
Throughput-based importance measures of multistate production 

systems 

Many production systems are multistate, with a finite number of performance 

levels that are between perfect functioning and complete failure. Importance 

measures are often used in the maintenance planning of complicated systems, to 

observe the criticalities of components, reveal the system weakness, and thus to 

guide the allocation of limited maintenance resources. This paper compares 

several common used importance measures for multistate systems, and 

investigate their effectiveness and limitations with a simple example. These 

existing measures focus on the states of a system at some moment, while ignoring 

the dynamic behaviors in the long-term. For a production system, however, its 

throughput in a certain period, rather than the instantaneous performance, is the 

system property of interest. Therefore, two new long-term throughput-based 

importance measures: total throughput importance measure (TTIM) and 

maintenance effect importance measure (MEIM) are proposed in this paper, to 

answer the questions about the criticalities of different components and the long-

term effects of successful maintenance activities on the throughput of a 

production system in a certain period. A case study on an offshore production 

system is conducted, to illustrate how the new importance measures work and 

what kind of implications can be provided to the maintenance crew.  
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1. Introduction 

Maintenances are the activities of keeping an asset in the good working condition, so 

that the asset may be used to its full productive capacity (Brah and Chong 2004; Gulati 

and Smith 2009). A production system needs appropriate maintenances to achieve the 

high productivity under the acceptable costs (Chen and Wu 2007; Xia et al. 2017a). 

Considering the balance between the two objectives of high 

productivity/throughput and low maintenance costs, opportunistic maintenance 



strategies are often necessary for a production system (Koochaki et al. 2012; Xia et al. 

2015, Xia et al. 2017b). One of these strategies is to prioritize the critical components in 

the maintenance schedule, to minimize the risk of any production loss. A component 

can be regarded as critical if its failure or degradation in performance is inclined to 

reduce system throughput in a significant way.  

In order to reveal the critical components in a system, researchers have proposed 

the approach of importance measures. The maintenance crew of a system can rank the 

components in a system in terms of their contributions to degradation of performance 

and production loss (Rausand and Høyland 2004; Ramirez-Marquez and Coit 2005; 

Hague Barker and Ramirez-Marquez 2015).  

Numerous importance measures have been developed in the last decades, such 

as Birnbaum measure, improvement potential measure, risk achievement worth, and risk 

reduction worth (see Rausand and Høyland 2004; Marugan Marquez and Lev 2017). 

Early importance measures assume systems as binary ones, where all components only 

have two states: functioning and failed. However, many real-life production systems 

degrade continuously or have numbers of performance levels that are between fully 

functioning and completely failed (Griffith 1980; Lisnianski Frenkel and Ding 2010). 

The binary assumption may thus imply an oversimplification on system characteristics 

and deprive decision makers of many opportunities to restore the system before it totally 

fails.  

The release of the binary assumption requires new approaches for analyzing 

system and component deterioration. In reality, the deterioration can be characterized by 

multiple discrete states, to provide the maintenance crew with clear symbols for 

initiating some activities. The examples of systems with components of discrete states 

include power supply systems (Lisnianski and Levitin, 2003), water distribution 



systems (Ramirez-Marquez and Coit, 2005), oil & gas production systems (Kawauchi 

and Rausand, 2002). 

For multistate systems, several multistate importance measures have been 

proposed to evaluate the effects of, e.g., a state transition of a component (Griffith 

1980), a component state (Wu and Chan 2003), and the restoration of a component to a 

certain state (Si et al 2012, 2013; Liu et al 2016), on the system performance.  

However, all these measures are evaluating the instantaneous system 

performance, e.g. the current failure rate or throughput rate, while skipping long-term 

performances, e.g. the overall throughput in a certain period or average productivity. 

Although the measures can be very informative for determining which components 

should be in repair immediately, it is feasible to suspect whether they can provide 

sufficient information for the schedule of maintenances and the allocation of relevant 

resources in a longer timeframe. With these concerns, this paper is to propose new 

importance measures to evaluate the long-term effects of components and their states on 

the performance of production systems, and the effectiveness of spending maintenance 

resources.   

The rest of the paper is organized as follows: Section 2 briefly reviews the main 

importance measures for the performance analysis multi-state systems. A small case 

study is then conducted to compare these measures. In section 3, two new measures are 

proposed, and an offshore production facility is taken as an example in section 4 to 

demonstrate how the proposed measures work, and the findings by different measures 

are discussed. Finally, the summary appears in section 5. 



2. Importance measures for multistate systems: Reviews and comparisons 

2.1 Notation 

The notation of models is used in the following sections: 

N The number of system states 

 The system state function  (ࢄ)߶

௜ݔ|ࢄ)߶ = ݆) The system state when component ݅ is at state ݆ 

݉௜ The perfectly functioning state of component ݅ 

 ݅ ௜ The state variable of componentݔ

 The vector of the states of all components ࢄ

݇ ,݇ ௞ The output/throughput of a system at stateߜ ≥ 0  

 ݅ ௜ The failure transition matrix between different states of component߉

∆௞  The improvement of system performance from state ݇ − 1 to ݇, 

where ݇ ≥ 1 

௜௝݌  The probability that component ݅ is at state ݆ 

  ௜(ℎ|݆) The probability that component ݅ transits from ݆ to state ℎ݌

,݅)ߖ ߬) The repair matrix of component ݅ in the maintenance time of  ߬ 

௜ܶ(݆|݉௜,  (ݐ ,The time that component ݅ spends at state ݆ in the period of [0 (ݐ

when the starting state is ݉௜ 

 

The following abbreviations are used: 

ETR The expected throughput rate 

ETT The expected total throughput 

GIM Griffith importance measure 

GGIM Generalized Griffith importance measure 



IIM Integrated importance measure 

MEIM Maintenance effect importance measure 

TTIM Total throughput importance measure 

WIM The importance measure proposed by Wu and Chan (2003) 

2.2 Multistate systems and performance analysis 

Consider a system that consists of ݊ components. For a production system, the 

components are production equipment, units or devices. Component ݅ can have ݉௜+1 

states, and so ݔ௜ = [0, 1, … , ݆, … , ݉௜], where 0 means that component ݅ is completely 

failed and ݉௜ denotes a state of component ݅ being fully functioning. We set a vector 

ࢄ = ,ଵݔ] … , ௜ݔ , … ,  ௡] as the set of states of all the components in a system. Theݔ

function ߶(ࢄ) that takes the states of all the components as an input and returns to a 

system state, is called the structure function (see Lisnianski Frenkel and Ding 2010; 

Natvig 2011).  

           In this study, we assume that the multistate production systems are monotone and 

coherent (see Griffith 1980; Natvig 2011 for the definitions). In addition, all the 

components in a system are assumed independent from each other, meaning that the 

failure of one component has no effect on the others. 

The performance of a production system can be assessed as the probability 

distribution of system states and the mean system throughput rate during a period of 

time (Aven 1993), e.g. the production rate of dehydrated gas from an offshore facility in 

the following case. Several stochastic approaches have been applied in capturing the 

probability distribution of system states, e.g. the approach by Lisnianski (2007), 

combining reliability block diagram (modelling the system structure), the Markov 

method (modelling the behaviour of each component), and the universal generating 



function (calculating the probability distribution of the system performance). Monte 

Carlo simulation is also often used to assess multistate systems (e.g. Zio and Podofillini 

2003; Sherer and Ramkrishna 2008).  

2.3 Importance measures for multi-state systems 

2.3.1 Griffith importance measure 

Griffith (1980) proposed the first important measures for multistate systems by 

generalizing the Birnbaum measure for binary systems. Griffith importance measure 

(GIM) calculates the effect of improving a component on the overall system 

performance. Consider a system of ݊ components, and we define: 

௝௞ܫ     
ୋ୍୑(݅) = Pr[߶(ݔ|ࢄ௜ = ݆) ≥ ݇] − Pr[߶(ݔ|ࢄ௜ = ݆ − 1) ≥ ݇]                    (1) 

where ߶(ݔ|ࢄ௜ = ݆) means the system state when component ݅ is at state ݆ (݆ ≥ 1), and 

௝௞ܫ
ୋ୍୑(݅) represents the change of probability that the system state is equal to or higher 

than ݇ when component ݅ is improved from state ݆ − 1 to state ݆.   

Let ߜ଴ ≤ ଵߜ ≤ ⋯ ≤ ௞ߜ ≤ ⋯ ≤  ே represent the throughput of the system atߜ

different states from 0 to N, and we can set ∆௞= ௞ߜ −  ௞ିଵ to represent theߜ

improvement of system throughput from one level to the next. We have: 

௝ܫ     
ୋ୍୑(݅) = ∑ ∆௞ܫ௝௞

ୋ୍୑(݅)ே
௞ୀଵ  

                     = ∑ ௞ߜ) − ௜ݔ|ࢄ)߶]௞ିଵ)[Prߜ = ݆) ≥ ݇] − Pr[߶(ݔ|ࢄ௜ = ݆ − 1) ≥ ݇]]ே
௞ୀଵ   (2) 

where ܫ௝
ୋ୍୑(݅) considers all system states and also measures the increase in the expected 

system performance when component ݅ moves from ݆ − 1 to ݆. Then, we can consider 

all states of component ݅, and so the importance measure of component ݅ is a vector   

(݅)ୋ୍୑ܫ                                         = ଴ܫ]
ୋ୍୑(݅), … , ௝ܫ

ୋ୍୑(݅), … , ௠೔ܫ
ୋ୍୑(݅)]                           (3) 



In simplification, the importance measure of component ݅ can be calculated as the sum 

of the measures of all the states:                                    

(݅)ୋ୍୑ܫ                                                   = ∑ ௝ܫ
ୋ୍୑(݅)௠೔

௝ୀ଴                                                  (4) 

2.3.2 Wu’s Importance measure 

Wu and Chan (2003) have improved GIM, with suggesting WIM for evaluating the 

importance of component ݅ in state ݆: 

௝ܫ                                
୛୍୑(݅) = ∑ ௞ߜ ∙ Pr[߶(ݔ|ࢄ௜ = ݆) = ݇]ே

௞ୀଵ                                         (5)   

௝ܫ          
୛୍୑(݅) measures the actual contribution of state ݆ of component ݅ in the current 

expected performance. WIM cannot measure the importance of components, since all 

components have the same WIM values.    

2.3.3 Integrated importance measure 

Si et al. (2012) have proposed integrated importance measure (IIM) based on the rate of 

performance loss of a system state as: 

௝ܫ       
୍୍୑(݅) = ௜௝݌ ∙ ௝,଴ߣ

௜ ∙ ∑ ௜ݔ|ࢄ)߶]௞[Prߜ = ݆) = ݇] − Pr[߶(ݔ|ࢄ௜ = 0) = ݇]]ே
௞ୀଵ       (6)  

where ݌௜௝ is the probability of component ݅ being in state ݆, and ߣ௝,଴
௜  is the rate of 

component ݅ from state ݆ directly to state 0. The measure is obtained by multiplying the 

probability of a component being at a certain state, with the failure rate from this state ݆ 

to state 0, and the expected performance degradation due to this failure.  

The measure considers the complete failures, but ignores other types of 

deteriorations. Therefore, Si et al. (2013) have improved IIM with including transitions 

from state ݆ to all the worse states:  



௝ܫ
୍୍୑(݅) = ௜௝݌ ∙ ∑ ௝,௟ߣ}

௜௝ିଵ
௟ୀ଴ ∙ ∑ ௜ݔ|ࢄ)߶]௞[Prߜ = ݆) = ݇] − Pr[߶(ݔ|ࢄ௜ = ݈) = ݇]]}ே

௞ୀଵ   (7) 

where ݆ ≥ 1, ݈ ≥ 0, and ߣ௝,௟
௜  is the transition rate of component ݅ from state ݆ to state ݈. 

Note that IIM is also only for measuring the criticality of a state. 

2.3.4 Generalized Griffith importance measure 

Liu et al. (2016) have proposed a generalized Griffith importance measure (GGIM) to 

evaluate the effect when a component transits from a specific state to the better states. 

In addition, GGIM considers the probability of achieving a successful repair during a 

limited maintenance time. For the state ݆ of component ݅, we have 

௝ܫ
ୋୋ୍୑(݅) = ∑ Pr(ℎ|݆)௠೔

௛ୀ௝ ∙ ∑ ௜ݔ|ࢄ)߶]௞[Prߜ = ℎ) = ݇] − Pr[߶(ݔ|ࢄ௜ = ݆) = ݇]]ே
௞ୀଵ    (8) 

And then, for component ݅ 

(݅)ୋୋ୍୑ܫ = ∑ ௜௝݌
௠೔
௝ୀଵ ∑ ௜(ℎ|݆)௠೔݌}

௛ୀ௝ ∙ ∑ ௜ݔ|ࢄ)߶]௞[Prߜ = ℎ) = ݇] − Pr[߶(ݔ|ࢄ௜ = ݆) =ே
௞ୀଵ

݇]]}                                                                                                                      (9) 

where ℎ ≥  ௜(ℎ|݆) is the probability that component ݅ actually transits from ݆ to state݌ .݆

ℎ during a maintenance, and it can be calculated based on the restoration rates and the 

maintenance time. Component ݅ has a matrix ߖ(݅, ߬) that describes its transition 

probabilities during the maintenance of ߬: 

,݅)ߖ                                 ߬) = ൮

௜(0|0)݌ ௜(1|0)݌ … ௜(݉௜|0)݌
0 ௜(1|1)݌ … ௜(݉௜|1)݌
⋮ ⋮ ⋱ ⋮
0 … 0 ௜(݉௜|݉௜)݌

൲                        (10) 

2.4 Comparison of Importance Measures 

Here we use an example with three multistate components to compare the above 

measures. In a small production system, components 1 and 2 are in parallel to form a 

subsystem A, with a throughput as the sum of throughputs of the two components. In 



terms of probability distribution of throughputs of such a parallel structure consisted of 

two components, we have 

              Pr(ܼ = (ݖ = ∑ Pr (ܺ = ܻ) Pr(ݔ = ௫,௬;௫ା௬ୀ௭(ݕ                                (11) 

where Pr(ܼ =  denotes the probability that the throughput of the parallel structure is  (ݖ

equal to ݖ, and Pr(ܺ = ܻ)and Pr (ݔ =  mean that the throughput of component X is (ݕ

equal to ݔ, and the throughput of component Y is equal to ݕ.  

Component 3 forms subsystem B by its own, connected in series with subsystem A. The 

system throughput is the minimum of the throughputs of the two subsystems A and B. 

For the probability distribution of throughputs of such a series structure, we have  

Pr(ܼ = (ݖ = Pr(ܺ = (ݖ Pr(ܻ ≥ (ݖ + Pr (ܻ = ܺ) Pr(ݖ ≥        (12)                         (ݖ

In this section and the follows, we use throughput rate (instantaneous or 

average) to reflect system performance. All the three components in the system have 

five performance levels (states) in terms of throughput rate. State 4 is the perfectly 

functioning and state 0 is the completely failed. Table 1 shows the throughput rates of 

the components at different states with numbers before the parentheses. The system 

throughput ߜ௞  can be [0, 20, 25, 40, 50, 60, 75, 80, 100].  

Table 1. The throughput rates of components at different states and their steady-state 
probabilities, adopted from Zio and Podofillini (2003) 

Component State 0 State 1 State 2 State 3 State 4 

1 0 (0.1309) 20 (0.0977) 40 (0.1232) 60 (0.2148) 80 (0.4333) 

2 0 (0.0863) 20 (0.1522) 40 (0.1876) 60 (0.2494) 80 (0.3246) 

3 0 (0.0002) 25 (0.0033) 50 (0.0132) 75 (0.0937) 100 (0.8895) 

We assume that all the three components are independent, and the transitions 

between different states follow the exponential distribution. The transition rate matrices 

 for the three components are as follows without losing generality, from the study of (௜߉)

Zio and Podofillini (2003): 



ଵ߉ =

ۏ
ێ
ێ
ێ
ۍ

− 5 ∙ 10ିଷ 0 0 1 ∙ 10ିଶ

5 ∙ 10ିଷ − 5 ∙ 10ିଷ 0 5 ∙ 10ିଷ

0 5 ∙ 10ିଷ − 5 ∙ 10ିଷ 5 ∙ 10ିଷ

0 0 5 ∙ 10ିଷ − 5 ∙ 10ିଷ

5 ∙ 10ିସ 6 ∙ 10ିଷ 8 ∙ 10ିଷ 8 ∙ 10ିଷ − ے
ۑ
ۑ
ۑ
ې

 

 

ଶ߉ =

ۏ
ێ
ێ
ێ
ۍ

− 5 ∙ 10ିଷ 0 0 1 ∙ 10ିଶ

5 ∙ 10ିଷ − 5 ∙ 10ିଷ 0 5 ∙ 10ିଷ

0 5 ∙ 10ିଷ − 5 ∙ 10ିଷ 5 ∙ 10ିଷ

0 0 5 ∙ 10ିଷ − 5 ∙ 10ିଷ

1.5 ∙ 10ିଷ 2 ∙ 10ିଷ 3 ∙ 10ିଷ 4 ∙ 10ିଷ − ے
ۑ
ۑ
ۑ
ې

 

 

ଷ߉ =

ۏ
ێ
ێ
ێ
ۍ

− 5 ∙ 10ିଷ 0 0 1 ∙ 10ିଵ

5 ∙ 10ିସ − 5 ∙ 10ିଷ 0 5 ∙ 10ିଶ

0 5 ∙ 10ିସ − 5 ∙ 10ିଷ 5 ∙ 10ିଶ

0 0 5 ∙ 10ିସ − 5 ∙ 10ିଶ

5 ∙ 10ିହ 6 ∙ 10ିହ 7 ∙ 10ିହ 8 ∙ 10ିହ − ے
ۑ
ۑ
ۑ
ې

 

 
In the matrices, ߣ௝௟ means the transition rate from state j to state l. For example 

in ߉ଵ, the transition rate ߣସ଴ is 5 ∙ 10ିସ,  meaning that the rate of component 1 

degrading from state 4 (with the throughput rate of 80) to state 0 is  5 ∙ 10ିସ. In some 

cases, degradation is not regarded as emergent as complete failure, and maintenance is 

not arranged immediately. Thus, in the matrices, it is not impossible that the repair rate 

at state 0 is higher than those at other states. In this study, the probability distributions 

of components are calculated with the Markov method (the Markov graph is skipped 

since it can be easily drawn based on Table 1). For more information about the Markov 

method, see Rausand and Høyland (2004). The numbers in the parentheses of Table 1 

are the steady-state probabilities of components sojourning in the different states. 

Table 2 provides the values of GIM, WIM, IIM and GGIM of the three 

components obtained with the steady-state probabilities in Table 1. For GIM and 

GGIM, we can calculate component importance and rank components based on Eqs. (4) 

and (9). 

Table 2. Importance measures of the three components 
GIM      Importance 
Component State 4 State 3 State 2 State 1 State 0 (Rank) 
1 4.3640 7.9672 12.7722 19.0373 - 44.14 (2) 



2 4.2515 6.6593 10.7321 18.8377 - 40.48 (3) 
3 17.3498 21.4336 23.5086 24.5763 - 86.89 (1) 
WIM      Importance 
Component State 4 State 3 State 2 State 1 State 0 (Rank) 
1 41.2496 19.5113 10.2093 6.8507 6.6835 84.51 (-) 
2 30.6392 22.4807 15.6608 11.0722 4.6516 84.51 (-) 
3 77.2694 6.5167 0.6366 0.0817 0 84.51 (-) 
IIM(× 10ିଷ)       
Component State 4 State 3 State 2 State 1 State 0  
1 19.0176 59.8210 39.2919 14.8847 -  
2 26.6101 26.3752 26.7085 11.4684 -  
3 11.5798 1.3956 0.2002 0.0007 -  
GGIM      Importance 
Component State 4 State 3 State 2 State 1 State 0 (Rank) 
1 0 1.3193 2.6319 4.2949 30.7712 5.06 (1) 
2 0 1.2853 2.2308 3.6106 28.4263 3.74 (2) 
3 0 5.2453 7.3675 8.3070 67.1495 0.63 (3) 

 

All the measures are informative for the maintenances of production systems. 

GIM shows that component 3 is generally the most important. The measure observes 

how much improvement is in the system throughput when a component is improved. 

For example, if all the three components are at state 3, it is desired to improve the 

performance of component 3. While the three components are completely failed, the 

repairs to restore any of them to state 1 have similar effects on the system. GIM is 

helpful to illustrate the maintenances on which component are more effective to 

improve production. However, it notes that GIM only considers transitions between 

neighbor states.   

WIM shows which state of which component has the highest contribution to 

overall throughput. In this case, state 4 of component 3 has the highest importance. In 

WIM, the sum of the contributions of the states of each component is always equal to 

the expected system performance (here the sum is 84.5), and so there is no rank for 

components. WIM can give the maintenance crew an indication about the criticality of 

different states on the expected performance of the system, but it does not provide 

information about the changes after maintenances. 



IIM does not rank components either. In this case, IIM is from Eq. (7), and 

shows that the criticality of component 3 significantly increases when it is at a state with 

higher throughput. IIM can inform the maintenance crew with the potential loss when a 

component is at a certain state. An integrated consideration of GIM and IIM is also 

helpful, e.g. in this case, GIM illustrates that an improvement of component 3 from state 

3 to state 4 can elevate the overall throughput, while IIM shows that such an 

improvement also increases in loss probability. It is beneficial to estimate the sojourn 

time of component 3 in state 4, to determine whether the maintenance on component 

from state 3 to state 4 is profitable or not. 

All the above three measures are based on the instantaneous throughput rates or 

simplify the production process with using the average throughput rates. If the 

behaviors of components are dynamic, meaning that the components can degrade after 

maintenances and maintenances can be conducted iteratively, the throughput will 

change with time, and the effectiveness of these measures will be challenged. 

Different from the previous three measures, GGIM requires not only the 

transition rates between states, but the probabilities of successful maintenances. 

Maintenance time (߬) is set as 72 hours. Suppose no failure occurring during 

maintenances, we ignore all the transitions from states with higher throughputs to those 

with lower throughputs in matrices of ߉௜. The transition probabilities related to the 

maintenance activities (i.e. only upward transitions during the maintenance) are 

calculated according to Eq. (10) as follows: 

(1,72)ߖ = (2,72)ߖ =

ۉ

ۈ
ۇ

0.1653 0.1331 0.1626 0.1665 0.3725
0 0.6977 0.2512 0.0452 0.0060
0 0 0.6977 0.2512 0.0512
0 0 0 0.6977 0.3023
0 0 0 0 1 ی

ۋ
ۊ

 



(3,72)ߖ =

ۉ

ۈ
ۇ

1.5E − 8 0.1424 0.1907 0.1990 0.4680
0 0.6977 0.2512 0.0452 0.0060
0 0 0.6977 0.2512 0.0512
0 0 0 0.6977 0.3023
0 0 0 0 1 ی

ۋ
ۊ

 

where ߖ(݅, 72) is the transition matrix of component ݅ during the maintenance of 72 

hours. 

According to Table 2, GGIM shows that it is in general preferable to spend more 

maintenance resources on component 1, but this is not true in every state. For example, 

if all components are in state 3, it is worth allocating more maintenances on component 

3, to increase the instantaneous system throughput from 75 to 100. Such kind of ranking 

is dependent on the probabilities of successful maintenances, and it is valid to assume 

that the priorities of components will change if new approaches are introduced to 

improve a certain maintenances. Therefore, GGIM also plays as a guidance on the 

selection of maintenance techniques and policies. 

However, GGIM ignores the behaviors of components after maintenances. If a 

component is ranked lowly in GGIM (e.g. component 3 in the case), it will be allocated 

with fewer maintenance resources. The failure of such kind of component can 

nevertheless result in huge loss of system performance (e.g. component 3 degrades from 

state 4), especially given that the component has a higher probability to totally fail from 

the fully functioning state. Therefore, we will propose new importance measures in the 

next section, to observe the effects of components after maintenances and their 

contributions to the expected system performance in a period.  

3. New Importance Measures for Multistate Production Systems 

A general objective of proposing new importance measures is to provide guidance on 

opportunistic maintenances to maximize the throughput of a production system in a 



given period. Specifically, we expect to answer the following two questions:  

 Which components affects the overall throughput in the period of ݐ most 

significantly in consideration their dynamic behaviors? 

 Which maintenance activities (on which states of which components) can lead to 

maximum increases of overall throughput in the period of ݐ? 

3.1 Total throughput importance measure 

Let ௜ܶ(݆|݉௜,  ,(ݐ ,as the time that component ݅ spends at state ݆ in the period of [0 (ݐ

given that the component is in state ݉௜ when ݐ = 0. The matrix ॻ௜(ݐ) contains the times 

that component ݅ spends at different states with [0, ݐ) when the component starts from 

different states. 

       ॻ௜(ݐ) =

ۉ

ۈ
ۇ

௜ܶ(0|0, (ݐ ⋯
⋮ ⋱

௜ܶ(݆|0, (ݐ
⋮

⋯ ௜ܶ(݉௜|0, (ݐ
⋱ ⋮

௜ܶ(0|݆, (ݐ … ௜ܶ(݆|݆, (ݐ … ௜ܶ(݉௜|݆, (ݐ
⋮ ⋱

௜ܶ(0|݉௜, (ݐ …
⋮

௜ܶ(݆|݉௜ , (ݐ
⋱ ⋮
… ௜ܶ(݉௜|݉௜, ی(ݐ

ۋ
ۊ

                  (13) 

The first row in the matrix describes how long component ݅ is expected to spend 

in every state in the period when this component starts in state 0. The sums of the times 

in different rows are equal. The expected system throughput rate (ETR) is: 

                                         ETR = ∑ ௞ߜ Pr[߶(ࢄ) = ݇]ே
௞ୀଵ                                 (14) 

The expected total throughput (ETT) during ݐ is: 

                               ETT(ݐ) = ݐ ∙ ∑ ௞ߜ Pr[߶(ࢄ) = ݇]ே
௞ୀଵ                                  (15)  

When component ݅ is at state ݆, the system ETT in the period of ݐ is: 

      ETT(ݔ|ݐ௜ = ݆) = ∑ ∑ ௜ܶ(݈|݆, (ݐ ௞ߜ Pr[߶(ݔ௜ = ݈, (ࢄ = ݇]ே
௞ୀଵ

௠೔
௟ୀ଴                  (16)  

We propose a new total throughput importance measure (TTIM) of state ݆ of 

component ݅ by calculating the difference between ETT(ݔ|ݐ௜ = ݆) and the expected 

throughput of the system in the period of ݐ: 



௝ܫ 
୘୘୍୑(݅) = ∑ ∑ ௜ܶ(݈|݆, (ݐ ௞ߜ Pr[߶(ݔ௜ = ݈, (ࢄ = ݇]ே

௞ୀଵ
௠೔
௟ୀ଴ − ݐ ∙

∑ ௞ߜ Pr[߶(ࢄ) = ݇]ே
௞ୀଵ                                                                                                  (17) 

In a certain period, if the system throughput given that the component starts 

from state ݆ will be higher than the expected throughput, ܫ௝
୘୘୍୑(݅) is positive. 

Otherwise, the measure can be negative or zero. For example, if in the period the system 

is at state 0 for maintenance, the system produces nothing, and ܫ଴
୘୘୍୑(݅) is negative.  

Higher absolute value of ܫ௝
୘୘୍୑(݅) implies that sojourning at the state ݆ is more 

important for the system. The TTIM of component ݅ can be calculated by considering 

all the ܫ௝
୘୘୍୑(݅) values at all states and the corresponding sojourn probabilities:  

(݅)୘୘୍୑ܫ                                = ∑ ௜௝݌
௠೔
௝ୀ଴ ∙ หܫ௝

୘୘୍୑(݅)ห                                       (18)  

 

3.2 Maintenance effect importance measure 

Based on the TTIM and its consideration for the total throughput in a period, we can 

propose a maintenance effect importance measure (MEIM) with taking account the 

expected system throughput changes due to maintenances: 

௝ܫ 
୑୉୍୑(݅) = ∑ ௜(ℎ|݆)௠೔݌

௟ୀ௝ ∙ ∑ ൫ETT(ݔ|ݐ௜ = ℎ) − ETT(ݔ|ݐ௜ = ݆)൯ே
௞ୀଵ              (19) 

MEIM calculates, at first, the difference between the expected total throughput 

when component ݅ starts in state ݆ and the expected total throughput when it starts in 

state ℎ (ℎ ≥ ݆). The result is, then, multiplied by the probability of this transition during 

the available maintenance time. MEIM implies the overall effects of successful 

maintenances on component ݅ when it is at state ݆ on the system throughput. To some 

degree, MEIM considers the maintainability of components when evaluating their 

criticalities. 



3.3 Numerical example for TTIM and MEIM 

The example of three components in section is employed here again to illustrate the two 

new measures. The operational period of ݐ is set as 8760 hours (one year). For each 

component, we use the Markov model to determine the transition matrix ॻ௜(ݐ). The 

calculation has been carried out using the programs Matlab and GRIF workshop (see 

TOTAL 2016).  

In Table 3, TTIMs of states are calculated according to Eq. (17), and then the 

three components are ranked according to Eq. (18). In the period of one year, 

component 3 is the least important, since it is rather reliable compared with the others, 

and keeps itself at the states with high performance in most time.  For the maintenance 

crew, given that reliability or degradation rates of the components are fixed, component 

1 can be prioritized to receive more resources. However, in terms of states, the 

maintenance crew have to pay much attention to states 1 or 2 of component 3, where 

significant throughput loss may occur. Such a finding can be explained by the fact that 

component 3 has the highest probability to continue to deteriorate to state 0 from states 

1 or 2, and to decrease the system throughput to 0.  

Compared with WIM and IIM, TTIM can rank not only component states but 

also components. Moreover, in comparison with GIM, TTIM observes the performance 

changes of the components along with time. GIM regards component 3 as most 

important, which is true when the system is put into operation. If the time ݐ considered 

in TTIM is rather short, we can find that, e.g. ∑ ௜ܶ(݆|݉௜, ௠೔(ݐ
௝ୀ଴ ≈ ௜ܶ(݉௜|݉௜,  and ,(ݐ

TTIM will lead to the same conclusion with GIM. However, if we lengthen the time 

framework, all the three components have higher probabilities sojourning at some states 

different from the initiating one. The sojourning probabilities are dependent on the 



degradation rates and restoration rates, but these factors are not taken into account by 

GIM.      

Table 3. TTIMs and MEIMs of the three components in Figure 1 
TTIM       
Component State 4 State 3 State 2 State 1 State 0 Rank 
1 1678.2 -138.4 -1546.4 -2647.1 -1533.2 1 (1406.8) 
2 1592.6 457.1 -1136.7 -2478.3 -1218.0 2 (1326.5) 
3 603 -3288 -11690 -23425 -7777 3 (1077.6) 
MEIM       
Component State 4 State 3 State 2 State 1 State 0 Rank 
1 0 549.2 518.6 415.6 1278.0 - 
2 0 343.3 540.0 493.9 1171.3 - 
3 0 1176.4 2739.3 4000.8 1840.4 - 

 

MEIM, on the other hand, indicates that state 1 of component 3 is most 

important, while GGIM shows the significance of state 0 of component 3. The 

difference results from the emphasis of GGIM on the instantaneous effect of the 

maintenance, but assuming that the system will keep itself at the state after the 

restoration. MEIM explores which maintenance has the long-term positive influence, 

and can keep the system sojourning at a higher level longer. In this case, if we only 

restore the component 3 from state 0 to state 1 according to the guidance from GGIM, 

the component has a higher probability to fail completely again in the near future. 

However, MEIM can tell the crew that the maintenances before the occurrence of a 

complete failure are more helpful.  

When the maintenance strategy is determined, meaning that all restoration rates 

in Ψ(i, ߬) are fixed, MEIM is helpful for practices in consideration that the maintenance 

resources are limited. For example, if it is detected that all the three components are at 

state 2 in the previous case, the component 3 should prioritized in the plan.  

4. A Case Study of an Offshore Production System 

In this section, a case study is conducted to illustrate the usefulness of the proposed 



TTIM and MEIM and to compare them with the existing measures. The case is an 

offshore production/processing system and a similar system can be found in Kawauchi 

and M. Rausand (2002). 

4.1 System Description 

The offshore production/processing system consists of three subsystems: one for 

separation, one for dehydration and one for compression, see Figure 1. Each subsystem 

consists of two or three equipment/components in parallel. The throughput of each 

subsystem is the sum of its equipment’s throughputs. The total system throughput is the 

minimum of subsystems’ throughputs.  

 

Figure 1. An offshore production/processing system  

The separation subsystem consists of three high pressure separators (HPS), each 

with a maximum throughput rate estimated to be 55% of the highest possible throughput 

rate of the system. Each separator has three performance levels [55%, 23%, 0%]. 

Maintenances are assumed perfect and thus the degraded or failed components always 

can be restored to the state with the maximum throughput. HPS-A and HPS-B are 

identical. On the other hand, when HPS-C is at the degradation state, it is less prone to 

completely fail and easier to be restored, as shown in Table 4. In the highest state, HPS 
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equipment will expose to more random total failures because of the higher stresses 

during with high throughput. 

The dehydration subsystem consists of two dehydrators (DEH) in parallel, each 

with 65% of the required system throughput rate and four performance levels [65%, 

45%, 20%, 0%]. There are two types of failures for dehydrators: 

 Complete failures: These failures can occur in all states and result in 0% of 

throughput. The repair for such failures is minimal. It only brings the component 

to the previous state.  

 Partial failures: Due to aging or other causes, the component deteriorate to the 

next lower state. When it deteriorates to the lowest state, a new equipment will 

replace the failed one.  

The compression subsystem consists of two parallel compressors (CMP), and 

each compressor has four performance states [52%, 35%, 15%, 0%] in terms of their 

throughput rate to the system requirement. Similar with the dehydrators, the 

compressors also have complete failures and partial failures. Repairs are always 

minimal, only restoring the deteriorated/failed component to the next higher state. 

Table 4. Transitions and transition rates between different states 
Component Transition Rate (/h) 

HPS-A 
Failure 8.91 ∙ 10ିହ 
Restoration 2.54 ∙ 10ିଷ 

HPS-B 
Failure 8.91 ∙ 10ିହ 
Restoration 2.54 ∙ 10ିଷ 

HPS-C 

Failure from state 3 3.56 ∙ 10ିସ 
Failure from state 2 2.23 ∙ 10ିହ 
Restoration from state 1 6.35 ∙ 10ିସ 
Restoration from state 2 1.30 ∙ 10ିଷ 

DEH-A 

Complete failure 3.11 ∙ 10ିହ 
Restoration from a complete failure 3.95 ∙ 10ିଷ 
Partial failure 2.69 ∙ 10ିହ  
Restoration from a partial failure 3.95 ∙ 10ିସ 

DEH-B 

Complete failure 3.11 ∙ 10ିହ 
Restoration from a complete failure 3.95 ∙ 10ିଷ 
Partial failure 2.69 ∙ 10ିହ  
Restoration from a partial failure 3.95 ∙ 10ିସ 

CMP-A 
Failure 3.50 ∙ 10ିହ 
Restoration 5.14 ∙ 10ିଷ 



CMP-B 
Failure 3.50 ∙ 10ିହ 
Restoration 5.14 ∙ 10ିଷ 

 

Figure 2 is a Markov driven block diagram. It is noticeable that the models for 

dehydrators have seven states, ensuring that each degradation state corresponds to a 

complete failure state, and a repair from such a state brings the component to its 

previous state. Note that in Figure 2, F or R just denotes that an edge is for failure or 

repair, rather than the transition rate. The grey circles in Figure 2 are completely faulty 

states of components, and TP: 0.23, e.g. means the throughput of a state.     

 

Figure 2. A Markov driven block diagram for the offshore production system 

4.2 Analysis with New Importance Measures 

The analysis starts at the beginning of a planned maintenance. Assume that no failure 

occurs in the maintenance, and the duration of maintenance is 72 hours. The 

maintenance crew need to decide where to put more maintenance hours, in 

consideration that the next planned maintenance will take place after one year.  
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We can identify that system has 21 states in total considering the throughput 

rates, and the sojourn probabilities of the system at these states can be calculated 

(skipped in the paper due to the limitation of tables). With these probabilities, the 

expected throughput rate of the system is 76.59%.  

TTIMs of components are calculated based on Eqs. (13) - (18). Considering that 

HPS-A and HPS-B are identical, DEH-A and DEH-B and identical and CMP-A and 

CMP-B are identical, only four types of components are list in Table 5. 

Table 5. TTIMs, MEIMs and GGIMs of 4 types of components 
TTIM State       
Component (Rank) 1 2 3 4 5 6 7 
HPS-A (4) -3715 -1199 175.4 - - - - 
HPS-C (2) -1534 882.8 801.2 - - - - 
DEH-A (1) -4871 -1343E2 1103E1 9803E1 -1287E2 1997E1 1097E2 
CMP-A (3) -9212 -3758.3 -641.5 190.4 - - - 
MEIM State       
Component (Rank) 1 2 3 4 5 6 7 
HPS-A (4) 650.1 229.7 0 - - - - 
HPS-C (3) 104.4 -7.124 0 - - - - 
DEH-A (1) 3231 1941 2542 2893.0 4204.9 2516.4 0 
CMP-A (2) 1862 1009 257.3 0 - - - 
GGIM State       
Component (Rank) 1 2 3 4 5 6 7 
HPS-A (4) 1.730 0.625 0 - - - - 
HPS-C (3) 0.1032 0.0583 0 - - - - 
DEH-A (1) 1.370 4.844 9.816 12.10 0.5715 0.2621 0 
CMP-A (2) 4.456 3.944 1.404 0 - - - 

 

TTIM shows that the dehydrators are the most critical, and all states of these 

components affect, positively or negatively, the system if we consider the throughput in 

the future year. It is noticeable that state 4 even as a failed state has a higher positive 

effect than state 6 as a degraded state, because at state 4 the failed component due to a 

random failure can be restored to state 7, but while the component is at state 6, it only 

continues to deteriorate.  

Following Eq. (10) and utilizing the Markov models in Figure 2 (only 



considering the repair transitions); we can obtain the probabilities of all the successful 

maintenances. The calculations and transition matrices are skipped here for due to the 

length limitation. Table 5 is helpful to show that the dehydrators are also the most 

rewarding components in terms of maintenances. Furthermore, we can rank the states of 

the component considering their criticalities: [5-1-4-3-6-2-7]. The state 5 is highest 

ranked since a repair at such a moment can stop and reverse the degradation process and 

bring the component to a state with higher throughput.  

4.3 Comparisons and Discussions 

Here we compare the implications of GGIM and MEIM on the decision-making for 

maintenances. GGIM values for all the states of the four types of components are 

obtained based on the same transition matrix for MEIM, as listed in Table 5.  

Different from MEIM, GGIM implies to prioritize the state 4 of the DEH, while 

regards state 6 insignificant. GGIM only monitors the immediate increase in system 

performance, with considering 1) the probability of a failure is fixed, and 2) the 

instantaneous throughput rate after fixing. However, as Figure 3 illustrates, the expected 

throughput rate and the corresponding impact of a dehydrator are time-dependent in the 

following year from a planned maintenance. When the component starts from state 6, its 

expected throughput rate will continue to increase after a small decrease. GGIM only 

observes the starting point, and therefore allocates very low importance to state 6. 

However, if the maintenance crew pay more attention to this degraded state, and stop 

the degradation, the overall throughput of the system is expected to be much higher a 

longer term. While such kind of importance in the potential improvement can be 

identified by MEIM. 



 

Figure 3. The expected throughput rate with time of a dehydrator when it starts from 

state 6. 

 

Figure 4. The effects of different initiating states on system throughputs  

Figure 4 illustrates the time-dependent throughputs of the dehydrator and the 

overall system when the component starts from different states. It can be found that no 

matter the dehydrator starts from state 4 (completely failed) or state 7 (fully functional), 
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the expected throughput rates will coincide after some time (around 60 days in this 

case).  In other words, the expected throughput rates of both the component and the 

system in a longer term (e.g. one year) will approach a fixed value, and thus MEIM is 

not as sensitive as GGIM to the current states of components. However, such a 

conclusion is only reached with the assumption that the restoration from the failure is 

not very slow (around 10 days in this case). If the restoration durations are relatively 

long in comparison with the total period, they may have more impacts on the expected 

throughputs and the values of the importance measure.   

The negative value of MEIM for HPS-C in Table 5 is noticeable, since it means 

that maintenances at this state cannot ensure the improvement of system throughput in 

the next one year. Such a negative value is resulted from the fact that HPS-C outputs 

higher at state 3, but its failure rate at this state is also higher than that at state 2. The 

managerial implication is that we should select equipment that is more reliable, and 

otherwise, the maintenances on HPS-C are less meaningful. It is another evidence that 

MEIM focuses on identifying system weaknesses in a longer time framework.   

5. Summary and conclusion 

In this study, two new importance measures, TTIM and MEIM are proposed for 

multistate production systems, based on the review and numerical comparisons of the 

existing importance measures. TTIM and MEIM can be used to answer the questions 

about the effect of a component on the total throughput of the system in a certain period, 

and the long-term effect of a maintenance action. 

A case from an offshore production/processing system is introduced to illustrate 

the usefulness of the two new measures. Maintenance crew can obtain some clues on 

the allocation of maintenance resources to achieve higher probability of maintenance 



successes and higher performance in a relatively long term, so that the overall 

production system can have to ensure higher throughput in a specific period.  

For future studies, the effects of predictive and preventive maintenances should 

be well considered, since this paper only focuses on the restorations or corrective 

maintenances in cases of failures and degradations. Periodic preventive maintenances 

and condition-based predictive maintenances can keep assets healthy and eliminate 

potential failures before they result in production loss. The failure and degradation rates 

of components may change with predictive and preventive maintenances, and thus new 

approaches are needed to evaluate the varied contributions of components to system 

performance and their criticalities. Moreover, since importance measures are developed 

to evaluate components in a fixed structure, more researches on the effects of structural 

changes on the system performance are very helpful. 
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