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Summary

Jobish Vallikavungal Devassia.

Ph.D. candidate in Engineering with a Specialization in Systems Engineering.

Universidad Autónoma de Nuevo León.

Facultad de Ingeniería Mecánica y Eléctrica.

Title of the study: Flexible Jobshop Scheduling Problem with Resource

Recovery Constraints.

Number of pages: 92.

Objectives and methods of study: The general objective of this research is

to study a scheduling problem found in a local brewery. The main problem can be

seen as a parallel machine batch scheduling problem with sequence-dependent setup

times, resource constraints, precedence relationships, and capacity constraints.

In the first part of this research, the problem is characterized as a Flexible

Job-shop Scheduling Problem with Resource Recovery Constraints. A mixed integer

linear formulation is proposed and a large set of instances adapted from the litera-

ture of the Flexible Job-shop Scheduling Problem is used to validate the model. A

solution procedure based on a General Variable Neighborhood Search metaheuristic

is proposed, the performance of the procedure is evaluated by using a set of instances

adapted from the literature.
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In the second part, the real problem is addressed. All the assumptions and

constraints faced by the decision maker in the brewery are taken into account. Due

to the complexity of the problem, no mathematical formulation is presented, instead,

a solution method based on a Greedy Randomize Adaptive Search Procedure is

proposed. Several real instances are solved by this algorithm and a comparison

is carried out between the solutions reported by our GRASP and the ones found

through the procedure followed by the decision maker. The computational results

reveal the efficiency of our method, considering both the processing time and the

completion time of the scheduling. Our algorithm requires less time to generate

the production scheduling (few seconds) while the decision maker takes a full day

to do it. Moreover, the completion time of the production scheduling generated by

our algorithm is shorter than the one generated through the process followed by the

decision maker. This time saving leads to an increase of the production capacity of

the company.

Contributions: The main contributions of this thesis can be summarized as

follows: i) the introduction of a variant of the Flexible Job-shop Scheduling Prob-

lem, named as the Flexible Job-shop Scheduling Problem with Resource Recovery

Constraints (FRRC); ii) a mixed integer linear formulation and a General Vari-

able Neighborhood Search for the FRRC; and iii) a case study for which a Greedy

Randomize Adaptive Search Procedure has been proposed and tested on real and

artificial instances.

The main scientific products generated by this research are: i) an article already

published: Sáenz-Alanís, César A., V. D. Jobish, M. Angélica Salazar-Aguilar, and

Vincent Boyer. “A parallel machine batch scheduling problem in a brewing com-

pany”. The International Journal of Advanced Manufacturing Technology 87, no.

1-4 (2016): 65-75. ii) another article submitted to the International Journal of Pro-

duction Research for its possible publication; and iii) Scientific presentations and

seminars.
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Candidato para obtener el grado de Doctor en Ingeniería con especialidad en Inge-

niería de Sistemas.

Universidad Autónoma de Nuevo León.

Facultad de Ingeniería Mecánica y Eléctrica.

Título: Flexible Jobshop Scheduling Problem with Resource Recovery

Constraints.

Número de páginas: 92.

Objetivo y metodología de estudio: El objetivo general de esta investi-

gación es estudiar un problema de programación de producción que se identificó en

una cervecería local. Este problema puede ser visto como un problema de progra-

mación por lotes en máquinas paralelas con tiempos de configuración dependientes

de la secuencia, restricciones de recursos, relaciones de precedencia y restricciones

de capacidad.

En la primera parte de esta investigación, el problema se caracteriza como un

problema de programación flexible (tipo job-shop) con restricciones de recuperación

de recursos. Se propone una formulación lineal entera mixta y se utiliza un gran

conjunto de instancias adaptadas de la literatura del Flexible Job-shop Scheduling

xv
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Problem para validar el modelo. Se propone un procedimiento de solución basado en

una metaheurística de tipo búsqueda de vecindarios variables (VNS), el desempeño

del procedimiento se evalúa utilizando el conjunto de instancias adaptadas de la

literatura. Los resultados computacionales muestran que el procedimiento propuesto

es competitivo en cuanto a tiempo y calidad de las soluciones.

En la segunda parte, se aborda el problema real que se identificó en la empresa

local. Se tienen en cuenta todos los supuestos y limitaciones a los que se enfrenta

el tomador de decisiones en la cervecería. Debido a la complejidad del problema,

no se presenta ninguna formulación matemática, sino que se propone un método

de solución basado en un procedimiento voraz de búsqueda adaptativa aleatorizada

(GRASP, por sus siglas en inglés). Varias instancias reales son resueltas por este

algoritmo y se realiza una comparación entre las soluciones reportadas por el mismo

y las encontradas a través del procedimiento seguido por el tomador de decisiones en

la empresa. Los resultados computacionales revelan la eficiencia de nuestro método,

considerando tanto el tiempo de procesamiento como el tiempo de finalización de

la programación de la producción. Nótese que nuestro algoritmo requiere menos

tiempo para generar la programación de producción (pocos segundos) mientras que

el tomador de decisiones tarda un día entero en hacerlo. Por otra parte, el tiempo

de finalización de la programación de producción generada por nuestro algoritmo es

más corto que el generado a través del proceso seguido por el tomador de decisiones.

Este ahorro de tiempo conduce a un aumento de la capacidad de producción de la

empresa.

Contribuciones: Las principales aportaciones de esta tesis pueden resumirse de

la siguiente manera: i) la introducción de una variante del Flexible Job-Shop Schedul-

ing Problem, denominado como Flexible Job-shop scheduling problem with Resource

Recovery Constraints (FRRC); ii) una formulación lineal entera mixta y una meta-

heurística de tipo búsqueda de vecindarios variables para el FRRC; y iii) el estudio

del caso real para el cual se ha propuesto y probado un procedimiento voraz de





Chapter 1

Introduction

Decision-making in manufacturing and service industries includes planning and schedul-

ing as important processes in production, transportation, and distribution, among

others. The planning and scheduling role in a company is to allocate limited resources

to the activities to be done. This allocation of resources has to be done in such a

way that the company optimizes its objectives and achieves its goals. Resources may

be machines in a workshop, runways at the airport, crews at a construction site, or

processing units in a computing environment. Activities may be operations in a

workshop, take-offs, and landings at an airport, stages in a construction project, or

computer programs to be executed. Each activity may have a priority level, an ear-

liest possible starting time and/or a due date. Objectives can take different forms,

such as minimizing the time to complete all activities, minimizing the number of

activities after the committed due dates, and so on.

In the last years, there has been an explosive growth in the development and

implementation of computer-based scheduling systems in the industry. In the case

of planning and scheduling in manufacturing, orders that are released in a manu-

facturing setting have to be translated into jobs with associated due dates. These

jobs often have to be processed on the machines in a work center in a given order

sequence. The processing of jobs may sometimes be delayed if certain machines are

busy. Preemptions may occur when high priority jobs are released which have to

1
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be processed at once. Unexpected events on the shop-floor, such as machine break-

downs or longer-than-expected processing times, also have to be taken into account,

since they may have a major impact on the schedules. Developing, in such an envi-

ronment, a detailed schedule of the tasks to be performed helps maintain efficiency

and control operations.

In this research, two variants of scheduling problems are studied. Both can be

seen like flexible job shop scheduling problems, however, different kind of constraints

are taken into account. The first variant has been studied with theoretical purposes

while the second one has been studied with practical reasons: solving a real case

from a nationwide brewery. The main contributions of this work are the mathemat-

ical formulation for a flexible job-shop scheduling problem with resource recovery

constraints and a metaheuristic to solve it. Additionally, a case study from a local

brewing company has been carried out. The efficiency of the proposed solutions

procedures has been shown on a large set of instances.

1.1 Motivation

In Mexico, beer production plays an important role given its significant contribution

to the national economy. Mexican beer has high demand and constant growth,

both in local and global markets. The annual report presented by National Brewers

Association Craft Beer Market in Mexico 2015 illustrates the importance of beer in

Mexico and its role in the Mexican economy. Moreover, brewing industry provides

an outstanding number of direct and indirect jobs in Mexico. Figure 1.1 shows the

major breweries in Mexico.

Official Mexican data shows that U.S. is the largest exporter of beer into Mex-

ico, but it is mainly through large brands. According to the Mexican Brewers Asso-

ciation, craft beer market has expanded at 50% annual growth rate in the last ten

years. For the fourth year running, Mexico was the world’s leading beer exporter
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Figure 1.1: The breweries in Mexico

Source: Geo-Mexico, the geography and dynamics of modern Mexico

in 2014, $2.4 billion (17.9% of global beer exports). In 2013, Mexican beer exports

reached a record of 2.2 billion dollars, a rise of 4.2% compared to 2012, and well

ahead of both the Netherlands ($2.0 billion) and Belgium ($1.6 billion).

Mexico’s breweries provide about 80,000 jobs directly and a further 800,000

indirectly. Total beer sales each year are worth as much as 20 billion dollars, and

due to the high demands, both domestic and foreign, these sales constantly rise each

year.

2062.6Oct-2014
2211.22013

2121.92012
2022.12011

1876.42010
1790.52009

Chart 1.1: Mexican beer exports (million USD), 2009-2014

Source:Banco de Mexico

http://geo-mexico.com/?p=2390
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Based on South American Business Information (SABI), Mexico was the 6th

top beer producer in the world in 2014. In 2013, Mexico remained to be the top beer

exporter for the fourth consecutive year. In that year, total beer exports reached

2.21 billion USD, representing 4.2% year-on-year rise and having 16.5% of the global

beer market. For a better understanding, Chart 1.1 shows the income earned by

beer exports, and Chart 1.2 illustrates a bar chart representation of beer exports of

Mexico over some of the competitors in the global beer market.

2.2
Mexico

2.0Netherlands
1.6Belgium

1.4Germany
1.0United Kingdom

0.52United States
0.45France

0.32Denmark
0.32Ireland

0.27Portugal

Chart 1.2: Total Beer Exports of Countries (billion USD), 2013
Source:Economista

Beer exports have been shown an increasing trend, from 1,790 million USD in

2009 to 2,211 million USD in 2013. Latest data show that by October 2014, beer

exports totaled to 2,062.57 million USD, which was bigger than total beer exports

in the same period in 2013 (1,872.72 million USD). An export and import balance

of the Mexican beverage industry is shown in Figure 1.2. Due to this high exports

of Mexican beer, and the influence of beer production in Mexican employment rate,

the significant beer production can directly effect, the economy of Mexico.

One of the largest breweries in Mexico is located in Monterrey, Nuevo León.

Hence, we established a relationship with the company and that allowed us to get

insight into the brewing process. After multiple visits to the company, we observed

that one of the hardest tasks in the company is the creation of the production

schedule. That is the reason why we started this research work.
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Figure 1.2: Trade Balance of the Mexican Beverage Industry

Source:SE

1.2 Problem statement

The planning and optimal production scheduling in the modern industry are very

complex tasks. If we consider the brewing industry, the beer production needs ex-

ceptional attention because of a minor negligence leads to inferior products quality

and significant productivity loss. It is practically impossible to make any small cor-

rection on the product since the errors may be realized only at the final stage of the

production. Despite beer drawbacks, it has a significant role in social and economic

growth in this twentieth century. Also, it is important to meet the customer orders

by satisfying specific due dates. Thus, beer production needs an important consid-

eration in production planning and handling. Figure 1.3 shows a typical production

line and each stage of the production process in a brewery.

Inspired by this brewing process, we study two variants of scheduling problems.

In the first one, we considered a flexible job-shop scheduling problem with a recovery

time of resources. In the second one, we focused on the practical situation faced by

the local company. Each variant is briefly described in the following subsections.
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Source:Baltika
Figure 1.3: Production line configuration in a brewery

1.2.1 Flexible Job-shop Scheduling Problem with

Resource Constraints

Due to the recovery nature of the yeast used in the brewing process, we identified the

recovery nature of resources which have not been widely studied in the Flexible Job-

shop Scheduling Problems (FJSP) literature. In the FJSP multiple operations must

be assigned to machines in sequence (respecting the order of operations in each job)

such that the total completion time is minimized. The most common characteristics

of the FJSP are the following: the number of jobs and the number of machines are

known in advance; each job is composed of a fixed sequence of operations; there is

certain compatibility between operations and machines; the processing time of an

operations depends on the machine assignment, and any machine can process only

one operation at a time.

In addition to the classical FJSP characteristics, we take into account the re-

newability and availability of resources. The resources are available in batches and

http://eng.baltika.ru/m/6320
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the batch size and the recovery time of the resources depend on the resource type.

Each operation may require a certain resource to be processed and during the pro-

duction process the resources batch can be recovered once the entire batch of the

resource is consumed. Then, the studied problem consists on assigning each opera-

tion to a compatible machine, by taking into account precedence relations between

operations, resource requirements, compatibility and availability of resources and

machines in order to minimize the makespan.

1.2.2 Scheduling problem in a brewing process

Scheduling of multiple products in parallel production lines, multiple stages of pro-

duction, maintenance operations, and heterogeneous tanks makes the beer produc-

tion scheduling a complex task. Moreover, the company produces various types of

beers, and each beer type depends on the wort used.

There are three major stages in the brewing process: boiling, fermentation,

and conditioning. During the boiling, all the ingredients are mixed and boiled to

produce a particular wort which needs to be fermented. In the fermentation stage,

multiple tanks can be used and each tank has a limited capacity, then we can start

the boiling process of a wort, if and only if a fermentation tank is available. The

conditioning stage is where the worts are conditioned and refined in order to obtain

the final product. In our case, the conditioning phase is the bottling-and-packaging

which has enough storage facility.

In order to maintain the quality of the products, we have to schedule cleaning

operations regularly. These maintenance operations cannot be neglected and this

condition leads to sequence-dependent setup times. The setup time depends on

which wort is processing and which is going to be processed. Indeed, the frequency

of these operations depends on the production sequence and the type of wort. The

processing time and setup time in each machine are different since the machines are
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unlike and depend on the wort type. The process features specify that not all jobs

can be processed by any machine, hence, there is a compatibility between machines

and worts.

In this scheduling problem, the jobs to be scheduled are composed of a set of

operations (worts). Each job is composed of only one wort type. The size of the

job (batch) depends on the size of the fermentation tank that has been assigned

to the job. A job can be seen as a batch of worts, whose size is not known a

priori. Notice that, the boiling of worts from the same batch (job) can be split into

the available boiling lines, but the fermentation of the entire job occurs in a unique

tank. Moreover, the scheduling of each operation depends on the previous operation,

due to the precedence constraints.

In this work, we focus on the scheduling of wort production, and we consider

only the boiling and fermentation stages- the most critical stages in the brewing

process. The key features of this problem are the existence of parallel machines,

multiple stages of production, multiple products, batch production, and sequence-

dependent setup times. Furthermore, the batches have different sizes, and the total

number of batches are unknown. Detailed information can be found in Chapter 5.

1.3 Relevance

Scheduling and planning in the breweries are two important ways of decision-making

which have a significant impact in productivity level of the company. Moreover,

market researchers have shown that Mexican beer has a constant growth in market

volume and value. Concerning total volume, it is expected to maintain sustained

growth with a Compound Annual Growth Rate (CAGR) of 3% in the forecast period

2015-2020. As a result, sales of beer are expected to reach 7.6 billion liters in 2020.

In 2013, the Mexican beverages market grew by 4.0% to 67.8 billion USD from the

previous year (65.1 billion USD). Between 2013 and 2018, the market is forecasted
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to have a CAGR of 5.1% to reach the value of 87.1 billion USD in 2018. The market

volume of Mexican beverage industry has been growing at a standard rate of 4.6%,

since 2009. In 2013, the consumption volume of the country’s industry grew 4.1%

from 62.1 billion liters in 2012 to 64.6 billion liters. By 2018, it is expected to grow

at a standard rate of 4.5% to reach 80.6 billion liters. Due to this high demand

and low facilities, production scheduling is inevitable to maintain the high-quality

product in minimum time and cost.

Since the operations research point of view, the scheduling process in the brew-

ing company is similar to a variant of the classical Job-shop Problem (JSP). In the

general JSP, n jobs have to be processed in m unrelated machines, with respect to

the precedence relations, job-machine compatibility, and availability of machines.

The general JSP is among the hardest combinatorial optimization problems since it

is strongly NP-hard (Garey et al. [68]).

The FJSP is an extended version of the JSP by assuming that a job has to be

processed by any of the compatible machines (Brucker and Knust [21]). Moreover,

the classical FJSP involves two important decisions -the operation-machine assign-

ment and the order in which the operations must be processed in the machines, such

that the makespan is minimized. Thus, the FJSP is a much more complex version of

the JSP, so the FJSP is strongly NP-hard and combinatorial (Mati and Xie [118]).

Since the problem under study is an extended version of the FJSP, the complexity

of the problem is NP-hard.

In the FJSP literature, several heuristics and metaheuristics have been pro-

posed as solution procedures. However, to the best of our knowledge, none of the

published work has addressed the scheduling problems we address in this work, which

asserts the relevance of this thesis.

Besides, in modern industries, the primary cause of resource constraints could

be machines, human resources, and raw materials. Machines do have certain limi-

tations to process the operations. For instance, each machine can handle only one
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operation at a time, and each operation can be executed by at most one machine. Ad-

ditionally, the execution of an operation can be restricted by the presence of scarce

resources, which asserts the importance of the scheduling subject to the resource

constraints. Moreover, the sequence-dependent setup time between operations and

resource available in batches, as well as the renewability nature of resources are other

complex features in modern industries, which we can see in this work.

In this thesis, we present a general FJSP problem and a case study from a

local company. We propose a mathematical formulation for the FJSP with resource

recovery constraints and a metaheuristic to solve it. For the case study, we pro-

pose a metaheuristic which has been tested on real data, the obtained solutions

outperformed the scheduling generated by the expert in the company and the re-

sults have been published in Sáenz-Alanís, César A., V. D. Jobish, M. Angélica

Salazar-Aguilar, and Vincent Boyer. “A parallel machine batch scheduling problem

in a brewing company”. The International Journal of Advanced Manufacturing Tech-

nology 87, no. 1-4 (2016): 65-75..

1.4 Objectives

The objective of this research is to study a scheduling problem found in a brew-

ing company and characterize it according to the existing literature. One goal is

to represent the problem using a mathematical formulation and solve it by using

the CPLEX optimizer, in order to obtain optimum solutions and determine the size

of instances that can be handled by CPLEX. Another aim is to propose solution

procedures based on metaheuristics like Greedy Randomized Adaptive Search Pro-

cedures (GRASP) and General Variable Neighborhood Search (GVNS). Finally, the

performance of the proposed algorithms will be analyzed on a large set of artificial

instances as well as on real instances.
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1.4.1 Particular Objectives

i. Analyze the characteristics of the problem under study

ii. Classify and generalize the problem

iii. Define the problem and propose an efficient mathematical formulation

iv. Design and implement an instance generator for the problem under study

v. Validate the mathematical model using the CPLEX optimizer

vi. Characterize the problem under study and propose alternative solution proce-

dures

vii. Evaluate the performance of the proposed algorithms on a large set of instances

viii. Compare the obtained results and analyze the problem nature

ix. Present preliminary results in scientific forums

x. Write and submit to revision the scientific articles derived from this work.

1.5 Organization

The content of this thesis is organized as follows: Chapter 2 presents a literature

review related to our problems under study. Chapter 3 provides a detailed descrip-

tion and the proposed mathematical formulation of the flexible job-shop scheduling

problem with resource recovery constraints. The proposed solution procedure and

the analysis of results for the problem described in Chapter 3 are presented in Chap-

ter 4. Chapter 5, contains a case study of the problem which is related to a real

situation faced by a local brewing company (the solution procedure and the obtained

results are also analyzed in this chapter). Finally, the main conclusions and future

work are presented in Chapter 6.



Chapter 2

Literature review

Resource management is the most important decision of any scheduling problem.

The most known resources are the machines (Gargeya and Deane [69], Figielska

[64]) that will process the operations, but one can also consider the availability

of the workforce, tools, or raw materials. For instance, in the classical Resource

Constrained Project Scheduling Problem (RCPSP) each operation requires certain

units of resources to be processed; hence they might not be scheduled at their ear-

liest starting time but later when the resources are available (Kolisch [93]). Due to

the nature of the resources based on their availability, they are classified into four

main categories: Słowinski [167] identified three categories of resources, i.e., renew-

able resources, nonrenewable resources, and doubly constrained resources; and later,

Böttcher et al. [16] introduced partially renewable resources.

� A renewable resource has a limited availability, but it can be reused or recov-

ered during the overall process. For instance, in most scheduling problems,

machines are renewable resources since each machine can be assigned to an-

other operation once the processing of the current one finishes.

� The nonrenewable resources can be used only once in the entire process. Hence,

at the beginning, a certain amount of resources are available and it can be con-

sumed throughout the planning horizon. For instance, in a car manufacturing

12
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company, the paint used and the money spent for the car production are nonre-

newable resources since their availability is limited and they cannot be reused.

� A doubly-constrained resource is both renewable and nonrenewable; that is,

both usage and consumption are constrained. For instance, human resources

are renewable since when an employee finishes a job, he can be assigned to

another job, but the total working hours that can be assigned to an employee

within a week is limited.

� Partially renewable resources are used to model resources whose availability

changes over the planning horizon. For instance, the staff availability in a

university varies at each hour depending on the shifts; hence the employees

are considered as partially renewable resources.

2.1 Resources in the Flexible Job-shop

Scheduling Problem

The classical Flexible Job-shop Scheduling Problem (FJSP) was introduced by Brucker

and Schlie [24], in terms of Multi-Purpose Machines (MPM job-shop problem), and

it is a generalized form of the classical Job-shop Scheduling Problem (JSP) (Graham

et al. [71]). The general JSP is strongly NP-hard as shown by Garey et al. [68]. In

the FJSP, each job consists of a sequence of operations, and each operation has to

be performed in order to complete the job. The execution of each operation has to

be processed in one of the subsets of compatible machines. Then the problem is to

define a sequence of operations together with the assignment of the starting time

and the machine for each operation. Mati and Xie [118] have shown that the classic

FJSP is NP-hard since it can be reduced to a JSP, by assuming that an operation

can be processed by only one machine.

Traditionally, two kinds of approaches are widely used for solving the FJSP:
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hierarchical and integrated approaches. The assignment of operations to machines

and the sequencing of operations on the machines are treated separately in the for-

mer one, and the assignment and sequencing are done simultaneously in the latter

one. Hierarchical approaches are based on decomposing the original problem in or-

der to reduce its complexity. Brandimarte [19] was the first to use the hierarchical

approach on FJSP, by solving a routing subproblem first and then the scheduling

subproblem. Integrated approaches were introduced by Dauzére-Pérés and Paulli

[47]. They extended the disjunctive graph representation of the FJSP in order to

perform the machine assignment and the sequencing of the operations at the same

time. Fattahi et al. [60] show that the hierarchical algorithms have better perfor-

mance over the integrated ones. However, Vaessens et al. [178], Dauzére-Pérés and

Paulli [47], Hurink et al. [83], and Gambardella and Mastrolilli [65] reported better

results with integrated approaches, even though the solution complexity is higher.

The pioneer work of FJSP with resource constraints is due to Chan et al. [30]

and is termed as Resource-Constrained FJSP (RCFJSP). The problem under study

includes multiple flexible machines for the operations, fixture and tool constraints,

and operation dependent setup times. In particular, an operation of a job can be

processed on a machine only if the associated fixture and tool are both available.

Besides, it is assumed that all these resources, fixtures and tools, are renewable.

Reference is also made to the work of Rajkumar et al. [148] and Karthikeyan et al.

[88] who studied a similar problem. A GRASP algorithm is proposed in the former

work, and a discrete firefly algorithm is adopted in the latter work as the solution

procedure.

A flow shop scheduling problem with additional resources has been studied

by Figielska [61]. The author studied two-stage flow shop scheduling problem with

parallel machines, where preemption is permitted, and jobs use additional renew-

able resources apart from the machines in the first stage. All required resources

are granted to the jobs for processing or resuming after preemption, and they are

returned by the job on finishing the process. Other variants of this problem have
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been studied afterward by Figielska [62, 63, 64]. Later, Cheng et al. [37] studied

the resource-constrained flow shop scheduling with separate resource recycling oper-

ations. It is a two-stage flow shop problem where, initially, a common resource pool

is available. A job can be processed only if the machine and a certain amount of

resources are available. At the end of the process, a reduced amount of the resources

is returned.

Mati et al. [116] have modeled and solved a practical FJSP with blocking

constraints. The jobs have to wait on the current machine if the next machine

where the job is going to be processed is occupied. This approach yields to a different

management of resources through this blocking process called blocking constraints

(Hall and Sriskandarajah [74]), or the deadlock avoidance problem (Mati et al. [117]).

Another variant of the FJSP is studied by Ortiz et al. [144], where multi-resource

consumption is required for each operation. Besides, setup times and the times

required to transfer the batches to the machines are also considered.

Mixed integer linear programming models for the FJSP have been proposed

by Roshanaei et al. [152], Demir and İşleyen [55], Yulianty and Ma’ruf [194], and

Shen and Yao [163]. Although, due to the complexity of the problem, mainly meta-

heuristics have been investigated. The most used metaheuristics include Simulated

Annealing (SA) (Li et al. [106], Shao et al. [159]), Tabu Search (TS) (Zhang et al.

[197], Li et al. [104], Bożejko et al. [18], Li et al. [105]), Genetic Algorithm (GA) (Li

and Huang [101], Costa [42], Defersha and Chen [52], Zhang et al. [200, 196], Az-

zouz et al. [8]), Particle Swarm Optimization (PSO) (Huang et al. [82], Singh et al.

[165], Rey et al. [150], Singh and Mahapatra [164]), Ant Colony Optimization (ACO)

(Liouane et al. [109], Xing et al. [189]), Variable Neighborhood Search (VNS) (Huang

et al. [82], Gao et al. [66], Li et al. [103], Tayebi Araghi et al. [174], Yazdani et al.

[192], Lei and Guo [97], Bagheri and Zandieh [10], Gao et al. [66], Zhang et al.

[195]), Greedy Randomized Adaptive Search Procedure (GRASP) (Rajkumar et al.

[149, 148]), among others. A detailed review on the FJSP can be found in Chaudhry

and Khan [32].
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2.2 Resources in Other Scheduling Problems

In this section, we discuss the main contributions on scheduling problems with re-

source constraints. In Table 2.1 we present an overview of the related literature. The

first column shows the author names and the second one the year of publication. The

column ‘Rr’ refers to renewable resources, ‘Nr’ to nonrenewable resources, ‘Dc’ to

doubly constrained resources, and ‘Pr’ to partially renewable resources.

Nonrenewable resources have limited availability in the entire project. Many of

the works in the literature model the available money as the nonrenewable resource,

(see Akkan et al. [1], Demeulemeester et al. [53], Nudtasomboon and Randhawa

[142], Tareghian and Taheri [173]), with the objective of minimizing the production

cost. Artigues et al. [7] generalize the notion of nonrenewable resources where a

job can consume or produce such a resource. Each job needs a fixed number of

units of nonrenewable resources at the starting time of its execution. If the resource

requirement for a job is positive then the job consumes some units of the resource;

and if the requirement is negative, then the job produces some units of the resource.

Kolisch and Drexl [94] show that, in the case of RCPSP, nonrenewable resources may

lead to an unfeasible problem, and with at least two nonrenewable resources, the

problem is NP-hard. Extensive reviews on scheduling problems with nonrenewable

resources can be found in Brucker et al. [20], Hartmann and Briskorn [76], and Orji

and Wei [143].

A renewable resource can be used multiple times for the entire project dura-

tion. The most common renewable resources in the literature are the machines since

a machine can be assigned to handle more than one operation, i.e. the machine

availability is reset every time it finishes processing an operation. The renewable

resources can also be found in scheduling problems in the form of tools, fixtures,

labor force, raw materials, etc. As we can see in Table 2.1, many researchers worked

on the RCPSP, FJSP, and their variants while dealing with renewable resources.
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Author(s) Year Nr Rr Dc Pr

Schnell and Hartl [156] 2017 x x - -

Ba et al. [9] 2016 - x - -

Li and Huang [101] 2016 - x - -

Paksi and Ma’ruf [145] 2016 - x - -

Zheng and Wang [201] 2016 - x - -

Lei and Tan [98] 2016 - x - -

Schnell and Hartl [155] 2016 x x - -

Chakrabortty et al. [29] 2016 x x - -

Xiong et al. [190] 2016 - x - -

Hermel et al. [80] 2016 - x - -

Almeida et al. [4] 2016 - x - -

Li and Huang [101] 2016 - x - -

Gao and Pan [67] 2016 - x - -

Ortiz et al. [144] 2016 - x - -

Beşikci et al. [11] 2015 x x - -

Yazdani et al. [193] 2015 - x - -

Li and Huang [100] 2015 - x - -

Cheng et al. [35] 2015 x x - -

Lei and Guo [97] 2014 - x - -

Tayebi Araghi et al. [174] 2014 - x - -

Naber and Kolisch [134] 2014 - x - -

Van Peteghem and Vanhoucke [180] 2014 x x - -

Bianco and Caramia [12] 2013 - x - -

Yulianty and Ma’ruf [194] 2013 - x - -

Colak et al. [40] 2013 - x - -

Chen and Chyu [33] 2012 - x - -

Wang and Fang [183] 2012 x x - -

Lang and Li [96] 2011 - x - -

Mati and Xie [120] 2011 - x - -

Van Peteghem and Vanhoucke [179] 2010 x x - -

Wong et al. [188] 2009 - x - -

Chyu and Chen [39] 2009 - x - -

Lova et al. [111] 2009 x x - -

Mati and Xie [119] 2008 - x - -

Jarboui et al. [85] 2008 x x - -

Mika et al. [126] 2008 - x - -

Sabzehparvar and Seyed-Hosseini [153] 2008 - x - -

Voß and Witt [181] 2007 - x - -

Author(s) Year Nr Rr Dc Pr

Buddhakulsomsiri and Kim [26] 2007 - x - -

Buddhakulsomsiri and Kim [25] 2006 - x - -

Zhu et al. [202] 2006 x x - x

Figielska [61] 2006 - x - -

Chan et al. [30] 2006 - x - -

Lorenzoni et al. [110] 2006 - - - x

Lova et al. [112] 2006 - x - -

Alvarez-Valdes et al. [5] 2006 - - - x

Mika et al. [125] 2005 x x - -

Alcaraz et al. [2] 2003 x x - -

Bouleimen and Lecocq [17] 2003 x x x -

Heilmann [79] 2003 x x - -

Neumann and Schwindt [137] 2002 x x - -

Hartmann [75] 2001 x x - -

Józefowska et al. [87] 2001 x x - -

Ulusoy et al. [177] 2001 x x x -

Heilmann [78] 2001 x x - -

ElMaraghy et al. [59] 2000 - x - -

Klein [91] 2000 - x - -

Selle [158] 1999 - x - -

De Reyck and Herroelen [50] 1999 x x x -

Böttcher et al. [16] 1999 - - - x

Dauzère-Pérès et al. [48] 1998 - x - -

Sprecher and Drexl [168] 1998 x x x -

Bianco et al. [13] 1998 - x - -

Hartmann and Drexl [77] 1998 x x - -

Schirmer and Drexl [154] 1998 - - - x

Kolisch and Drexl [94] 1997 x x - -

Mori and Tseng [131] 1997 - x - -

Sprecher et al. [169] 1997 x x - -

Nudtasomboon and Randhawa [141] 1996 x x x -

Boctor [15] 1996 - x - -

Kolisch et al. [95] 1995 x x x -

Wȩglarz [186] 1981 - - x -

Słowinski [167] 1981 x x x -

Słowiński [166] 1980 x x - -

Nelson [136] 1967 - x - -

Table 2.1: Literature on Scheduling Problems with Resource Constraints

The most relevant works of the FJSP with resource constraints have been discussed

in the previous section, hence, in the section, we will focus on the RCPSP and its

variants.
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Few works have considered only renewable resources in the context of RCPSPs.

For instance, Bianco and Caramia [12], and Naber et al. [135] proposed a mathemat-

ical formulation for the RCPSP with scarce resources. Chyu and Chen [39] proposed

a payment model for the RCPSP. In this model, the contractor receives a profit for

each job processed before a predetermined due date, and a penalty otherwise. The

authors propose several VNS algorithms for the solution of this problem. Later,

Chen and Chyu [33] proposed a model that aims to minimize the payment risk fail-

ure during a project execution. A memetic algorithm (MA) (Moscato et al. [132])

and a metaheuristic based on the VNS (Mladenović and Hansen [127]) algorithm,

i.e. the Double Variable Neighborhood Search (DVNS) algorithm (Chyu and Chen

[39]), are presented as solution procedures. The concept of resilience on RCPSP is

introduced by Xiong et al. [190], where operations have an uncertain duration. The

resilience refers to the capacity of the schedule to absorb perturbation.

Recently, Naber and Kolisch [134] proposed and evaluated, four different dis-

crete time model formulations for the RCPSP with flexible resource profiles. In this

work, one discrete time system is commonly used for all activities and resources. Re-

sources required by an operation are classified into three general categories, namely

principal, dependent, and independent resources. In this context, the resource quan-

tity of a dependent resource depends on the one of a principal resource. The resources

that do not depend on any other resource are termed as independent resources.

Dual resources have been introduced to model the machine-labor assignment.

A model and design of machine and labor limited production systems have been

presented by Nelson [136], and is considered to be a seminal work on Dual Resource

Constrained (DRC) scheduling problems. The model includes a statistical arrival

process (time interval between successive arrivals of jobs) and processing facilities

consisting of some machine centers and a labor force. The author also considers the

relative efficiency of each worker at each machine. Likewise, ElMaraghy et al. [59]

studied a production scheduling problem in dual resource constrained manufacturing

systems and proposed a GA as a solution procedure. Jaber and Neumann [84]
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studied a DRC system to model the effects of human fatigue and recovery to avoid

work overloading and injury to employees.

The dual resource constrained problem has also been studied in the context

of JSP by taking into account resource constraints derived from both machines and

workers. This problem is known as Dual Resource Constrained Job-shop Scheduling

Problem (DRCJSP) (Treleven and Elvers [176]). The Extension Dual Resource

Constrained Job-shop Scheduling Problem (EDRCJSP) is studied by Li and Huang

[100]. In this problem, several batches of jobs need to be processed before a deadline

on machines that can be operated by a set of workers with different efficiency. The

authors proposed a hybrid method based on GA and ACO algorithm to solve the

EDRCJSP, i.e. the Branch Population Genetic Algorithm (BPGA). This BPGA

has also been used to solve the classical DRCJSP (see Li and Huang [101], Li et al.

[102]).

As a combined version of FJSP and DRCJSP, Zheng and Wang [201], Yazdani

et al. [193], Lei and Tan [98], and Paksi and Ma’ruf [145] studied the Dual Resource

Constrained Flexible Job-shop Scheduling Problem (DRCFJSP). Lang and Li [96]

considered the dual-resources as machines and workers. The authors present an algo-

rithm that combines grey simulation technology and non-dominated sorting genetic

algorithm-II (Deb et al. [51]) to solve the problem. Many solution procedures are

proposed towards the solution of DRCFJSP: VNS (Lei and Guo [97]), SA and Vi-

bration Damping Optimization (VDO) (Yazdani et al. [193]), GA (Paksi and Ma’ruf

[145]), Knowledge Guided Fruit-fly Optimization Algorithm (KGFOA) (Zheng and

Wang [201]), among others. Recently, Lei and Tan [98] studied DRCFJSP with mul-

tiple objectives and a novel local search with controlled deterioration (CDLS) was

proposed to minimize the makespan and the total tardiness.

In certain scheduling problems, operations may need more than one resource

to be performed. These problems are commonly known as Multi-Resource Con-

strained FJSP (Gao and Pan [67]) or Multi-Resource Constrained Scheduling Prob-
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lems (Multi-RCPSP) (Huang et al. [81], Davis and Heidorn [49]). Demeulemeester

and Herroelen [54], and Patterson and Roth [146] proposed, respectively, a branch-

and-bound algorithm and an integer programming approach for the Multi-RCPSP.

Dauzère-Pérès et al. [48] introduced the notion of resource flexibility, where for each

operation a list of candidate resources is defined (see, for instance, Mati and Xie

[119]). Almeida et al. [4] studied a Multi Skill Resource Constrained Project Schedul-

ing Problem (MSRCPSP), where each resource, such as an employee, have a set of

skills to perform certain operations.

Another variant of scheduling problems with resource constraints is the Multi-

mode RCPSP (MRCPSP) (Talbot and Patterson [171]), in which each operation

can be processed in one out of several execution ways, called modes. Each execution

mode represents an alternative combination of resource requirements for an operation

that can affect its processing time. For example, a job can finish with 10 employees

in 10 days, while it can be done in only 6 days with 20 employees. Many authors

presented mathematical models for the MRCPSP (see Schnell and Hartl [156, 155],

Hermel et al. [80], Chakrabortty et al. [29], Beşikci et al. [11], Cheng et al. [35],

and Naber and Kolisch [134]). A survey on multi-mode resources can be found in

Hartmann and Briskorn [76] and Wȩglarz et al. [187].

Solution approaches for the MRCPSP with renewable resources include Branch

and Bound (Sprecher and Drexl [168], Brucker et al. [22], Sprecher et al. [169], Kolisch

et al. [95]), Branch and Cut (Zhu et al. [202]), GA (Ba et al. [9], Beşikci et al. [11],

Van Peteghem and Vanhoucke [179], Lova et al. [111], Mati and Xie [119], Hartmann

[75], Ulusoy et al. [177]), Local Search Heuristics (Wang and Fang [183], Kolisch and

Drexl [94], De Reyck and Herroelen [50]), SA (Bouleimen and Lecocq [17]), PSO (

Jarboui et al. [85], Zhang et al. [199]), and TS (Mika et al. [126]), among others.

The most recent work on MRCPSP is due to Hermel et al. [80]. This research is

motivated by a firm that develops container packing software for doors distribution

at a cross-dock facility. The arrival times of the containers are programmed with

the required resources such as human resources and machines. A methodological
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framework and various mathematical models are presented as solution procedures.

We also make reference to the work of Wong et al. [188], and Ba et al. [9] who

studied the multi-mode scheme in the context of JSP and FJSP, respectively. Wong

et al. [188] considered the case where each operation requires a fixture to secure

the process on the machine and each operation requires a tool to be processed.

The authors proposed two heuristic approaches based on GA and PSO. Ba et al. [9]

proposed a new mathematical model for a multi-resource flexible job-shop scheduling

problem (MRFJSP). Machines, warehouses, vehicles, and detection equipment are

the resources in this problem.

The MRCPSP has also been considered with both renewable and nonrenewable

resources. For instance, Beşikci et al. [11] proposed a heuristic based on GA for this

problem and Cheng et al. [35] explored the difference between preemption, activity

splitting, and non-preemptive activity splitting. Van Peteghem and Vanhoucke [180]

presented an overview of the existing metaheuristics to solve the MRCPSP with

both renewable and nonrenewable resources. Moreover, a new benchmark dataset is

proposed by the authors.

As we have seen before doubly constrained resources, introduced by Słowinski

[167], are limited both for each period and for the whole project. For instance,

Wȩglarz [186] studied a project scheduling problem where the doubly constrained

resource is used to represent the number of staff-hours per day or week. In the

literature, most of the authors did not consider doubly constrained resources alone,

but they are combined with other types of resources.

The MRCPSP is studied by many researchers with renewable, nonrenewable,

and doubly-constrained resources together. Bouleimen and Lecocq [17] proposed a

heuristic based on SA as the solution procedure. Ulusoy et al. [177] considered the

cash out- and in-flows associated with the operations, where at the beginning of each

operation there is a cost (out-flow), and payments are received at payment points

(in-flow) during the process. The operations are to be scheduled such that the overall
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project does not exceed a given due date. De Reyck and Herroelen [50] proposed a

local search based methodology, that divides the problem into two distinct phases:

a mode assignment phase and a resource-constrained project scheduling phase with

fixed mode assignments. Sprecher and Drexl [168] considered a branch-and-bound

solution procedure for this problem.

When the availability of a resource changed at each period of the planning

horizon, like timetabling and employees’ shifts in universities, it is referred as the

partially renewable resource as introduced by Böttcher et al. [16]. Alvarez-Valdes

et al. [5] described some preprocessing techniques and develop a heuristic algorithm,

based on Scatter Search, for project scheduling problems under partially renewable

resources. Alvarez-Valdés et al. [6] presented heuristics based on GRASP and path

relinking. Drexl et al. [58] introduced a generalized project scheduling model where

precedence constraints, multiple modes of resources, and multiple resources require-

ment are considered. The authors presented different formulations based on the

RCPSP model and an instance generator.

Finally, some authors studied the RCPSP considering the three different kinds

of resource constraints: renewable, nonrenewable, and doubly resource constrained

resources. Nudtasomboon and Randhawa [141] considered multiple objectives and

developed an implicit enumeration technique as a solution procedure. Kolisch and

Drexl [94] showed that the problem may lead to an unfeasible solution with at

least two nonrenewable resources and hence the complexity of the problem is NP-

complete. De Reyck and Herroelen [50] solved the multi-mode version of the problem

by dividing the problem into two distinct phases: a mode assignment phase and a

resource-constrained project scheduling phase with fixed mode assignments. Zhu

et al. [202] presented a branch and cut algorithm with local branching, variable re-

duction techniques, cuts generation, and bound tightening in order to accelerate the

convergence of the algorithm. Finally, Van Peteghem and Vanhoucke [179] presented

a GA where operation splitting is allowed. The reader is also referred to the book

of Brucker and Knust [21] that discusses various branch-and-bound algorithms and
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heuristic approaches for this problem.

Apart from these major classification of resources, there are some other less

common variants that can be found in the literature. If the available amount of a

resource is an arbitrary number from an interval, as the petroleum in a moving car,

such resources are called continuous (or continuously divisible) resources (Weglarz

[185], Schwindt and Zimmermann [157]). Some resources such as containers, tanks,

or other storage facilities have to store final or intermediate products during the

production process. Such facilities could be depleted and replenished over time. To

represent these resources, Selle [158] proposed the notion of cumulative resources (see

Neumann and Schwindt [137], Neumann et al. [138, 139], and Brucker and Knust

[21]). Gargeya and Deane [69] termed the resources that improve the productiv-

ity of labor and machine as auxiliary resources, such as machine attachments and

accessories, or equipment for transportation.

2.3 Batch scheduling problems in parallel

machines

In many of the modern industries, the production process must be handled in

batches. Due to the extensive literature on Batch Scheduling Problems (BSP) and

the characteristics of our problem under study, we concentrate only on BSP on par-

allel machines. The other major characteristics of our problem under study are:

sequence-dependent setup time (STsd) due to cleaning process between operations

or other shutdowns during the process; family (f) of products due to the similar

characteristics of the operations or products; resource (res) availability; and capac-

ity (C) constraints of the machines. In Table 2.2, we present most of the related

works, to the best of our knowledge, with their main characteristics. Apart from

the works presented in the table, some other works can be found in the surveys of

Potts and Kovalyov [147], Allahverdi et al. [3], Méndez et al. [124], Drexl and Kimms
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[57], Graves [72], and Graham et al. [71], among others.

Author(s) Year STsd f res C

Costa [42] 2015 - - - -

Jia and Leung [86] 2015 - - - ⇥
Shen et al. [161, 162] 2013 ⇥ ⇥ - -

Lozano and Medaglia [113] 2013 ⇥ ⇥ ⇥ ⇥
Cheng et al. [34] 2013 - - - ⇥
Wang et al. [184] 2012 - - ⇥ ⇥
Li and Yuan [107] 2010 - ⇥ - ⇥
Condotta et al. [41] 2010 - - - -

Wang and Chou [182] 2010 - ⇥ - ⇥
Buscher and Shen [28] 2010 - - - ⇥
Buscher and Shen [27] 2009 ⇥ ⇥ - -

Tang and Liu [172] 2009 - - - -

Xu et al. [191] 2009 - - - -

Zhang and Gu [198] 2009 ⇥ - - -

Klemmt et al. [92] 2009 - ⇥ - ⇥
Chung et al. [38] 2009 - ⇥ - ⇥
Leung et al. [99] 2008 - - - -

Mosheiov and Oron [133] 2008 - - - -

Kashan et al. [89] 2008 - - - ⇥
Malve and Uzsoy [114] 2007 - ⇥ - -

Author(s) Year STsd f res C

Mathirajan et al. [115] 2007 - ⇥ - -

Dastidar and Nagi [45] 2007 - - - -

Lin et al. [108] 2007 - - - -

Crauwels et al. [43] 2006 ⇥ ⇥ - ⇥
Hall and Potts [73] 2005 - - - -

Mendez and Cerdá [123] 2004 ⇥ - ⇥ ⇥
Chang et al. [31] 2004 - - - ⇥
Méndez et al. [122] 2000 ⇥ ⇥ - ⇥
Sung et al. [170] 2000 - - - -

Brucker et al. [23] 1998 ⇥ ⇥ - -

Mehta and Uzsoy [121] 1998 - ⇥ - ⇥
Kim et al. [90] 1997 - - - -

Moon et al. [130] 1996 ⇥ - - -

Ghosh [70] 1994 ⇥ ⇥ - -

Cheng and Chen [36] 1994 - - - -

Monma and Potts [129] 1993 - - - -

Birewar and Grossmann [14] 1990 ⇥ - - ⇥
Monma and Potts [128] 1989 ⇥ - - -

Dorsey et al. [56] 1974 - - - -

Table 2.2: Batch production problems on parallel machines

From Table 2.2, one can see that only Lozano and Medaglia [113] meets all the

major characteristics of our problem. The authors studied a problem found in an

automotive safety glass manufacturing facility and proposed a two-phase heuristic

with two evaluation criteria: total tardiness and machine utilization. Although they

consider batches of different capacity, batch splitting is not allowed, and the number

of batches is fixed, contrary to our problem. The products with same ballistic level

belong to the same family, and the processing time depends on the family.

Crauwels et al. [43] studied a batch scheduling problem with parallel machines

where the jobs are partitioned into families. The jobs that require the same process-

ing facility belong to the same family. The authors proposed a heuristic, where a job

sequence is constructed by repeatedly solving a knapsack problem for each machine.
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Méndez et al. [122] proposed a two-step systematic methodology, batching and

scheduling, for the scheduling of a single stage multi-product batch plant. The

batches are of different sizes according to the customer order of each product. The

authors (Mendez and Cerdá [123]) also studied a reactive scheduling problem with

resource-constrained multistage batch facilities. They proposed a MILP framework

to solve this problem where the goal is to update the current schedule when unfore-

seen events occur.

Mixed integer formulations have been proposed in the literature to represent

some variants of batch production problems (see for instance Lozano and Medaglia

[113], Cheng et al. [34], Wang et al. [184]). Many authors proposed heuristics for

solving the BSP such as GA (Costa [42], Noroozi et al. [140], Kashan et al. [89], Malve

and Uzsoy [114]), ACO (Cheng et al. [34]), TS (Shen et al. [160], Buscher and Shen

[27]), SA (Costa [42], Wang and Chou [182], Kashan et al. [89]), VNS (Shen et al.

[161, 162]), and GRASP (Lozano and Medaglia [113], Damodaran et al. [44]), among

others.

Many authors address batch scheduling problems where job families play an

important role. The diffusion and oxidation operations in the wafer fabrication

process are studied by Klemmt et al. [92], and Malve and Uzsoy [114]. Due to the

chemical nature of the process, it is impossible to process jobs with different recipes

together in the same batch. Hence the jobs are classified into family accordingly.

Scheduling of heat-treatment operations of steel casting is studied by Mathirajan

et al. [115]. In this scheduling problem, the jobs (castings) are classified into a

number of job families based on the alloy type. These families are further classified

into various sub-families based on the type of heat-treatment operations required. In

general, the notion of family is used to group jobs with similar requirements (tools

operation sequence, processing times, etc). The reader is referred to the work of

Shen et al. [162, 161], Li and Yuan [107], Buscher and Shen [27], and Brucker et al.

[23] where families of the product are considered in the context of batch production

systems.
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In many of the parallel batch scheduling problems, capacity constraints are

considered due to the limitations of machines. In this context, the batch size must

be less than the capacity of the machine (Wang and Chou [182], Buscher and Shen

[28], Chung et al. [38], Chang et al. [31]). For instance, Wang et al. [184] study

a problem where the capacity constraint due to the fuel storage capacity of the

machines is considered. In Kashan et al. [89], the limited capacity of the burn-in

oven in a semiconductor manufacturing problem leads also to a capacity constraint.

Machines with fixed capacity (Jia and Leung [86], Mehta and Uzsoy [121]), identical

capacity ( Cheng et al. [34]), or different capacities ( Wang and Chou [182], Klemmt

et al. [92]) have also been considered in the literature.

Due to the complexity of the parallel batch scheduling problems with capacity

constraints, most of the researchers proposed heuristics to solve the problem. For

instance, Jia and Leung [86], and Cheng et al. [34] proposed an ACO based meta-

heuristic, Wang and Chou [182] used a GA and a SA, Klemmt et al. [92] used a

VNS heuristic, Kashan et al. [89] proposed a Hybrid Genetic Heuristic (HGH) based

on a batch-based representation, and Mehta and Uzsoy [121] presented a dynamic

programming algorithm. Moreover, Mixed Integer Non-Linear Program (MINLP)

(Torabi et al. [175]), and Mixed Integer Linear Programming (MILP)(Cheng et al.

[34], Wang and Chou [182], Buscher and Shen [28]) representations can also be found

in the literature.

Due to the pace of development and breadth of research, a truly comprehensive

review is probably impossible, and certainly beyond the scope of this thesis. This

literature review presents the major work related to our problems. The scheduling

problems address in this thesis are based on a real situation found in a local brew-

ery. We study this situation as a parallel batch scheduling problem with sequence-

dependent setup time, family considerations, resource constraints, and capacity con-

straints. From this problem, we derived a flexible job-shop scheduling problem with

renewable resources where the resources are renewed by batch. To the best of our
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knowledge, both of these problems have characteristics that have not been addressed

in the literature.



Chapter 3

Scheduling problem with

renewable resources

In this chapter, we study a variant of the FJSP where resource constraints and

recovery time of resource batches are taken into account. This variant has been called

as the Flexible job-shop scheduling problem with Resource Recovery Constraints

(FRRC). In the FRRC, any operation may require some resources to be processed

and these resources are available in a limited quantity. Once a batch of resources

is depleted, it can be recovered; which induces a recovery time (dead time in the

production line). Moreover, the processing time of each operation depends on the

selected machine, and each machine can process a subset of operations. Thus the

machines are known as ‘dedicated machines’.

In order to provide a better idea about the studied problem, this chapter

provides a brief description of the FJSP and the FRRC through two examples and

presents the proposed mathematical formulation for the FRRC.

28
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3.1 The classical flexible job-shop scheduling

problem

The classical Flexible Job-shop Scheduling Problem (FJSP) consists of scheduling

a set J = {ji : i = 1, 2, 3, ..., n} of n jobs on a set M = {mi : i = 1, 2, 3, ...,m}
of m machines. A job j 2 J is composed of a set Oj = {oji : i = 1, 2, 3, ..., nj}
of nj operations. An operation oji can be processed by any of the machines m,

such that m 2 Mji; Mji ✓ M is the set of compatible machines for operation oji.

The processing time pjim of an operation oji depends on the machine m. Each

machine m can process at most one operation at a time. The operations must be

processed without preemption, i.e., the operations cannot be interrupted until the

execution of the operation is completed. The sets of jobs and machines as well as

the compatibility operation-machine are known in advance. Then, the problem is to

assign each operation to a compatible machine and determine the sequence followed

by the operations on those machines with the objective of minimizing the makespan.

3.1.1 Example of the classical FJSP

Consider a 2⇥3 FJSP, i.e., a FJSP with two jobs and three machines. Let J be the

set of jobs, then J = {ji : i = 1, 2} and M be the machine set, M = {mi : i = 1, 2, 3}.
Job j1 2 J is composed by a set O1 = {o1i : i = 1, 2, 3, 4, 5} of five operations, and

job j2 2 J is composed by a set O2 = {o2i : i = 1, 2, 3, 4} of four operations. Each

operation oji has a candidate machine set Mji, where the operation can be performed,

with a certain processing time pjim. The complete data of the candidate machine

set, operation-machine compatibility, and processing time are shown in Table 3.1. If

an operation cannot be processed in a machine (incompatible), we represent this by

a ‘-’ symbol corresponding to the machine.

For operation o21, for instance, the candidate machine set M21 is {m1,m3}.
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By referring to Table 3.1, it could be precisely understandable that operation o21

can be processed in m1 with a processing time of 4 units, and in m3 with 1 unit

of processing time, and these times are represented by p211 = 4 and p213 = 1,

respectively. Operation o21 cannot be processed in machine m2, due to machine-

operation incompatibility, and that is represented by a ‘-’ symbol in the table.

Job Operation
Machine_id

m1 m2 m3

j1

o11 2 3 2

o12 3 1 -

o13 2 2 3

o14 3 - 2

o15 1 3 2

j2

o21 4 - 1

o22 3 2 2

o23 4 2 3

o24 1 3 -

Table 3.1: The 2⇥ 3 FJSP data

A feasible solution of the 2 ⇥ 3 FJSP, with the data given in Table 3.1, is

shown in Figure 3.1 through a Gantt chart. The constraints that should be taken

into account in the FJSP can be enlisted as:

i. Each job j has to be processed by following an operations order (precedence

constraints). i.e., an operation oji cannot start if the previous operation oji�1

has not finished;

ii. Each machine can perform at most one operation at a time;

iii. Assignment of operations has to be done over compatible and available ma-

chines;
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iv. Each operation cannot be interrupted during its execution (non-preemption

condition).

The objective is to find the schedule with the shortest makespan, i.e., the

minimum time required to process all operations in the job-shop.

t
0 1 2 3 4 5 6 7 8 9 10 11

m1

m2

m3 o21o21 o22 o14o23

o12

o11 o13 o24 o15M
ac
h
in
e_

id

Figure 3.1: A solution representation of a classical FJSP based on the instance

described in Table 3.1

As we have mentioned before, when we add the resource constraints to the

classical FJSP, we obtain the FRRC.

3.2 The flexible job-shop scheduling problem

with resource recovery constraints (FRRC)

Besides the classical constraints of the FJSP, in some of the existing industries, the

operations may consume renewable resources. Suppose Ojr be the set of operations

of job j that require the resource r to be processed. To start processing an operation,

the required resources and a compatible machine must be available simultaneously.

Notice that, some operations may not require renewable resources to be processed.

Let R, be the set of available resources. A resource r 2 R is available in batches

that contain br units of the same resource r.
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Each batch of resources can be recovered with a recovery time ⌧r, soon after

the entire batch is completely consumed. Therefore, it can induce some dead time

in the production line during the recovery process, i.e., between each batch of the

same resource r.

Then, the problem is to assign each operation to a compatible machine and

to determine its processing sequence on the machines by taking into account the

availability of resources and machines in order to minimize the makespan. The

resulting problem is called as the Flexible job-shop scheduling problem with Resource

Recovery Constraints (FRRC). An example of the 2⇥ 3⇥ 2 FRRC—an FRRC with

2 jobs, 3 machines, and 2 resources, is presented here, which is developed by adding

FRRC constraints along with FJSP constraints that we have seen in section 3.1.1.

3.2.1 Example of the FRRC

Consider a 2 ⇥ 3 ⇥ 2 FRRC with a set of two jobs, J = {ji : i = 1, 2}, a set of

machines, M = {mi : i = 1, 2, 3}, and a set of resources R = {ri : i = 1, 2}.
Suppose that job j1 has five operations and j2 has four operations. The operation-

machine compatibility, corresponding processing time, and resource requirements of

the operations are shown in Table 3.2(a). One can see for instance that operation o12,

the second operation of job j1, has the candidate set of machines M12 = {m1,m2}
with a processing time equal to 3 and 1, respectively, and which cannot be processed

in machine m3. Furthermore, operation o12 requires resource r2, while operation o14

does not require any resource to be processed. Besides, the resource recovery time

⌧r and batch size br are shown in Table 3.2(b).
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(a) Operation-machine compatibility and resource re-

quirements

Job Operation
Machine_id

Resource
m1 m2 m3

j1

o11 2 3 2 r1

o12 3 1 - r2

o13 2 2 3 r1

o14 3 - 2 -

o15 1 3 2 r2

j2

o21 4 - 1 r2

o22 3 2 2 r1

o23 4 2 3 r2

o24 1 3 - r2

(b) Resource data

Resource id r1 r2

Batch size 2 2

Recovery time 4 3

Table 3.2: A 2⇥ 3⇥ 2 FRRC data

A feasible solution of the 2⇥ 3⇥ 2 FRRC, based on Table 3.2 is presented in

Figure 3.2 by means of a Gantt chart. Notice that the set of constraints involved in

the FRCC are:

i. Each job j has to be processed by following an operations order (precedence

constraints). i.e., an operation oji cannot start if the previous operation oji�1

has not finished;

ii. Each machine can perform at most one operation at a time.

iii. Assignment of operations has to be done over compatible machines.

iv. Each operation cannot be interrupted during its execution (non-preemption

condition).
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v. An operation can be assigned to a machine, if and only if the machine and the

required resource unit are available.

vi. The resource-operation allocation must not exceed the batch size, during any

period.

vii. Before assigning the first unit of a resource batch, to any operation, there must

be a recovery time of the previous batch, if any.

viii. Recovery time is effected from the starting time of the last unit of resource in

a resource batch.

As in the FJSP, the objective of the FRRC is to find the schedule with the

shortest makespan, i.e., the minimum time required to process all operations in the

job-shop.
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Figure 3.2: A solution representation of a 2⇥ 3 FRRC based on Table 3.2

In this Gantt chart, the operation-machine assignment and the operations se-

quence are presented along with a resource allocation and it is shown with a blue

dot bar for r1 and a red dot bar for r2. For instance, consider an assignment of

resource r1, with batch size equal to 2, and a recovery time equal to 4 units, see
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Table 3.2(b). The last unit of the first batch of resource r1 is assigned to operation

o22 which takes place at time 1. Thus, the next batch of resource r1 is available for

any other operation after the starting time of the operation o22, at time 1, plus the

recovery time (4 units of time), i.e.,r1 will be available at time 5. So, during the

period (1,5), where no units of resource r1 is available, operations, that require r1,

cannot be processed. This unavailability of the resource is shown in a blue dots bar

on the top of the chart, with name recovery of r1. Hence, for this case, the next

operation o13 can be assigned to any compatible machine, using resource r1, at time

5. Even though the machine m2 is available and the precedence operation o12 was

completed at time 4, operation o13 cannot be assigned to any machine until resource

r1 is available. However, multiple operations can use the same type of resource while

the size of the batch is not reached, for instance, operations o11 and o22 are using the

same resource r1, in the period (1,2), because the batch size of resource r1 is equal

to 2.

Moreover, the resources cannot be recovered by units but can be recovered by

batches, and the recovery time of a batch starts soon after the assignment of the

last unit of the resource. For instance, the recovery of the first batch of resource r2

starts at time 3, and it is available for processing at time 6. The second batch of the

same resource starts at time 8, and it is available for processing at time 11, since the

batch size of resource r2 is two, and the recovery time is equal to 3 units of time.

We have seen the complexity of the FJSP is NP � hard. The FJSP is a

particular case of the FRRC, on the assumption that none of the operations require

a resource to be processed. Thus, we can conclude that the FRRC is also NP�hard.
Moreover, we represent this problem with a mixed integer linear programming model

(MILP) which is described in the following section.
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3.3 Mathematical formulation

The FRRC formulation is based on the one proposed by Roshanaei [151] for the

FJSP.

The decision variables used in the mathematical model are the following:

xjilk =

8
<

:
1, if operation oji is processed after operation olk

0, otherwise

yjim =

8
<

:
1, if operation oji is assigned to machine m

0, otherwise

zijrq =

8
<

:
1, if operation oji is assigned to the qth unit of resource r

0, otherwise

cji: completion time of operation oji

sji: starting time of operation oji

trq: starting time of the qth unit of resource r

Using these decision variables, we then proposed the following formulation for the

FRRC:

min Cmax (3.1)

s.t. :
X

m2Mji

yjim = 1, 8j 2 J, 1  i  nj, (3.2)

X

j2J

X

i2Ojr

zjirq  1, 8r 2 R, 1  q  nr, (3.3)

nrX

q=1

zjirq = 1, 8r 2 R, j 2 J, i 2 Ojr, (3.4)

cji � cj(i�1) +
X

m2Mji

pjimyjim, 8j 2 J, i 2 Oj, (3.5)
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cji = sji +
X

m2Mji

pjimyjim, 8j 2 J, i 2 Oj, (3.6)

cji � clk + pjim �M(3� xjilk � yjim � ylkm), 8j < n, i 2 Oj, l > j, k 2 Ol, (3.7)

m 2Mji \Mlk,

clk � cji + plkm �M(xjilk + 2� yjim � ylkm), 8j < n, i 2 Oj, l > j, k 2 Ol, (3.8)

m 2Mji \Mlk,

tr(q�1)  trq, 8r 2 R, 1 < q  nr, (3.9)

tr(q�1) + ⌧r  trq, 8r 2 R, 1 < q  nr, q ⌘ 0 mod br, (3.10)

sji � trq +M(zjirq � 1), 8j 2 J, i 2 Oj, r 2 R, 1  q  nr, (3.11)

sji  trq +M(1� zjirq), 8j 2 J, i 2 Oj, r 2 R, 1  q  nr, (3.12)

cjnj  Cmax, 8j 2 J, (3.13)

sji � 0, 8j 2 J, i 2 Oj, (3.14)

trq � 0, 8r 2 R, 1  q  nr, (3.15)

cji � 0, 8j 2 J, i 2 Oj, (3.16)

xjilk 2 {0, 1}, 8j 2 J, i 2 Oj, l 2 J, k 2 Ol, (3.17)

yjim 2 {0, 1}, 8j 2 J, i 2 Oj,m 2Mij, (3.18)

zjirq 2 {0, 1}, 8j 2 J, i 2 Oj, r 2 R, 1  q  nr. (3.19)

The constant M represents a big number. The objective (3.1) corresponds

to the minimization of the makespan. Constraints (3.2) and (3.3) assure that each

operation is assigned to one and only one machine and that each unit of resource

is assigned to at most one operation, respectively. Since for each resource, we can

compute the exact number of units necessary to process all the operations, each unit

of resource will be assigned to at most one operation. The fact that each operation

should consume exactly one unit of the required resource is modeled by constraints

(3.4), and constraints (3.5) modeled the precedence relationship within the opera-

tions of a job. Linking the starting time of an operation with its completion time is
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modeled by constraints (3.6). Constraints (3.7) and (3.8) prevent the overlapping of

operations processed on the same machine. Constraints (3.9) give priorities to the

use of resource units in order to remove symmetries. Constraints (3.10) guarantee the

recovery time between batches of the same resource. Constraints (3.11) and (3.12)

synchronize the starting time of the operation with the one of its assigned unit of

resource. Constraints (3.13) are related to the makespan. Constraints (3.14)-(3.19)

state the nature of the variables.

This mathematical model has been implemented in C++ and solved by us-

ing the branch-and-bound method included in the IBM CPLEX Optimizer. The

obtained results are discussed in Chapter 4.



Chapter 4

Solution procedure for the

FRRC

In this chapter, we describe the proposed solution procedure for solving the FRRC

as well as the validation of the model described in Chapter 3. The proposed so-

lution procedure is based on a well-known metaheuristic called General Variable

Neighborhood Search (GVNS). In the GVNS, the first component (shaking) is used

to avoid local optima by randomly selecting a solution in a defined neighborhood

of the best-known solution, then the second component (local search) improves the

solution by exploring different neighborhoods. We designed five shaking procedures

and five local searches based on different neighborhood structures. The neighbor-

hood structures are explained with the help of diagrams in this chapter. Extensive

computational tests have been carried out, on a large set of instances, in order to

evaluate the performance of the proposed procedure. The analysis of the results

obtained by the proposed GVNS is presented at the end of this chapter.

4.1 Variable Neighborhood Search

The idea behind Variable Neighborhood Search (VNS) is that distinct local optimal

solutions are obtained by applying unlike neighborhood operators on the same solu-

39
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tion. VNS exploits this aspect of the solutions by employing multiple neighborhood

operators and it diversifies the search by allowing different neighborhood operators

to explore different regions in the search space. Before applying VNS to a solution,

a set of neighborhood operators N = {Ni : i = 1, 2, 3, . . . , nmax} must be defined,

typically this set is ordered by increasing size of the neighborhood space. The set

of solutions in the kth neighborhood of x is denoted by Nk(x). In the literature,

several variants of the VNS have been proposed. In this research, we propose a

General Variable Neighborhood Search (GVNS) which is an advanced form of the

Basic Variable Neighborhood Search (Basic VNS).

4.1.1 Basic Variable Neighborhood Search

The steps involved in the Basic VNS are presented in Algorithm 1. Before starting

the Basic VNS, it is needed to define a set of neighborhood structures and the

stopping criterion of the procedure. There is a big number of stopping criteria used

in the literature, such as the maximum CPU time allowed, maximum number of

iterations, maximum number of iterations between two improvements, etc.

In the Basic VNS presented in Algorithm 1, kmax neighborhood structures are

available. These neighborhood structures define neighborhoods around any solution

x 2 X, where X is the solution space. Then the local search is carried out over a

randomly selected solution x0 (shaking), which belongs to the neighborhood Nk(x),

(k = 1 initially), of x. After applying the local search routine over x0, we obtain a

local optimum solution x00 with cost f(x00). Then three possibilities can occur:

i.) x = x00 : then the procedure continues with the next neighborhood, i.e., k  
k + 1

ii.) x 6= x00 & f(x00) � f(x) : then the procedure is iterated with k  k + 1

iii.) x 6= x00 & f(x00) < f(x) : then the procedure is restarted, k = 1, with the

updated x.
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Algorithm 1 Basic VNS
Input:

{Nk; k = 1, . . . , kmax} : Neighborhood structures

x : Initial solution

f(x): Local optimum of x

A stopping criterion

Output: x initial solution

1: repeat

2: k  1

3: while k  kmax do

4: (a) Shaking: Select randomly a solution x0 2 Nk(x)

5: (b) Local search: Find the best solution x00 from x

6: (c) Update solution: If f(x00) < f(x) then x x00 and k  1; else k  k+1

7: end while

8: until Meet stopping criterion

9: return x

In case i), we iterate to the next neighborhood with k  k + 1, because the

best-found solution is the same as the incumbent solution. Therefore, we are no

more interested in repeating the procedure with the same solution again and we

continue with the next neighborhood. In case ii.), we obtain a different best solution

in the neighborhood, but the local minimum value is worse than the one we have

so far (the incumbent). Then, we would not continue with this solution, and we

iterate to continue the exploration of the next neighborhood. Finally, in case iii.),

we obtain a different solution and a local optimum that is better than that of the

incumbent. In this case, the incumbent solution x is replaced by x00, and the search

is restarted with the first neighborhood. The last neighborhood should be reached

without a solution better than the incumbent one. The search is repeated at the

first neighborhood N1(x) until a stopping criterion is met.
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4.1.2 General Variable Neighborhood Search

The General Variable Neighborhood Search (GVNS) is a generalized version of the

Basic VNS in which the simple local search is replaced by a set of local search

structures, see Algorithm 2. The GVNS stops when none of the shaking procedures

combined with the local search structures can improve the best-found solution.

Algorithm 2 General VNS
Input:

{Nk; k = 1, . . . , kmax} : Neighborhood structures for the shaking component

{N l; l = 1, . . . , lmax} : Neighborhood structures to be used in the local search

x : Initial solution by constructive heuristic

f(x): Local optimum of x

A stopping criterion

Output: x initial solution

1: repeat

2: k  1

3: while k  kmax do

4: (a) Shaking: Generate a solution x0 at random from the kth neighborhood

Nk(x) of x

5: (b) Local search:

6: l  1

7: repeat

8: Find the best solution x00 2 N̄l(x0)

9: if f(x00) < f(x0) then x0  x00 and l  1; else l  l + 1

10: until l > lmax

11: (c) Update the best found solution: if f(x00) < f(x) then x  x00 and k  
1; else k  k + 1

12: end while

13: until Meet the stopping criterion

14: return x
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In order to solve the FRRC we designed a solution procedure based on the

GVNS scheme. The detailed description of the proposed algorithm is provided in

the following section.

4.2 Solution procedure for FRRC based on

GVNS

The proposed GVNS starts with an initial solution x which is obtained through

a constructive algorithm. The constructive algorithm can be seen in Algorithm 3.

Notice that, the constructive algorithm is a greedy procedure where at each iteration

the operation with the smallest release time is selected, and then it is assigned to the

machine that leads to the earliest starting time. In our implementation, the release

time of an operation is defined as its earliest starting time taking only into account

the precedence constraints, and ignoring the machines and resources availability. If

the assignment of an operation is not compatible with the precedence constraints,

its release time is considered as infinity. The earliest starting time of an operation

on a machine is computed according to the machine availability, and the resource

recovery time of the required resource, if needed.

Once we have the initial solution x, reported by Algorithm 3, this solution is

used to feed the GVNS (Algorithm 2). The stopping criterion is reached when the

GVNS finds 10 consecutive non-improvement solutions. For a better understanding

of the proposed algorithm, in the following subsections full details are provided.

4.2.1 Solution representation

In order to illustrate a solution and the neighborhood structures used in Algorithm

2, we represent a solution x as an array whose size corresponds to the total number
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Algorithm 3 Constructive Algorithm
Input:

x: An empty solution

O : Set of operations to be assigned

Output: x solution

1: while O 6= ; do

2: oji  operation with the smallest release time, where oji 2 O, j 2 J, i 2 Oj

3: O  O\{oji}
4: m machine where oji achieves the earliest starting time tij; m 2Mji

5: Assign oji to machine m at time tij in x

6: end while

7: return x

of operations to be scheduled. Each cell of the array contains a triplet (j, o,m)

where j represents the job index, o the operation index, and m the assigned machine

index. Here we use only the indices of the job, operations, and machines, to ward off

the intricacies of the solution array. For instance, (2, 1, 3) refers to the assignment

of operation one of job j2 (o21) to machine m3. Consider the example that we

saw in section 3.2.1. Here the total number of operations is 9, so the array size.

A solution representation of the example is provided in Figure 3.2, and the array

solution representation is shown in Figure 4.1.

(2,1,3) (1,1,1) (2,2,2) (1,2,2) (1,3,1) (2,3,2) (1,4,3) (2,4,1) (1,5,1)

Figure 4.1: Solution representation of Figure 3.2

From this solution array, it is possible to compute the starting time and the

completion time of each operation through the greedy algorithm, where operations

are assigned one by one, from left to right, in the solution array of the selected

machine m. Indeed, the resource availability should be taken into account during

this process.
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Moreover, because of the precedence constraints within the operations of a job,

the order of appearance of the operation is known. Thus, from the array representa-

tion shown in Figure 4.1, the operation o in a triplet (j, o,m) can be deduced from

j and its position in the table. Then we know that the first time a job j appears in

the array, it is associated with its first operation, the second time it appears, it is

related to the second operation, and so on. Otherwise, we would have an unfeasible

solution, due to the precedence constraints. This can be used to maintain feasibil-

ity when the positions in the array are changed with the neighborhood exploration,

assuming that there is no conflict in the machine assignment.

4.2.1.1 The critical path and the critical block

In the neighborhood structures, we use the concept of the critical path and critical

block. Consider the example that we have seen in section 3.2.1.

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13

m1

m2

m3 o21 o14
r2

o22 o12 o23
r1 r2 r2

o11 o13 o24 o15
r1 r1 r2 r2

r1

r2

re
co
ve
ry

of
M

ac
h
in
e_

id

r1

r2 r2

Figure 4.2: Critical path of the solution representation shown in Figure 3.2

Given a solution, its critical path is the sequence of operations that yields to the

makespan value on that solution. For example, from Figure 4.2, the last completed
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operation is o15. The reason why operation o15 has a delay is the unavailability of

r2, which has been used by o24. Operation o24 is delayed due to the precedence

constraint of operation o23, which is delayed due to the unavailability of r2 that has

been used by o12. Operation o12 is delayed due to the unavailability of machine m2

and its precedence operation o22, which is delayed due to the precedence relation

with o21. Thus, these operations together form a critical path. The formation of

the critical path is illustrated using the red backward arrows and circles in Figure

4.2. Thus the operations o15, o24, o23, o12, o22 and o21 together form the critical path

of the current solution.

A block is a continuous sequence of operations in the critical path. Although

we can use different criteria to define a block, here in our case, the operations that

integrate the block are the consecutive operations that belongs to the critical path

and are performed on the same machine. For example, from Figure 4.2, one can

see that operations, o22, o12, and o23 are processing on the same machine m2. So

these operations form a block. Operations o24, o15 are also processing on the same

machine, m1, hence they also form a block.

4.3 Neighborhood structures of the GVNS

As we can see in Algorithm 2, we need to define the neighborhood structures for

both shaking and local search phases. We represent the kth neighborhood of x in the

shaking phase with Nk(x), and the lth neighborhood of a solution x in the local search

phase by Nl(x). Indeed, shaking a solution x consists of selecting a random solution

from one of its neighborhoods Nk(x), k = 1, ..., kmax, and a local search on a solution

x refers to finding the best solution in one of its neighborhoods Nl(x), l = 1, ..., lmax.

Among all the neighborhoods we tested, we present here five neighborhoods for the

shaking phase and five for the local search, which are the ones that appear to be the

more efficient to solve the FRRC.
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4.3.1 Neighborhood structures in the shaking phase

The shaking procedure allows to diversify the search and to escape from local optima,

so the neighborhoods in the shaking phase must be of diverse nature as much as

possible. The neighborhood structures used in the shaking are presented below, and

throughout each of the neighborhoods, we refer as x to the current (incumbent)

solution and x0 as (resulting) one of its neighbor solutions.

4.3.1.1 N1: Shifting a job in the critical path

Select two random triplets (j, o,m) and (j0, o0,m0) from the critical path of the

current solution x and shift job j to the next position of (j0, o0,m0). Then, update the

operations according to their order of appearance in the array and keep the machine

assignment in x0 as it is in x.

x

x0

Operations in critical path

(2,1,3) (1,1,1) (2,2,2) (1,2,2) (1,3,1) (2,3,2) (1,4,3) (2,4,1) (1,5,1)

(2,1,3) (1,1,1) (2,2,2) (_,_,_) (_,_,_) (_,_,_) (_,_,_) (1,_,_) (_,_,_)

(2,1,3) (1,1,1) (2,2,2) (1,2,2) (2,3,2) (1,3,1) (2,4,1) (1,4,3) (1,5,1)

shift

Figure 4.3: N1: Shifting a job in the critical path

The move related to this neighborhood structure is shown in Figure 4.3. As

one can see, for the given example, two random triplets, (1, 2, 2) and (2, 4, 1), have

been selected from the critical path. Then, the job from the first triplet (1), is shifted

to the next position of the second triplet (2, 4, 1). After that, the operation indices

between the triplets that have been chosen are updated by preserving the machine

assignment as in the original solution x. Finally, we get a resulting solution x0 which

is a neighbor of x.
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4.3.1.2 N2: Swapping two jobs in the critical path

Choose two random triplets from the critical path of a solution x, namely (j, o,m)

and (j0, o0,m0), respectively. Then, the job indices j and j0 are swapped and the

operations order in each position is updated between them, and the machine assign-

ment is kept as in x. A schematic representation of this move is shown in Figure

4.4.

x

x0

Operations in critical path

(2,1,3) (1,1,1) (2,2,2) (1,2,2) (1,3,1) (2,3,2) (1,4,3) (2,4,1) (1,5,1)

(2,1,3) (1,1,1) (2,2,2) (2,_,_) (_,_,_) (_,_,_) (_,_,_) (1,_,_) (_,_,_)

(2,1,3) (1,1,1) (2,2,2) (2,3,2) (1,2,2) (2,4,1) (1,3,1) (1,4,3) (1,5,1)

swap

Figure 4.4: N2: Swapping two jobs in the critical path

4.3.1.3 N3: Swapping two jobs with machine reassignment

Two random triplets (j, o,m) and (j0, o0,m0) are chosen from a solution x. Then,

jobs j and j0 are swapped and the operations order in each position are updated,

while the machine assignment is kept as in x. Finally, the operations ojo and oj0o0

are reassigned to a different compatible machine selected at random. A schematic

representation of this move is shown in Figure 4.5.



Chapter 4. Solution procedure for the FRRC 49

x

x0

Operations in critical path

(2,1,3) (1,1,1) (2,2,2) (1,2,2) (1,3,1) (2,3,2) (1,4,3) (2,4,1) (1,5,1)

(2,1,3) (1,1,1) (2,2,2) (2,_,_) (_,_,_) (_,_,_) (_,_,_) (1,_,_) (_,_,_)

(2,1,3) (1,1,1) (2,2,2) (2,3,2) (1,2,2) (2,4,1) (1,3,1) (1,4,3) (1,5,1)

(2,1,3) (1,1,1) (2,2,2) (2,3,2) (1,2,1) (2,4,2) (1,3,1) (1,4,3) (1,5,1)

swap

Figure 4.5: N3: Swapping two jobs with machine reassignment

4.3.1.4 N4: Shifting a job in the critical path with machine

reassignment

Two triplets (j, o,m) and (j0, o0,m0) are randomly selected from the critical path.

Then the shifting movement of N1 is applied, and operations ojo and oj0o0 are reas-

signed to a different compatible machine which is randomly chosen. This neighbor-

hood is very similar to N1.

4.3.1.5 N5: Shifting a job and reassigning to a different

machine

Two random triplets (j, o,m) and (j0, o0,m0) are chosen from a solution x, and job

j is shifted after the position of (j0, o0,m0) as in neighborhood N1. Notice that in

this case, the triplets (j, o,m) and (j0, o0,m0) are not necessarily part of the critical

path. Then, the operation ojo is assigned to another compatible machine which is

randomly chosen.
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4.3.2 Neighborhood structures for the local search

A local search consists of exploring all the neighbor solutions of a given solution x0,

and returning the best neighbor x00 according to an objective function. An objective

function can maximize profits, minimize costs, minimize makespan, etc. In our case

the objective function is the makespan, i.e., the minimization of the completion

time of the last job. The defined neighborhood should not be too large, to avoid

time overhead, and should contain enough good quality solutions to improve the

incumbent solution found so far.

4.3.2.1 N1: Reassigning the machines in the critical path

The triplets are taken one by one, from the critical path of the incumbent solution

x0, going from left to right in the solution array. For each of the triplets (j, o,m),

the corresponding operation ojo is reassigned to the machine m0 2 Mjo that leads

to the smallest makespan. If there is not a machine assignment that gives a better

solution than the current one, the machine assignment remains the same. This

process is applied to the next triplet on the critical path, and so on. A schematic

representation of this procedure is illustrated in Figure 4.6.

x0

x00

Operations in critical path

(2,1,3) (1,1,1) (2,2,2) (2,3,2) (1,2,1) (2,4,2) (1,3,1) (1,4,3) (1,5,1)

(2,1,1) (1,1,1) (2,2,3) (2,3,3) (1,2,1) (2,4,1) (1,3,1) (1,4,3) (1,5,3)

Figure 4.6: N1: Reassigning the machines in the critical path
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4.3.2.2 N2: Reassigning the machines

This neighborhood is very similar to N1, but instead of performing the machine

reassignment in the critical path, it is carried out on a subsequence of the incumbent

solution x0. In order to reduce the size of the neighborhood, the number of operations

of this subsequence is limited to 15% of the total number of operations. But in order

to maintain a diversity of the neighborhoods, the first operation is randomly selected.

The resultant feasible solution is named as x00.

4.3.2.3 N3: Swapping two jobs and reassigning the machines in

a block

Two random triplets (j, o,m) and (j0, o0,m0) are selected in a block of the solution x0

and swapped as in N2. Then, operations ojo and oj0o0 are reassigned to compatible

machines by figuring out the machine that produces the smallest makespan. In this

neighborhood, all possible swaps within the chosen block are explored.

4.3.2.4 N4: Shifting a job

A subsequence of operations from solution x0 is randomly selected such that its length

is approximately 15% of the total number of operations. Then the first operation of

this subsequence is shifted to another position within this subsequence. All possible

positions for the shifting are explored, while the machine assignment is preserved.

4.3.2.5 N5: Swapping two jobs

A subsequence of operations from solution x0 is randomly selected such that its

length is approximately 15% of the total number of operations. Then two triplets,
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(j, o,m) and (j0, o0,m0), are selected, after that these triplets swap their positions to

find out the best sequence that produces the minimum makespan, whilst conserving

the machine assignment. All possible swaps are explored within this subsequence.

4.4 Computational Results

The proposed GVNS described in Algorithm 2 has been coded in C++, and the

mathematical model has been used to solve the FRRC with the branch and bound

available in CPLEX 12.6.3. All tests were carried out on a computer with a Processor

3.7 GHz Quad-Core Intel Xeon E5 with 12GB of RAM memory. For the tests, we

used a set of benchmark instances adapted from the ones proposed by Dauzère-

Pérès and Paulli [46] and Dauzére-Pérés and Paulli [47]. The resource requirement

of operations was randomly chosen as well as the batch size of each resource. We

made sure that at least two batches are available for the process. The recovery time

was randomly selected between the minimum and the maximum processing time of

the operations, to get consistent values according to the instance. As of stopping

criterion for CPLEX, we considered one hour of computation time.

The characteristics of each class of the tested instances are presented in Table

4.1. Each row in this table is related to the instance class, in which ten different

configurations of resources have been tested, the makespan and gap (%) are the aver-

ages of the ten instances. For instance, ‘frrc5_08 ’is a class of ten instances with the

same number of operations and machines, but with different resource requirements

configuration. The number ‘5’ in the name indicates that five resources are used

in the instance class. Moreover, the number of jobs, operations, machines, and the

number of resources used in each class of the instance is shown explicitly in Table

4.1.
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(a) instances with 1 resource

Instances Number of -

jobs operations machines resources

frrc1_01 10 196 5 1

frrc1_02 10 196 5 1

frrc1_03 10 196 5 1

frrc1_04 10 196 5 1

frrc1_05 10 196 5 1

frrc1_06 10 196 5 1

frrc1_07 15 293 8 1

frrc1_08 15 293 8 1

frrc1_09 15 293 8 1

frrc1_10 15 293 8 1

frrc1_11 15 293 8 1

frrc1_12 15 293 8 1

frrc1_13 20 387 10 1

frrc1_14 20 387 10 1

frrc1_15 20 387 10 1

frrc1_16 20 387 10 1

frrc1_17 20 387 10 1

frrc1_18 20 387 10 1

(b) instances with 5 resources

Instances Number of -

jobs operations machines resources

frrc5_01 10 196 5 5

frrc5_02 10 196 5 5

frrc5_03 10 196 5 5

frrc5_04 10 196 5 5

frrc5_05 10 196 5 5

frrc5_06 10 196 5 5

frrc5_07 15 293 8 5

frrc5_08 15 293 8 5

frrc5_09 15 293 8 5

frrc5_10 15 293 8 5

frrc5_11 15 293 8 5

frrc5_12 15 293 8 5

frrc5_13 20 387 10 5

frrc5_14 20 387 10 5

frrc5_15 20 387 10 5

frrc5_16 20 387 10 5

frrc5_17 20 387 10 5

frrc5_18 20 387 10 5

Table 4.1: Description of the tested instances

The mathematical model presented in section 3.3 has been implemented in

C++, and solved with the branch and bound included in CPLEX. The results

reported by CPLEX are presented in Table 4.2. Notice that in the cases where

CPLEX did not report a feasible solution, within the one-hour time limit, the sym-

bol ‘-’ is used. For each class of the instances, we report the average makespan in

the makespan column, the average optimality gap reported by CPLEX in column

gap(%), and the number of instances where a feasible solution has been found out

of the ten instances of the class in shown in the last column #sol. The averages

have been computed taking into account only the instances where a feasible solution

has been found. Note that, even for the smallest instances, CPLEX was not able to
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solve to optimality any of them and the optimality gap stays relatively high. For

instances with more than 15 jobs, CPLEX struggles to find any feasible solution.

The behavior with one or five resources is quite similar.

(a) with 1 resource

Instances makespan gap (%) # sol

frrc1_01 10273.00 86.05 1/10

frrc1_02 10138.33 85.87 9/10

frrc1_03 10030.50 86.11 6/10

frrc1_04 10276.33 85.99 3/10

frrc1_05 9953.67 86.26 9/10

frrc1_06 10168.13 86.82 8/10

frrc1_07 - - 0/10

frrc1_08 15133.20 90.75 5/10

frrc1_09 15085.44 90.72 9/10

frrc1_10 15124.00 90.66 2/10

frrc1_11 14983.40 91.08 5/10

frrc1_12 - - 0/10

frrc1_13 - - 0/10

frrc1_14 19967.60 93.22 10/10

frrc1_15 - - 0/10

frrc1_16 - - 0/10

frrc1_17 - - 0/10

frrc1_18 - - 0/10

Averages 12830.33 88.5 3.72/10

(b) with 5 resources

Instances makespan gap (%) # sol

frrc5_01 - - 0/10

frrc5_02 8270.43 83.04 7/10

frrc5_03 8858.67 84.16 9/10

frrc5_04 8589.50 83.15 8/10

frrc5_05 8889.89 84.57 9/10

frrc5_06 9218.80 85.45 5/10

frrc5_07 - - 0/10

frrc5_08 13995.60 89.99 5/10

frrc5_09 14881.67 90.57 3/10

frrc5_10 - - 0/10

frrc5_11 13666.33 90.21 3/10

frrc5_12 - - 0/10

frrc5_13 - - 0/10

frrc5_14 18725.63 92.77 8/10

frrc5_15 - - 0/10

frrc5_16 - - 0/10

frrc5_17 - - 0/10

frrc5_18 - - 0/10

Averages 11677.39 87.1 3.17/10

Table 4.2: CPLEX results using the proposed mathematical formulation

Table 4.3 shows the results obtained with the proposed GVNS, presented in

Algorithm 2. Column Instances contains the name of the class, column Ini sln

refers to the initial solution obtained with the constructive algorithm (Algorithm
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3), and column imp shows the percentage of improvement between the best-found

solution in column makespan and the initial solution Ini sln. The column time

shows the average processing time in seconds. As one can see, the GVNS is able to

improve the initial solution by around 9% and the processing time stays below 1500

s, in both the cases. Interestingly, the processing time is smaller with five resources;

this is mainly due to an early convergence and then an early termination of the

search.

(a) with 1 resource

Instances Ini sln makespan imp time

frrc1_01 3557.20 3175.40 10.67 79.22

frrc1_02 2834.40 2533.70 10.46 102.17

frrc1_03 2521.20 2354.70 6.56 166.46

frrc1_04 3328.10 2878.50 12.75 95.98

frrc1_05 2599.00 2374.40 8.27 127.13

frrc1_06 2770.20 2547.30 7.68 128.73

frrc1_07 3007.80 2662.50 11.38 412.31

frrc1_08 2521.90 2253.50 10.47 513.60

frrc1_09 2251.40 2180.80 3.12 392.71

frrc1_10 3057.40 2719.60 10.93 469.05

frrc1_11 2963.00 2670.70 9.23 300.29

frrc1_12 2374.80 2254.50 4.68 446.55

frrc1_13 3434.40 2885.40 15.34 1031.93

frrc1_14 2507.60 2370.20 5.43 949.06

frrc1_15 2388.50 2299.20 3.66 1484.57

frrc1_16 4382.00 3972.70 12.16 817.31

frrc1_17 3910.10 3722.20 6.24 893.03

frrc1_18 2978.60 2878.70 3.38 1337.27

Averages 2965.98 2707.44 8.47 541.52

(b) with 5 resources

Instances Ini sln makespan imp time

frrc5_01 3420.20 2974.40 12.89 76.63

frrc5_02 2960.20 2547.40 13.44 80.27

frrc5_03 2722.40 2520.50 7.05 60.99

frrc5_04 3388.20 2860.90 15.33 69.22

frrc5_05 2702.20 2467.20 8.41 55.85

frrc5_06 2519.40 2397.70 4.80 80.94

frrc5_07 3908.50 3183.70 17.25 234.98

frrc5_08 2755.20 2487.50 8.47 164.74

frrc5_09 2893.10 2702.30 5.12 155.20

frrc5_10 3353.20 2869.50 13.88 326.79

frrc5_11 3096.20 2754.10 10.09 174.13

frrc5_12 2396.10 2278.30 4.31 184.44

frrc5_13 3218.80 2850.00 11.32 678.35

frrc5_14 2960.30 2817.40 4.56 369.73

frrc5_15 3489.20 3408.10 2.03 327.83

frrc5_16 3777.80 3219.20 14.16 706.10

frrc5_17 2800.30 2610.40 5.63 417.00

frrc5_18 2773.90 2664.50 3.16 525.69

Averages 3063.07 2756.28 9.00 260.49

Table 4.3: GVNS results

When many resources are introduced, we have more flexibility in the arrange-

ment of the operations and less total waiting time for the availability of the resources.

With only one resource, it is more likely that we generate large dead time in the
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process during the resource recovery period which leads to a more complex schedul-

ing. Alternating operations using different resources is not an option in this case.

However, the improvement of the initial solution stays relatively consistent with one

and five resources. If we compare the results reported by CPLEX and the GVNS,

we can remark that the average makespan of the GVNS is much smaller than the

one reported by CPLEX. The difference is around 75% and the processing time of

the GVNS stays relatively low.
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Case study - Scheduling problem

in a brewery

In this chapter, we present a case study from a local brewing company. The ob-

jective is to propose a complete beer production schedule in order to minimize the

makespan. It can be seen as a multi-stage batch scheduling problem where each

stage involves multiple parallel machines and sequence-dependent setup times. The

jobs are grouped in families of products according to the kind of beer to be produced

and the capacity of the different tanks used during the process should not be ex-

ceeded. Besides the tanks, another renewable resource to be considered is the yeast,

required for the fermentation process of beer.

To the best of our knowledge, this problem has not been previously addressed

in the literature. We propose a Greedy Randomize Adaptive Search Procedure

(GRASP) for its solution. The contents of this chapter have been published in:

Sáenz-Alanís, César A., V. D. Jobish, M. Angélica Salazar-Aguilar, and Vincent

Boyer. “A parallel machine batch scheduling problem in a brewing company”. The

International Journal of Advanced Manufacturing Technology 87, no. 1-4 (2016):

65-75.
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5.1 Problem description - the brewing problem

In the beer brewing process, beers are obtained from the production of worts, which

contain the sugars that will be fermented to produce alcohol. The peculiarities of a

beer depend on the malt used to produce the wort and on the yeast. Since different

kinds of beers can be obtained by a brewery, the production of different kind of

worts has to be scheduled. Furthermore, the process is constrained by the cleaning

operation of the tanks, the availability of the tanks, the time required to empty a

tank, and the availability of the yeasts. The process consists of three main phases:

the coction, the fermentation, and the conditioning. In this work we consider only

the two first phases since, as observed in our case study, there are always enough

tanks in the conditioning phase to receive the worts leaving the fermentation tanks.

Coction tanks

1st boiled wort w

2nd boiled wort w

nth
t boiled wort w

Fermentation tanks Conditioning Tanks

Yeast

Raw Materials

Figure 5.1: General Brewing Process

Let W be the set of wort types and dw the demand of each wort type w 2 W ,

then the objective is to schedule the coction and the fermentation of the worts in

order to satisfy the demand as soon as possible. Coctions can be carried out on a

set H of coction houses, which is composed of tanks with capacity qh, h 2 H. The

coction houses can operate in parallel and are unrelated. For each wort type w 2 W ,

there is a subset of compatible coction houses Hw 2 H. In the fermentation phase,

there is a set T of heterogeneous tanks available. Each tank t 2 T has a capacity kt
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which represents the number of worts needed to fill the tank t.

In this context, we model a job as a batch of alike worts. The number of worts

on this batch is equal to the capacity qh of the fermentation tank h used for the second

phase. Hence, the batch size for each job is unknown a priori and, consequently, the

total number of jobs to be scheduled either. Although, the fermentation of a batch

occurs in a unique tank, the coction of worts within a batch can be done in parallel

on the different coction houses. Nevertheless, one has to assure that the assigned

fermentation tank is available when the first wort of the batch leaves the coction

house, and only the wort from the associated batch can fill this fermentation tank.

The availability of the yeast should also be considered. Let Y be the set of

yeasts for the fermentation phase and ny the maximum number of consecutive jobs

that can use yeast y 2 Y before it is depleted. Each wort w 2 W can be fermented

by using a specific yeast yw 2 Y . Hence, a yeast y 2 Y is used for a subset Fy ⇢ W

of wort type. Fy will be called the family of worts type that are compatible with

yeast y. In order to assure the availability of yeast, the production of worts using a

different kind of yeast is alternated. Indeed, this policy is used by the company in

order to ensure yeast recovery. Besides, as we will see in the following, this strategy

is particularly relevant when considering the maintenance activities.

Maintenance activities occur at each stage of the process. The coction tanks

should be cleaned every time there is a changed in the wort type, and also after n

consecutive coctions of the same wort type. Likewise, the fermentation tanks should

be cleaned after each use. The duration of these cleaning operations depends on the

wort yielding to Sequence Dependent Setup Time. Moreover, a general maintenance

of the production lines should be scheduled every 7 to 10 days.
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5.2 Solution procedure for the brewing

problem

For the solution of this NP-hard scheduling problem, we propose a Greedy Random-

ized Adaptive Search Procedure (GRASP). GRASP is a multi-start process, where

each iteration consists of a construction phase and an improvement phase. The con-

struction phase constructs a solution for the problem, then this solution is improved

through the improvement phase, which is a local search procedure. The general steps

of the GRASP algorithm is presented in Algorithm 4, where Sb is the best-found

solution.

Algorithm 4 GRASP algorithm
Input:

Instance of the problem

itmax: Maximum number of iterations for the GRASP

Output: Sb Best found solution.

1: j  0

2: Sb  ;
3: while j < itmax do

4: S  construct_solution()

5: S 0  improve_solution(S)

6: Update S

7: Update Sb

8: j  j + 1

9: end while

10: return Sb
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5.2.1 Construction phase

This phase consists of constructing an initial solution which will be fed to the im-

provement phase. At each step of the algorithm, an empty batch B is created and

the wort type to be produced in B is randomly selected from a Restricted Candidate

List (RCL). The RCL contains the two types of worts, one that has the largest un-

covered demand and the one whose required yeast is available at the moment. The

batch B is assigned to the first available fermentation tank t⇤ 2 T , which gives the

number nB of coctions that should be programmed. The required coctions are then

assigned iteratively to the earliest available coction house. The procedure is repeated

until the demand of all the wort types is satisfied. This constructive procedure is

given in Algorithm 5.

Algorithm 5 Constructive algorithm
Input:

Data of the problem

Output: Sb Best found solution.

1: S  ;
2: while Meet stopping criteria do

3: Build RCL of wort batches B

4: Select a random batch B from RCL

5: Update (S, Sb)

6: Evaluate stopping criteria

7: end while

8: return Sb

5.2.2 Improvement phase

The improvement phase tries to improve the constructed solution S. This procedure

works in an iterative fashion by successively replacing the current solution S⇤ by
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the best solution S 0 in its neighborhood. It finishes when no better solution has

been found. The neighborhood of the current solution is obtained by randomly

swapping two batches of different wort type and recomputing the makespan. If a

better solution is found, it becomes the new current solution, and its neighborhood is

afterward explored, and so on. An outline of this procedure is presented in Algorithm

6.

Algorithm 6 Solution Improvement
Input:

Data of the problem

S : Initial solution

Output: S⇤ Best found solution.

1: S⇤  S

2: while Meet stopping criteria do

3: Find S 0 2 N(S⇤), such that makespan of S 0 is better than S⇤

4: Update S⇤

5: end while

6: return S⇤

5.3 Experimental results

The computational experiments are carried out with real instances from a brewery

and we also generated some random instances to evaluate the efficiency and robust-

ness of the proposed GRASP. The GRASP Algorithm has been implemented in Java

and tested on a Workstation HP Z620 with an Intel Xeon(R) CPU E5-2620 v2 (2.10

GHz) and 64GB of RAM memory. The main characteristics of these instances are,

⇤ Two coction houses with different setup times

⇤ Two sizes of fermentation tanks that can contain 4 or 8 units of worts

⇤ Two kinds of yeasts
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⇤ At most three consecutive uses of each kind of yeast

⇤ Six different wort types

For the real data, the brewery provided the demand per wort type on 20 cases

from the year 2014. The comparison between the makespan (number of days required

to carry out the production) obtained by GRASP and the one from the solutions

implemented by the company are shown in Figure 5.2. It is clear that the GRASP

outperforms the solution used by the decision maker over all tested instances.

Figure 5.2: Makespan comparison with real data: company solution vs GRASP

Table 5.1 presents a comparative study on the values reported by our GRASP

and the one of the decision maker at the brewery. The number of days required for

production is significantly reduced when GRASP is used. An average of 44.80% of

the total number of production days needed by the company is saved. This result has

a direct impact on the production capacity of the plant and the tolerance to faults

that can occur throughout the process. Furthermore, the computation time required

by the proposed GRASP is less than 11 seconds in average, while the decision maker

has to work during a whole working day to obtain a feasible sequence of production

per instance.
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Company (days) GRASP (days) Time (s) Gap (%)

Min 20.44 9.46 7.08 31.02

Avg 23.51 13.07 10.70 44.80

Max 29.78 20.54 15.49 57.90

Table 5.1: Computational Experiments with Real Data

The production demand in the brewery varies throughout the year: a low

level of production during winter, a high level of production during summer, and a

normal level of production in the rest of the year. Thus, to test the robustness of

our heuristic, from the real data, we have generated three classes of instances with

low, medium, and high demand.

For each class, we generated 20 instances, and we report the total number of

days (makespan) required to fulfill the demand and the processing time used by the

proposed GRASP. The results obtained are displayed in Table 5.2.

Demand - Average

deviation GRASP(days) time(seconds)

Low 14.74 9.83

Medium 15.72 13.42

High 16.98 16.39

Table 5.2: Average results of instances with varying demands

From Table 5.2, one can notice that the proposed GRASP takes less than 19

seconds in average to provide a solution for those artificial instances. Furthermore,

the processing time is consistent over all tested instances and in the worst case the

number of days (makespan) required to fulfill the demand stays below 18 days while

the company usually takes more than 20 days in the best case. These results show

that a brewing company can highly benefit from such an approach when it needs to
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schedule its production.

5.4 Conclusions

In this chapter, we have presented a scheduling problem found in a brewing com-

pany. Due to the complex nature of the problem, we propose a computational pro-

cedure based on the metaheuristic known as GRASP. The main characteristics of

the problem are the existence of parallel machines, two stages of production, multi-

ple products, batch production, and sequence-dependent setup times. Moreover, the

batches have different sizes and their total number depends on the production sched-

ule. The experimental tests over the real instances from the brewing company and

over artificial instances show the high efficiency and the robustness of our approach.

Indeed, our GRASP can generate a feasible sequence of production in a significantly

negligible time in comparison to the current time required by the decision maker at

the company. Furthermore, with the instances provided by the brewery, the solu-

tion obtained by GRASP saves a significant amount of time in production, which

gives the opportunity to the company to increase its capacity of production without

inverting in new equipments. The proposed approach can also be used to evaluate

the need of a future expansion of capacity in the plant.
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Conclusions

6.1 Contributions and Future Work

In this study, we introduce a new problem called the Flexible job-shop scheduling

problem with Resource Recovery Constraints, i.e., FRRC. The primary characteris-

tics of the FRRC are the renewable resources (which are available by batches), re-

source recovery time, and operation-resource compatibility. Some other features are

the existence of multiple jobs composed of operations, multiple machines available

in parallel, precedence constraints, operation-machine compatibility, and processing

time dependent of the machine and operation. Several researchers have studied prob-

lems with some of these characteristics and proposed a variety of solution procedures

and mathematical model representations towards these problems. But, to the best

of our knowledge, none of the researchers have worked on a scheduling problem that

tackles these features simultaneously.

A mixed integer linear formulation to represent the FRRC and a solution pro-

cedure based on a General Variable Neighborhood Search metaheuristic have been

proposed. Computational tests have been carried out in a large set of instances

adapted from the literature of the FJSP. The results clearly showed the efficiency of

our proposed algorithm (see Chapter 4). Moreover, the manuscript derived from this

66
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part of the research has been submitted for revision to The International Journal of

Production Research.

Additionally, a case study from a local brewery has been carried out (see Chap-

ter 5). A solution procedure based on GRASP has been proposed. The efficiency

of the algorithm has been shown by solving real and random instances. The de-

scription of the algorithm as well as the obtained results are already published in:

Sáenz-Alanís, César A., V. D. Jobish, M. Angélica Salazar-Aguilar, and Vincent

Boyer. “A parallel machine batch scheduling problem in a brewing company”. The

International Journal of Advanced Manufacturing Technology 87, no. 1-4 (2016):

65-75.

Notice that, the complex nature of the modern industries often involved many

resources in their process, with limited production units and pieces of machinery.

But the production must have to finish in a short time without loss in quality. In

this context, a well-planned production is essential. On behalf of this research, we

note that manual scheduling is very time consuming, and the outputs are not very

efficient in practice. Besides, even linear mathematical models have limitations to

provide optimum or near optimum solutions in a reasonably short period. Solution

procedures based on GVNS or GRASP are light and easy to implement heuristics

that could save time, money and improve significantly the production capacity of

the companies.

In a future work, other solution approaches for the FRRC should be inves-

tigated in order to state the quality of the solutions obtained with the proposed

GVNS. Besides, the mathematical model can be studied and improved in order to

obtain feasible solutions for at least some instances. It could be also interesting to

extend the problem where each operation uses more than one resource, with different

availability profiles in order to tackle more complex industrial problems. Regarding

the case study, the implementation in the company of the proposed GRASP would

be an interesting task. Furthermore, one can also consider adding the conditioning
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phase and the bottling phase in order to optimize the overall production process.

6.1 Autobiographical reflection

Undertaking this research is an invaluable learning experience in my academic life

and career. Before starting this research, I did not have much idea on how the prod-

ucts in a supermarket or available to order online are processed. Now I realize that

behind each product there is an immense study on the gathering of raw materials,

the configuration of the production lines, the conditioning of the product, and even

their distribution. At each stage of production and distribution behind each product,

a high attention of the decision maker is required in order to fulfill the demand.

More than anything else, I have gained an in-depth understanding of the nature

of the research, that it can be cyclical, sometimes messy or even failed. I have learned

how to gather information, to define and model a problem, to review the literature,

to develop heuristic solution procedures and to evaluate them. All together gave me

a life long experience in both my academic and personal life.
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Bibliography 79

Simulated annealing for multi-mode resource-constrained project scheduling. An-

nals of Operations Research, 102(1-4):137–155.

[88] Karthikeyan, S., Asokan, P., and Nickolas, S. (2014). A hybrid discrete fire-

fly algorithm for multi-objective flexible job shop scheduling problem with limited

resource constraints. The International Journal of Advanced Manufacturing Tech-

nology, 72(9-12):1567–1579.

[89] Kashan, A. H., Karimi, B., and Jenabi, M. (2008). A hybrid genetic heuristic for

scheduling parallel batch processing machines with arbitrary job sizes. Computers

& Operations Research, 35(4):1084–1098.

[90] Kim, J., Kang, S.-H., and Lee, S.-M. (1997). Transfer batch scheduling for a two-

stage flowshop with identical parallel machines at each stage. Omega, 25(5):547–

555.

[91] Klein, R. (2000). Project scheduling with time-varying resource constraints.

International Journal of Production Research, 38(16):3937–3952.

[92] Klemmt, A., Weigert, G., Almeder, C., and Monch, L. (2009). A comparison

of mip-based decomposition techniques and vns approaches for batch scheduling

problems. In Simulation Conference (WSC), Proceedings of the 2009 Winter,

pages 1686–1694. IEEE.

[93] Kolisch, R. (1996). Serial and parallel resource-constrained project scheduling

methods revisited: Theory and computation. European Journal of Operational

Research, 90(2):320–333.

[94] Kolisch, R. and Drexl, A. (1997). Local search for nonpreemptive multi-mode

resource-constrained project scheduling. IIE transactions, 29(11):987–999.

[95] Kolisch, R., Sprecher, A., and Drexl, A. (1995). Characterization and generation

of a general class of resource-constrained project scheduling problems. Manage-

ment science, 41(10):1693–1703.



Bibliography 80

[96] Lang, M. and Li, H. (2011). Research on dual-resource multi-objective flexible

job shop scheduling under uncertainty. In Artificial Intelligence, Management

Science and Electronic Commerce (AIMSEC), 2011 2nd International Conference

on, pages 1375–1378. IEEE.

[97] Lei, D. and Guo, X. (2014). Variable neighbourhood search for dual-resource

constrained flexible job shop scheduling. International Journal of Production Re-

search, 52(9):2519–2529.

[98] Lei, D. and Tan, X. (2016). Local search with controlled deterioration for

multi-objective scheduling in dual-resource constrained flexible job shop. In 2016

Chinese Control and Decision Conference (CCDC), pages 4921–4926. IEEE.

[99] Leung, J. Y.-T., Ng, C., and Cheng, T. E. (2008). Minimizing sum of completion

times for batch scheduling of jobs with deteriorating processing times. European

Journal of Operational Research, 187(3):1090–1099.

[100] Li, J. and Huang, Y. (2015). Improved genetic algorithm for extension dual

resource constrained job shop scheduling problem. In LISS 2014, pages 1105–1110.

Springer.

[101] Li, J. and Huang, Y. (2016). A hybrid genetic algorithm for dual-resource con-

strained job shop scheduling problem. In International Conference on Intelligent

Computing, pages 463–475. Springer.

[102] Li, J., Huang, Y., and Niu, X. (2016). A branch population genetic algo-

rithm for dual-resource constrained job shop scheduling problem. Computers &

Industrial Engineering, 102:113–131.

[103] Li, J., Pan, Q.-k., and Xie, S. (2010a). A hybrid variable neighborhood search

algorithm for solving multi-objective flexible job shop problems. Comput. Sci. Inf.

Syst., 7(4):907–930.

[104] Li, J.-q., Pan, Q., Xie, S., Jia, B.-x., and Wang, Y.-t. (2010b). A hybrid particle

swarm optimization and tabu search algorithm for flexible job-shop scheduling



Bibliography 81

problem. International Journal of Computer Theory and Engineering, 2(2):1793–

8201.

[105] Li, J.-q., Pan, Q.-k., and Liang, Y.-C. (2010c). An effective hybrid tabu search

algorithm for multi-objective flexible job-shop scheduling problems. Computers &

Industrial Engineering, 59(4):647–662.

[106] Li, K., Yang, S.-L., and Ma, H.-W. (2011). A simulated annealing approach

to minimize the maximum lateness on uniform parallel machines. Mathematical

and Computer Modeling, 53(5):854–860.

[107] Li, S. and Yuan, J. (2010). Parallel-machine parallel-batching scheduling with

family jobs and release dates to minimize makespan. Journal of Combinatorial

Optimization, 19(1):84–93.

[108] Lin, B., Cheng, T., and Chou, A. (2007). Scheduling in an assembly-type

production chain with batch transfer. Omega, 35(2):143–151.

[109] Liouane, N., Saad, I., Hammadi, S., and Borne, P. (2007). Ant systems &

local search optimization for flexible job shop scheduling production. International

Journal of Computers Communications & Control, 2(2):174–184.

[110] Lorenzoni, L. L., Ahonen, H., and de Alvarenga, A. G. (2006). A multi-

mode resource-constrained scheduling problem in the context of port operations.

Computers & Industrial Engineering, 50(1):55–65.

[111] Lova, A., Tormos, P., Cervantes, M., and Barber, F. (2009). An efficient hybrid

genetic algorithm for scheduling projects with resource constraints and multiple

execution modes. International Journal of Production Economics, 117(2):302–316.

[112] Lova, A. L., Tormos, M. P., and Barber, F. (2006). Multi-mode resource con-

strained project scheduling: scheduling schemes, priority rules and mode selection

rules. Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial,

10(30):69–86.



Bibliography 82

[113] Lozano, A. J. and Medaglia, A. L. (2013). Scheduling of parallel machines

with sequence-dependent batches and product incompatibilities in an automotive

glass facility. Journal of Scheduling, 17(6):521–540.

[114] Malve, S. and Uzsoy, R. (2007). A genetic algorithm for minimizing maximum

lateness on parallel identical batch processing machines with dynamic job arrivals

and incompatible job families. Computers & Operations Research, 34(10):3016–

3028.

[115] Mathirajan, M., Chandru, V., and Sivakumar, A. (2007). Heuristic algo-

rithms for scheduling heat-treatment furnaces of steel casting industries. Sadhana,

32(5):479–500.

[116] Mati, Y., Lahlou, C., and Dauzere-Peres, S. (2011). Modelling and solving a

practical flexible job-shop scheduling problem with blocking constraints. Interna-

tional Journal of Production Research, 49(8):2169–2182.

[117] Mati, Y., Rezg, N., and Xie, X. (2001). A taboo search approach for deadlock-

free scheduling of automated manufacturing systems. Journal of Intelligent Man-

ufacturing, 12(5-6):535–552.

[118] Mati, Y. and Xie, X. (2004). The complexity of two-job shop problems with

multi-purpose unrelated machines. European Journal of Operational Research,

152(1):159–169.

[119] Mati, Y. and Xie, X. (2008). A genetic-search-guided greedy algorithm

for multi-resource shop scheduling with resource flexibility. IIE Transactions,

40(12):1228–1240.

[120] Mati, Y. and Xie, X. (2011). Multiresource shop scheduling with resource flex-

ibility and blocking. IEEE transactions on automation science and engineering,

8(1):175–189.

[121] Mehta, S. V. and Uzsoy, R. (1998). Minimizing total tardiness on a batch



Bibliography 83

processing machine with incompatible job families. IIE transactions, 30(2):165–

178.

[122] Méndez, C., Henning, G., and Cerda, J. (2000). Optimal scheduling of batch

plants satisfying multiple product orders with different due-dates. Computers &

Chemical Engineering, 24(9):2223–2245.

[123] Mendez, C. A. and Cerdá, J. (2004). An milp framework for batch reactive

scheduling with limited discrete resources. Computers & chemical engineering,

28(6):1059–1068.

[124] Méndez, C. A., Cerdá, J., Grossmann, I. E., Harjunkoski, I., and Fahl, M.

(2006). State-of-the-art review of optimization methods for short-term scheduling

of batch processes. Computers & Chemical Engineering, 30(6):913–946.
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