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Abstract

Capital goods companies produce high value products such as power plant or ships, which have deep
and complex product structures, with components having long process routings. Contracts usually include
substantial penalties for late delivery. The high value of items can lead to substantial holding costs. Efficient
schedules minimise earliness and tardiness costs and need to satisfy assembly and operation precedence

constraints as well as finite capacity. This paper presents the first advanced planning and scheduling (APS) tool



for the capital goods industry that uses a Discrete Bat Algorithm (DBA), modified DBA (MDBA) and hybrid
DBA with Krill Herd algorithm (HDBK) to optimise schedules. The tool was validated using four datasets
obtained from a collaborating capital goods company. A sequential experimental strategy was adopted. The first
experiment identified appropriate parameter settings for the DBA. The second experiment evaluated and
compared the performance of the proposed HDBK algorithm with an Artificial Bee Colony, Krill Herd (KH),
Modified KH, DBA and MDBA metaheuristics. The experimental results revealed that the HDBK performed
best in terms of the minimum penalty cost for all problem sizes and achieved up to a 47.837% reduction in mean

total penalty costs of extra-large problem size.

Keywords: Advanced planning and scheduling; Capital Goods; Bat Algorithm; Krill Herd:;

Artificial Bee Colony.

1 Introduction

Suppliers of capital goods are an important sector of the world economy that enhances
the productivity and supports the diffusion of superior technologies (Fauceglia 2014). The
main business activities of capital goods companies are the design, manufacture and
construction of plant. Typical products include cranes, large steam turbines, offshore
production facilities, oil platforms and ships. These products are important because they
underpin manufacturing, services, trade and distribution (Acha et al. 2004).

Scheduling is “a decision-making process that plays an important role in most
manufacturing and service industries” (Pinedo and Chao 1999, p.2). It can enhance the
productivity of a production process (Gen and Lin 2014). Scheduling is one of the most
popular research topics in the area of production and operations management (Chaudhry and
Luo 2005). Production scheduling problems may be categorised as: single machine, parallel
machines, flow shop, job shop, open shop and others (Pinedo and Chao 1999). Most
production scheduling research has focused on single machine, parallel machines or flow

shops (Lei 2009). Most of the production scheduling literature is theoretical and does not



model the many of the complexities experienced in practice (Fuchigami and Rangel 2017).
There is a limited literature that has taken into account multiple-level assembly relationships
(Na and Park 2014).

In the capital goods industry, production scheduling is a complex combinatorial
optimisation (CO) problem. This is because there are a large number of components and
subassemblies and the product structures are usually deep and complex. Major subassemblies
require a range of components which are produced using a mix of jobbing, batch, assembly
and flow processes. Many components require numerous machining operations which take
place on many types of machine (Hicks 1998). Production scheduling must take into account
operation and assembly precedence relationships and finite capacity (Hicks and Braiden
2000; Hicks 1998). Effective production schedules minimise production lead-time and meet
customer due dates whilst satisfying resource constraints (Chen, Ji, and Wang 2011; Dayou,
Pu, and Ji 2009). Production scheduling problems are non-deterministic polynomial (NP)
hard combinatorial optimisation problems which means that the amount of computation
required increases exponentially with problem size (Blum and Roli 2003).

Metaheuristics are particularly suitable for solving very large combinatorial problems,
however, it is impossible to search the whole solution space, therefore an optimal solution
cannot be guaranteed (Nagar, Haddock, and Heragu 1995). Metaheuristic algorithms may be
classified in alternative ways (Talbi 2009; Yang 2010a). Single-point algorithms are
trajectory methods that use local search heuristics e.g. Tabu Search (TS) (Glover 1990),
Simulated Annealing (SA) (Kirkpatrick, Gelatt, and Vecchi 1983), Multi-start local search
(MS), Greedy Randomised Adaptive Search Procedure (GRASP) and Iterated Local Search
(ILS) (Lourenco, Martin, and Stutzle 2003). They intensify search in the local region, which
is also called exploitation oriented search (Gen and Cheng 1997). Population-based

algorithms produce multiple solutions that explore the whole search space to produce greater



diversity. Well-known algorithms include Genetic Algorithms (GA) (Goldberg 1989), Ant

Colony Optimisation (ACO) (Dorigo 1992) and Particle Swarm optimisation (PSO)

(Kennedy and Eberhart 1995).

The literature reports the application of many established nature-inspired optimisation

algorithms (see Table 1), which are broadly classified into five categories (Nanda and Panda

2014; Gupta and Sharma 2016; Fister Jr et al. (2013); Zambonelli and Viroli 2011):

evolutionary-based, physics and chemistry based, swarm intelligence based, bio-inspired

based and other algorithms.

Table 1. Classification of nature-inspired metaheuristic algorithms.

Types Algorithms References
Evolutionary based Genetic Algorithm (GA) Holland (1975)
Genetic programming (GP) Koza (1990)

Physics and Chemistry
based

Swarm Intelligence
based

Bio-inspired based

Other algorithms

Evolutionary Strategy (ES)

Evolutionary Programming (EP)
Differential Evolution (DE)

Simulated Annealing (SA)

Memetic Algorithm (MA)

Harmony Search (HS)

Shuffled Frog-Leaping Algorithm

Ant Colony Optimisation (ACO)
Particle Swarm Optimisation (PSO)
Artificial Bee Colony (ABC)

Firefly Algorithm (FA)

Bat Algorithm (BA)

Krill Herd (KH)

Earthworm Optimisation Algorithm (EOA)
Monarch Butterfly Optimisation (MBO)
Moth search algorithm (MSA)

Cuckoo Search (CS)

Chaotic Cuckoo Search (CCS)

Elephant Herding Optimisation (EHO)
Flower Algorithm (FA)

Dolphin Echolocation Algorithm (DEA)
Japanese Tree Frogs Calling
Atmosphere Clouds Model
Backtracking Optimisation Search (BOS)
League Championship Algorithm (LCA)
Social Emotional Optimisation (SEO)
Artificial Cooperative Search (ACS)

Rechenberg (1965)

Fogel, Owens, and Walsh (1966)
Storn and Price (1997)
Kirkpatrick et al. (1983)
Moscato and Norman (1992)
Geem et al. (2001)

Eusuff, Lansey, and Pasha (2006)
Dorigo (1992)

Kennedy and Eberhart (1995)
Karaboga (2005)

Yang (2010a)

Yang (2010a)

Gandomi and Alavi (2012)
Wang, Deb, and Coelho (2016)
Wang, Deb, and Cui (2015)
Wang (2016)

Yang and Deb (2009)

Wang et al. (2016)

Wang et al. (2016)

Yang (2012)

Lenin, Reddy, and Kalavathi (2014)
Hernandez and Blum (2012)
Yan, Hao, and Xie (2013)
Civicioglu (2013b)

Kashan (2009)

Xu, Cui, and Zeng (2010)
Civicioglu (2013a)

Advanced planning and scheduling (APS) systems are based on optimisation and

constraint-based planning algorithms that aim to meet customer requirements whilst



satisfying specified constraints (Hvolby and Steger-Jensen 2010). APS systems aim to
manage the supply chain to improve customer satisfaction, increase efficiency and reduce
costs (Dayou, Pu, and Ji 2009). APS systems have been based upon GA (Chen, Ji, and Wang
2011) and GA with local search (Pu et al. 2007), but there are no reports of the BA being
used to for APS.

The objectives of this paper were to: (i) review Swarm Intelligence based Algorithms
including, the Artificial Bee Colony (ABC), Krill Herd (KH) and Bat Algorithms (BA); (ii)
explain a novel APS scheduling tool that meets the requirements of the capital goods industry
that manufacture complex products with multi-level assemblies. The tool incorporates a novel
Discrete Bat Algorithm (DBA), a Modified Discrete Bat Algorithm (MDBA) and a Hybrid
Discrete Bat Algorithm with Krill Herd algorithm (HDBK) for optimisation; (iii) conduct a
series of computational experiments that identified appropriate parameter settings for the DBA;
iv) outline the development of the MDBA and the HDBK; and v) compare the performance of
the proposed methods (DBA, MDBA and HDBK) with other approaches (ABC, KH and
modified KH).

The next section explains the characteristics of population-based metaheuristics.

Section 3 describes the development of advanced planning and scheduling (APS) tool.
Section 4 presents the experimental design and analyses the results. The last section provides

conclusion and suggestions for future research.

2  Population-based metaheuristics

Population-based algorithms have been widely used to solve real world problems.
They simultaneously consider multiple potential solutions and tend to perform better than
single-point algorithms (Manda, Satapathy, and Poornasatyanarayana 2012). Prugel-Bennett

(2010) identified five mechanisms that help give population-based algorithms an advantage:



(i) building blocks from different solutions are combined; (ii) the crossover operator focuses
the search and can dramatically reduce the time taken to find a solution; iii) the population
acts as a low pass filter, which ignores local distractions; iv) a population has the ability to
search different parts of the search space simultaneously, which hedges against bad luck in
the initial position; and v) it is possible to identify parameter values that make an appropriate
balance between exploitation and exploration.

Pongcharoen (2001) developed a comprehensive Genetic Algorithm (GA) tool for
scheduling the production of capital goods using the objective function shown equation (1)
that aggregates earliness and tardiness costs (Pongcharoen, Hicks, and Braiden 2004). This
objective function was also used to solve the same problems using the Artificial Bee Colony

(Pongcharoen et al. 2012) and the Krill Herd (Puongyeam, Pongcharoen, and Vitayasak

2014) algorithms.

Total penalty cost = Y5_, ¥f_, Pe(Ej) + Xi=1 Pe(Ey) + Y=y Pt(T}) (1)
Notation:

j assembly or component j (j=1,2, ..., Cmax)

k final productk (k =1, 2, ..., Pma)

Pe earliness penalty rate (currency units per day)
Pt tardiness penalty rate (currency units per day)
Ex earliness of product k

Eix earliness of component j in product k

Tk tardiness of product k



2.1 Artificial Bee Colony (ABC) algorithm

The Atrtificial Bee Colony (ABC) algorithm is a popular swarm intelligence-based
algorithm developed by Karaboga (Karaboga 2005; Karaboga and Akay 2009; Karaboga et
al. 2014). This approach is based on the collective foraging behaviour of a bee colony, which
includes three categories of bee: employed bees, which forage for nectar; onlookers waiting
in the hive; and scouts, which undertake random search. There is only one bee that visits each
source, so the number of employed bees is the same as the number of food sources. Once a
food source is identified (a candidate solution), the nectar (fitness) is identified and
computed. The scouts share information with the onlooker bees. Onlooker bees choose their
food source depending on the probability of the food occurring. If bees are unable to improve
the fitness of the food source, their solutions are rejected (see Karaboga and Basturk 2007).

De Oliveira and Schirru (2011) developed an ABC for combinatorial optimisation that
used random keys (Bean 1994) for mapping discrete variables to continuous variables. Cui
and Gu (2012) developed a discrete ABC for hybrid flow shop scheduling that included a
three-step differential evolution scheme (mutation, crossover and selection) for allocating
employed bees to food sources. They used the algorithm developed by Nawaz, Enscore, and
Ham (1983) in their procedure. Pansuwan, Rukwong, and Pongcharoen (2010) developed a
scheduling tool for capital goods companies that used a discrete ABC together with the

objective function shown in equation (1).

2.2 Krill Herd (KH) algorithm

The Krill Herd (KH) algorithm (Gandomi and Alavi 2012) is a swarm intelligence
algorithm which is based on the herding of the krill swarms. The time-dependent position of
an individual krill is determined by three main actions: (i) movement induced other krill; (ii)

foraging action; and (iii) random diffusion.



Initially, a swarm of krill are randomly generated in the search space. Krill try to
maintain a high density and move according to their mutual effects (Gandomi and Alavi
2012). Each krill moves through n dimensional search space to look for a potential solution
by moving towards the highest density of food. To improve the performance and convergence
speed, crossover and mutation genetic operations were incorporated into the algorithm. The
iterative search is ended when the termination criteria are met.

Wang, Deb, and Thampi (2015) developed a discrete krill herd method for flexible
job shop scheduling. Puongyeam, Pongcharoen, and Vitayasak (2014) developed a discrete
krill herd for scheduling in the capital goods industry which used the objective function

shown in equation (1).

2.3 Bat Algorithm (BA)

In 2010, Yang (2010b) presented a new metaheuristic algorithm, called the Bat
Algorithm (BA) which is based on the echolocation capability of the micro-bats. In nature
bats fly randomly in their search for prey with velocities vi at positions x; with varying
wavelength/frequency (A/f), pulse rate ri and loudness Ao. The position of each bat represents
a possible solution. Depending on the proximity of the prey, bats can automatically adjust
their wavelength/frequency and pulse emission rate rie[0,1]. The loudness can vary from a
minimum loudness (Amin) to a maximum loudness (Ao) with a typical range of [1,2].
Frequencies are normally in the range 25kHz to 150kHz (YYang 2010b).

Yang (2010b) outlined the BA as follows. The process starts by initialising a swarm
(population) of n virtual bats, each of which has a random initial position (initial solution),
where the ranges are problem specific, together with random values for pulse rate, loudness
and frequency. Then, all of the bats move from their initial positions seeking a global best

solution. Each individual bat randomly selects a frequency (fi) where fe[0,fmax], using



equation (2), where £<[0,1] is a random number drawn from a uniform distribution. The
velocity of each bat i is updated using equation (3), where t is the iteration number, tmax is the
maximum number of iterations (0 <= t <= tmax), vf "' is the previous velocity, x} is the
current position of bat i in iteration t, and x* is the position of the best-so-far bat. Equation (4)
calculates the new position based upon the previous position and current velocity. For local
search, once a solution is selected among the current best solutions, a new solution Xnew for
each bat is generated locally using random walk using equation (5), where Xoid = x{, g[-1,1]
is a random number, A' is the arithmetic mean loudness of all bats in the current iteration.
Equation (6) updates the loudness AS** for each individual bat, where « is the loudness

coefficient, a parameter in the range [0,1]. The pulse emission rate r/**

is updated by
equation (7), where r? is the initial pulse emission rate for the bat and s the pulse rate
emission coefficient is a parameter that is greater than 0. This process is repeated until the

maximum number of iterations tmax has been completed.

fi = fomin + (fmax = fnin) B )
vi = v+ (o — x)f; 3)
xt = x4 vf @
Xnew = Xo1q + A" (5)
AT = ad] (6)
i =11 - exp(=yt)] @)

The Bat Algorithm (BA) is a continuous optimisation algorithm, whereas
combinatorial optimisation problems require discrete optimisation. There are two ways to
apply the BA to discrete problems: i) use continuous optimisation, if it is possible to map the
problem to a continuous variable; or ii) develop a discrete BA (Luo et al. 2014). Marichelvam

and Prabaharam (2012) used the mapping approach to solve flow shop scheduling problems.



Luo et al. (2014) used the BA for solving permutation flow shop scheduling problems.
Random keys (Bean 1994) were used to map from discrete to continuous variables. This was
an approach that had previously been adopted by Tasgetiren et al. (2007) for use in Particle
Swarm Optimisation. Dao, Pan, and Pan (2018) developed a parallel BA that used random

key mapping for job shop scheduling.

2.4 A comparison of the proposed population-based metaheuristics
The concept, terminology and parameters of metaheuristics vary. Table 2 provides a

summary of the population-based metaheuristics (ABC, KH and BA) presented in this work.

Table 2. Concept and terminology comparison of ABC, KH and BA.

Comparison Avrtificial Bee Colony (ABC)  Krill Herd (KH) Bat Algorithm (BA)
Natural inspiration Foraging behaviour of a bee Herding behaviour of krill  Echolocation behaviour
colony of micro-bats
Solution initialisation Random Random Random
Candidate solution Food source individual’s position Krill individual’s position ~ Bat individual’s position
Old solution Old food source position Old krill position Old bat position
New solution New food source position New krill position New bat position
Best solution Any food source with the best  Any krill with the best Any bat with the best
fitness fitness fitness
Fitness/objective Nectar amount of the food Distance between krill Distance between bat
source individual and food and the individual and target
densest location in the herd
Size of candidates Colony Herd Population
Iterative search Number of cycles Number of generations Number of iterations
Process for generating The employed bee becomes a Motion induced by krill Adjusting frequency,
new solution scout. herd, foraging activity and  update velocity and
physical diffusion position
Intensification Neighbourhood search carried ~ Foraging motion Random walk
by employed and onlooker bees
Diversification Random search of scout bees Random diffusion Flying randomly
Parameters - Combination of the population - Combination of - Combination of
size and the number of population size and the population size and the
maximum cycles (nMCN) number of max generations number of maximum
- Limit factor which is a (Nlmax) iterations (Nlmax)
predefined value that limits the - Inertia weight of motion - Pulse rate emission
number of times that a food induced (an) coefficient ()
source can be moved without - Inertia weight of the - Loudness coefficient
producing an improvement foraging motion () (a)
before it is abandoned. - The maximum diffusion
(percentage of the maximum speed (Dimax)
number of cycles) - The crossover operation
(COP)

- The mutation rate (Mg)




Due to the different inspirations adopted within the metaheuristics, the unique
mechanisms embedded in the metaheuristics have their own properties to avoid iterative
search becoming trapped in local optima whilst performing the search in a more intelligently
than random search. The advantages and disadvantages of the proposed of the classical

algorithms, including ABC, KH, and BA are summarised in Table 3.

Table 3. Advantages and disadvantages of ABC, KH and BA.

Methods Advantages Disadvantages
ABC - Not sensitive to initial parameter values (Bansal, - Premature convergence (Bansal, Sharma,
Sharma, and Jadon 2013). and Jadon 2013).
- Not affected by the number of dimensions of the - Long execution times because of its
problem (Bansal, Sharma, and Jadon 2013). stochastic nature (Kang, Li, and Li 2013).
- Can avoid local minimum (Karaboga and Basturk - Poor exploitation (Khorsandi, Hosseinian,
2007). and Ghazanfari 2013; Gao and Liu 2012).
- Efficient for multivariable, multimodal function - Slow to converge (Luo, Wang, and Xiao
optimisation (Karaboga and Basturk 2007). 2013).
- Good exploration (Khorsandi, Hosseinian, and - Can easily fall into the local optimum
Ghazanfari 2013; Gao and Liu 2012). (Luo, Wang, and Xiao 2013).
- Quick convergence (Cui and Gu 2015). - Hard to find the best solution from all
- Few control parameters (Cui and Gu 2015; Luo, feasible solutions (Luo, Wang, and Xiao
Wang, and Xiao 2013). 2013).
KH - Powerful exploration (Wang et al. 2013). - Easy to fall into the local optimum
- Unnecessary derivative information (Wang et al. (Gandomi and Alavi 2012; Wang et al.
2013; Wang, Guo, et al. 2012). 2013).
- Each agent can contribute to the search process - No guarantee of fast convergence (Wang

according to its fitness.(Gandomi and Alavi 2012). etal. 2013).
- Each neighbour has an attractive/repulsive effect on - Poor exploitation (Wang et al. 2013).
the movement of the krill individual. (Gandomi and
Alavi 2012).
- Very few control variables (Mukherjee and
Mukherjee 2016; Wang et al. 2013).
- Good balance between global and local search
(Agrawal, Pandit, and Dubey 2016).
- Few parameters to regulate (Wang, Hossein
Gandomi, and Hossein Alavi 2013).
- Able to shrink the search region towards the
promising area within a few generations (Wang et al.

2013).
BA - Powerful exploitation (Yilmaz and Kucuksille 2013; - Can easily to fall into the local optimum

Dos Santos Coelho and Askarzadeh 2016). (Li and Zhou 2014; Pravesjit 2016).

- Parameter control (automatically switching from - Premature convergence (Ahmadi and
exploration to exploitation) (Kaur and Chhabra Nikravesh 2016).
2016; Yang 2013). - May be trapped in local optima (Dos

- Frequency tuning (Kaur and Chhabra 2016; Yang Santos Coelho and Askarzadeh 2016).
2013). - May lead to stagnation after the initial

- Automatic zooming (Yang 2013). stage (Yang 2013).

- Quick convergence at the initial stage by switching - Obtains poor results when dealing with
from exploration to exploitation (Yang 2013). high-dimensional problems (Fister Jr,

- Balance between exploration and exploitation (Chua  Fister, and Yang 2013).
et al. 2015).




Table 4 summarises a comprehensive literature review of previous research that has
used the proposed population-based metaheuristics (including ABC, KH and BA) for solving
production scheduling problems. The hybridisation of the KH algorithm with other

metaheuristics for solving the production scheduling problem is a gap in the literature.

Table 4. Applications of metaheuristics to solve production scheduling problems.

Algorithms Single metaheuristics Hybridisation
BA 2012: Musikapun and Pongcharoen (2012); 2016: Tosun and Marichelvam (2016)
Marichelvam and Prabaharam (2012) 2017: Pei et al. (2017)

2013: Chansombat et al. (2013); Marichelvam et al.
(2013); Xie, Zhou, and Tang (2013)

2014: Luo et al. (2014)

2016: Kongkaew (2016)

2017: Xu, Bao, and Zhang (2017); Zaher, Ragaa, and
Sayed (2017)

2018: Dao, Pan, and Pan (2018)

ABC 2010: Pansuwan, Rukwong, and Pongcharoen (2010);  2011: Lietal. (2011)
Tasgetiren et al. (2010) 2013: Liu and Liu (2013); Han et al.
2011: Li, Pan, and Gao (2011); Pan et al. (2011); (2013); Lin, Ying, and Huang (2013);
Tasgetiren et al. (2011) Thammano and Phu-Ang (2013);
2012: Deng, Xu, and Gu (2012); Pongcharoen et al. Zhang, Song, and Wu (2013)

(2012); Banharnsakun, Sirinaovakul, and Achalakul 2014: Lin and Ying (2014); Selvi, Uma
(2012); Cui and Gu (2012); Sang, Gao, and Pan (2012); Rani, and Sankar (2014)
Li and Yin (2012); Sundar and Singh (2012); Wang, 2015: Li and Pan (2015); Nasiri (2015)
Zhou, Xu, and Liu (2012); Wang, Zhou, Xu, Wang, et  2016: Yue et al. (2016)
al. (2012) 2017: Li et al. (2017); Muthulakshmi
2013: Han et al. (2013); Lei (2013); Pan et al. (2013);  and Somasundaram (2017); Sundar et
Tasgetiren et al. (2013); Wang, Xie, and Cheng (2013) al. (2017); Wang et al. (2017)
2014: Vijaychakaravarthy, Marimuthu, and Sait (2014);
Kizilay et al. (2014); Li, Pan, and Tasgetiren (2014);
Muthiah and Rajkumar (2014); Pan et al. (2014)
2015: Ribas, Companys, and Tort-Martorell (2015); Al-
Salamah (2015); Caniyilmaz, Benli, and llkay (2015);
Cui and Gu (2015); Gao et al. (2015)
2016: Asadzadeh (2016); Gao et al. (2016)
2017: Zhang et al. (2017); Li (2017); Pan et al. (2017)
KH 2014: Puongyeam, Pongcharoen, and Vitayasak (2014) No reported research
2015: Wang, Deb, and Thampi (2015)

3 The development of Advanced Production and Scheduling (APS) tool
The APS tool was developed for solving production scheduling problems in the
capital goods company using a Discrete Bat Algorithm (DBA), a Modified DBA (MDBA),

and a Hybrid Discrete Bat Algorithm with Krill Herd (HDBK) algorithm. The objective was



to find an optimal schedule which minimised the total cost of earliness and tardiness penalties
(equation 1). The tool was coded in a modular style using the C sharp programming
language. The APS tool starts by obtaining input data. The input data comprises: (a) order
information - due dates, the number of products for the penalty cost coefficients for earliness
and tardiness; (b) product information - product structure (including all assemblies,
subassemblies and components); (c) operational information - process routings, set-up,
machining and transfer times (for all assemblies, subassemblies and components); (d)
resource information - list of machines and their availability; (e) the DBA’s parameters - the
size of the population (n), the number of iterations (1), the pulse rate emission coefficient (y),
the loudness coefficient (o) and the repositioning operation either using the swapping

operator (Wang et al. 2003) or the adjustment operator (Wang et al. 2005).

A flowchart representing the proposed DBA, MDBA and HDBK used in the APS tool
is shown in Figure 1, which includes:

i) The main menu of the APS tool is displayed when the mouse is double clicked. The
problem dataset can be selected and uploaded into the APS tool. All operations are
encoded into alphanumeric strings that represent sequences of operations. These are
analogous to the discrete vector position of a bat with the number of dimensions equal to
the total number of operations in the schedule;

i) The graphical user interface (GUI) allows users to define parameters (pop, iteration, 5, «,
and repositioning operator), scheduling characteristics (Pe, Pt, and working hours per

day), and the random seed number (if needed);
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Figure 1. Flowchart of the DBA, MDBA and HDBK APS tool.
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iii) A swarm of bats is randomly generated. The product structure representation is

vi)

illustrated in Figure 2 (a) using a simple example. The root node represents the final
product (F1), which comprises assemblies (A1 and Az); subassemblies (S1, Sz, and Ss);
and components (C1, Co, Cs, and C4) as the leaf nodes. All the nodes in the product
structure will have a sequence of machining operations Oz, O2...On, Which need to be
completed sequentially. If the component C; has three operations O1, Oz, and Os, C1 can
be represented as three intermediate items C10:, C102, and C103 where C103 is the
completed Cy, since it has three operations. Each bat represents a candidate solution (see
Figure 2 (b));
Candidate solutions may be infeasible because they contravene assembly or operation
precedence constraints. A repair process (Pongcharoen, Hicks, and Braiden 2004) was
adopted to change routings and/or assembly sequences (the position vectors) to ensure
that all precedence constraints are satisfied. The repair process also takes into account
timing, finite capacity and deadlock. Figure 3 illustrates the adjustment of an infeasible
schedule (repair process). In bat 2, the intermediate item C103 is sequenced to take place
before the intermediate item Si. Therefore the algorithm swaps these operations so that
they are in the correct sequence;
Initially, each bat is randomly assigned the velocity vi, the pulse rate r; in the range [0,1],
the frequency fi in the range [0,1], and the loudness A; in the range [1,2], settings adopted
(Chansombat et al. 2013);

The total penalty costs for all of the individuals within the initial population are

calculated using equation (1);

vii) The best-so-far position x* leading to the lowest penalty cost is identified;



Product structure

Level 0 Final product
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Bats Position Representation of operation sequences (Position of bat x! )
1 ) [CO[CO [ GO GO [ GO [ GO [CiO[Ci0: [ 83 | 8 | S [ A [ A [ R
2 x0 [0, [C0[Ci0:[C0:] S [CiO:[C0] S [CO[Ci0x] S5 [ A [ A [ Fi ]

Pop  xpop [CGO[CO]CIO:[CO[CO] S [CO[CO] 8 [CO[ S5 [ A AT F
(b)
Figure 2. Representation of a population of candidate solutions.

Bats  Position Representation of operation sequences (Position of bat x{ )
1 20 C0,[C0,[C0,[Ci0;]C0, [ CO [ CO [ CO [ S5 | S | S, | A [ A ] RV
2 x§ [0 [CO]C0,[CO:[ S [COs[CO | 8 [CiO[Ci0] S | Ar | 11. | 11. | %

[C:0,]C0,]C0,[C0,|CiOs[ 8 [CO | S [CiO[Ci0:] S5 | A, | A | F v

Pop Xgop |C201|C101|C102|C202|C103| S |C401|C301| S, |C402| S; | A, | A, | F, |‘/

Figure 3. Check and reorder the part and operations precedence (repair process).

viii) All bats move from their current location x} to a new location x{**. Instead of applying
equation (3), which would apply for continuous optimisation, the discrete algorithm is
based upon either the swapping operator (Wang et al. 2003) or the adjustment operator

(Wang et al. 2005) which are described in steps ix) and x) below;



iX) Swapping operator - the first stage is to calculate how many swaps would be required to

map xf** to x* (the best-so-far solution) using the six steps illustrated in Figure 4(a). The

first step compares the elements of x* from left to right with x/**. When a difference is

detected (in this case C,0, / C30:), the second step swaps the current element in xf**

with the element containing the same value as x* (C20.) and step 3 does the reverse
swap to produce xf“’(where the number of dashes “"” indicates the number of swaps).

This process then continues until the number of swaps required to map xf** to x* is

determined. In this case, steps 4,5 and 6 complete the process as xf“” is the same as x*

so the total number of swaps is 2; The second stage is to multiply this number of swaps
by the random number f; determined by step (v) above. The value is then rounded up to
determine the actual number of swaps to be performed on x/*! to determine its new
position. This process is illustrated in Figure 4(b) that shows a situation where two swaps

were required to transform, xf** to x*, the f value was 0.1, giving 0.2 swaps, which

. !
would round up to one swap, so x;** is changed to x/**;

Adjustment operator - the first step is to calculate how many adjustments would be
required to map xf** to x*. This is illustrated in Figure 5. The procedure compares the

elements of x* with x/**. When a difference is detected the current element in x* is

t+1
i

inserted into xf** , the duplicate value in xf** is deleted as shown. The remaining values
to the right of the insertion point are moved one position to the right. This process is then
continued until the number of adjustments required to map x/** to x* is determined.
Again, this value is multiplied by f and rounded up to determine the number of

adjustments to be made on x{** to determine its new position;



Position Representation of operation sequences (Position of bat x{ )

x" [COJC0:[GCOCO[CO) GO JCOJCO] Ss [ Si | S: | A | A, | F |

xt

i [€0]€0,[G0 G0, [C:0]C0 [C0,[C0:] S5 [ S [ S [ A [ A [F |

G0,
[€i0:]€i0:[ ;0. ][ C10;] [c.0] [col s s [ ss Jalalr |

CzOz
C3;00

[C,0,]C0,[C0,]C0;]C0,[C0,]| [Co] 8 | 8 | & | A | A ] Fy |

!
Swap#1 xlt [€10.]Ci0:[ GO [CiO: [ GO [ CO [ G0 [C0:] S | S [ S [ AL A [ F

*

I
xf [COJCO ]GO CO GO JCOJCO[CO:] S5 | S [ & | A A | Fi |

C,0,
[c0,]c0.[C.0,[C0:]C0,] | [col s, [ si [ ssJalalr |
(:501

C40|
[€,0,]C0.[ G0, [€,0,]C,0,[C,0,] [Co] Ss [ Si [ S [Aa [ A F |

¥[GO ]GO [GOCO: [ GO [GOJCOoCo: Ss [ si ]S [a AR |}

t”
Swap#2 X; [Ci0,[C0:[ G0, [Ci0:[C:0:[C:0,[Ci0. [C.O:] S5

Sl|Sz|A||Ag|F||

Total number of swaps is 2

Figure 4(a). Swapping operator (Amara, Hamdani, and Alimi 2015).

If f; = 0.1, X{ = 0.1 x 2= 0.2—> 1 =Number of swaps

xi't [ C,0,]C,0,] C,0, | C,0;[C;0,] C,0, [C,0,)C,0,| S | Si | S | A | Ay | Fy |

r
xt

[ [€0]€Ci0:] 0| €10:[C0,) Ci0: [C50,) CO: | S5 [ S | S [ A | A [ F

Figure 4(b). Swapping procedure.

xi) The new positions of the bats are checked and repaired as necessary;

xii) The total penalty costs for all of the individuals within the initial population is calculated
and the best-so-far value is identified,;

xiii) A random number (rand) in the range 0-1 is generated,

xiv) rand is compared with the pulse rate (ri);

xv) If rand > rj, the best-so-far solution x* is taken as the start point for a local search.



Position Representation of operation sequences (Position of bat x| )

x* [C0JC0.[CO [CO:[C.ONCOCOCO[ S5 | S [ S [ A [ A | F

xi’f [€.0,]C0,]C0[€0,C0,]Co [0 [co.] & | si [ S [ a A F |

[€10,] €10, €20, ] C10;] C50,] €40, | (€O ] Ss [ S [ S [ A | A [ F Step2
A
erecmenaraenanan C,0,
|C10||C1()2|C201|C103|Ci(),| FAEAEEEEEEY
b CzOz
[€,0,]C,0.]C0,]C05] [CoJco o] ss Tsi [ [ a AR ]
C0, Stepd

}
)
|

GO Jco o Jcofcolco. [ s [ s [ s [Aa [ AR

’
Adjustment#l x/ [CO]C0,

Total number of adjustments (insertion) is 1

Figure 5. Adjustment operator.

xvi) If the MDBA is selected, this step is repeated 50 times to improve the exploitation
capability, otherwise just once;

xvii) To improve the exploration capability of the BA, the random diffusion of the KH was
incorporated into the conventional BA. This is illustrated in Figure 6.

xviii) A new solution is repaired if necessary;

xix) The fitness of new solution is evaluated;

xx) A new rand in the range 0-1 is generated. If rand < Aiand if the penalty cost of X, < x*
then X, becomes x*, A, will decrease using equation (6) and r; will increase following

equation (7). Otherwise, x* remains unchanged,;

xxi) If the specified number of bats has not been completed, the procedure returns to step
xiii). Otherwise, all bats are ranked and the best-so-far position is saved,

xxii) If the required number of iterations has not been completed the procedure returns to
step (viii), otherwise the program terminates and reports the best-so-far solution and

displays it graphically as a Gantt chart.



If rand = 0.67 = Swapping operator

Position Representation of operation sequences (Position of bat x{ )

%

x* [CO]CO[COJCO:[CO[COJCOJCO. [ Ss [Si [ S JA JTA[F ]

xf  [COCO: ]GO CO[COCO GO [C0:] S [ 5 [ & [ A | A | Fr |

!
Swap#l xf [€0,]C,0.]C,0,]C.0,]C,0.[C.O[C,0,[C.O.] S [Si [ S, JA [ A TF |

t”
Swap#2 X; [CO.[C0,[CGOCO: [ GO [COCOCO:] S [ S| S | A [ A [ R

Total number of swaps is 2

From New solution => D" § x Total number of swaps/adjustments

If D" =0.1,8 =075, xl-t:O.l %x 0.75 x 2=0.15 —> 1 = Number of swaps

x{ [€,0,]C,0,]C,0,]C0:[C,0,] c,0,[c,0.]Jco] s; [ s [ s, [ A [ A F ]

r
xf [C,0,]C0: [ C,0, [ C,0:[C,0,) C,0,[C;0,)C,0,| S | S, [ 8 [ A [ A | F |

Figure 6. HDBK procedure.

4 Computational experiments

The computational experiments used data representing an 18 months schedule from a
collaborating capital goods company. The first experiment identified the best DBA parameter
settings. The second experiment evaluated the performance of the proposed HDBK and
compared the performance with the MDBA, DBA, ABC, KH and MKH algorithms. Both
experiments used the same datasets. The APS tool was experimented on a personal computer

with a Core 17, 3.50 GHz CPU and 6 GB RAM.

4.1 Datasets

Pongcharoen et al. (2002) developed Genetic Algorithms for scheduling the
production of capital goods and considered three problems (small, medium and large).
Chainual, Lutuksin, and Pongcharoen (2007) developed an Ant Colony scheduling tool using

the same problems. Xie, Hicks, and Pongcharoen (2010) additionally considered an extra-



large dataset that represented a complete schedule for a major product. These four datasets
were used to test: the Artificial Bee Colony (Pansuwan, Rukwong, and Pongcharoen 2010;
Pongcharoen et al. 2012) and Krill Herd (Puongyeam, Pongcharoen, and Vitayasak 2014).
These algorithms can be directly compared because they were applied to common datasets
with the same objective function outlined in equation (1). The characteristics of the problems

considered are shown in Table 5.

Table 5. The characteristics of the four problems.

Problem  No. of products No. of Machining/ No. of Levels of
sizes (part number) items assembly operations  machines  product structure
Small 2 (245, 451) 15 25/9 8 11
Medium 2 (229, 451) 18 57/10 7 17

Large 2 (4, 228) 29 118/17 17 19
Extra-large 1 (227) 85 229/39 25 20

4.2 ldentifying appropriate parameter settings

It is important to select metaheuristic parameters that obtain optimal results. A design
of experiments strategy is much more effective and efficient than a trial-and-error approach.
Factorial designs may be necessary to avoid misleading conclusions when interactions are
present. They allow the effects of a factor to be estimated at several levels of the other factors
producing results that are valid over a wide range (Montgomery 2012). Previous research on
production scheduling in the capital goods has used this approach to identify appropriate
parameter settings (Pongcharoen 2001; Pansuwan, Rukwong, and Pongcharoen 2010;
Puongyeam, Pongcharoen, and Vitayasak 2014).

This experiment used the full factorial design to identify the appropriate parameter
settings for the DBA. The factors included: (i) the combination of population size and the
number of iterations (nl), which determines the amount of search. In the experiments the

value was fixed at 2,500 to ensure comparability with previous research; (ii) the pulse rate



emission coefficient (); (iii) the loudness coefficient («); and (iv) the repositioning operator
(the swapping operation (SO) (Wang et al. 2003) or the adjustment operator (AO) (Wang et
al. 2005). The experiment was replicated ten times with different random number seeds. The
number of runs for each replicate was 33x2 = 54, giving a total of 540 runs. For each run the
best-so-far penalty cost was the dependent variable. The results were analysed using a general
linear model form of analysis of variance (ANOVA). The main effects and first level
interactions were considered in accordance with the sparsity of effects principle that states
that a system is usually dominated by main effects and low level interactions (Montgomery
2012). Table 6 shows the ANOVA table, which shows the source of variation (Source),
degrees of freedom (DF), sum of squares (SS), mean square (MS), F value, and P value. The
factors with a P value of <=0.05 were statistically significant with a 95% confidence
interval. All the DBA parameters were considered as the main sources of variation as well as
the interaction effects.

From Table 6, it can be seen that all of the DBA’s parameters except y were
statistically significant. The only two-way interaction that was statistically significant was
a*Repositioning operation. The best parameter settings for the DBA were determined by
considering the lowest mean best-so-far total cost obtained from main effect and interaction

plots. Figure 7 shows the best combination for the interactions which were: (a) « = 0.9 with

AO; (b) nl =100*25 and a =0.9; (c) nl =100*25 and AO; and (d) = 0.1 and AO.

4.3 Performance comparison of the proposed algorithms with other approaches

The performance of the proposed algorithms (DBA, MDBA and HDBK) were
compared against the ABC algorithm (Pansuwan, Rukwong, and Pongcharoen 2010), the KH
and MKH algorithms (Puongyeam, Pongcharoen, and Vitayasak 2014). In each case the

appropriate parameter settings had been identified through a design of experiments approach.



Each experiment was replicated 30 times to be consistent with Pansuwan, Rukwong, and

Pongcharoen (2010) and Puongyeam, Pongcharoen, and Vitayasak (2014).

Table 6. ANOVA analysis of DBA parameters.

Source DF SS MS F value P value
nl 2 5,637,225,926 2,818,612,963 42.160 0.000
14 2 160,270,370 80,135,185 1.200 0.302
o 2 29,966,267,593 14,983,133,796 224.110 0.000
Repositioning operation 1 4,547,201,852 4,547,201,852 68.010  0.000
nl*y 4 142,679,630 35,669,907 0.530 0.711
nl*a 4 301,440,741 75,360,185 1.130 0.343
nI*Repositioning operation 2 68,137,037 34,068,519 0.510 0.601
r*a 4 53,362,963 13,340,741 0.200 0.939
y* Repositioning operation 2 17,403,704 8,701,852 0.130 0.878
a * Repositioning operation 2 1,290,334,259 645,167,130 9.650 0.000
Error 514 34,364,118,519 66,856,262
Total 539
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205000 o e 01 . e ogas
i . % 25000 3050
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z 3
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Figure 7. Interaction plots of (a) « * Repositioning operation, (b) nI*«, (c) nI*Repositioning

operation and (d) ¥ *Repositioning operation.



Table 7 shows that the performance of the HDBK, MDBA, DBA, ABC, KH and
MKH in term of minimum (Min), maximum (Max), and arithmetic mean best-so-far penalty
value (Mean) and standard deviation (SD). The dependent variable in this analysis was the
best-so-far result achieved by each replicate. In terms of minimum total penalty cost, the
HDBK outperformed the MDBA, DBA, ABC, KH and MKH for all problem sizes except the

small problem.

Table 7. Performance comparison (penalty cost in currency units).

Problems Total Penalty Methods
Cost HDBK MDBA DBA ABC KH MKH
Small Min 15,000 15,000 15,000 15,000 16,500 15,000
Max 15,000 15,000 19,000 15,500 19,500 15,500
Mean 15,000 15,000 15,133 15,033 18,750 15,217
SD 0 0 730 127 728 252
Medium Min 31,000 31,500 32,500 52,500 58,500 55,500
Max 57,000 54,500 57,000 57,500 60,500 59,000
Mean 36,933 36,283 39,117 55,133 59,800 57,600
SD 6,276 5,474 6,867 1,293 581 1,029
Large Min 163,000 165,000 165,000 234,500 282,000 244,000
Max 204,000 189,500 201,000 277,000 321,000 307,000
Mean 181,767 178,033 182,733 258,417 304,367 291,883
SD 9,081 6,608 7,681 11,503 9,872 12,663
Extra-large Min 5,251,500 5,664,000 5,664,000 9,089,500 11,822,000 9,906,500
Max 7,434,500 7,361,500 8,031,500 10,608,500 12,337,000 12,192,500
Mean 6,350,617 6,572,750 6,890,500 9,860,517 12,174,600 11,412,867
SD 621,625 426,103 585,670 417,689 162,237 631,384

A student t test established whether the mean differences were statistically significant.
Table 8 shows the T value obtained by the t-test method, the P value, and the percentage
improvement (%Imp) achieved by the algorithms. Almost all of the comparisons between the
results obtained from the HDBK and the other approaches for extra-large problem were
statistically significant with a 95% confidence interval (P value < 0.05) except the modified
DBA. For medium and large problems, the statistical comparisons indicated that the results
obtained from the HDBK were significantly better than the results obtained from the ABC,
KH and MKH. For small problems, the results obtained from the HDBK were significantly

better than the results obtained from the KH and MKH. The performance of HDBK achieved



the highest percentage improvement (%lImp) of 47.837% when compared with KH followed

by 44.356% when compared with MKH and 35.595% when compared with ABC.

Table 8. Statistical analysis using a t-test.

- . Problems
Methods Statistical analysis Small Medium Large  Extralarge
HDBK versus MDBA T value * 0.97 2.87 -1.64
P value * 0.338 0.008 0.111
% Imp 0 -1.791 -2.097 3.380
HDBK versus DBA T value -1.00 -2.21 -0.96 -3.69
P value 0.326 0.035 0.344 0.001
% Imp 0.879 5.582 0.529 7.835
HDBK versus ABC T value -1.44 -15.87 -30.48 -30.78
P value 0.161 0.000 0.000 0.000
% Imp 0.220 33.011 29.661 35.595
HDBK versus KH T value -28.21 -19.59 -46.26 -47.98
P value 0.000 0.000 0.000 0.000
% Imp 20.00 38.239 40.280 47.837
HDBK versus MKH T value -4.71 -18.29 -38.75 -30.31
P value 0.000 0.000 0.000 0.000
% Imp 1.426 35.880 37.726 44,356
MDBA versus DBA T value -1.00 -4.74 -5.11 -4.23
P value 0.326 0.000 0.000 0.000
% Imp 0.879 7.243 2.572 4611
MDBA versus ABC T value -1.44 -19.10 -34.11 -30.25
P value 0.161 0.000 0.000 0.000
% Imp 0.220 34.190 31.106 33.343
MDBA versus KH T value -28.21 -22.97 -53.54 -63.97
P value 0.000 0.000 0.000 0.000
% Imp 20.000 39.326 41.507 46.013
MDBA versus MKH T value -4.71 -21.65 -41.35 -38.64
P value 0.000 0.000 0.000 0.000
% Imp 1.426 37.008 39.005 42.409
DBA versus ABC T value 0.73 -13.06 -30.91 -22.33
P value 0.470 0.000 0.000 0.000
% Imp -0.665 29.051 29.287 30.120
DBA versus KH T value -19.86 -16.27 -50.65 -44.26
P value 0.000 0.000 0.000 0.000
% Imp 19.291 34.588 39.963 43.403
DBA versus MKH T value -0.63 -14.78 -38.54 -35.45
P value 0.531 0.000 0.000 0.000
% Imp 0.552 32.089 37.395 39.625

Remark * mean that all minimum values (total penalty cost) are identical.

5 Conclusions and future work
This research has developed a novel APS tool that effectively solves production

scheduling problems for capital goods with many levels of product structure and multiple



resource constraints. It was the first research to adopt a Discrete Bat Algorithm (DBA), a
Modified Discrete Bat Algorithm (MDBA) with additional local search and a Hybrid Discrete
Bat Algorithm with Krill Herd (HDBK) for solving this problem. This required a novel
representation to be developed that included product structure relationships and operations to
be included. A repair process was included to ensure that operation and assembly precedence
relationships were satisfied as well as taking into account finite capacity and avoiding
deadlock. The tool was tested using four datasets obtained from a collaborating capital goods
company. These had been used by previous researchers investigating ABC, KH and MKH
optimisation. The first experiment identified appropriate parameter settings for the DBA. All
of the DBA’s parameters except y were statistically significant. The only two-way interaction
that was statistically significant was a*repositioning operation. The appropriate parameter
settings for the DBA were determined by considering the lowest mean best-so-far total cost
obtained from main effect and interaction plots. The best settings were nl = 100*25, = 0.1,
a = 0.9 with the adjustment operator (AO).

The second experiment was aimed to evaluate and compare the performance of the
proposed HDBK with MDBA, DBA, ABC, KH, and MKH by using the Student t-test. The
minimum total penalty costs indicated that the HDBK outperformed the other approaches
(MDBA, DBA, ABC, KH, and MKH) for all problem sizes except small problem. Almost all
of the comparisons between the results obtained from the HDBK and the other approaches for
extra-large problem were statistically significant with a 95% confidence interval (P value <
0.05) except the MDBA. The HDBK achieved the highest %Imp 47.837 when compared with
the KH. These results demonstrate that the HDBK is a promising approach for advanced
planning and scheduling systems for complex scheduling situations such as those

encountered in the capital goods industry.



Future research may focus on the application of mathematical analysis and/or
metaheuristics to solve production scheduling problem in capital goods industry. The
integration of production and preventive maintenance scheduling problem in the capital
goods industry or other integrations (e.g. lot sizing, or uncertainty issues in manufacturing

environment) can also be another research direction in the future.
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