and is also distributed 

as an inverted bowl shape with respect to PRd. Such small difference between p1
∗ and p2

∗

suggests that by evenly distributing pi along the line, the result could be close to the optimal 

solution. Since the inverted bowl shape allocation delivers the maximal production rate and 

the performance difference between inverted bowl and evenly distributed allocations is very 

small (Li and Meerkov (2009)), such a result matches with intuition. To minimize energy 

consumption, the maximal production rate should be equal to the desired one. Thus, the 

inverted bowl or well balanced allocation should be selected.

Next, a four-machine line (L3) is investigated with all buffer capacities and energy 

coefficients are one.

L3: N1 = N2 = N3 = 1, k1:k2:k3:k4 = 1:1:1:1 .

Figure 3 illustrates the optimal allocations of pi
∗’s. As we can see, the same properties are 

observed. In other words, p2
∗ = p3

∗ > p1
∗ = p4

∗ is the optimal allocation, which again shows a 

flat inverted bowl pattern with very small difference between p1
∗ and p2

∗.

4.2 Lines with Nonidentical Buffers and Identical Energy Coefficients

To investigate how buffer capacity affects optimal allocation of production capacity, two 

three-machine lines, L4 and L5, are considered. Both lines have identical energy coefficients 

(all equal to one) but nonidentical buffers.

L4: N1 = 1, N2 = 2, k1:k2:k3 = 1:1:1,

L5: N1 = 2, N2 = 1, k1:k2:k3 = 1:1:1 .

Using the similar analysis approach, the optimal allocations of pi
∗’s are illustrated in Figure 

4. Again, larger production capacity is allocated to the middle machine. In addition, an 

increase in one buffer size leads to a decrease in optimal production capacity of 

neighbouring machines. Such a decrease is more dominating when the machine is at the 
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beginning or the end of the line. For example, an increase in N1 results in smaller p1
∗ and p2

∗, 

but p1
∗ has a much severe decrease. This is due to the fact the middle machine has more 

weight in determining the production rate than the first and last machines.

4.3 Lines with Identical Buffers and Nonidentical Energy Coefficients

First we consider two three-machine lines (L6 and L7) with equal buffer capacities and 

nonequal but symmetric energy coefficients. In both lines, the middle machines’ energy 

consumption coefficients are larger than those of other machines.

L6: N1 = N2 = 1, k1:k2:k3 = 1:2:1,

L7: N1 = N2 = 2, k1:k2:k3 = 1:2:1 .

Using a similar method we can derive the optimal allocation of pi’s numerically. The results 

are presented in Figure 5 for Lines L6 and L7, respectively. Examining the results, it is 

observed that p1
∗ and p3

∗ are still equal but greater than p2
∗, which represents a bowl shape. 

This is due to m2’s higher coefficient in energy consumption. Note that p1
∗ and p3

∗ will be 

capped by 1 when PRd is large. Thus, by considering kipi, we still obtain inverted bowls. 

Also note that now p1
∗ − p2

∗ shows an inverted bowl pattern.

Next we study the impact of energy coefficients on optimal allocation of production 

capacity. In Lines L8 and L9, all buffers have capacity one. The energy coefficients are 

neither equal nor symmetric. Solving the optimization problem, the optimal allocations of 

pi’s are illustrated in Figure 6.

L8: N1 = N2 = 1, k1:k2:k3 = 1:2:3,

L9: N1 = N2 = 1, k1:k2:k3 = 1:3:2 .

From these figures, it is clear that the largest energy coefficient is corresponding to the 

smallest production capacity ( p3
∗ in L8 and p2

∗ in L9). For the other two machines, if the 

difference between ki’s is large (as in L8 and L9), higher production capacity is assigned to 

the machine with a smaller ki. In other words, larger energy coefficient leads to smaller 

production capacity, and the middle machine has higher priority in production capacity 

allocation.

Finally, when each buffer capacity is increased to two in Lines L10 and L11, similar property 

is observed (see Figure 7).
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L10: N1 = N2 = 2, k1:k2:k3 = 1:2:3,

L11: N1 = N2 = 2, k1:k2:k3 = 1:3:2 .

In summary, the following conclusions can be drawn from the above results:

• For lines with identical buffer capacity and energy coefficients, the optimal 

allocation of production capacity has an inverted bowl shape with very small 

differences between machines. Evenly distributing production capacity will lead 

to a close to optimal result.

• For lines with nonidentical buffer capacity but identical energy coefficients, 

larger buffers lead to lower production capacity in neighboring machines, in an 

descending order from the center of the line to the two ends.

• For lines with identical buffers but nonidentical energy coefficients, larger 

coefficients are associated with lower production capacity.

• In general, the middle machines receive more priority in production capacity 

allocation comparing with the machines at the beginning or end of the line.

5. AGGREGATION APPROACH FOR MEDIUM SIZE SYSTEMS

The exact analysis is only available for small systems, i.e., three-machine lines with small 

buffers (capacities equal to one or two), or four-machine line with the smallest buffer 

capacity. For medium size systems, deriving the exact solution of steady state probabilities is 

not feasible. Therefore, an approximation method is used for performance evaluation. 

Specifically, the aggregation procedure introduced in Chapter 4 of Li and Meerkov (2009) is 

used to evaluate line production rate so that the optimization problem defined in (3) and (4) 

can be solved using Mathematica. For the sake of self-contain of this paper, the aggregation 

procedure is described in Appendix B. Below we will first study medium size lines with 

identical buffers and energy coefficients, then extend to systems with nonidentical buffers or 

coefficients.

5.1 Lines with Identical Buffers and Energy Coefficients

First we consider three-machine lines with equal buffer capacity ranging from one to ten, 

and the same energy coefficients, i.e., ki = 1, i = 1, 2, 3. The desired production rate PRd is 

set to be 0.75 (and in all subsequent studies).

As one can see from Table 1, larger buffer size always implies smaller production capacity 

allocation for each machine, resulting in lower energy consumption. The rationale behind 

this is that larger buffers lead to higher production rate. Thus, to only maintain the desired 

production rate, machine reliability can be reduced so that the required energy consumption 

will be smaller. In addition, Table 1 suggests that the production capacity is almost evenly 

distributed, which is slightly different with the results obtained for small buffer systems in 
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the previous section (such as the inverted bowl shape). However, the difference is small. In 

the first two rows of Table 1, comparison with the optimal results obtained through exact 

analysis is provided. Clearly, the differences are smaller than 0.8%, which indicates that the 

results obtained using aggregation procedure provide close to optimal solutions of allocating 

pi
∗’s. Such differences are in the same order as throughput difference between an inverted 

bowl allocation and a well balanced distribution (see Li and Meerkov (2009)). Note that for 

other rows and in subsequent tables, exact analysis cannot generate optimal results due to 

high dimension of transition matrices, thus an “N/A” note is presented.

For four-machine lines with identical buffers (capacities one to three) and energy 

coefficients, similar results can be observed (as shown in Table 2). Again the first row in 

Table 2 shows the comparison with the optimal solution, and the difference is only 0.7%.

Similar results are obtained for five-machine lines with small buffer capacities (one or two, 

see Table 3). Note that in this case, exact analysis is unavailable.

Therefore, we conclude that for lines with identical buffers and energy coefficients, evenly 

distributing production capacity is a practical way to minimize energy usage and maintain 

the desired productivity level.

5.2 Lines with Nonidentical Buffers and Equal Energy Coefficients

To study the impact of buffer capacity, we consider three- and four-machine lines with 

different buffer capacities but equal energy coefficients, and results are presented in Tables 4 

and 5, respectively.

Again as one can see, in Table 4, an increase in N1 leads to decreases in p1
∗, and sometimes 

p2
∗ as well. Similarly, larger N2 also indicates smaller p2

∗ and p3
∗. Energy is reduced in both 

cases. In Table 5, an N3’s increase implies decreases in p1
∗ and p2

∗. Thus, the conclusions are 

consistent, i.e., an increase in Ni leads to decreases in pi
∗ and possible pi + 1

∗  as well as the 

total energy consumed. Comparing to exact analysis, the results from aggregation-based 

method only have small differences (within 1.0%, see the first two rows in Table 4). The 

properties obtained from exact analysis still apply.

For five-machine lines with small buffers, as before, similar properties are observed (Table 

6).

5.3 Lines with Identical Buffers and Unbalanced Energy Coefficients

To investigate the impact of energy consumption coefficients, lines with nonidentical energy 

coefficients are considered. In Table 7, three-machine lines with identical buffers (N1 = N2 = 

2) but different energy coefficients are studied. Four different patterns of ki’s are considered: 

ramp, slope, bowl-type, and inverted bowl-type. As one can observe, an increasing (or 

decreasing) pattern of en- ergy coefficients results in a decreasing (respectively, increasing) 

distribution of optimal production capacity. In bowl and inverted bowl shapes of ki’s 

allocation, pi
∗’s follow an inverted bowl and a regular bowl pattern, respectively. In addition, 
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comparing with the exact solutions, the allocations using the aggregation procedure lead to 

close to optimal results, with differences less than 1.5%.

When four-machine lines are considered, similar properties still follow, as illustrated in 

Table 8. This is also true for the five-machine case (see Table 9). In addition, note that the 

significantly higher energy consumptions in the first two rows of Tables 8 and 9 than those 

in other lines are due to much larger energy coefficients. Thus, we still claim that in lines 

with identical buffers, the production capacity needs to be allocated negatively to the energy 

coefficients distribution.

The above results indicate that, for medium size systems, the method based on aggregation 

procedure can be applied to search the optimal production capacity allocations for energy 

consumption minimization while still ensuring the desired line throughput. When systems 

become more complex, the search space for optimal solution becomes too large so that 

computation intensity becomes an issue. Thus, a heuristic method will be pursued.

6. HEURISTIC METHOD FOR LARGE SYSTEMS

Although the aggregation approach can be used to study medium size systems, computation 

intensity still limits its application to larger systems. Therefore, in this section, a heuristic 

method is proposed for systems with more than five machines. First, a heuristic algorithm is 

introduced. Then, the performance of the algorithm is studied by comparing with the results 

from aggregation approach in medium size systems, and with simulation results in larger 

systems.

6.1 Algorithm Description

The idea of the heuristic algorithm is to forwardly group the energy consumption 

coefficients of two machines into one, and continue until the last one, then backwardly 

derive production capacity allocation for every two machines until the first one. Such a 

process is repeated until convergence and the energy efficiency can be improved while still 

maintaining the desired production rate.

From Su et al. (2016), for two-machine lines, the energy consumption is minimized when 

they are balanced. Such a property is practically observed for small and medium systems 

introduced in previous sections. Since the two-machine line is used in each iteration, a basic 

principle of the algorithm is to balance energy consumption among all the machines. 

Intuitively, when n machines are grouped into one machine, denoted as mn
h (where 

superscript ‘h’ indicates heuristic algorithm), the energy consumption coefficient, kn
h, can be 

selected as the sum of the coefficients of all machines from m1 to mn, i.e., ∑i = 1
n ki. 

However, such a sum will lead to a larger coefficient. In particular, when this machine is 

further grouped with the next machine (i.e., machine mn+1 with coefficient kn+1), the 

unbalance between coefficients kn
h and kn+1 will lead to unbalanced production capacity. In 

other words, pn+1 needs to be quite large (or almost 1) in order to make kn+1pn+1 comparable 

to kn
hpn

h, where pn
h is the production rate of machine mn

h. Such unbalance will lead to higher 
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energy consumption. Thus, to reduce the unbalance, kn
h should be smaller than ∑i = 1

n ki, i.e., 

a discount factor is needed.

To introduce a discount factor for ∑i = 1
n ki, we intend to evenly distribute the coefficients. To 

do this, a proportional ratio, (∑i = 1
n kipi)/(∑i = 1

n + 1kipi), is introduced (assume we know pi for 

now). Moreover, since the unbalanced ki’s will lead to more unbalance, the proportion ratio 

should be further discounted based on the severity of differences in ki’s. Thus, an index βn is 

introduced to the power of the discount factor. When ki’s are similar, the effect should be 

ignored, i.e., βn = n − 1. When ki’s are substantially different, the distribution range (maxx 

kx − minx kx) is taken into account. Thus, introduce

βn =

1, if maxi = 1
n ki − mini = 1

n ki = n,

n − 1, if maxi = 1
n ki − mini = 1

n ki = 0,

⌊n − maxi = 1
n ki + mini = 1

n ki⌋, otherwise.

(8)

Then, the energy coefficients for machine mn, n = 2, …, M − 1, can be calculated forwardly 

as

kn
h =

∑i = 1
n kipi

∑i = 1
n + 1kipi

βn

· ∑
i = 1

n
ki, n = 2, …, M − 1 .

Using these ki
h’s, a backward allocation of new pi’s can be carried out. First, consider 

machines mM − 1
h  and mM. Using kM − 1

h  and kM, and the desired production rate PRd, 

allocation of pM − 1
h  and pM can be carried out by using the two-machine analysis method 

introduced in Su et al. (2016). In addition, let pM − 1
h  be the desired production rate of the 

first (M − 1)-machine line, denoted as PRd,M−1. Next, using kM − 2
h  and kM−1, we can obtain 

pM − 2
h  and pM−1 to satisfy PRd,M−1. Again let PRd,M−2 equal to pM − 2

h . Repeating this 

process for kM − 3
h  and kM−2, we obtain pM−2 and pM − 3

h = PRd, M − 3. Continue allocating 

until all pi’s, i = 1, …, M − 3, are calculated.

In each step, the analysis of a two-machine line with parameters k1, k2, N1 and PRd, can be 

represented by operators Ψ1(·) and Ψ2(·), i.e.,

pi
∗ = Ψi(k1, k2, PRd, N1), i = 1, 2,

where p1
∗, p2

∗ are the resulting optimal allocation, and operator Ψ(·) solves the following 

optimization problem (see Su et al. (2016) for solutions):

Su et al. Page 13

Int J Prod Res. Author manuscript; available in PMC 2019 April 11.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



min  k1p1 + k2p2 (9)

s . t .    PRd = p2[1 − Q(p1, p2, N1)], (10)

0 < pi < 1, i = 1, 2,

where

Q(x, y, N) =

(1 − x)(1 − α(x, y))
1 − x

y αN(x, y)
, if  x ≠ y,

1 − x
N + 1 − y , if  x = y,

(11)

α(x, y) = x(1 − y)
y(1 − x) . (12)

6.2 Recursive Procedure

Since the above algorithm relies on values of pi that are unknown, we introduce iterations to 

continuously update pi during each iteration. Formally, let ki
h( j) and pi

h( j) denote the energy 

consumption coefficient and the production capacity allocation for machine mi
h during 

iteration j, respectively. Also denote pi(j) as the production capacity for machine mi, and 

PRd,i(j) be the desired production rate for machines m1 to mi, during iteration j. Then, the 

recursive procedure can be formally expressed as:

Procedure 6.1—Step 1: Initialization.

kn
h(0) =

∑i = 1
n ki

∑i = 1
n + 1ki

βn

· ∑
i = 1

n
ki, n = 2, …, M − 1,

pi(0) = 1, i = 1, …, M,

k1
h( j) = k1, ∀ j, (13)
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PRd, M( j) = PRd, ∀ j .

Let iteration number j = 1.

Step 2: Forward calculation of energy consumption coefficients.

kn
h( j) =

∑i = 1
n kipi( j − 1)

∑i = 1
n + 1kipi( j − 1)

βn

· ∑
i = 1

n
ki, n = 2, …, M − 1 . (14)

Step 3: Backward allocation of production capacity. For i = M, …, 2,

pi − 1
h ( j) = Ψ1(ki − 1

h ( j − 1), ki, PRd, i( j), Ni − 1),

pi( j) = Ψ2(ki − 1
h ( j − 1), ki, PRd, i( j), Ni − 1), (15)

PRd, i − 1( j) = pi − 1
h ( j) .

Step 4: Check iteration stop condition. For j ≤ 100, if

max
i

| pi( j) − pi( j − 1) | < Δ1,

where Δ1 is typically set to 10−7, then go to Step 5, otherwise, let j = j + 1, and go back to 

Step 2. For j > 100, let

kn
h( j + 2) =

kn
h( j + 1) + kn

h( j)
2 . (16)

Then go back to Step 2.

Step 5: Check desired production rate. If

PR−PRd < Δ2,

where Δ2 is typically selected as 10−5, then stop the procedure and assign pi(j) to pi
∗, i = 2, 

…, M, and p1
h( j) to p1

∗. Otherwise
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pi( j) = pi( j) − 0.001, i = 2, …, M,

p1
h( j) = p1

h( j) − 0.001,

and repeat Step 5.

6.3 Convergence

To study the convergence of Procedure 6.1, we first investigate the bounds between 

iterations. For convenience, define

δn( j) = |kn
h( j) − kn

h( j − 1) | , j = 1, 2, … . (17)

In addition, let

B1(n) = 1

1 + 1
PRd

kn + 1
∑i = 1

n ki

βn

· ∑
i = 1

n
ki,

B2(n) = 1

1 + PRd
kn + 1

∑i = 1
n ki

βn

· ∑
i = 1

n
ki . (18)

Then we obtain bounds for kn
h during each iteration.

Proposition 6.1—Under assumptions 1)–6), both kn
h( j) and δn(j) in Procedure 6.1 are 

bounded, i.e.,

kn
h( j) ∈

(B1(n), B2(n)), if  βn > 0,

(B2(n), B1(n)), if  βn < 0,

δn( j) ∈ [0, |B1(n) − B2(n) | ) . (19)
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Proof: See Appendix A.

Moreover, for three-machine lines, δn(j) converges to δn when j is large. Then δn is not only 

bounded, but also unique.

Proposition 6.2—Under assumptions 1)–6) with M = 3, if 0 ≪ PRd < 1, then δn in 

Procedure 6.1 is unique.

Proof: See Appendix A.

The results of Proposition 6.2 indicate that kn
h( j) is either oscillating with a small bound or 

converging. Similar observations are discovered for longer lines. To verify the convergence 

of the procedure, thousands of experiments are carried out. In all cases, the convergence of 

the procedure is observed. Thus we formulate it as a numerical observation.

Numerical Observation 1: Under assumptions 1)–6), Procedure 6.1 converges, i.e., the 

following limits exist

lim
j ∞

pi( j) ≔ pi
∗, i = 2, …, M, (20)

lim
j ∞

p1
h( j) ≔ p1

∗ . (21)

Remark 6.1—Among over 10,000 experiments with randomly selected parameters, except 

two or three, Procedure 6.1 converges within 10 iterations. For the two or three exceptions, 

the difference between ki
h( j) and ki

h( j + 1) is around 0.001 after 100 iterations. Then the 

adjustment (16) in Step 4 makes the procedure converges immediately.

6.4 Accuracy

To investigate the accuracy of Procedure 6.1, numerical experiments are carried out to 

compare the results from Procedure 6.1 with the “optimal” solutions. For three- to five-

machine lines, the “optimal” solutions are obtained using the aggregation approach 

introduced in Section 5. The relative differences are defined as

ε =
(∑kipi

∗)h − (∑kipi
∗)a

(∑kipi
∗)a

· 100%,

where superscripts “h” and “a” denote heuristic method and aggregation approach, 

respectively.
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As shown in Tables C.1 and C.2 in Appendix C for three- and five-machine lines, in most 

cases the differences are within 0.1% and the largest ones are still less than 1%. In addition, 

the iteration steps are also included in these tables, as well as the computation time using the 

two methods. As one can see, when the system is small, aggregation approach is faster; 

while when buffers become large, heuristic method is more efficient. Again note that two 

examples in Table C.2 with large buffers do not have aggregation results due to computation 

intensity, thus are marked with “N/A”.

For six- to ten-machine systems, Monte Carlo simulations are introduced to generate 

numerous feasible solutions. 5000 lines are randomly generated using the following 

parameter ranges:

M ∈ [6, 10],

PRd ∈ [0.6, 0.95],

Ni ∈ [1, 10],

ki ∈ [1, 10] .

Tables C.3 and C.4 in Appendix C illustrate the examples of such experiments for seven- 

and ten-machine lines. Thousands of experiments are carried out by randomly generating 

pi’s until the desired production rate is satisfied. Then the one with the smallest Σi kipi is 

considered as the “optimal” one. By comparing the “optimal” solution with the one 

calculated by heuristic algorithm, we observe that only in 205 out of 5,000 examples (i.e., 

4.10%) the “optimal” solution leads to smaller amount of consumed energy comparing with 

the results from heuristic method. Among the 205 cases, 70% of them have gaps within 1%, 

and 90% within 2%, while the maximum gap is 5.73%.

Therefore, we claim that Procedure 6.1 provides an optimal or a close to optimal solution of 

allocating production capacity to minimize energy consumptions.

6.5 System Property

The properties obtained through exact analysis and aggregation approach for small and 

medium size systems, respectively, are still valid for larger systems. For systems with 

identical buffers and energy coefficients, production capacity of each machine is almost 

evenly distributed and larger buffer size always implies smaller amount of energy 

consumption. An example of eight-machine line is illustrated in Table 10(a).

When lines have nonidentical buffers but equal energy coefficients, an increase in Ni will 

lead to a decrease in pi+1 (rather than in pi) because the forward aggregation of ki’s and 
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backward allocation of pi’s are used in the heuristic algorithm (see Table 10(b)). The total 

energy usage is reduced when buffer size increases.

For lines with identical buffers and unequal energy coefficients, two examples are shown in 

Table 10(c). As one can see, the allocation of productivity capacity has a negative pattern to 

that of energy coefficients. An increase in ki’s leads to a decrease in pi and an increase in 

other pj’s (j ≠ i) as well as the total energy consumed. Therefore, we conclude that the 

properties observed in previous sections still hold.

7. CONCLUSIONS

In this paper, an integrated model of energy consumption and productivity in Bernoulli serial 

lines is introduced. Using such a model, we seek to minimize energy consumption while still 

keeping the desired productivity. For production lines with three and four machines and 

small buffers, exact investigation is carried out. For medium size systems, an aggregation-

based method is used to evaluate productivity. We observe that the inverted bowl allocation 

of production capacity leads to minimal energy consumption in case of identical buffer and 

energy coefficients, while evenly distributed allocation renders close to optimal solution. 

When lines have nonidentical buffers, larger buffer size leads to smaller production capacity 

for neighboring machines. If energy coefficients are different, production capacity allocation 

follows a negative pattern to the distribution of energy coefficients. For larger systems, a 

heuristic algorithm is presented to allocate production capacity. The algorithm forwardly 

groups the energy coefficients and then backwardly allocates production capacity. The 

convergence of the procedure is justified numerically. It is shown that the algorithm leads to 

an optimal or a close to optimal solution. The system properties obtained in small and 

medium systems are still suitable for large systems.

The results of this work provide production engineers a quantitative tool to effectively 

operate the system to reduce energy consumption and meet production target. The future 

work can be directed to the following areas:

• Extending the study to other machine reliability models, such as geometric, 

exponential, or general reliability machines.

• Generalizing to flexible manufacturing systems that can produce multiple 

product types.

• Investigating the continuous improvement strategies, such as identifying the 

energy bottleneck machines, i.e., the machines whose reduction in energy 

coefficient will lead to the largest reduction in total energy consumption, and the 

energy bottleneck buffers, whose increase will lead to the largest reduction in 

system energy.

• Applying the results on the factory floor to design and control the production line 

for energy efficiency.

Su et al. Page 19

Int J Prod Res. Author manuscript; available in PMC 2019 April 11.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Acknowledgments

This work is supported in part by NSF Grant No. CMMI-1063656, NIST grant 70NANB14H260, and National 
Science Foundation of China (NSFC) Grant No. 71501109.

References

Arinez J, Biller S, Meerkov SM, Zhang L. 2010; Quality/quantity improvement in an automotive paint 
shop: a case study. IEEE Transactions on Automation Science and Engineering. 7(4):755–761.

Branham, M. M.S. Thesis. Department of Mechanical Engineering, Massachusetts Institute of 
Technology; Cambridge, MA: 2008. Semiconductors and Sustainability: Energy and Materials Use 
in the Integrated Circuit Industry. 

Buzacott, JA, Shanthikumar, JG. Stochastic Models of Manfacturing Systems. Prentice Hall; 
Englewood Cliffs, NJ: 1993. 

Calvanese, ML, Albertelli, P, Matta, A, Taisch, M. Analysis of energy consumption in CNC machining 
centers and determination of optimal cutting conditions. In: Nee, AYC, Song, B, Ong, S-K, editors. 
Re-engineering Manufacturing for Sustainability. 2013. 227–232. 

Chiang S-Y, Kuo C-T, Meerkov SM. 2001; c-Bottlenecks in serial production lines: identification and 
application. Mathematical Problems in Engineering. 7(6):543–578.

Chen G, Zhang L, Arinez J, Biller S. 2013; Energy-efficient production systems through schedule-
based operations. IEEE Transactions on Automation Science and Engineering. 10(1):27–37.

Colledani M, Gandola F, Matta A, Tolio T. 2008; Performance evaluation of linear and non-linear 
multi-product multi-stage lines with unreliable machines and finite homogeneous buffers. IIE 
Transactions. 40(6):612–626.

Dallery Y, David R, Xie XL. 1988; An efficient algorithm for analysis of transfer lines with unreliable 
machines and finite buffers. IIE transactions. 20(3):280–283.

Dallery Y, Gershwin SB. 1992; Manufacturing flow line systems: a review of models and analytical 
results. Queueing Systems: Theory and Applications. 12(1):3–94.

Fernandez M, Li L, Sun Z. 2011; Just-for-peak buffer inventory for peak electricity demand reduction 
of manufacturing systems. International Journal of Production Economics. 146:178–184.

Frigerio N, Matta A. 2015; Energy-efficient control strategies for machine tools with stochastic 
arrivals. IEEE Transactions on Automation Science and Engineering. 12(1):50–61.

Galitsky, C; Worrell, E. [Accessed September 21, 2015] Energy efficiency improvement and cost 
saving opportunities for the vehicle assembly industry. Lawrence Berkeley National Laboratory 
(LBNL-50939-Revision). 2008. http://www.energystar.gov/ia/business/industry/LBNL-50939.pdf

Gershwin SB. 1987; An efficient decomposition method for the approximate evaluation of tandem 
queues with finite storage space and blocking. Operations Research. 35(2):291–305.

Gershwin, SB. Manufacturing Systems Engineering. Prentice Hall; Englewood Cliffs, NJ: 1994. 

Giret A, Trentesaux D, Prabhu V. 2015; Sustainability in manufacturing operations scheduling: A state 
of the art review. Journal of Manufacturing Systems. 37(1):126–140.

Guerrero CPA, Wang J, Li J, Arinez J, Biller S, Huang N, Xiao G. 2011; Production system design to 
achieve energy savings in automotive paint shop. International Journal of Production Research. 
49:6769–6785.

Gutowski TG, Branham MS, Dahmus JB, Jones AJ, Thiriez A, Sekulic DP. 2009; Thermodynamic 
analysis of resources used in manufacturing processes. Environmental Science & Technology. 
43:1584–1590. [PubMed: 19350939] 

Gyftopoulos, EP, Beretta, GP. Thermodynamics: Foundations and Applications. Dover Publications; 
New York, NY: 2005. 

Jacobs D, Meerkov SM. 1995; A system-theoretic property of serial production lines: improvability. 
International Journal of Systems Science. 26(4):755–785.

Jaehn F. 2016; Sustainable operations. European Journal of Operational Research. 253(2):243264.

Jones, AJ. M.S. Thesis. Department of Mechanical Engineering, Massachusetts Institute of 
Technology; Cambridge, MA: 2007. The industrial ecology of the iron casting industry. 

Su et al. Page 20

Int J Prod Res. Author manuscript; available in PMC 2019 April 11.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

http://www.energystar.gov/ia/business/industry/LBNL-50939.pdf


Joung C, Carrell J, Sarkara P, Feng S. 2013; Categorization of Indicators for sustainable 
manufacturing. Ecological Indicators. 24:148–157.

Kolta, T. [Accessed September 21, 2015] Selecting equipment to control air pollution from automotive 
painting operations. Society of Automotive Engineers (SAE) International Congress and 
Exposition. 1999. http://papers.sae.org/920189

Kuo C-T, Lim J-T, Meerkov SM. 1996; Bottlenecks in serial production lines: a system-theoretic 
approach. Mathematical Problems in Engineering. 2(3):233–276.

Li J. 2005; Overlapping decomposition: a system-theoretic method for modeling and analysis of 
complex manufacturing systems. IEEE Transactions on Automation Science and Engineering. 
2(1):40–53.

Li J, Blumenfeld DE, Huang N, Alden JM. 2009; Throughput analysis of production systems: recent 
advances and future topics. International Journal of Production Research. 47(14):3823–3851.

Li J, Meerkov SM. 2001; Customer demand satisfaction in production systems: a due-time 
performance approach. IEEE Transactions on Robotics and Automation. 17(4):472–482.

Li, J, Meerkov, SM. Production Systems Engineering. Springer; New York: NY: 2009. 

Li J, Morrison JR, Zhang MT, Nakano M, Biller S, Lennartson B. 2013; Automation in green 
manufacturing. IEEE Transactions on Automation Science and Engineering. 10(1):1–4.

Lim J-T, Meerkov SM, Top F. 1990; Homogeneous, asymptotically reliable serial production lines: 
theory and a case study. IEEE Transactions on Automatic Control. 25(5):524–534.

Mattis, J, Sheng, P, DiScipio, W, Leong, K. Engineering Systems Research Center Technical Report. 
University of California; Berkeley: CA: 1996. A framework for analyzing energy efficient 
injection-molding die design. 

Mashaei M, Lennartson B. 2013; Energy reduction in a pallet-constrained flow shop through onoff 
control of idle machines. IEEE Transactions on Automation Science and Engineering. 10(1):45–
56.

Moon J-Y, Park J. 2014; Smart production scheduling with time-dependent and machine-dependent 
electricity cost by considering distributed energy resources and energy storage. International 
Journal of Production Research. 52:3922–3939.

NIST Engineering Laboratory. [accessed on 10/5/2016] Sustainable manufacturing indicator 
depository. 2009. Available online at: http://www.mel.nist.gov/msid/SMIR/index.html, 2009

Papadopoulos, HT, Heavey, C, Browne, J. Queueing Theory in Manufacturing Systems Analysis and 
Design. Chapman & Hall; London: UK: 1993. 

Papadopoulos HT, Heavey C. 1996; Queueing theory in manufacturing systems analysis and design: A 
classification of models for production and transfer lines. European Journal of Operational 
Research. 92(1):1–27.

Papier F. 2016; Managing electricity peak loads in make-to-stock manufacturing lines. Production and 
Operations Management. doi: 10.1111/poms.12570

Ross, S. A First Course in Probability. 7. Pearson Prentice Hall; Upper Saddle River, NJ: 2006. 

Sekulic DP. 2009; An entropy generation metric for non-energy systems assessments. Energy. 34:587–
592.

Su W, Xie X, Li J, Zheng L. 2016; Improving energy efficiency in Bernoulli serial lines: an integrated 
model. International Journal of Production Research. doi: 10.1080/00207543.2016.1138152

Tempelmeier, H, Kuhn, H. Flexible Manufacturing Systems: Decision Support for Design and 
Operation. Wiley; New York, NY: 1993. 1993

Viswanadham, N, Narahari, Y. Performance Modeling of Automated Manufacturing Systems. Prentice 
Hall; Englewood Cliffs, NJ: 1992. 

Wang C, Li J. 2010; Approximate analysis of re-entrant lines with Bernoulli reliability models. IEEE 
Transactions on Automation Science and Engineering. 7(3):708–715.

Wang J, Li J, Huang N. 2011; Optimal vehicle batching and sequencing to reduce energy consumption 
and atmospheric emissions in automotive paint shops. International Journal of Sustainable 
Manufacturing. 2:141–160.

Xu W, Cao L. 2014; Energy efficiency analysis of machine tools with periodic maintenance. 
International Journal of Production Research. 52(18):5273–5285.

Su et al. Page 21

Int J Prod Res. Author manuscript; available in PMC 2019 April 11.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

http://papers.sae.org/920189
http://www.mel.nist.gov/msid/SMIR/index.html


Zhao C, Li J. 2014; Analysis and improvement of multi-product assembly systems: an application 
study at a furniture manufacturing plant. International Journal of Production Research. 52(21):
6399–6413.

Zhao C, Li J, Huang N. 2016; Efficient algorithms for analysis and improvement of flexible 
manufacturing systems. IEEE Transactions on Automation Science and Engineering. 13(1):105–
121.

APPENDIX A

PROOFS

Proof of Proposition 4.1

The probability transition matrix can be represented as:

P =

1 − p1 p1 0 0

0 1 − p2 (1 − p1)p2 p1p2
(1 − p1)p3 p1p3 (1 − p1)(1 − p3) p1(1 − p3)

0 (1 − p2)p3 (1 − p1)p2p3 1 − p3 + p1p2p3

.

The balance equations are:

P(0, 0) = (1 − p1)P(0, 0) + (1 − p1)p3P(0, 1),

P(1, 0) = p1P(0, 0) + (1 − p2)P(1, 0) + p1p3P(0, 1) + (1 − p2)p3P(1, 1),

P(0, 1) = (1 − p1)p2P(1, 0) + (1 − p1)(1 − p3)P(0, 1) + (1 − p1)p2p3P(1, 1),

P(1, 1) = p1p2P(1, 0) + p1(1 − p3)P(0, 1) + (1 − p3 + p1p2p3)P(1, 1),

and

P(0, 0) + P(1, 0) + P(0, 1) + P(1, 1) = 1 .

Solving these equations, the analytical expressions of P(0,0), P(1,0), P(0,1) and P(1,1) in (5) and 

(6) can be derived. Then the line production rate can be calculated.

PRL1 = (P(0, 1) + P(1, 1))p3 =
(1 − p1)p1p2p3

2 + p1
2p2p3

Λ .

Proof of Proposition 6.1

From equation (14), for n = 2, …, M − 1,
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kn
h( j) =

∑i = 1
n kipi( j − 1)

∑i = 1
n + 1kipi( j − 1)

βn

· ∑
i = 1

n
ki =

∑i = 1
n kipi( j − 1)

∑i = 1
n kipi( j − 1) + kn + 1pn + 1( j − 1)

βn

· ∑
i = 1

n
ki

= 1

1 +
kn + 1pn + 1( j − 1)

∑i = 1
n kipi( j − 1)

βn

· ∑
i = 1

n
ki .

From Li and Meerkov (2009), pi(j) ∈ (PRd, 1), we have

kn + 1pn + 1( j − 1)

∑i = 1
n kipi( j − 1)

>
kn + 1PRd

∑i = 1
n kipi( j − 1)

> PRd ·
kn + 1
h ( j − 1)

∑i = 1
n ki

h( j − 1)
,

kn + 1pn + 1( j − 1)

∑i = 1
n kipi( j − 1)

<
kn + 1

∑i = 1
n kipi( j − 1)

<
kn + 1

PRd · ∑i = 1
n ki

.

When βn > 0, it follows that

1

1 + PRd ·
kn + 1

∑i = 1
n ki

βn

· ∑
i = 1

n
ki > 1

1 +
kn + 1

PRd · ∑i = 1
n ki

βn

· ∑
i = 1

n
ki,

i.e.,

B2(n) > B1(n), kn
h( j) ∈ (B1(n), B2(n)) .

When βn < 0, we obtain

B2(n) < B1(n), kn
h( j) ∈ (B2(n), B1(n)) .

For δn(j), from definition (17) and bounds of kn
h( j) and kn

h( j − 1), it follows 

straightforwardlythat

δn( j) ∈ [0, |B1(n) − B2(n) | ) .
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Proof of Proposition 6.2

First assume β2 > 0. If k2
a( j + 1) = k2

a( j), clearly we have δ2(j+1) = 0 and when j → ∞, δ2 = 

0. If k2
a( j + 1) < k2

a( j), then from Su et al. (2016), we have

p2
h( j + 1) > p2

h( j), p3( j + 1) < p3( j),

which implies that

p1( j + 1) > p1( j), p2( j + 1) > p2( j) .

It follows that

k2
a( j + 2) = 1

1 +
k2p3( j + 1)

k1p1( j + 1) + k2p2( j + 1)

β2

∑
i = 1

2
ki > k2

a( j + 1) = 1

1 +
k2p3( j)

k1p1( j) + k2p2( j)

β2

∑
i = 1

2
ki .

To compare k2
a( j + 2) and k2

a( j), the following scenarios are considered:

• If k2
a( j + 2) = k2

a( j), then

δ2( j + 1) = k2
a( j + 2) − k2

a( j + 1) = k2
a( j) − k2

a( j + 1) = constant .

When j → ∞, δ2 is a constant.

• If k2
a( j + 2) < k2

a( j), then using the similar arguments from k2
a( j + 1) < k2

a( j), we 

obtain

p1( j + 2) > p1( j), p2( j + 2) > p2( j), p3( j + 2) < p3( j),

k2
a( j + 3) = 1

1 +
k2p3( j + 2)

k1p1( j + 2) + k2p2( j + 2)

β2

∑
i = 1

2
ki > k2

a( j + 1)

= 1

1 +
k2p3( j)

k1p1( j) + k2p2( j)

β2

∑
i = 1

2
ki .

Continue this process we obtain

Su et al. Page 24

Int J Prod Res. Author manuscript; available in PMC 2019 April 11.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



k2
a( j + 2l + 1) < k2

a( j + 2l + 3) < … < k2
a( j + 2(l + 1)) < k2

a( j + 2l), l = 0, 1, 2, … .

Thus, when j → ∞, namely, k2
a( j) converges and δ2 = 0.

• If k2
a( j + 2) > k2

a( j), similarly,

p1( j + 2) < p1( j), p2( j + 2) < p2( j), p3( j + 2) > p3( j),

k2
a( j + 3) = 1

1 +
k2p3( j + 2)

k1p1( j + 2) + k2p2( j + 2)

β2

∑
i = 1

2
ki < k2

a( j + 1)

= 1

1 +
k2p3( j)

k1p1( j) + k2p2( j)

β2

∑
i = 1

2
ki .

Iterate this process we obtain

k2
a( j + 2l) < k2

a( j + 2(l + 1)), k2
a( j + 2l + 1) > k2

a( j + 2l + 3), l = 0, 1, 2, … .

From Proposition 6.1, we have

lim
l ∞

k2
a( j + 2l) = 1

1 + PRd
k3

k1 + k2

β2

(k1 + k2),

lim
l ∞

k2
a( j + 2l + 1) = 1

1 + 1
PRd

k3
k1 + k2

β2

(k1 + k2) .

According to Su et al. (2016), when l is large enough, we obtain

k2
a( j + 2l + 1) ≪ k3 ≪ k2

a( j + 2l),

which leads to
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1

1 + 1
PRd

k3
k1 + k2

β2

≪ 1

1 + PRd
k3

k1 + k2

β2

.

This results in PRd ≪ 1, which contradicts to the condition of this proposition.

If k2
a( j + 1) > k2

a( j), the proof is similar. Analogously, the case of β2 < 0 can be proved.

Appendix B

Aggregation Procedure

Let superscripts ‘f’ and ‘b’ denote the forward and backward aggregations for machine 

parameters, respectively. For an M-machine M − 1-buffer serial production line with 

parameters pi, i = 1, …, M, and Ni, i = 1, …, M − 1, we have:

Procedure B.1

pi
b(n + 1) = pi[1 − Q(pi + 1

b (n + 1), pi
f (n), Ni)], i = 1, …, M − 1,

pi
f (n + 1) = pi[1 − Q(pi − 1

f (n + 1), pi
b(n + 1), Ni − 1)], i = 2, …, M, n = 0, 1, 2, …,

with initial conditions

pi
f (0) = pi, i = 1, …, M,

and boundary conditions

p1
f (n) = p1, n = 0, 1, 2, …,

pM
b (n) = pM, n = 0, 1, 2, …,

and n is iteration number, Q(·) is defined in (11).

It is shown in Li and Meerkov (2009) that the procedure is convergent with a unique 

solution, i.e.,
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lim
n ∞

pi
f (n) = pi

f , lim
n ∞

pi
b(n) = pi

b, i = 1, …, M .

The line production rate can be expressed as

PR = pM
f = p1

b .

APPENDIX C

EXAMPLES

Table C.1

Allocation of pi’s using heuristic method: M = 3

Ni ki

pi
∗ step timeh timea

(∑i kipi
∗)h

ε

1,1 1,1,1 0.888, 0.888, 0.919 7 4.19 0.91 2.695 0.03%

2,2 1,1,1 0.850, 0.850, 0.835 5 2.89 2.08 2.535 −0.09%

3,3 1,1,1 0.826, 0.826, 0.809 5 3.28 3.91 2.460 −0.06%

5,5 1,1,1 0.801, 0.801, 0.787 5 8.86 11.77 2.390 0.06%

10,10 1,1,1 0.778, 0.778, 0.770 4 7.52 411.19 2.327 0.05%

2,4 1,1,1 0.839, 0.839, 0.798 5 3.41 3.44 2.475 −0.37%

4,2 1,1,1 0.825, 0.825, 0.832 5 5.73 3.09 2.481 0.27%

2,2 1,1.5,2 0.909, 0.866, 0.793 6 3.67 2.55 3.794 0.05%

2,2 2,1.5,1 0.810, 0.850, 0.894 5 4.73 2.58 3.788 −0.04%

2,2 1,2,1 0.889, 0.799, 0.881 5 5.77 2.41 3.367 0.01%

2,2 2,1,2 0.830, 0.907, 0.800 6 4.08 2.17 4.167 −0.02%

Table C.2

Allocation of pi’s using heuristic method: M = 5

Ni ki

pi
∗ step timeh timea

(∑i kipi
∗)h

ε

1,1,1,1 1,1,1,1,1 0.894, 0.894, 0.928, 0.973, 
0.998

6 7.25 70.00 4.687 0.63%

2,2,2,2 1,1,1,1,1 0.876, 0.876, 0.866, 0.862, 
0.860

5 6.33 1142.73 4.339 0.04%

3,3,3,3 1,1,1,1,1 0.851, 0.851, 0.837, 0.828, 
0.822

5 9.42 265705 4.189 −1.85%

5,5,5,5 1,1,1,1,1 0.822, 0.822, 0.809, 0.800, 
0.793

5 11.57 N/A 4.045 N/A

10,10,10,10 1,1,1,1,1 0.792, 0.792, 0.784, 0.777, 
0.772

4 11.31 N/A 3.917 N/A
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Ni ki

pi
∗ step timeh timea

(∑i kipi
∗)h

ε

2,3,2,2 1,1,1,1,1 0.870, 0.870, 0.845, 0.862, 
0.859

4 6.16 2552.97 4.305 0.12%

2,2,3,2 1,1,1,1,1 0.872, 0.872, 0.862, 0.832, 
0.859

5 7.17 2043.17 4.298 −0.09%

2,4,4,2 1,1,1,1,1 0.860, 0.860, 0.826, 0.817, 
0.859

5 7.92 29019 4.222 −1.68%

4,2,2,4 1,1,1,1,1 0.854, 0.854, 0.862, 0.857, 
0.803

5 12.77 24381 4.229 −1.74%

4,2,4,2 1,1,1,1,1 0.850, 0.850, 0.859, 0.816, 
0.858

5 12.50 34302 4.234 −1.28%

2,2,2,2 1,1.5,2,2.5,3 0.958, 0.935, 0.892, 0.840, 
0.824

6 9.22 1060.75 8.715 0.60%

2,2,2,2 3,2.5,2,1.5,1 0.829, 0.853, 0.874, 0.907, 
0.948

5 7.25 1031.45 8.774 0.18%

2,2,2,2 1,2,1,2,1 0.918, 0.848, 0.915, 0.807, 
0.907

4 6.77 1071.02 6.049 0.15%

2,2,2,2 1,2,2,2,1 0.936, 0.873, 0.848, 0.836, 
0.927

5 7.06 1045.19 6.978 0.23%

2,2,2,2 2,1,1,1,2 0.836, 0.905, 0.903, 0.904, 
0.790

6 9.47 1062.20 5.962 0.10%

Table C.3

Allocation of pi’s using heuristic method: M = 7

Ni ki

pi
∗ step timeh

(∑i kipi
∗)h

1,1,1,1,1,1 1,1,1,1,1,1,1 0.894, 0.894, 0.928, 0.973, 0.998, 0.998, 0.998 6 10.91 6.683

2,2,2,2,2,2 1,1,1,1,1,1,1 0.884, 0.884, 0.877, 0.875, 0.875, 0.875, 0.876 5 14.95 6.145

3,3,3,3,3,3 1,1,1,1,1,1,1 0.862, 0.862, 0.851, 0.844, 0.838, 0.834, 0.831 4 12.25 5.922

5,5,5,5,5,5 1,1,1,1,1,1,1 0.834, 0.834, 0.823, 0.814, 0.808, 0.802, 0.798 4 18.28 5.712

10,10,10, 1,1,1,1, 0.801, 0.801, 0.793, 0.787 4 15.17 5.519

10,10,10 1,1,1 0.783, 0.778, 0.775

2,2,2,3,2,2 1,1,1,1,1,1,1 0.883, 0.883, 0.875, 0.873, 0.841, 0.877, 0.875 5 16.53 6.105

2,3,2,2,2,2 1,1,1,1,1,1,1 0.878, 0.878, 0.857, 0.874, 0.873, 0.874, 0.875 4 12.05 6.109

2,2,2,2,3,2 1,1,1,1,1,1,1 0.883, 0.883, 0.876, 0.874, 0.873, 0.836, 0.875 4 10.25 6.101

2,2,4,4,2,2 1,1,1,1,1,1,1 0.877, 0.877, 0.869, 0.831, 0.825, 0.875, 0.876 5 16.73 6.029

4,4,2,2,4,4 1,1,1,1,1,1,1 0.856, 0.856, 0.846, 0.872, 0.871, 0.814, 0.810 5 17.64 5.924

4,2,4,2,4,2 1,1,1,1,1,1,1 0.861, 0.861, 0.870, 0.832, 0.872, 0.816, 0.875 5 19.80 5.988
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Ni ki

pi
∗ step timeh

(∑i kipi
∗)h

2,2,2 1,1.5,2,2.5 0.966, 0.952, 0.925, 0.887 6 16.03 15.426

2,2,2 3,3.5,4 0.879, 0.847, 0.841

2,2,2 4,3.5,3,2.5 0.840, 0.857, 0.868, 0.890 4 10.44 15.422

2,2,2 2,1.5,1 0.925, 0.945, 0.964

2,2,2,2,2,2 1,2,1,2,1,2,1 0.925, 0.868, 0.925, 0.835, 0.921, 0.821, 0.917 5 13.53 8.736

2,2,2,2,2,2 1,1,2,2,2,1,1 0.950, 0.950, 0.873, 0.849, 0.837, 0.930, 0.931 4 9.98 8.878

2,2,2,2,2,2 2,2,1,1,1,2,2 0.860, 0.860, 0.92, 0.921, 0.922, 0.834, 0.829 6 14.75 9.528

Table C.4

Allocation of pi’s using heuristic method: M = 10

Ni ki

pi
∗ step timeh

(∑i kipi
∗)h

1,1,1,1,1 1,1,1,1,1 0.894, 0.894, 0.928, 0.973, 0.998 5 11.66 9.677

1,1,1,1 1,1,1,1,1 0.998, 0.998, 0.998, 0.998, 0.998

2,2,2,2,2 1,1,1,1,1 0.886, 0.886, 0.881, 0.880, 0.881 4 16.44 8.842

2,2,2,2 1,1,1,1,1 0.882, 0.884, 0.886, 0.888, 0.889

3,3,3,3,3 1,1,1,1,1 0.868, 0.868, 0.859, 0.853, 0.849 4 17.78 8.512

3,3,3,3 1,1,1,1,1 0.846, 0.844, 0.842, 0.841, 0.839

5,5,5,5,5, 1,1,1,1,1 0.844, 0.844, 0.834, 0.827, 0.821 4 20.09 8.216

5,5,5,5 1,1,1,1,1 0.816, 0.812, 0.809, 0.806, 0.803

10,10,10,10,10 1,1,1,1,1 0.809, 0.809, 0.802, 0.796, 0.792 4 19.91 7.917

10,10,10,10 1,1,1,1,1 0.788, 0.784, 0.781, 0.779, 0.776

2,2,2,2,3 1,1,1,1,1 0.885, 0.885, 0.880, 0.879, 0.880 5 20.13 8.803

2,2,2,2 1,1,1,1,1 0.847, 0.884, 0.886, 0.887, 0.889

2,3,2,2,2 1,1,1,1,1 0.882, 0.882, 0.864, 0.880, 0.880 5 22.48 8.816

2,2,2,2 1,1,1,1,1 0.882, 0.884, 0.886, 0.887, 0.889

2,2,2,2,2 1,1,1,1,1 0.886, 0.886, 0.881, 0.880, 0.881 3 11.20 8.796

2,2,3,2 1,1,1,1,1 0.882, 0.884, 0.886, 0.842, 0.889

2,2,2,4,4 1,1,1,1,1 0.883, 0.883, 0.877, 0.876, 0.833 5 24.11 8.672

4,2,2,2 1,1,1,1,1 0.829, 0.825, 0.887, 0.888, 0.890

4,4,4,2,2 1,1,1,1,1 0.859, 0.859, 0.850, 0.844, 0.880 5 26.28 8.508

2,4,4,4 1,1,1,1,1 0.882, 0.883, 0.819, 0.817, 0.815
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Ni ki

pi
∗ step timeh

(∑i kipi
∗)h

2,4,2,4,2 1,1,1,1,1 0.877, 0.877, 0.852, 0.877, 0.834 5 23.08 8.617

4,2,4,2 1,1,1,1,1 0.882, 0.824, 0.886, 0.818, 0.890

2,2,2,2,2 1,1.5,2,2.5,3 0.964, 0.956, 0.938, 0.912, 0.907 5 16.61 28.833

2,2,2,2 3.5,4,4.5,5,5.5 0.886, 0.886, 0.867, 0.867, 0.850

2,2,2,2,2 5.5,5,4.5,4,3.5 0.849, 0.861, 0.866, 0.879, 0.910 4 13.95 29.014

2,2,2,2 3,2.5,2,1.5,1 0.924, 0.942, 0.952, 0.962, 0.970

2,2,2,2,2 1,2,1,2,1 0.925, 0.880, 0.925, 0.854, 0.923 5 17.23 13.141

2,2,2,2 2,1,2,1,2 0.845, 0.923, 0.842, 0.922, 0.841

2,2,2,2,2 2,2,2,1,1 0.870, 0.870, 0.863, 0.924, 0.925 5 17.84 14.016

2,2,2,2 2,2,2,1,1 0.926, 0.927, 0.852, 0.852, 0.852

2,2,2,2,2 1,1,1,2,2 0.954, 0.954, 0.954, 0.883, 0.864 5 16.41 12.588

2,2,2,2 2,2,1,1,1 0.856, 0.852, 0.938, 0.939, 0.940

2,2,2,2,2 1,1,1,1,1 0.983, 0.983, 0.983, 0.984, 0.985 4 17.83 12.531

2,2,2,2 5,1,1,1,1 0.755, 0.959, 0.960, 0.960, 0.960
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Figure 1. 
Bernoulli serial line

Su et al. Page 31

Int J Prod Res. Author manuscript; available in PMC 2019 April 11.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Figure 2. 

Optimal pi
∗’s in L1 and L2
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Figure 3. 

Optimal pi
∗’s in L3
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Figure 4. 

Optimal pi
∗’s in L4 and L5
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Figure 5. 

Optimal pi
∗’s in L6 and L7
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Figure 6. 

Optimal pi
∗’s in L8 and L9
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Figure 7. 

Optimal pi
∗s allocation in L10 and L11
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Table 1

Three-machine lines with identical buffers and energy coefficients (ki = 1, i = 1, 2, 3)

N1, N2

p1
∗, p2

∗, p3
∗ ∑i kipi

∗ Comparison

1, 1 0.900, 0.900, 0.900 2.700 0.4%

2, 2 0.852, 0.850, 0.850 2.552 0.8%

3, 3 0.827, 0.825, 0.825 2.476 N/A

4, 4 0.811, 0.810, 0.810 2.431 N/A

5, 5 0.801, 0.800, 0.800 2.400 N/A

6, 6 0.794, 0.793, 0.793 2.379 N/A

7, 7 0.788, 0.787, 0.787 2.362 N/A

8, 8 0.784, 0.783, 0.783 2.350 N/A

9, 9 0.780, 0.780, 0.780 2.340 N/A

10, 10 0.778, 0.777, 0.777 2.332 N/A
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Table 2

Four-machine lines with identical buffers and energy coefficients (ki = 1, i = 1, …, 4)

N1, N2, N3

p1
∗, p2

∗, p3
∗, p4

∗ ∑i kipi
∗ Comparison

1, 1, 1 0.923, 0.923, 0.923, 0.923 3.692 0.7%

2, 2, 2 0.873, 0.871, 0.896, 0.896 3.483 N/A

3, 3, 3 0.843, 0.842, 0.840, 0.840 3.367 N/A
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Table 3

Five-machine lines with identical buffers and energy coefficients (ki = 1, i = 1, …, 5)

N1, N2, N3, N4

p1
∗, p2

∗, p3
∗, p4

∗, p5
∗ ∑i kipi

∗

1,1,1,1 0.938, 0.938, 0.938, 0.938, 0.938 4.689

2,2,2,2 0.887, 0.886, 0.884, 0.883, 0.883 4.423
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Table 4

Three-machine lines with nonidentical buffers and equal energy coefficients

N1, N2

p1
∗, p2

∗, p3
∗ ∑i kipi

∗ Comparison

1, 2 0.964, 0.835, 0.835 2.634 1.0%

2, 1 0.834, 0.891, 0.891 2.617 0.3%

2, 3 0.859, 0.830, 0.830 2.521 N/A

3, 2 0.822, 0.843, 0.843 2.509 N/A

2, 4 0.863, 0.820, 0.820 2.502 N/A

4, 2 0.806, 0.839, 0.839 2.484 N/A
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Table 5

Four-machine lines with nonidentical buffers and equal energy coefficients

N1, N2, N3

p1
∗, p2

∗, p3
∗, p4

∗ ∑i kipi
∗

2, 1, 1 0.840, 0.923, 0.923, 0.923 3.608

1, 2, 1 0.994, 0.834, 0.892, 0.892 3.617

1, 1, 2 0.974, 0.974, 0.843, 0.843 3.633

2, 2, 3 0.878, 0.876, 0.850, 0.850 3.454

3, 2, 2 0.836, 0.868, 0.866, 0.866 3.434

2, 3, 2 0.880, 0.842, 0.861, 0.861 3.444

3, 3, 4 0.845, 0.844, 0.830, 0.830 3.350

3, 4, 3 0.846, 0.825, 0.836, 0.836 3.343

4, 3, 3 0.822, 0.840, 0.838, 0.838 3.339
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Table 6

Five-machine lines with nonidentical buffers and equal energy coefficients

N1, N2, N3, N4

p1
∗, p2

∗, p3
∗, p4

∗, p5
∗ ∑i kipi

∗

2, 3, 2, 2 0.893, 0 .850, 0.880, 0.879, 0.879 4.380

2, 2, 3, 2 0.892, 0 .891, 0.855, 0.874, 0.874 4.302
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Table 7

Three-machine lines with identical buffers (N1 = N2 = 2) but different energy coefficients

k1 : k2 : k3

p1
∗, p2

∗, p3
∗ ∑i kipi

∗ Comparison

1 : 1.2 : 1.5 0.878, 0.855, 0.824 3.141 0.8%

1 : 2 : 3 0.926, 0.856, 0.800 5.040 0.5%

3 : 2 : 1 0.800, 0.856, 0.928 5.041 0.5%

2 : 1 : 2 0.830, 0.910, 0.828 4.227 1.4%

1 : 2 : 1 0.889, 0.797, 0.888 3.371 0.3%
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Table 8

Four-machine lines with identical buffers (Ni = 2, i = 1, 2, 3) but different energy coefficients

k1 : k2 : k3 : k4

p1
∗, p2

∗, p3
∗, p4

∗ ∑i kipi
∗

1 : 2 : 3 : 4 0.951, 0.902, 0.856, 0.816 8.587

4 : 3 : 2 : 1 0.818, 0.855, 0.900, 0.955 8.594

1 : 2 : 1 : 2 0.916, 0.839, 0.916, 0.837 5.184

2 : 1 : 1 : 2 0.840, 0.916, 0.916, 0.836 5.184

1 : 2 : 2 : 1 0.916, 0.839, 0.837, 0.916 5.184
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Table 9

Five-machine lines with identical buffers (Ni = 2, i = 1, 2, 3, 4) but different energy coefficients

k1 : k2 : k3 : k4 : k5

p1
∗, p2

∗, p3
∗, p4

∗, p5
∗ ∑i kipi

∗

1 : 1.5 : 2 : 2.5 : 3 0.945, 0.917, 0.890, 0.863, 0.839 8.774

3 : 2.5 : 2 : 1.5 : 1 0.842, 0.864, 0.888, 0.916, 0.947 8.782

1 : 2 : 1 : 2 : 1 0.921, 0.847, 0.921, 0.844, 0.920 6.145

1 : 2 : 2 : 2 : 1 0.931, 0.864, 0.862, 0.860, 0.931 7.034

2 : 1 : 1 : 1 : 2 0.848, 0.921, 0.921, 0.920, 0.843 6.146
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Table 10

Eight-machine lines

(a) Identical buffers and energy coefficients (ki = 1, i = 1, …, 8)

Ni

p1
∗ ∑i kipi

∗

2,2,2,2,2,2,2 0.885, 0.885, 0.879, 0.877, 0.877, 0.878, 0.880, 0.881 7.043

(b) Nonidentical buffer size and identical energy coefficients (ki = 1, i = 1, …, 8)

Ni

p1
∗ ∑i kipi

∗

2,2,2,3,2,2,2 0.884, 0.884, 0.877, 0.876, 0.845, 0.878, 0.879, 0.881 7.004

(c) Identical buffer size (Ni = 2, i = 1, …, 7) and nonidentical energy coefficients

ki

p1
∗ ∑i kipi

∗

1,1.5,2,2.5,3,3.5,4,4.5 0.966, 0.955, 0.931, 0.899, 0.893, 0.866, 0.862, 0.838 19.440

1,2,1,2,1,2,1,2 0.926, 0.876, 0.926, 0.847, 0.923, 0.836, 0.922, 0.831 10.475
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