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Abstract

Simulation–optimization has gained a great attention due to its success in the design of

complex manufacturing systems. In this paper, we look at manufacturing as a special class of

queueing systems and propose the Discrete Event Optimization (DEO) methodology, which pro-

vides a formal way to develop integrated mathematical models for the simultaneous simulation

and optimization. In the case the obtained model is a mixed integer linear programming model,

the methodology provides a formal way to generate approximations of them. The analytical

properties of DEO models are analyzed for the first time in the framework of sample path opti-

mization and mathematical programming. The methodology represents a reference for the use

of mathematical programming as a way to model simulation–optimization for queueing systems.

The applicability of the DEO methodology to complex problems is showed using the task and

buffer allocation problem in a production line.

Mathematical Programming, Manufacturing Systems, Simulation, Optimization,

Queueing Systems
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1 Introduction

Simulation–optimization has received an important attention as an effective technique to improve

the performance of manufacturing systems. In fact, for this particular category of systems, discrete

event models are usually adopted to reproduce their dynamics.

In this paper, we look into the general queueing systems with specific examples in the manu-

facturing domain. In this area, simulation–optimization is typically carried out through iterative

procedures alternating two separated modules: an optimization module for the choice of the best

system configuration (e.g., the number of machines at each stage of a transfer manufacturing line,

the storage capacity between workstations) and a simulation module for the evaluation of the system

performance. In such framework, the simulation module, mostly considered as a black-box, takes

as input the solution of the optimization module and generates the performance of the system as

output (Law, 2007). The output of the simulation module is then used as input for the optimization

module, which is solved again. This iterative procedure continues until the optimal solution is found

or a predefined stopping condition is satisfied (Kleijnen, 2008; Spall, 2003). The simulation module

is usually a discrete event simulator, whereas several methods are available in the literature for the

optimization module (Fu et al., 2015; Healy and Schruben, 1991; Jin and Schmeiser, 2003). Exam-

ples are response surface methodology (Myers et al., 2009), stochastic approximation (Kushner and

Yin, 1997), ranking and selection (Boesel et al., 2003), meta–heuristics (Hong and Nelson, 2006),

random search (Andrandóttir, 2005; Zabinsky, 2009) and mathematical programming (Fu et al.,

2005).

In the area of computing, several modeling techniques are used for simulation and property

verification such as Petri Nets, Finite State Automata (FSA), and Event Relationship Graphs

(ERGs). In particular, ERGs are a general language for modeling and simulation of Discrete Event

Systems (DESs) (Schruben, 1983). They have been successfully applied for the evaluation of the

DESs performance (Savage et al., 2005; Chan, 2005; Liu et al., 2012; Buss and Sanchez, 2002) and

showed to over perform other formalisms in terms of modeling power and generality (Cassandras

and Lafortune, 2008; Cao and Zhang, 2008).

Chan and Schruben (2008) provided a general scheme to translate ERG simulation models into

a set of equivalent mathematical programming models. This represented a breakthrough in the un-

derstanding of the deep relationship between simulation and optimization and boosted the research

in the area of simulation–optimization. Matta (2008) and Alfieri and Matta (2012b) extended the

work in Chan and Schruben (2008) to the simulation–optimization models of multi–server tandem

flow lines. An integrated model is generated for the purpose of solving a simulation–optimization

problem for queueing systems. In fact, if mathematical programming is adopted to solve the opti-

mization model and the simulation model is also generated as a mathematical program, the simu-

lation becomes strongly related to the optimization of the system. The basic idea is that, if a set

of constraints exists to model the system dynamics, it is then possible to embed them within an

optimization model. This means that the feasibility of the solution given by the optimizer does

not need to be checked by an external simulator. In other words, we optimize the system while
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simulating it.

Mathematical programming for simultaneous simulation and optimization establishes an alter-

native paradigm where the evaluation of the candidate solution is intertwined with the search of

the optimum. However, despite the above listed positive aspects of the integrated simulation–

optimization approach, when the optimization is taken into account, mathematical models can

become Mixed Integer Linear Programming (MILP) models and the related computational burden

has to be considered.

Alfieri and Matta (2012b) then proposed the concept of time buffer (TB), introduced by Matta

(2008), to approximate the MILP models into linear programs (LP) for specific problems. In general,

time buffer is a continuous variable used to approximate the corresponding integer variable defined

in the original (MILP) model. This substitution prevents the optimization model from becoming

MILP, although introducing an approximation. To approximate a discrete variable with a time

buffer, it has to be possible to formally describe its effect on the events characterizing the system

dynamics. This holds when the system behavior can be formulated as a set of max-plus type

equations (Baccelli et al. (1992), Buzacott and Shantikumar (1993)).

Pedrielli et al. (2015b) proposed a first generalization for the cases provided in (Alfieri and Matta,

2012b,a; Pedrielli et al., 2015a). Other researchers have recently used integrated mathematical pro-

gramming models to deal with various simulation–optimization problems ((Helber et al., 2011a,c,b;

Weiss and Stolletz, 2015; Tan, 2015; Stolletz and Weiss, 2013; Schwarz and Stolletz, 2013; Weiss

and Stolletz, 2013; Weiss et al., 2017)), however, no formal properties of the methodology have been

investigated so far.

The main objective of this paper is to present a methodology for integrated simulation–optimization

of manufacturing systems that can be represented as queueing systems. We refer to this methodol-

ogy as Discrete Event Optimization (DEO), due to the fact that events are interpreted as decision

variables in a unique mathematical program, which integrates system performance evaluation and

optimization. Specifically, this paper provides the foundations to develop integrated simulation–

optimization of DESs, thus extending the work of Chan and Schruben (2008) in the scope of opti-

mization, while providing deeper theoretical support with respect to (Alfieri and Matta, 2012b,a;

Pedrielli et al., 2015a).

Another objective of this work is to provide theoretical structure to integrated mathematical

programming models for simulation–optimization. Mathematical programming is exploited to derive

second order properties (convexity and monotonicity) of both objective function and constraints.

These properties allow the analysis of the asymptotic behavior of the algorithm used for solving the

simulation–optimization problem in the framework of Sample Path Optimization (SPO).

Such a general framework also contributes to the current approaches in simulation–optimization

along three directions:

• Exploration vs. exploitation dilemma is “solved by construction”: a single mathematical

model taking care of optimization while considering the system dynamics allows to solve the

problem within the mathematical programming framework. Existence and uniqueness of the
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global optimum relate back to the properties of the objective function and of the feasible

region;

• No independent and expensive simulation runs are required to evaluate, separately, objective

function and constraints. In fact, most of the simulation–optimization techniques need inde-

pendent simulations to estimate the different stochastic function describing the optimization

problem. Differently, the mathematical programming model exploits the dependency of the

stochastic functions;

• A mathematical program reveals structures characterizing the problem graph (e.g., modu-

larity, separation, symmetry), which can be used for making the solution approach quicker.

Sensitivity analysis can also be exploited to compute gradients serving an external search

procedure.

For all these reasons, DEO represents an important contribution in providing a remarkably different

perspective that leads to the solution of several problems characterizing most of the known tech-

niques. Researchers and practitioners can use DEO to generate formal representations of simulation–

optimization problems and develop ah hoc efficient algorithms on the top of them. Besides this, the

same framework can be used as support to already existing gradient based searching techniques.

The paper is organized as follows. Section 2 revises the main concepts of the Event Relationship

Graphs (ERGs). DEO is presented in section 3. Section 4 analyses the properties of DEO models.

The applicability of the DEO framework to a complex realistic problem is proposed in Section 5.

Section 6 concludes the paper.

2 Event Relationship Graphs

Event Relationship Graphs (ERGs) are possibly one of the most effective languages to model the

dynamics of discrete event systems (Schruben, 1983; Law, 2007; Savage et al., 2005; Chan and

Schruben, 2006; Matta et al., 2014).

The vertices of an ERG represent the state changes that take place when a particular type of event

occurs. The directed arcs of the graph represent the relationships between pairs of events. The state

changes associated with each event vertex appear in braces. Labels on directed arcs representing

all the dynamic and logical relationships between the events specify the conditions and time delays

between the occurrences of events. Following the definition presented in Askin and Standridge

(1993), we can refer to Figure 1 and define a generic arc in an ERG:

After event A occurs, if condition iAB is then true, event B will immediately been

scheduled to occur tAB time units into the future.
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Figure 1: Basic Element of an event relationship graph (ERG) (Chan and Schruben (2006))

Figure 2 shows the ERG representation of a queueing system with R0 identical parallel servers,

which process jobs in batches of b units.

Figure 2: ERG for a batch-processing queue with parallel resources (Chan and Schruben (2008)).

In Figure 2, the state is described by two integers: R, representing the number of idle resources

at each point in time, and Q, which refers to the number of jobs currently waiting in line for service.

The input data for simulating the ERG are the (random) customer inter–arrival times, a, and the

(random) service times, s.

The queue in Figure 2 is assumed to be initially empty with all the servers idle. Therefore, the

initial value of the number of available resources, R, is the total number of parallel servers in

the system, R0, and Q is initially set equal to zero, i.e., the initial state of the queue Q0 = 0.

Initially scheduled events are indicated by broken arrows as in Law (2007). The only event initially

scheduled here is the first job arriving at time zero. The “&” is used here to denote the Boolean

AND operator. A formal demonstration of the translation of an ERG into an optimization model

is the main contribution of Chan and Schruben (2008).

The mathematical model corresponding to the simulation of the system in Figure 2 is provided

in the following (Chan and Schruben, 2008), for the particular case in which only one server is in

the system, i.e., R0 = 1 and the batch size is equal to 1, i.e., b = 1:

P : min H =
n∑
i=1

(Ai + Si + Fi)

s.to

Ai+1 = Ai + ai+1 i = 1, . . . , n− 1

Fi = Si + si i = 1, . . . , n

Si ≥ Ai i = 1, . . . , n

Si ≥ Fi−1 i = 2, . . . , n

A1 = 0 Ai, Si, Fi n.s.r. ∀i

5



where Ai, Si, Fi represent for each simulated customer i the arrival time, the start time of service

and the finish time of service, respectively. An ERG, when observed from a simulation point of

view, is a graphical representation of the underlying event scheduling process. Instead, when an

ERG is considered from a mathematical programming perspective, the unconditional arcs in the

ERG impose equality constraints, and the conditional arcs in the ERG impose greater than or equal

to constraints on event occurrence times. From this point of view, an ERG is a set of constraints on

the event occurrence times. Each equality or inequality constraint directly impacts at most on the

two event types connected by the arc, with a right hand side for an equality constraint being the

time delay for the arc. Simulating an ERG, with a sequence of generated random variates as input

data, involves executing all the event instances as soon as they are feasible. This is equivalent to

the objective of minimizing the times of all the event instances subject to the constraints imposed

by the arcs in the ERG.

ERGs are independent from any specific representation of a discrete event model. They define

a discrete event system model at a more fundamental level than any commercial simulation lan-

guage. In fact, they express the relationships between the different event functions in the simulation

code. Process interaction and activity scanning paradigms, which are more typical in commercial

simulation codes, can be translated into their basic ERGs (Schruben, 2010).

3 Methodology

The DEO methodology is presented in this section. Section 3.1 describes the class of queueing

systems addressed in this paper, providing the main notation and the terminology adopted. Section

3.2 presents the mathematical programs, which extend those in (Chan and Schruben, 2008) to

include also the optimization component.

3.1 Notation and terminology

The DESs we consider are queueing networks with the set of servers J = {0, . . . , J + 1} and the set

of possible transaction routes for customer i (i ∈ N, N = {1, . . . , n}) between servers, represented

by Qi = {(j, j′)|j, j′ ∈ J} , ∀i. For each pair (j, j′), the connection between j and j′ belongs to Qi if

and only if customer i can directly flow from server j to j′. The source, represented by index j = 0,

is the server having no predecessor. The sink is, instead, the server having no successor and it is

indexed by J + 1. The source represents an infinite external arrival stream of customers, whereas

the sink is the output gate through which customers are released from the network. Queues may

have either finite or infinite capacity. We consider a general setting in which no explicit condition

has to be imposed over the system layout, i.e., server j is not the j−th on which each customer

is served, i.e., j simply represents the server label. Analogously, customer i is not the i−th in the

sequence.

Let Eξij and eξij denote the events occurring in the system and their occurrence times, respectively,

where ξ ∈ T is the event type (e.g., arrival, start of service, etc.), and the pair (i, j) indicates the
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customer i and the server j the event refers to. We assume that customer i at server j undergoes a

service activity that is temporally defined by a start event Esij occurring at time esij and a completion

event Efij occurring at time efij ; the duration of the service process is tfsij,ij .

In the case of stochastic DES, tξξ
′

ij,i′j′
may represent the duration of a general activity, where ξ

and ξ
′

generalize the start and finish events and indexes i
′
j
′

represent any entity–server pair, and

may follow some known statistical distributions.

The set of all the possible events is identified by W. The flow of each entity i is determined by

the occurrence of a set of events Wi =
{
Eξij , ξ ∈ T, j|(j, j′) or (j′, j) ∈ Qi

}
, i ∈ N. Each event Eξij

in the set Wi has a set WIξ
ij of input events, i.e., triggering events, and a set WOξ

ij of output events,

i.e., triggered events. Notice that elements in the sets WIξ
ij and WOξ

ij might not be in the set Wi.

3.2 Integrated models for simulation–optimization

The mathematical formulation for integrated simulation–optimization problems can be generated

by recognizing the existence of two main ways, in which events can constrain each other, i.e., delay

and control. Hence, two main categories of events can be defined: (1) natural events, and (2)

control events. While natural events are only responsible for delay–type connections, control events

generate control–type connections. Control events are grouped in the set WC , while natural events

are in the set WN , and we have WN ∩WC = {0}.

Delay–type connections In this case, events Eξij and Eξ
′

ij′
have to happen with a certain relative

delay tξξ
′

ij,ij′
. Such a relationship between events is translated into a dynamics constraint of the type:

eξij − e
ξ
′

ij′
≥ tξξ

′

ij,ij′
(1)

It is important to highlight that the customer sequence {i} is here meant to represent the order

in which customers are served by the system and not the arrival order. However, in the case a

sequencing decision is taken, then {i} is not a–priori determined and control constraints of the

type (2) need to be generated for the integer case (although κξξ
′

ij,i′j′ is a parameter in this case).

All the delay–type constraints are linear in nature. Indeed, tξξ
′

ij,ij′
might even be boolean, but it

represents an input parameter (i.e., it is known) and, as such, does not compromise the linearity of

the relationship.

Control–type connections Control constraints are generated from all the event pairs where the

delay between a natural event and a control event, eξij−e
ξ
′

i′j′
, is controlled through a decision variable,
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which can be either continuous, sξξ
′

ij,i′j′ , or binary, κξξ
′

ij,i′j′ . We obtain the following constraints:

eξij − e
ξ
′

i′j′
+ sξξ

′

ij,i′j′ ≥ 0 ∀ (ξ, i, j) ∈WN ,
(
ξ
′
, i
′
, j
′
)
∈WC ∩WIξ

ij , (2)

eξij − e
ξ
′

i′j′
−M · κξξ

′

ij,i′j′ ≥ −M ∀ (ξ, i, j) ∈WN ,
(
ξ
′
, i
′
, j
′
)
∈WC ∩WIξ

ij ,

3.2.1 General formulation

According to the previous considerations, resulting in the constraints (1)–(2), the optimization of a

system corresponds to the search of the best set of control events WC =
{
Eξij

}
, as well as the values

of sξξ
′

ij,i′j′ and κξξ
′

ij,i′j′ in constraints (2) such that the resulting event occurrence times
{
eξij

}
satisfy

some target performance. We can now formulate the DEO simulation–optimization problem. In

the following model, for the sake of simplifying the expressions, we will characterize each event with

the triple (ξ, i, j) instead of referring to the event Eξij . The general formulation results:

P : min H =
∑

(ξ,i,j)∈W

αξije
ξ
ij +

+
∑

(ξ,i,j)∈WN

∑
(ξ′ ,i′ ,j′)∈WC∩WIξ

ij

(
βξξ

′

ij,i′j′
sξξ
′

ij,i′j′
+ γξξ

′

ij,i′j′
κξξ
′

ij,i′j′

)
+ ϑ · ε (3)

∑
(ξ,i,j)∈WC

gξij

(
eξij

)
− ε ≤ µ∗ (4)

eξij − e
ξ
′

ij
′ ≥ tξξ

′

ij,ij
′ ∀ (ξ, i, j) ∈W,

(
ξ
′
, i, j

′
)
∈WIξ

ij (5)

eξij − e
ξ
′

i′j′
+ sξξ

′

ij,i′j′ ≥ 0 ∀ (ξ, i, j) ∈WN ,
(
ξ
′
, i
′
, j
′
)
∈WC ∩WIξ

ij , (6)

eξij − e
ξ
′

i′j′
−M · κξξ

′

ij,i′j′ ≥ −M ∀ (ξ, i, j) ∈WN ,
(
ξ
′
, i
′
, j
′
)
∈WC ∩WIξ

ij , (7)

Equation (3) is the objective function, having as decision variables the event times eξij , and the

control parameters sξξ
′

ij,i′j′
and κξξ

′

ij,i′j′
. Function (3) can consider a single or multiple objectives

depending on the values of the input parameters αξij , β
ξξ
′

ij,i′j′
and γξξ

′

ij,i′j′
. The term ϑ · ε serves

the purpose to penalize finite sample path solutions that do not meet the desired performance (i.e.,

violate the constraint (4) if the decision variable ε is not considered). This penalization approach has

an impact on the implementation of the algorithm to solve the problem but not on the asymptotic

properties. Equation (4) is the performance constraint, where µ∗ is the target performance and g

is any function of the control event times.

The delay–type connections are translated into constraints (5), generated following the scheme in

(1). According to these constraints, the service sequence for customer i is defined by the precedence

relationships between the events Eξij and Eξ
′

ij′
, occurring at time eξij and eξ

′

ij′
, respectively. Parameters

tξξ
′

ij,ij′
form the collection of realizations of the random variables characterizing the queueing system

(e.g., arrival times and service times).
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As stated in the previous sections, we assume to know the probabilistic characterization of the

input stochastic processes. Hence, we can generate tξξ
′

ij,ij′
as realizations of known random variables.

In constraints (6)–(7), generated as those in (2), variables eξi,j and eξ
′

i′j′ represent the time

occurrences of two events, relating customer i′ on server j′ and customer i on server j, which are

linked by a control. If the relationship between the two event times is boolean (7), the constraint

function has the form (1− κξξ
′

ij,i′j′) ·M , where κξξ
′

ij,i′j′ is a binary decision variable and M is a large

number. Instead, in case of continuous relationship, inequality (6) is function of the continuous

variable sξξ
′

ij,′i′j′ .

The main feature of DEO models is that they are based on events rather than on states, which

generally grow faster than events. Notice that when βξξ
′

ij,i′j′
= 0 and γξξ

′

ij,i′j′
= 0 ∀ (ξξ′) ,

(
ij, i

′
j
′
)

in

equation (3),
{
sξξ
′

ij,i′j′

}
and

{
κξξ
′

ij,i′j′

}
are input parameters, and the performance constraint is not

present (and, consequently, ε = 0), we are solving a pure simulation problem as in the representation

of Chan and Schruben (2008). Hence, the only decision variables are the event times eξij and we

refer to the function H as χ. Instead, we will refer to function (3) as S when αξij = 0.

Furthermore, since i = 1, . . . , n, the model size is a function of n, i.e., the number of simulated

customers. In fact, as the simulation length increases (i.e., n increases), also the number of decision

variables and constraints increases. In particular, we can notice a quadratic growth of the model in

the number of considered customers.

Example To show how the DEO framework can be used to derive integrated mathematical pro-

gramming models, we refer to a simple example of simulation–optimization problem. Let us consider

the optimization problem of choosing the service rate in a GI/G/1 queue to balance the cost of in-

creasing the service rate with the benefit of reducing the steady-state expected waiting time. The

ERG for this problem is the same as in Figure 2 with b = 1, R = 1. Three event types characterize

the system: arrival (corresponding to the event time eai ), start of the process (corresponding to the

event time esi ) and the departure event (corresponding to the event time edi ). We can derive the

following mathematical programming model considering the relationships between events:

P : min H = csd · ssd

eai − eai−1 ≥ ta,i i = 2, . . . , n (8)

edi − esi − ssd ·
(
F−1(ui)

)
≥ 0 ∀i (9)

esi+1 − edi ≥ 0 i = 1, . . . , n− 1 (10)∑
i

(esi − eai ) ≤ n · µ∗ (11)

With reference to the general formulation, we minimize the continuous decision variable ssd, which

corresponds to sξξ
′

ij,i′j′
in the general problem P . In particular, the superscript sd corresponds to

the two event types start and departure. The subscript of the decision variable should be
(
ij, i

′
j
′
)

.

However, since the expected processing time is the same for every job and there is only one stage in
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the system, we avoid the notation ssdi1,i1 and we refer to the decision variable as ssd. In the model,

csd plays the role of βξξ
′

ij,i′j′
. The same simplification in notation, as highlighted for the decision

variable, applies to the rest of the model.

The first three sets of constraints simply describe the dynamics of the GI/G/1 queue, that is,

the inter–arrival time ta,i between the arrival of customers i− 1 and i (constraints (8)), the service

time ssd ·
(
F−1(ui)

)
elapsing between the start of the service of customer i and its departure from

the queue (constraints (9)), and the precedence between customer i and i + 1, i.e., customer i + 1

can start service only after the departure of customer i (constraints (10)). In constraints (9), the

third term represents the variability in the service time, seen as the product between the average

service time and a random variable generated according to the distribution of the processing time

F (the term ui is a random number used for the generation).

Finally, constraint (11) represents the upper bound on the total (and then average, since the

number of customers is a–priori defined) waiting time.

The model is a linear programming model, thus it can be easily solved. The important aspect is

that this simple example shows how the integration of simulation and optimization can be achieved.

4 Solution Methodology

In this section, we provide a generalization of the approximation scheme provided in Alfieri and

Matta (2012b) in order to define the continuous counterpart of the model in equations (3)–(7). We

also extend the authors’ results in terms of structural relationship between the approximate and

exact formulations. Such approximation mechanism serves the purpose of decreasing the complexity

and the computational effort required to solve the sample path optimization problem when the

variables of type κξξ
′

ij,i′j′
are present.

Finally, we analyze the properties of the continuous models (being them exact or approximate

models), in terms of asymptotic convergence, when the number of simulated entities (e.g., customers,

parts, etc.) becomes large in the setting of sample path optimization.

4.1 Approximation mechanisms

When problem P in (3)–(7) is a MILP, it can be approximated to an LP by using the construct of

time buffers proposed in Alfieri and Matta (2012b).

As a result of such approximation, the objective function becomes:

S =
∑

(ξ,i,j)∈WN

∑
(ξ′ ,i′ ,j′)∈WC∩WIξ

ij

βξξ
′

ij,i′j′
sξξ
′

ij,i′j′
+ ϑ · ε

where βξξ
′

ij,i
′
j
′ , i.e., the cost related to the continuous decision variables, is assumed given as input.

Given the generic event types ξ, ξ
′
, the customers pair

(
i, i
′
)

and the servers j, j
′
, if the events

Eξij and Eξ
′

i′j′
are involved in constraints of type (7), each integer variable κξξ

′

ij,i′j′
can be replaced by

10



the continuous counterpart sξξ
′

ij,i′j′
. It is important to notice that sξξ

′

ij,i′j′
does not represent a pure

relaxation of the binary variable κξξ
′

ij,i′j′
as sξξ

′

ij,i′j′
might take any positive value and it is not limited

in the interval [0, 1]. Formally, the following constraint:

eξij − e
ξ
′

i′j′
−M · κξξ

′

ij,i′j′ ≥ −M ∀ (ξ, i, j) ∈WN ,
(
ξ
′
, i
′
, j
′
)
∈WC ∩WIξ

ij (12)

is approximated by:

eξij − e
ξ
′

i′j′
+ sξξ

′

ij,i′j′ ≥ 0 ∀ (ξ, i, j) ∈WN ,
(
ξ
′
, i
′
, j
′
)
∈WC ∩WIξ

ij (13)

This approximation is structural and general because it operates on the connection between two

events independently from their nature. As a consequence, DEO approximate models can be devel-

oped for any application field or problem that fits within its framework.

4.2 Formal relationship between exact and approximate DEO models

When performing the aforementioned approximation, it is important to understand the relationship

between the approximate and the exact solutions. In order to derive such formal relationship, we

refer to the simulation version of problem P , i.e., βξξ
′

ij,i′j′
= γξξ

′

ij,i′j′
= ϑ = 0 and αξij = 1.

We define the bounding set as follows:

Definition 1. Let K∗ be the optimal solution of the exact optimization model, i.e., the collection

of the optimal values for the binary decision variables

{
κ∗,ξξ

′

ij,i′j′

}
. The set

B =

{(
κl,ξξ

′

ij,i′j′
, κu,ξξ

′

ij,i′j′

)
: κl,ξξ

′

ij,i′j′
≤ κ∗,ξξ

′

ij,i′j′
≤ κu,ξξ

′

ij,i′j′

}
is the bounding set and characterizes the relationship between the exact and the approximate problem.

The bounding set is derived by analyzing inequalities (12) and their continuous counterpart

(13). The following theorem states the main result:

Theorem 1. Given a pair of events
{

(ξ, i, j) ,
(
ξ
′
, i
′
, j
′
)}

:
(
ξ
′
, i
′
, j
′
)
∈ WIξ

ij , and the event times

ẽξij and eξij resulting from the approximate simulation model and from the exact simulation model

when κξξ
′

ij,i′j′
= 1, respectively, if the following condition holds, for each pair of events:

eξij ≤ ẽ
ξ
ij − s

ξξ
′

ij,i′j′
(14)

then the objective function value from the approximated model χ̃ is smaller than the one from the

exact model, i.e., the approximate system performs better than the exact one. Therefore, κξξ
′

ij,i′j′
is

the lower bound on the solution, κl,ξξ
′

ij,i′j′
. If, on the other hand, the following condition holds, for
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each pair of events:

eξij ≥ ẽ
ξ
ij − s

ξξ
′

ij,i′j′
(15)

then the objective function value from the approximate model χ̃ is larger than the one from the

exact model, i.e., the approximate system performs worse than the exact one. Therefore, κξξ
′

ij,i′j′
is

the upper bound on the solution, κu,ξξ
′

ij,i′j′
.

Proof. See Appendix.

4.3 Asymptotic properties of continuous DEO models in the sample path opti-

mization setting

In this section, we will focus on continuous simulation–optimization models, where αξij = 0 for

all (ξ, i, j) ∈ W, γξξ
′

ij,i′j′ = 0 for all (ξ, i, j) ∈ WN , (ξ′, i′, j′) ∈
(
WC ∪WIξ

ij

)
, and only continuous

decision variables sξξ
′

ij,i′j′ for all (ξ, i, j) ∈ WN , (ξ′, i′, j′) ∈
(
WC ∪WIξ

ij

)
are defined. These models

can either refer to exact problems in which decision variables are continuous or to approximate

problems devised as shown in section 4.1. Moreover, we will assume that the objective function is

simply the sum of all the variables, i.e., βξξ
′

ij,i′j′ = 1∀(ξ, i, j) ∈WN , (ξ′, i′, j′) ∈
(
WC ∪WIξ

ij

)
.

Since the models are solved according to the sample path optimization approach, we use the

results in Robinson (1996), which provides the asymptotic characterization of sample path optimiza-

tion algorithms. The analysis is made of three main parts: 1) analysis of the second order properties

in the context of simulation and optimization; 2) analysis of the constraints of the integrated model

P ; 3) application of the results in Robinson (1996) to the integrated simulation–optimization model.

The second order properties of the considered optimization models and related simulation models

guarantee the regularity conditions at the basis of constraint classification and existence results.

The second part of the analysis is required since Robinson (1996) does not consider stochastically

constrained problems. Then, once the first two parts are characterized, we can apply the main

results in Robinson (1996) and prove the convergence in our setting.

4.3.1 Preliminaries

In order to simplify the notation, we will use the matrix forms to represent the models instead of

the extended notation used in section 3.2. In order to make the theoretical presentation simpler, we

will separate the optimization and the simulation model that were presented in their general form

in section 3.2.1.

In the following, let Fn ⊂ Xn × R||T||×n+ × R+ be the feasible region for the approximate opti-

mization problem (for a finite sample path of size n), where Xn is the domain for the continuous

decision variables s, R||T||×n+ is the domain for the event times and Rn+ the domain for the ε variable.

Since the main results will be related to the behavior of the continuous solution s rather than the

event times e, it is useful to define the projection of the feasible region Fn onto the decision variable

12



space Xn. We will refer to this set, representing the sample path–feasible solutions, as Σn. Finally,

in order to highlight the role of the sample size n, we will refer to the continuous decision variables

and to the event times as sn and en respectively.

The primal (on the left) and the dual (on the right) integrated simulation–optimization models,

in their matrix forms, are the following:

min Sn [(bi (τi))
m
i=1] = 1

′
sn + ϑ · ε max b1(τ)uD + b2(τ)uP − µ∗ · ν (16)

s.t.

ADen ≥ b1(τ) AD
′
uD ≤ 0 (17)

AP [en|sn] ≥ b2(τ) AP
′
uP ≤ 1 (18)

ε−
∑
ν∈WC

g (en) ≥ −µ∗ ν ≤ ϑ

en ≥ 0, ε ≥ 0, sn ∈ Xn u ≥ 0, ν ≥ 0

The vector [en|sn]
′
, where [·|·]′ is the row vector obtained by the concatenation of two column

vectors, contains the decision variables s and the event times e that, together with the ε variable,

represent the variables of the primal model, while u
′

= [uD|uP ] and ν represent the dual variables.

The matrix A =
[
AD|AP

]
is an l ×m-dimensional matrix, where l represents the number of con-

straints, not including the performance constraint(s) in equation (4), and m the number of decision

variables. According to the definitions provided in section 3, constraints (17) and (18) are the same

as (5) and (6), respectively.

The m-dimensional vector of the right hand side b =
[
b1|b2

]
= {b1, b2, . . . , bm} consists of the

realizations of the random variables, B, which are assumed to follow univariate distributions, i.e.,

B ∼ VB (τ), where τ refers to the parametrization of the considered distribution. The link between

the realizations and the parameters of the sampling distribution is made explicit through the nota-

tion b (τ).

The objective of the primal problem, Sn (sn(b(τ), µ∗), ε(b(τ), µ∗)), is a function of sn, which is itself

a function of the right hand side b parametrized over τ .

The same modeling approach can be applied to the simulation model.

minχ
[
(sn,i (τi) ,bi (τi))

m
i=1

]
= 1

′
en max b1(τ)uD + b2(τ)uP

s.t.

ADen ≥ b1(τ) AD
′
uD ≤ 0

APen ≥
[
b2(τ)|sn

]
AP

′
uP ≤ 1

en ≥ 0 u ≥ 0

The model is the same as the optimization one, with two main differences: 1) no performance

constraint is present and 2) s are known parameters, as b, and not decision variables. The only
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primal decision variables are the event times e.

When interested in studying the behavior of function χ with respect to only sn or b, we will use

χ(sn, ·) (sn fixed, b variable) and χ(·,b) (sn variable, b fixed), respectively.

The formulation just presented allows to explicitly indicate the set of control constraints (equations

(6)), having the decision variables s as right hand side, and the natural dynamic constraints (equa-

tions (5)), not containing it. Again, the dependency of both b and sn on the parameter τ is made

explicit through the notation b(τ) and sn(τ).

In order to characterize the sample path problem, we will rely on the mathematical programming

framework and make use of the definitions in (Yao and Shanthikumar, 1991) of SICX(sp) and

SDCX(sp) representing monotone convexity notions in the sample path sense. In particular, they

refer to stochastic increasing and convex, and stochastic decreasing and convex in the sample path

(sp) sense, respectively.

4.3.2 Second order properties

We first prove monotonicity and convexity of the objective function with respect to the stochas-

tic right hand side in the approximate optimization model. The presented analysis is based on

the works of Yao and Shanthikumar (1991) and Shaked and Shanthikumar (1988), although the

reference framework of these contributions is not the Mathematical Programming Representation

(MPR).

A contribution within the MPR framework is given in Chan (2005), where the second order prop-

erties of the finishing times in multi–server flow lines are proved. However, the models proposed in

Chan (2005) are in the scope of simulation.

In this section, we will adopt the notation Sn(b) when it is important to emphasize the depen-

dency of the objective from the right hand side b, whereas the notation Sn(sn) will be used to stress

the relationship between the objective function and the continuous variable solution sn.

The following property characterizes the relationship between the objective function Sn and τ pa-

rameterizing the distribution of B.

Property 1. (Second order properties for Sn) If {bi(τi)} are m families of random variables and

{bi(τi)} ∈ SICX(sp), then Sn [(bi (τi))
m
i=1] is SICX(sp) in (τi)

m
i=1.

Proof. See Appendix.

Moreover, the optimization model is a minimization problem and the performance constraint is

a ≤–type constraint; hence, as the right hand side increases, the objective function cannot increase.

This proves that the objective function S∗n(b) is decreasing in the target performance µ∗.

Exploiting the matrix formulation of the primal and dual models provided at the beginning of

the section, we can further characterize the function χ and the average system performance Λ̂.

Property 2. (Second order properties for χ) If {si(τn,i)} are m families of random variables and

{sn,i(τi)} ∈ SICX(sp), then χ
[
(sn,i (τi) , ·)mi=1

]
is SICX(sp) in (τi)

m
i=1. If {bi(τi)} are m families of

random variables and {bi(τi)} ∈ SICX(sp), then χ [(·,bi (τi))
m
i=1] is SICX(sp) in (τi)

m
i=1.
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Proof. The proof is the same as Property 1 and, therefore, it is not reported.

Corollary 1. Let Λ(s, B) be the expected value of the target performance µ defined as:

Λ(s, B) , EB[µ], (19)

and let Λ̂(sn,b) be its estimator:

Λ̂(sn,b) ,
1

n

n∑
i=1

g(eiJ)

i
. (20)

The average performance
{

Λ̂(sn,b)
}
∈ SICX(sp) in the service times b and

{
Λ̂(sn,b)

}
∈

SDCX(sp) in the continuous variables sn.

Proof. See Appendix.

4.3.3 Constraints characterization

In the following, we will use the notation s∗n and S∗n to refer to the optimal solution and to the

objective function of the finite sample path problem (keeping the same notation adopted in the

previous sections). The infinite sample path solution will be denoted as s or s∞, whereas the

objective function will be referred to as S or S∞, alternatively.

Let λ(s, B) be the difference between the expected value of the actual performance and the

target performance:

λ(s, B) , Λ(s, B)− µ∗, (21)

and let λ̂(s,b) be its estimator:

λ̂(sn,b) , Λ̂(sn,b)− µ∗. (22)

The estimates defined in (20) and (22) are sample averages. The expected values (19) and (21) are

functions of the continuous variables s and of the collection of random variables B.

We will denote the expected values with Λ(s, B) and λ(s, B) when we want to stress that the

property described is related to the considered random variables (i.e., the distribution taken into

account), whereas the notation Λ(s, ·) and λ(s, ·) will be adopted when the property is independent

from the distributions.

Using the previously introduced notation, the general formulation in (4)–(6), can be rewritten
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as:

min
s,e,ε∈Σ

Sn(b)

s.t.

(5)−−(6)

λ̂(sn,b) ≤ ε (23)

Assumption 1. The system under analysis is stationary and the target performance µ∗ is such

that µ∗ ≥ µmin, being µmin the best performance that can be reached by the system in a steady state.

We first characterize the asymptotic properties of the performance function estimate (constraint

(4)) to the expected performance value. Adopting the same arguments of Assumption 3.1 in (Haskell

et al., 2012), we prove the following lemma.

Lemma 1. The following holds for the approximate optimization model:

(a) Λ(s, B) is Lipschitz continuous in the domain of s for PB almost all τ ∈ R||τ ||, where PB

refers to the density implied by the collection of random variables {B}. Then there exists a

function Π : R||τ || → R such that

||Λ(s1, B)− Λ(s2, B)||≤ Π(τ)||s1 − s2||,

for PB almost all τ ∈ R||τ || and such Π(τ) is integrable.

(b) The moment generating function of Π(τ), denoted as MΠ(τ)(l), is finite for all the l in a

neighborhood of 0.

Proof. See Appendix.

Note that Π(τ) is a stochastic function since it is related to the distance between random

variables ||s1 −−s2||.

4.3.4 Asymptotic convergence

In the context of stochastic optimization, epi–convergence is one of the most used concepts in the

analysis of the asymptotic properties (Shapiro, 2003; Lachou, 1998; Attouch, 1991; King and Wets,

1991; Kall, 1986; Rockafellar and Wets, 1998; Topsoe, 2006; Wets, 1991).

We prove epi–convergence for the optimization objective function using the result that if the ob-

jective function S∗n epi–converges to S∗∞, then the optimal solution s∗n converges to s∗∞ (Robinson,

1987; Rockafellar and Wets, 1998; Robinson, 1996).

In the following, we will use the notation s and S to indicate the infinite sample path solution

and the objective function, respectively, while sn and Sn will indicate the optimal solution and the

objective function of the finite sample path case, as in the previous sections.

16



The next lemma shows that the sample average estimator is an unbiased estimator of the per-

formance expected value and, as a result, the sample path–constraint set converges to the true

constraints set (Shapiro, 2003).

Lemma 2. sup
{
|λ(s, B)− λ̂(s, B)|: s ∈ Σ

}
→ 0 as n → ∞ almost surely. As a result, λ̂(s)

converges to λ(s) uniformly on Σ almost surely.

Proof. See Appendix.

In order to apply the fundamental results in (Robinson, 1996), we need to show that Assumptions

A–B in Definitions 2.2 and 2.3 in (Robinson, 1996) hold and this is proved by Lemma 3 and Lemma

4.

Lemma 3 (Assumption A, Definition 2.2 in Robinson (1996), page 517). Function Sn satisfies the

following conditions: (a) for each 1 ≤ n <∞, Sn is lower semi–continuous. (b) Sn →epi S, i.e., it

epi–converges to S.

Proof. See Appendix.

Lemma 4 (Assumption B, Definition 2.3 in Robinson (1996), page 517). S is proper and the set

of minimizers of the finite sample path optimization problem S∗n = {sn ∈ Σn|Sn = S∗n} is not empty

and it is compact.

Proof. See Appendix.

Having analyzed the constraints, using Lemma 4, we can now characterize the relationship

between λ̂(·, ·) and λ(·, ·). First, we separately analyze λ̂(·, ·) and λ(·, ·), in order to verify their

properties. We then study the “distance” between the two functions as the sample path increases.

Proposition 1. Let the function π = E [Π(τ)] be the expectation of Π(τ) and πn be the sample

average approximation of E [Π(τ)]: πn , 1
n

n∑
j=1

Πj(τ).

If function λ(s) is bounded on Σ, λ̂(sn, ·) is PB–almost surely bounded on Σ.

If function λ(s, ·) is Lipschitz continuous on Σ, λ̂(sn, ·) is PB–almost surely Lipschitz continuous

on Σ.

Proof. See Appendix.

Theorem 2 (Convergence of S, from Theorem 3.2 in Robinson (1996), page 519). The minimizer

s∗n epi–converges to the infinite sample path solution s∗ with probability 1. The related objective

function value S∗n converges uniformly to the infinite sample path objective function value S∗.

Proof. See Appendix.
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5 Application

5.1 Problem description and DEO mathematical modeling

In this section, we apply DEO to an industrial relevant problem, the joint Task and Buffer Allocation

Problem (TBAP) in a production line. This problem has two components: the Task Allocation

Problem (TAP) and the Buffer Allocation Problem (BAP). All the parts need to be processed

following a given sequence of tasks. The TAP aims at assigning all the tasks to the minimum

number of stations while guaranteeing a target maximum average cycle time (ϑ∗). In the TAP, the

task assignment is constrained by the manufacturing sequence, which means that the (l+1)−th task

can only be processed after the l−th task. The processing times are assumed stochastic. Specifically,

the average processing times of tasks (τl) are given as parameters, the average processing time µj

at station j is equal to the sum of the processing times of the tasks assigned to it. Processing time

tij of part i at station j follows a given stochastic distribution.

To improve the performance of stochastic production lines, buffer spaces are usually allocated

between stations, and the BAP solves for the optimal allocation of buffer space in the manufacturing

line. The stations and the buffers compose a flow line as shown in Figure 3. We also assume that

the first station is never starved and the last station is never blocked, i.e., the arrival buffer and the

departure buffer are infinite.

Figure 3: Example of open flow line with 3 workstations (Zhang et al. (2016))

Using the parameters and the variables reported in the following, the DEO model of the TBAP

can be devised.

Parameters

Cm: station unit cost

Cb: buffer space unit cost

Um: upper bound on the station number

Ub: upper bound on the single buffer space

T : number of tasks

n: number of simulated parts

d: warm-up length in terms of number of parts

τl: average processing time of task l

zij : random number for part i at station j

eai : arrival time of part i

ϑ∗: target cycle time
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Decision variables

µj ∈ R: average processing time at station j

mj ∈ {0, 1}: station allocation variables. If some tasks are assigned to station j, mj = 1; otherwise,

mj = 0

ylj ∈ {0, 1}: task assignment variables. If task l is assigned to station j, ylj = 1; otherwise, ylj = 0

xjk ∈ {0, 1}: buffer allocation variables. If the capacity of the j-th buffer is k−1, xjk = 1; otherwise,

xjk = 0

tij ∈ R: processing time of part i at station j

efij ∈ R: finishing time of part i at station j

Model

The integrated mathematical programming model is as follows.

min Cm

Um∑
j=1

mj + Cb

Um∑
j=1

Ub∑
k=1

kxjk

s.t.
Um∑
j=1

ylj = 1 l = 1, ..., T (24)

T∑
l=1

τlylj = µj j = 1, ..., Um (25)

Um∑
j=1

j(ylj − yl+1,j) ≤ 0 l = 1, ..., T (26)

Ub∑
k=1

xjk = 1 j = 1, ..., Um − 1 (27)

mj ≥ ylj j = 1, 2, ..., Um, l = 1, ..., T (28)

mj−1 ≥ mj j = 2, ..., Um (29)

tij = F−1(µj , zij) j = 1, ..., Um, i = 1, ..., n (30)

efi1 − e
a
i ≥ ti1 i = 1, ..., n (31)

efi+1,j − e
f
ij ≥ ti+1,j j = 1, ..., Um, i = 1, ..., n− 1 (32)

efi,j+1 − e
f
ij ≥ ti,j+1 j = 1, ..., Um − 1, i = 1, ..., n (33)

efi+k,j − e
f
i,j+1 ≥ ti+k,j − (1− xjk)M j = 1, ..., Um − 1, k = 1, ..., Ub, i = 1, ..., n− k (34)

efn,UM − e
f
d,UM

n− d
≤ ϑ∗ (35)

The objective function is the minimization of the cost of stations and the cost of buffer spaces.

Constraints (24) to (29) are the optimization constraints. Specifically, constraints (24) state that

each task is assigned to one station. Constraints (25) define the average processing time at a station

as the sum of the average processing times of the tasks assigned to the station. Constraints (26)
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force the l − th task to be assigned before the (l + 1) − th task. Constraints (27) state that each

buffer can be assigned a single capacity. Constraints (28) prevent a station to be allocated to the

line if no task has been assigned to it. Constraints (29) impose that all the stations allocated are

in the first part of the line.

Constraints (30) deal with the random generation of part processing times tij , which are a

function of the average processing time and of the random numbers zij . As the value of the decision

variable µj changes, the generated processing times tij are modified accordingly.

Constraints (31)–(34) describe the production process. Constraints (31) state that the i-th part

arrives at the line at time eai . Constraints (32) state that one station cannot process more than

one part at the same time. Constraints (33) impose that a part cannot be processed by more than

one station at the same time. Constraints (34) state that if the capacity of buffer j is equal to

k − 1 (which means xjk = 1), part i+ k cannot enter station j before part i leaves station (j + 1).

Constraint (35) is the performance constraint, bounding from above the average system cycle time

(i.e., the mean cycle time cannot be larger than ϑ∗).

The number of binary variables and the number of continuous variables in the model are UmUb+

n · Um and 2n · Um + Um, respectively. The number of constraints containing binary variables is

n ·UmUb +n2, and the number of continuous constraints is 3n ·Um. Therefore, when designing long

production lines or when considering long simulations, the computational complexity can be very

high.

By solving this MILP model, the global optimum can be obtained using a single–replication

experiment under the DEO framework. However, because of the high complexity of solving the

exact model, an approximate LP model can be devised by: 1) considering the processing time at

all the stations to be continuously and arbitrarily assigned, and 2) replacing the buffer allocation

problem by the time buffer allocation proposed in section 4.1. In order to solve the approximate

model we need to introduce the following parameters and variables:

Parameters

C̃m: adjusted station unit cost (approximate model)

C̃b: adjusted time buffer unit cost (approximate model)

Decision Variables

sjk ∈ R: time buffer variables (approximate model).
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min C̃m

Um∑
j=1

jµj + C̃b

Um−1∑
j=1

Ub∑
k=1

ksjk

s.t.
Um∑
j=1

µj =
T∑
l=1

τl (36)

efi+k,j − e
f
i,j+1 ≥ ti+k,j − sik j = 1, ..., Um − 1, k = 1, ..., Ub, i = 1, ..., n− k (37)

(30), (31), (32), (33), (35)

The objective function is the approximate minimization of the station number and the time

buffer capacity. Constraint (36) states that the sum of the average processing times of all the

stations has to be equal to the sum of the processing times of all the tasks. Constraints (37)

correspond to constraints (34) under the time buffer approximation.

5.2 DEO based solution algorithm

The LP model just described is far less complex than the exact MILP model. However, numerical

tests have shown that simply solving it (e.g., with ILOG CPLEX) is not really effective mainly

because the task assignment is not determined, since the assignment variables ylj are no longer

included. For this reason, a math-heuristic algorithm is proposed to solve the problem more effec-

tively.

Using the DEO methodology, it is possible to develop a specific algorithm to approximately

solve the TBAP. The algorithm is a math-heuristic that decomposes the problem into three different

problems, each one solved using a mathematical programming model. Specifically, it solves the LP

approximate model, a deterministic TAP and the approximate BAP in three steps to approximately

find out the optimal system configuration. In the first step, the approximate LP model is solved

to find the number of stations m∗, which is determined based upon the optimal service rate µ∗j .

Specifically, m∗ is equal to the smallest value of j for which µ∗j > 0 . In the second step, the

deterministic TAP with m∗ stations is solved to find the average processing times µj of stations

that minimize the cycle time. In the third step, given µj for each j, the DEO model of the BAP

with time buffer approximation is solved.

The cycle time constraint of the BAP may be feasible or infeasible depending on the number of

stations m∗. A tuning rule and an iterative procedure including the second and the third steps are

applied to find out the minimum station number that makes the TBAP feasible. If, after the second

and the third steps are performed, the BAP model is infeasible, the value of m∗ will be increased by

one, and the deterministic TAP and the approximate BAP models are solved again. This iterative

scheme continues until the BAP model is feasible, and m∗ is the minimum station number. On the

contrary, if the BAP is feasible after the second and the third steps are performed, m∗ is reduced

by one, and the two models (TAP and BAP) are solved again, until the BAP model is infeasible,
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and m∗+ 1 is the minimum station number. The complete solution procedure is shown in Figure 4.

Figure 4: Math-heuristic algorithm.

In the first step, the approximate TBAP model is the one reported at the end of section 5.1,

i.e.,

min C̃m

Um∑
j=1

jµj + C̃b

Um−1∑
j=1

Ub∑
k=1

ksjk

s.t.

(30), (31), (32), (33), (35), (36), (37)
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In the second step, the model of the deterministic TAP that is solved is the following:

min CT

s.t.
m∗∑
j=1

ylj = 1 l = 1, ..., T (38)

T∑
l=1

τlylj ≤ CT j = 1, ...,m∗ (39)

m∗∑
j=1

j(ylj − yl+1,j) ≤ 0 l = 1, ..., T − 1 (40)

where CT is a positive continuous decision variable. In the third step, the used DEO model of the

BAP with time buffer approximation is:

min

m∗−1∑
j=1

Ub∑
k=1

ksjk

s.t.

(30), (31), (32), (33), (35), (37)

5.3 Numerical analysis

Ten TBAP instances with different task times have been defined, in which T = 50 tasks are to

be assigned. The upper bound of station number Um has been set to 15, and the upper bound

of single buffer space Ub to 20. The station processing times tij follow beta(2, 2) distribution in

the interval (0, 2µj); specifically, processing time in equation (30) is generated using the formula

ti,j = 2µj · zi,j , where zi,j is randomly generated from beta(2, 2) on the interval [0, 1]. Each instance

has been replicated ten times, i.e., ten sample paths have been used for the random numbers zij .

The station unit cost both in the exact and in the approximate model, i.e., Cm and C̃m, is equal to

1000, while the buffer space unit cost Cb and C̃b is equal to 1. The number of parts in simulation

n is equal to 5000.

The solution found by our procedure has been verified by running independent experiments

with Arena simulation models, where the replication length is 100 000, and the number of parts of

warm-up is equal to 500, identified with the Welch’s approach.

Table 1 reports the results for the ten instances, averaged on the ten replications. The first

column refers to the TBAP instance (the task times are different in each instance). The second,

third and fourth columns refer to the station number, average processing time of stations and stage

buffer spaces, respectively. The last column reports the average cycle time found simulating the

solution with Arena. From Table 1, it can be noticed that the cycle time constraints ϑ∗ ≤ 1000 is

always satisfied (the values in the last column are all smaller than 1000).
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Table 1: Solution of the TBAPs provided by the math-heuristic on average.

Station
Instance number Station average processing time Buffer Allocation Cycle time

1 9 824 677 815 854 860 817 839 792 798 2 2 3 3 3 3 2 2 957±3
2 7 743 587 816 799 892 853 895 2 2 2 3 3 3 971±3
3 9 777 785 945 839 780 648 935 920 862 3 3 4 3 3 3 5 4 982±3
4 8 770 940 932 830 793 837 786 815 3 5 4 3 3 3 2 981±3
5 8 787 888 790 898 865 838 804 908 3 3 3 3 3 3 3 975±3
6 7 801 803 786 867 851 834 885 2 2 3 3 3 3 960±3
7 8 700 885 853 915 890 905 855 835 2 3 4 4 4 4 3 980±3
8 8 825 683 885 748 854 910 915 774 2 2 3 3 4 4 3 973±3
9 10 715 803 804 784 845 889 899 918 660 794 2 2 3 3 3 4 4 3 2 975±3
10 8 896 795 881 816 808 757 818 870 3 3 3 3 2 2 3 961±3

When different sample paths are used, the station number and the task allocation is always the

same for each instance, but the buffer allocation can slightly vary. This issue is shown in Table 2,

which reports in detail the ten replications (i.e, the ten sample paths) related to instance 4.

Table 2: Solution of the instance 4 provided by the math-heuristic in detail for each of the 10 sample paths.

Station Total Station average processing time Buffer Allocation
number buffer space

8 23 770 940 932 830 793 837 786 815 3 5 4 3 3 3 2
8 24 770 940 932 830 793 837 786 815 3 5 4 3 3 3 3
8 23 770 940 932 830 793 837 786 815 3 5 4 3 3 3 2
8 24 770 940 932 830 793 837 786 815 3 5 4 3 3 3 3
8 22 770 940 932 830 793 837 786 815 3 4 4 3 3 3 2
8 23 770 940 932 830 793 837 786 815 3 4 4 3 3 3 3
8 23 770 940 932 830 793 837 786 815 3 5 4 3 3 3 2
8 22 770 940 932 830 793 837 786 815 3 4 4 3 3 3 2
8 24 770 940 932 830 793 837 786 815 3 5 4 3 3 3 3
8 23 770 940 932 830 793 837 786 815 3 5 4 3 3 3 2

The same TBAP is also solved using OptQuest in Arena by running 10000 iterations, where

each iteration executes one replication. Each simulation has a length of 5000 parts and a warm–up

of 500 parts. Figure 5 shows the total costs of the solutions (i.e., the assembly lines) found by the

math-heuristic and by OptQuest.

The results of the experiments show that the proposed math-heuristic algorithm based on DEO

is both efficient and accurate. In fact, as reported in Figure 5, the cost of the solution provided by

the heuristic is always lower than that of the solution provided by OptQuest. Indeed, in 8 cases

out of 10, OptQuest finds a solution that has one or two stations more than the solution achieved

by using the math-heuristic. Furthermore, for instance 9, Optquest cannot find a feasible solution.

Finally, the average computation time of the math-heuristic algorithm is around 10 minutes for

instance, while the average instance time of OptQuest is around 20 hours.
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Figure 5: Total cost comparison between Optquest and the proposed math-heuristic.

6 Conclusion

In this paper, we have presented the Discrete Event Optimization (DEO) methodology for the

integrated modeling and solution of simulation–optimization problems. We have shown the gen-

eral formulation for DEO models for the integrated simulation–optimization of queueing systems.

Asymptotic properties of DEO in the case of continuous variable models have been provided under

the framework of sample path optimization.

DEO has been applied to model the TBAP and develop a solution algorithm to show its flexibility

and applicability to a complex problem.

The ability to derive white box models that integrate simulation and optimization for manufac-

turing systems represents a fundamental step towards the boost of optimization techniques based

on the theory of sample path optimization and mathematical programming. Future research can

exploit the structure of DEO models to build analytical representations of simulation–optimization

problems, which are generally developed using black box simulation models. Such analytical rep-

resentations can be used to introduce new kinds of approximations and algorithms to make more

efficient the search for optimal solutions.

The authors are currently working on the investigation of fast algorithms to efficiently solve large

classes of queueing simulation–optimization problems, relying on the network properties of the dual

formulation of the DEO model. The finite time performance is also under study by exploiting

again the mathematical programming setting and interpreting the regret as the pricing function in

a column generation approach.
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7 Appendix

7.1 Proof of Theorem 1

Proof. Considering constraints of the type (12) and (13), we can derive the following inequalities:

eξi,j ≥ e
ξ
′

i′j′

ẽξij ≥ ẽ
ξ
′

i′j′
− sξξ

′

ij,i′j′
(41)

It is apparent that if eξ
′

i′j′
≥ ẽξ

′

i′j′
− sξξ

′

ij,i′j′
, then eξij ≥ ẽξij , i.e., the exact system with κξξ

′

ij,i′j′
= 1 is

less efficient than the approximate counterpart with sξξ
′

ij,i′j′
. Therefore, κξξ

′

ij,i′j′
is a lowerbound. The

upperbound is derived in a similar way, verifying if eξ
′

i′j′
≤ ẽξ

′

i′j′
− sξξ

′

ij,i′j′
.

7.2 Proof of Property 1: Second Order Properties for Sn

Proof. To prove the increasing property, two vectors, b(1) and b(2), are constructed in a way such

that b(1) ≤ b(2) in each component. Then, at the optimum, Sn(b) satisfies:

S∗n(b(1)) = b
′

(1)u
(1)∗ − µ∗ν(1)∗ ≤ b

′

(2)u
(1)∗ − µ∗ν(1)∗ ≤ b

′

(2)u
(2)∗ − µ∗ν(2)∗ = S∗n(b(2)),

where
(
u(1)∗, ν(1)∗) and

(
u(2)∗, ν(2)∗) are optimal solutions of the dual models having as right hand

side b(1) and b(2), respectively. Furthermore, u(·)∗ is the concatenation of u
(·)∗
D and u

(·)∗
P , and b(·)

is the concatenation of b1
(·) and b2

(·).

The first inequality is justified by the fact that the solution
(
u(1)∗, ν(1)∗) is dual feasible under the

increased right hand side, and the second inequality derives from standard LP duality theory.

To prove that the objective function is convex, take 0 ≤ β ≤ 1 and let
(
u(1)∗, ν(1)∗), (u(2)∗, ν(2)∗)

and
(
u(3)∗, ν(3)∗) be the optimal solutions of the dual of the approximate optimization model when

the right hand side vectors are βb(1) + (1− β)b(2), b(1) and b(2), respectively. Then we have that:

S∗n(βb(1) + (1− β)b(2)) = (βb
′

(1) + (1− β)b
′

(2))u
(1)∗ − µ∗ν(1)∗

= βb
′

(1)u
(1)∗ + (1− β)b

′

(2)u
(1)∗ − µ∗ν(1)∗

≤ β
(
b
′

(1)u
(2)∗ − µ∗ν(2)∗

)
+ (1− β)

(
b
′

(2)u
(3)∗ − µ∗ν(3)∗

)
= βS∗n(b(1)) + (1− β)S∗n(b(2)).

The first equality comes from the fundamental relationship between the primal and the dual at the

optimum. The second is a simple algebraic manipulation, whereas the inequality follows from the

definition of
(
u(1)∗, ν(1)∗), (u(2)∗, ν(2)∗) and

(
u(3)∗, ν(3)∗). The last step comes from the fundamental

relationship between the primal and the dual at the optimum.

Therefore, Sn(b) is an increasing and convex function of τ .

To prove SICX(sp), we use the monotonicity and convexity just proved and we consider the
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SICX property owned by the right hand side. This part of the proof is based on Shaked and

Shanthikumar (1988) (Proposition 3.2). In particular, let τi (with i = 1, 2, 3, 4) be four scalars such

that:

τ1 ≤ τ2 ≤ τ3 ≤ τ4

τ2 + τ3 = τ1 + τ4.

We used four values since this is the minimum collection size to define all the possible orderings.

Since {b(τ)} ∈ SICX(sp), following the approach in Shaked and Shanthikumar (2007), we can prove

the desired property generating four random variables b̂(i) =st b(τi) such that:

b̂(2) + b̂(3) ≤ b̂(4) + b̂(1) almost surely,[
b̂(1), b̂(2), b̂(3)

]
≤ b̂(4) almost surely.

where
[
b̂(1), b̂(2), b̂(3)

]
≤ b̂(4) states that b̂(1), b̂(2), b̂(3) are all smaller than b̂(4). The monotonicity

and convexity of S(b) imply that

S∗n(b̂(2))− S∗n(b̂(1)) ≤ S∗n(b̂(4))− S∗n
(
b̂(4) + b̂(1) − b̂(2)

)
≤ S∗n(b̂(4))− S∗n(b̂(3));

therefore, there exist four random variables Ŝi =st S(B) (where =st stands for equivalent in a

stochastic sense and B is the collection of the random variables) on a common probability space,

such that:

Ŝ∗n,2 + Ŝ∗n,3 ≤ Ŝ∗n,1 + Ŝ∗n,4 almost surely .[
Ŝ∗n,1, Ŝ

∗
n,2, Ŝ

∗
n,3

]
≤ Ŝ∗n,4, almost surely,

This proves that Sn [(bi (τi))
m
i=1] is SICX(sp) in (τi)

m
i=1 (Yao and Shanthikumar, 1991).

7.3 Proof of Corollary 1

Proof. The average performance estimate 1
n

n∑
i=1

g(eiJ )
i is obtained from χ∗(s,b) =

∑n
i=1

∑J
j=1 g(eij)

by convex operations.

Since χ∗ is SICX(sp) in the service times and the SICX(sp) property is closed with respect to mono-

tonic convex operations (Yao and Shanthikumar, 1991), then the average performance is SICX(sp)

with respect to the service times.

Since χ∗ is SDCX(sp) in the continuous variables s and the SDCX(sp) property is closed with re-

spect to monotonic convex operations (Yao and Shanthikumar, 1991), then the average performance

is SDCX(sp) with respect to the continuous variables s.
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7.4 Proof of Lemma 1

Proof. Corollary 1 proves that Λ(s, B) is convex in the parameters τ of distribution VB of B, hence

it is always possible to define function Π. In addition, if the system is stationary and µ∗ ≥ µmin,

then Λ(s, B) < ∞ with probability 1, hence function Π is integrable. Corollary 1 also guarantees

that, if the difference ||s1 − s2|| is finite, the difference ||Λ(s1, B)− Λ(s2, B)|| is also finite.

For convexity, finiteness and compactness of the set Σ (section 4.3.1; notice that we dropped the

subscript n since we are referring to the infinite sample path set), the moment generating functions

of Π(τ) is finite in a neighborhood of 0 (Beer, 1993; Salinetti and Wets, 1979).

7.5 Proof of Lemma 2

Proof. Let n∗ be a constant whose value is a function of s, and let ε be an arbitrarily small value

such that:

|λ̂(s, ·)− λ(s, ·)|< ε/3,

for all the sample paths having a size n ≥ n∗(s). Functions
{
λ̂(sn, ·)

}
are decreasing convex in sn

and increasing convex in b (Corollary 1), then Lipschitz continuity holds PB–almost surely. We can

define two Lipschitz constants, δ1 and δ2, which depend on B, but do not depend on s, such that,

taking a configuration s
′
,

||s− s
′ ||Σ< δ1 and ||s− s

′ ||Σ< δ2,

implies, respectively

|λ̂(s, ·)− λ̂(s
′
, ·)|< ε/3. and |λ(s, ·)− λ(s

′
, ·)|< ε/3.

Let δ∗ = min {δ1, δ2} and Dδ(s) be a set of measure δ. Given the compactness of Σ, we can take a

finite subcover of all D-sets defined as

{Dδ(sd) : d = 1, . . . , D} .

Let n∗ ≥ max {n∗(sd) : d = 1, . . . , D} and, for every s ∈ Σ, let sd∗ be such that s ∈ Dδ∗(sd∗). It

follows that

|λ̂(s, ·)− λ(s, ·)| ≤

≤ |λ̂(s, ·)− λ̂(sd∗ , ·) + λ̂(sd∗ , ·)− λ(sd∗ , ·) + λ(sd∗ , ·)− λ(s, ·)| ≤

≤ |λ̂(s, ·)− λ̂(sd∗ , ·)|+|λ̂(sd∗ , ·)− λ(sd∗ , ·)|+|λ(sd∗ , ·)− λ(s, ·)| <

< ε/3 + ε/3 + ε/3 = ε

The uniform convergence is then proved as a direct consequence:

|λ̂n(s, ·)− λ(s, ·)|≤ sup
{
|λ̂n(s, ·)− λ(s, ·)|

}
→ 0.
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7.6 Proof of Lemma 3 (Assumption A)

Proof. Function Sn is lower semi continuous iff the related epigraph, ESn , is closed (Attouch, 1984).

The epigraph of the function Sn represents the set of solutions having a value of the objective

function smaller than some predefined φ > S∗n, i.e., ESn = {(sn, φ) : Sn(sn) ≤ φ}. In particular, let

sn be a feasible solution and φ be a real positive value. Function Sn : Σn → R+ is linear in sn and

it is defined over the compact set Σn. As a result, there exists an arbitrarily small δ(φ) ∈ R such

that the neighborhood of a (feasible) solution, sn + δ, is outside the epigraph ESn ; thus ESn is a

closed set. This proves that Sn is lower semi continuous.

Function Sn →epi S if, in addition to lower–semi continuity, it uniformly converges to the infinite

sample path function S on compact subsets of the function domain Σ. Since the random variables

B are such that P (B ≥ ∞) = 0, then the objective function is finite S ≤ ∞ a.s., hence the function

is proper. In addition, the objective function is linear in s, convex in the service times (Property

1) and it is defined over a compact set Σn. Since, from Lemma 2, we know that Σn → Σ uniformly,

we have uniform convergence.

7.7 Proof of Lemma 4 (Assumption B)

Proof. The problem in (16) always admits a feasible solution for construction. Let µmin be the best

performance that can be reached by the system in a steady state. If the system is stationary, a

finite µmin exists. As a result, the problem solution set is non–empty. Under Assumption 1, as the

sample path size goes to ∞, the optimal solution is characterized by ε∗ = 0.

7.8 Proof of Proposition 1

Proof. Let s0 ∈ Σ be a continuous solution. Lemma 1 leads to the following chain of inequalities

for the infinite sample path problem:

|λ(s,B)| ≤ |λ(s0,B)|+Π(τ)||s− s0||

≤ |λ(s0,B)|+Π(τ) max
s,s0∈Σ

||s− s0||. (42)

Taking the expectations, we obtain the following inequalities

E [λ(s, B)] ≤ E [|λ(s0, B)|+Π(τ)||s− s0||]

0 ≤ |λ(s0, B)|+E [Π] maxs1,s2∈Σ||s1 − s2|| =

= |λ(s0, B)|+πmaxs1,s2∈Σ||s1 − s2|| <∞ (43)

The inequalities |λ(s0, B)|<∞ and Π <∞ hold because of Lemma 1, whereas maxs1,s2∈Σ||s1− s2||
(the deviation of the set Σ) is finite because the set is compact. This proves that equation (43)

holds, i.e., |λ(s0, B)| and π are both finite.
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The chain of equalities E [λ(s, B)] = E [ε] = 0 is guaranteed by any target performance satisfying

µ∗ ≥ µmin. In fact, from Lemma 4, as n→∞, we are guaranteed that the solution set is not empty

and ε∗ = 0 exists.

The same result can be proved for function λ̂n(s,b). We can rewrite the chain of inequalities

for the finite sample path problem as follows:

E
[
λ̂(sn,b)

]
≤ E

[
|λ̂(sn,0,b)|+Π(τ)||sn − sn,0||

]
α ≤ E

[
|λ̂(s0,b)|

]
+ E

[
Π̂
]

maxsn,1,sn,2∈Σ||sn,1 − sn,2|| =

= E
[
|λ̂(sn,0,b)|

]
+ π̂maxsn,1,sn,2∈Σ||sn,1 − sn,2|| <∞

Note that, in the second inequality, we have α instead of 0. In fact, in the finite sample path case,

we cannot guarantee that ε̂∗ = 0, i.e., in general, E
[
λ̂(s,b)

]
= E [ε̂] = 0 does not hold.

Lipschitz continuity holds as a consequence of Corollary 1. In fact, function λ(s, B) is increasing

convex in the service times, realization of the random variables in B, and it is decreasing convex in

the multidimensional array s.

7.9 Proof of Theorem 2

Proof. From Lemma 4, the optimal solution s∗ to the infinite–sample path optimization problem

exists and it is finite. The ε-problem is developed in a way that a minimum to the sample path

problem always exists, i.e., for each n, the sample–path solution sn is such that sn ∈ S∗n. As n→∞
this solution converges to a limiting value s.

Let S∗n be the value of the objective function at the optimum: S∗n = inf Sn. Function Sn satisfies

epi–convergence (Lemma 3 and 4). Given Lemma 2, we can use epi–convergence to prove that S∗n
converges to S∗, i.e., s∗n converges to s∗.

Let Γ be the set defined as Γ = {b : sup {bl} =∞} (note that Γ has measure 0 under Assumption

1). For every realization b of the service times such that b /∈ Γ, the following holds (this result is

in Theorem 3.2 in (Robinson, 1996), page 519):

(a) S∗ ≤ lim supS∗n;

(b) if sn is a sequence converging to s and if, for each n, sn ∈ S∗n, then s ∈ S∗.

Epi–convergence results in s ∈ S∗, hence the sample path optimal solution converges to the infinite

sample path optimal solution.
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