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This paper proposes a robust possibilistic and multi-objective mixed-integer linear programming mathematical model to
concurrently plan part quality inspection and Preventive Maintenance (PM) activities for a serial multi-stage production
system. This system contains the deteriorating stages and faces the uncertainty about estimated cost components and demand
amount. The integrated model reaches two significant decisions which are the right time and place for performing the part
quality inspection and PM. These decisions are made while the model is to simultaneously optimise the implied system
productivity and total cost. To measure the implied system productivity, a new piecewise utility function for the ratio of
produced conforming products to input workpieces is developed. A real case study and a numerical example are explored to
validate and verify the developed model. The results prove the significance and effectiveness of considering the uncertainty
and conflicting practical objectives for the problem.

Keywords: multi-stage production; preventive maintenance; inspection planning; productivity; uncertainty; multi-objective
optimisation

1. Introduction

In Serial Multi-stage Manufacturing Systems (SMMSs), Part Quality Inspection Planning (PQIP) is a demanding problem,
especially for the deteriorating ones. Since an SMMS presents the various possibilities for inspection, part quality inspection
activities in the SMMS may be performed after some or every manufacturing stage (Mohammadi et al. 2018). Therefore,
the PQIP problem includes many questions, such as when, where and in which extent inspection activities should be done
along with a production process. Furthermore, determining appropriate defect management strategies (i.e. scrap, rework and
repair/replacement) is required after detection of a defective item. It avoids the defect propagation all over the process and
prevents defect shipment to consumer(s) (Rezaei-Malek et al. 2018a).

The PQIP problem has been explored by the scientists since the 1960s. The literature is wealthy on mathematical pro-
gramming for the optimal allocation of inspection activities within the manufacturing system. Most of the early researches
employed Dynamic Programming (DP) to handle the allocation problem in simple manufacturing systems free of inspec-
tion errors (e.g. see Lindsay and Bishop 1964; White 1966; Pruzan and Jackson 1967; White 1969). Lindsay and Bishop
(1964) and White (1969) proved that an extreme point solution (either 0% or 100% inspection) is optimal for the linear
cost functions and unconstrained systems. By developing an adaptive model, Pruzan and Jackson (1967) determined the
optimal inspection strategy at a location regarding the inspection history. Eppen and Hurst (1974) extended the problem
through considering two error types of inspection activities and applied the DP to solve the problem for an SMMS when all
the rejected items considered to be scrapped. Yum and McDowellj (1987) proposed a Mixed-Integer Linear Programming
(MILP) for the problem which could be solved by commercially available MILP packages such as GAMS.

Raz (1986), Mandroli, Shrivastava, and Ding (2006) and Shetwan, Vitanov, and Tjahjono (2011) reviewed the literature
of PQIP problem in the different time periods. Recently, Rezaei-Malek et al. (2018b) have been updated the previous reviews
and added new analyses about the incorporation of maintenance and production planning issues into the PQIP problem
regarding the production quality paradigm developed by Colledani et al. (2014). Furthermore, they have investigated the
multi-objective nature of the PQIP and the inherent uncertainty of the problem and the applied approaches for dealing with.

The three important aspects of each production system are production, quality, and maintenance that influence each
other (Ben-Daya and Rahim 2001). There are some studies in the literature, whose paramount issue is the PQIP problem
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and have attempted to integrate this problem with the other production planning issues. In this respect, the integrated
optimisation of inspection location with production planning (Gunter and Swanson 1985; Penn and Raviv 2007; Penn and
Raviv 2008), required quantity of raw materials (Park, Park, and Ntuen 1988), batch size and reprocessing lot size for the
rejected products (Tayi and Ballou 1988; Raghavachari and Tayi 1991; Raz, Herer, and Grosfeld-Nir 2000), cycle time
and number of produced conforming items (Narahari and Khan 1996; Kakade, Valenzuela, and Smith 2004), timing and
sequence of inspection activities (Kogan and Raz 2002), process planning (Shiau, Lin, and Chuang 2007), manufacturing
shop scheduling and sequencing of inspection activities (Galante and Passannanti 2007; Sadegheih 2007), and production
rate (Kim and Gershwin 2008) have been investigated.

Besides the production planning issues, different types of maintenance activity can be incorporated into the PQIP prob-
lem to improve the efficiency of production systems. For instance, Preventive Maintenance (PM) is used as a helpful tool
for keeping the system in a good manufacturing state for manufacturing high-quality outcome. Defective Production Rate
(DPR) as the principal input data for the PQIP is affected by the performance of PM activities, so there is an unassailable
dependency of the PQIP on the PM plan. On the other side, the PM plan itself is specified based on the system deterioration
trend and its status. To handle this dependency, as the first try, Rezaei-Malek et al. (2018c) incorporated the PM planning
issue into the PQIP problem and proposed a programming mathematical model for an Integrated Part Quality Inspection
and PM Planning (IPQIPMP) problem while satisfying the minimum demand amount. They assumed that each manufactur-
ing stage deteriorates when time passes and accordingly the probability that a workpiece gets a defect is increasing. They
determined the optimum time and place for performing part quality inspection and PM activities while minimising total
manufacturing cost. They achieved a considerable cost saving in comparison with the separate optimisation of inspection
and PM planning.

The IPQIPMP problem, like the other existing problems in manufacturing systems, inherently includes different sources
of uncertainty. Some of these uncertainties are related to the internal reasons (e.g. Error type I and Error type II of inspection
tools) and the others are rooted in the external reasons (e.g. cost fluctuations) (Rezaei-Malek et al. 2018b). In the PQIP
literature, the first category of uncertainties was generally incorporated into the problem through a probabilistic approach
(see e.g. Mohammadi et al. 2015) and the second one was considered by applying the fuzzy programming (see e.g. Azadeh
et al. 2015b). Regarding the external-related uncertainties, the demand amount is a critical parameter that undergoes many
changes because of the existence of cost fluctuations in the real market. However, there is no study in the PQIP and IPQIPMP
literature handling the demand uncertainty. Indeed, this uncertain amount needs to be met by adjusting the system capacity
through an appropriate planning of inspection and PM, and any shortage results in the loss of goodwill and back order
penalty.

In the framework of the IPQIPMP problem, Rezaei-Malek et al. (2018c) just considered the internal reasons-related
uncertainties through a probabilistic manner and ignored the uncertainties about the cost components and demand amount.
Hence, this paper extends the proposed model by Rezaei-Malek et al. (2018c) and considers not only the internal reasons-
related uncertainties but also the uncertainties about the cost components and demand amount and handles them through
applying a Robust Possibilistic Programming (RPP) approach.

Probabilistic and fuzzy programming approaches are not capable to investigate the optimality and feasibility robustness
of the obtained solutions. Indeed, it is significant to guarantee the obtained solution for being feasible and close to the
optimal regarding different possible values of the uncertain parameters. This decreases the risk of SMMSs. Hence, this
paper applies the RPP approach to guarantee the optimality and feasibility robustness of the obtained solution under the
uncertainty of cost parameters and demand amount for the IPQIPMP problem.

Minimisation of the total cost consisting of production, inspection, repair/replacement, and scrap, is the most used
form of the objective in the PQIP literature. On the other side, there is a lack of employing multi-objective models in the
PQIP literature (Rezaei-Malek et al. 2018b). The PQIP problem inherently has a multi-objective nature where you must
improve the quality of products by the resource assignment (e.g. inspection activities) and try to be profitable by reduc-
ing total cost. Mohammadi et al. (2018) is the only research work, which has proposed a bi-objective MILP model for
the PQIP problem. The objective functions were the minimisation of total cost and the maximisation of customer satis-
faction. They maximised customer satisfaction through minimising the penalty of delivered non-conforming items to the
customer.

For the first time, this paper simultaneously considers two objective functions for the IPQIPMP problem. Besides the
minimisation of the traditional total cost, a new objective function, called implied system productivity, is introduced to be
maximised. Generally, a system productivity measure is expressed as the ratio of output to inputs used in a production
process. Here, the output is equal to the number of produced conforming items. On the other side, typically, the implied
utility of system productivity is considered equal to the obtained value for the ratio. However, regarding the studied case
study of this paper, the implied utility may be different from the value of the ratio. For instance, based on our observation,
the value 0.5 for the semiconductor producers is a catastrophe and for the oil pump housing manufacturers is a huge



achievement. Accordingly, as the first objective function, this paper adopts a new piecewise utility function to reflect the
case-based implied utility of the obtained system productivity ratio.

Briefly, this paper presents an MILP model for the IPQIPMP problem and contributes to the literature by:

• applying an RPP approach to deal with the uncertainty of cost components and demand amount in a robust way,
• introducing a new piecewise utility function to measure a case-based implied system productivity,
• presenting a bi-objective mathematical programming model for the IPQIPMP problem and obtaining the Pareto-

optimal solutions by the augmented ε-constraint approach.

The rest of this paper is organised as follows. The next section describes the problem and provides a bi-objective MILP
model. The performed solution methods are elaborated in Section 3. Section 4 is dedicated to the computational experiment
and a real case is explored. Section 5 draws the conclusions and provides some directions for future research.

2. Problem description and mathematical model

Consider a Serial n-Stage Manufacturing System (SnSMS). A single type product is produced by this discrete manufacturing
process. Raw material enters the SnSMS, in which each production stage realises a certain Quality Characteristic (QC) on
the product. All the workpieces cannot be processed in a perfect quality by the production stages. Because the production
stages are not technologically capable to do their tasks without any fault. So, an item gets a defect after each stage with a
certain probability. This probability is increasing over time (i.e. the manufacturing stages are deteriorating) and its value
depends on the number of time periods, which has passed since the last performed PM. Therefore, at the beginning of each
period, there is a chance to do a PM in an ambiguous cost on the different stages. In addition, after each stage, to avoid the
defects propagation and defects shipment to end-customer(s), the system can perform an inspection activity in an imprecise
cost. Each inspection activity can detect the defect happened at the preceding production stage. So, the defects propagation
and accordingly energy and material wastage would be reduced. It is notable that Error type I and II exist for doing an
inspection and a certain fraction of the rejected items can be repaired, and the rest should be scrapped while imposing
ambiguous expenses to the SnSMS. Figure 1 shows the schematic plan of the considered SnSMS.

The SnSMS needs a simultaneous plan determining the right place and time for the PM and part quality inspection
activities to manufacture conforming products. A planning horizon that includes equal time periods is considered for the
SnSMS and the objective is to minimise total cost including production, inspection, repair, scrap, and PM and to maximise
the implied system productivity. The cost components are not precisely certain and are represented by fuzzy rather than
crisp values. To measure an implied system productivity, this research introduces a utility function of the obtained system
productivity, g(o), where o is the proportion of the produced conforming products to the input workpieces. This function
reflects that the implied system productivity is greater when it produces more conforming products with a fixed number
of input workpieces (i.e. the o proportion is closer to 1). The shape of this function may be different in dissimilar cases;
however rationally, it is an increasing function. For instance, Figure 2(a) shows the function of implied system productivity
in a production line for the oil pump housing, which is the considered case study of this paper. This function is an estimated
base on the experts’ opinions.

The problem assumptions are described as follows. Then, the needed notations are defined. At last, a Mixed-Integer
Non-Linear Programming (MINLP) model is proposed for the above-mentioned problem.

Figure 1. Schematic plan of the described IPQIPMP problem in each period.



Figure 2. Considered utility function for the fraction of the produced conforming products. (a) Original shape of g(o). (b) Piecewise
linear approximation of g(o).

2.1. Assumptions

The principal assumptions of the described IPQIPMP problem are provided as follows:

• part defects are created only at the manufacturing stages,
• the values of Error type I and Error type II errors are known constant values during the planning horizon,
• the repair operation is performed perfectly and changes the rejected workpieces to the conforming ones.

2.2. Indices

j index of manufacturing stages (j = 1, . . . , n)
t index of time periods in the planning horizon (t = 1, . . . , T)
i index of passed time periods since the last done PM (i = 1, . . . , T)

2.3. Parameters

n number of manufacturing stages in the SnSMS
d̃e demand amount for conforming products in each period
wt01 number of unit initial workpieces that enter the SnSMS in the period t
εij probability that a workpiece gets a defect during processing in the manufacturing stage j when i time period

has been passed since the last implemented PM on the manufacturing stage j
εt0 non-conforming fraction of initial workpieces that enters the SnSMS in the time period t
αj probability of the Error type I of the inspection activity j
β j probability of the Error type II of the inspection activity j
fj1 fraction of the rejected workpieces repaired at the inspection activity j
fj2 fraction of the rejected workpieces scraped at the inspection activity j
p̃j fuzzy unit production cost in the stage j
ĩcj fuzzy unit inspection cost of the inspection activity j
r̃cj1 fuzzy unit repair cost of a conforming workpiece rejected by the inspection activity j
r̃cj2 fuzzy unit repair cost of a non-conforming workpiece rejected by the inspection activity j
s̃cj fuzzy scrap cost per rejected unit in the stage j
m̃cj fuzzy PM cost for the stage j
p̃c fuzzy penalty cost of shipping a non-conforming workpiece to customer(s)
yi auxiliary parameter that its value is equal to the number of its subscript (i.e. i)

2.4. Variables

dtj 1; if inspection activity associated to the manufacturing stage j is performed in the time period t, 0; otherwise



mtj 1; if a PM activity corresponding to the production stage j is done at the beginning of the time period t, 0;
otherwise

ωtj in the time period t, a number of time periods that have been passed since the last implemented PM on the
manufacturing stage j

wtj1 expected number of conforming workpieces entering the manufacturing stage j in the period t
wtj2 expected number of non-conforming workpieces entering the manufacturing stage j in the period t

utj1 = αj

(
1 −∑ωUP

i=ωLO xitjεij

)
wtj1dtj; expected number of conforming workpieces rejected by the j-th inspection

activity opportunity in the time period t

utj2 = (1 − βj)
(∑I

i=1 xitjεijwtj1 + wtj2

)
dtj; expected number of non-conforming workpieces rejected by the j-th

inspection activity opportunity in the time period t
xitj auxiliary binary variable to activate appropriate εij parameter in the model
P̃ fuzzy total production cost of the SnSMS
ĨC fuzzy total part quality inspection cost of the SnSMS
R̃C fuzzy total repair/replacement cost of the SnSMS
M̃C fuzzy total PM cost of the SnSMS
S̃C fuzzy total scrap cost of the SnSMS
P̃C fuzzy total penalty cost of the SnSMS for delivering non-conforming items to customer(s)

2.5. Bi-objective MINLP model

Regarding the above-mentioned annotation, a bi-objective MINLP formulation of the IPQIPMP problem is developed as
follows.

Model 1:

Max z1 =
T∑

t=1

g

(
wt,n+1,1

wt,0,1

)
(1)

Min z2 = RC + SC + P + IC + MC + PC (2)

s.t.

R̃C =
T∑

t=1

n∑
j=1

fj1r̃cj1utj1 +
T∑

t=1

n∑
j=1

fj1r̃cj2utj2 (3)

S̃C =
T∑

t=1

n∑
j=1

fj2s̃cjutj1 +
T∑

t=1

n∑
j=1

fj2s̃cjutj2 (4)

P̃C =
T∑

t=1

n∑
j=1

p̃j(wtj1 + wtj2) (5)

ĨC =
T∑

t=1

n∑
j=1

ĩcj(wtj1 + wtj2)dtj (6)

M̃C =
T∑

t=1

n∑
j=1

m̃cj × mdtj (7)

P̃C =
T∑

t=1

p̃c × wt,n+1,2 (8)

wt,1,1 = (1 − εt0)wt,0,1 ∀t (9)



 wt,1,2 = εt0wt01 ∀t

(10)

wt,j+1,1 =
(

1 −
I∑

i=1

xitjεij

)
wtj1

+
(

fj1

(
αj

(
1 −

I∑
i=1

xitjεij

)
+ (1 − βj)

(
I∑

i=1

xitjεij

))
− αj

(
1 −

(
I∑

i=1

xitjεij

)))
wt,j,1dtj

+ fj1(1 − βj)wtj2dtj ∀t, j �= n

(11)

wt,n+1,1 =
(

1 −
(

I∑
i=1

xitnεin

))
wtn1

+
(

fn1

(
αn

(
1 −

(
I∑

i=1

xitnεin

))
+ (1 − βn)

(
I∑

i=1

xitnεin

))
− αn

(
1 −

(
I∑

i=1

xitnεin

)))
wt,n,1dtn

+ fn1(1 − βn)wtn2dtn ∀t

(12)

wt,j+1,2 = wtj2 +
(

I∑
i=1

xitjεij

)
wtj1 − (1 − βj)

(
I∑

i=1

xitjεij

)
wtj1dtj

− (1 − βj)wtj2dtj ∀t, j

(13)

ωtj = (ωt−1,j + 1)(1 − mdtj) ∀j, t �= 1 (14)

ω1,j = 0 ∀j (15)

md1j = 1 ∀j (16)

ωtj =
T∑

i=1

xtjiyi ∀t, j (17)

T∑
i=1

xtji = 1 ∀t, j (18)

wt, n+1,1 ≥ d̃e ∀t (19)

wtj1, wtj2, utj1, , utj2, , RC, IC, , P, , MC, SC, PC ≥ 0 ∀t, j (20)

mdtj, dtj : binary decisions ∀t, j; xitj : binary ∀t, j, i; ωtj : positive integer ∀t, j (21)

Objective function (1) maximises the implied system productivity through maximising the utility function of the produced
conforming products to the input workpieces. As mentioned before, the traditional measure for the system productivity
was the proportion of output (number of produced conforming items) to input (number of initial workpieces); however, the
implied system productivity is different in dissimilar cases and it is possible to reflect these different implications through
considering various functions. For example, Figure 2(a) shows the implied system productivity for the considered case study
in Section 4.2. Hereafter this proportion is called as ot variable. Objective (2) minimises the total cost including repair,
scrap, production, inspection, PM, and penalty cost. These two objectives can be handled by a multi-objective optimisation
programming method (please see Section 3.3) to obtain a group of non-dominated solutions. Equations (3)–(8) calculate the
different cost components. Equations (9)–(13) obtain the expected number of conforming and non-conforming parts entering
the different manufacturing stages in each time period. Equation (14) obtains the number of passed periods after the last
implemented PM. It is assumed that a PM is performed for all the manufacturing stages in the first period (see Equations
(15) and (16)). Equations (17) and (18) activate the corresponding auxiliary binary variable xitj to εij and accordingly the



term
(∑T

i=1 xitjεij

)
in each period t take the value of corresponding εij regarding the number of the passed period since the

last performed PM. Constraint (19) imposes the SMMS to satisfy the demand of customer(s) in each time period. Equation
(20) is a non-negativity restriction, and Equation (21) shows that performing an inspection activity and performing a PM
are binary decisions. In addition, Equation (21) shows that the xitj auxiliary binary variable and the ωtj are integer positive
variables.

3. Methodology

To Deal with the non-linearity, multi-objectivity, and uncertainty of some parameters of the Model 1, a three-step approach is
developed. Figure 3 depicts the proposed approach and the explanation of each step is provided in the following sub-sections.

3.1. Step 1: linearisation procedure

Model 1 is a bi-objective MINLP model and we try to linearise Model 1 through some conventional operations research
techniques. To this aim, new variables and constraints are added to Model 1 for the linearisation purpose. The multiplications
of two real variables (i.e. wtj1 × dtj, wtj2 × dtj, xitj × wdtj1, xitj × wdtj2, xitj × wtj1) are linearised by replacing them with
new real variables (wdtj1, wdtj2, xwdtj1, xwdtj2, xwtj1) and adding new constraints (i.e. Equations (34)–(36), (37)–(39), (42)–
(44), (45)–(47), (48)–(50)). In addition, the multiplication of positive integer ωt−1,j and binary mdtj is replaced with new
real variable ωmdt−1,t,j and adding Constraints (40) and (41).

After the above-mentioned linearisation procedure, Model 1 is still non-linear because of the first objective function.
This non-linearity can be handled by employing a piecewise linear approximation to this non-linear function which is shown
in Figure 2(b). The curve in Figure 2(a) is divided into four straight line segments and is formulated as follows:

g(o) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4o

13
o < 0.25

8o − 1

13
0.25 ≤ o < 0.5

16o − 5

13
0.5 ≤ o < 0.75

24o − 11

13
o ≥ 0.25

Applying more portions to approximate the curve results in more accuracy; however, as explained in Section 4.2, four
portions obtains the satisfying accuracy for the Decision-Maker (DM) of the considered case study. The aim is to remove
the non-linear term g(wt ,n+1,1/wt ,1,1) from Model 1. This can be performed by replacing it through the single linear term ϑ t.
Then, it is possible to relate ϑ t to ot by the following formulations.

ot − 0 × λ1t + 1

4
× λ2t + 1

2
× λ3t + 3

4
× λ4t + 1 × λ5t = 0 ∀t (22)

ϑt − 0 × λ1t + 1

13
× λ2t + 3

13
× λ3t + 7

13
× λ4t + 1 × λ5t = 0 ∀t (23)

λ1t + λ2t + λ3t + λ4t + λ5t = 0 ∀t (24)

Some new variables are added into Model 1 (i.e. λv). These can be implied as ‘weights’ to be attached to the vertices of the
curve in Figure 2(b). In addition, it is necessary to consider another constraint regarding λv.

At most two adjacent λv can be non-zero (25)

Constraint (24) can be done by introducing λv under SOS2 condition. Stipulation (24) guarantees that corresponding values
of ϑ t and ot lie on one of the straight line portions. For example, if λ2 = 0.5 and λ3 = 0.5 (i.e. other λv are zero), we can

Figure 3. Flowchart of the proposed three-stage approach.



get ot = 0.375 and ϑ t = 0.154. Apparently, neglecting Constraint (24) will erroneously let the possibility of values ot and
ϑ t off the piecewise straight lines. For further information about the piecewise approximation approach, enthusiastic readers
can refer to Williams (2013).

By implementing the afore-mentioned linearisation operation, Model 1 is changed to the linear Model 2 as follows:
Model 2:

Max z1 =
T∑

t=1

ϑt (26)

Min z2 = R̃C + S̃C + P̃ + ĨC + M̃C + P̃C (27)

s.t.

R̃C =
T∑

t=1

n∑
j=1

fj1r̃cj1αjwdtj1 − fj1r̃cj1αj

(
T∑

i=1

εijxwdtji1

)

+
T∑

t=1

n∑
j=1

fj1r̃cj2

(
T∑

i=1

εijxwdtji1

)
+ fj1r̃cj2wdtj2

− fj1r̃cj2βj

(
T∑

i=1

εijxwdtji1

)
− fj1r̃cj2βjwdtj2

(28)

S̃C =
T∑

t=1

n∑
j=1

fj2s̃cjαjwdtj1 − fj2s̃cjαj

(
T∑

i=1

εijxwdtji1

)

+
T∑

t=1

n∑
j=1

fj2s̃cj

(
T∑

i=1

εijxwdtji1

)
+ fj2s̃cjwdtj2 − fj2s̃cjβj

(
T∑

i=1

εijxwdtji1

)
− fj2s̃cjβjwdtj2

(29)

wt,j+1,1 = wtj1 −
(

T∑
i=1

εijxwtji1

)
+ fj1αjwdtj1 − fj1αj

(
T∑

i=1

εijxwdtji1

)
+ fj1

(
T∑

i=1

εijxwdtji1

)

− fj1βj

(
T∑

i=1

εijxwdtji1

)
− αjwdtj1 − αj

(
T∑

i=1

εijxwdtji1

)
+ fj1wdtj2

− fj1βjwdtj2 ∀t, j �= n

(30)

wt,n+1,1 = wtn1 −
(

T∑
i=1

εinxwtni1

)
+ fn1αnwdtn1 − fn1αn

(
T∑

i=1

εinxwdtni1

)

+ fn1

(
T∑

i=1

εinxwdtni1

)
− fn1βn

(
T∑

i=1

εinxwdtni1

)
− αnwdtn1

− αn

(
T∑

i=1

εinxwdtni1

)
+ fn1wdtn2 − fn1βnwdtn2 ∀t

(31)

wt,j+1,2 = wtj2 +
(

T∑
i=1

εinxwtji1

)
−
(

T∑
i=1

εijxwdtji1

)
+ βj

(
T∑

i=1

εijxwdtji1

)
− wdtj2 + βjwdtj2 ∀t, j (32)

ωtj = ωt−1,j + 1 − ωmdt−1,t,j + mdtj ∀j, t �= 1 (33)



(34)

(35)

(36)

(37)

(38)

 wdtj1 ≤ M × dtj ∀t, j

wdtj1 ≤ wtj1 ∀t, j

wdtj1 ≥ wtj1 − (1 − dtj) × M ∀t, j wdtj2 ≤ 

M × dtj ∀t, j

wdtj2 ≤ wtj2 ∀t, j

wdtj2 ≥ wtj2 − (1 − dtj) × M ∀t, j

(39)

ωLO
tj × mdtj ≤ ωmdt−1,t,j ≤ ωUP

tj × mdtj ∀j, t �= 1 (40)

ωt−1,j − ωUP
tj × (1 − mdtj) ≤ ωmdt−1,t,j ≤ ωt−1,j − ωLO

tj × (1 − mdtj) ∀j, t �= 1 (41)

wditj1 ≤ M × xitj ∀t, j (42)

xwditj1 ≤ wdtj1 ∀t, j (43)

xwditj1 ≥ wdtj1 − (1 − xitj) × M ∀i, t, j (44)

xwditj2 ≤ M × xitj ∀i, t, j (45)

xwditj2 ≤ wdtj2 ∀i, t, j (46)

xwditj2 ≥ wdtj2 − (1 − xitj) × M ∀i, t, j (47)

xwitj1 ≤ M × xitj ∀i, t, j (48)

xwitj1 ≤ wtj1 ∀i, t, j (49)

xwitj1 ≥ wtj1 − (1 − xitj) × M ∀i, t, j (50)

wdtj1, , wdtj2, , xwditj1, xwditj2, xwitj1 ≥ 0 ∀t, j; ωmdt−1,t,j ≥ 0 ∀j, t �= 1 (51)

λv : Positive and SOS2 v ∈ {1, . . . , 5} (52)

With Equations (5)–(10) and (15)–(24).

3.2. Step 2: robust possibilistic programming (RPP)

As can be implied from the related literature, cost components and demand amount of the PQIP problem face a high degree
of uncertainty in a real-life condition since the dynamic nature of the market and the tactical horizon of planning decisions.
Specifically, when external reasons are considered, the degree of uncertainty increased notably. So, ignoring the uncertainty
in the planning of the manufacturing system may pose high risks to the company. Examples of the risks are a considerable
amount of back order and misestimated manufacturing cost. To deal with these uncertain parameters that are based on the
subjective opinion of the DM(s) and to obtain a robust solution, this paper employs the Robust Possibilistic Approach (RPP)
developed by Pishvaee, Razmi, and Torabi (2012).

Fuzzy mathematical programming is classified into two major categories (Pishvaee, Razmi, and Torabi 2012; Zahiri,
Tavakkoli-Moghaddam, and Rezaei-Malek 2016): possibilistic programming and flexible programming. Possibilistic pro-
gramming handles vague coefficients of constraints and objective functions that are generally formulated considering
available objective data and subjective knowledge of DM. Flexible programming is used to handle flexible target value
of goals and limitations (Pishvaee, Razmi, and Torabi 2012). With the above-mentioned definitions, Model 2 belongs to the
possibilistic programming category.



Figure 4. Possibility distribution of trapezoidal fuzzy number ξ̃ .

Pishvaee, Razmi, and Torabi (2012) presented a new approach, namely RPP. They extended the theory of robust
programming into the possibilistic programming framework. This approach has the capabilities of both possibilistic pro-
gramming and the concept of robustness. In comparison with the basic possibilistic chance-constrained programming, the
RPP approach prevents subjective judgment about the best value of chance constraints’ confidence levels (i.e. θ ) as well as
guaranteeing to obtain the global optimum value for them. This advantage is more valuable when the number of chance con-
straints rises and there is no need to apply complex and time-consuming processes like simulation experiments to obtain the
optimum value for confidence levels. Generally, the RPP model searches for a reasonable trade-off between (1) feasibility
robustness, (2) optimality robustness and (3) average performance. Several versions of the RPP approach was introduced by
Pishvaee, Razmi, and Torabi (2012). Because in our application it is advantageous for the DMs to obtain a lower total cost
when compared to the expected optimal value in any realisation. So, in this case, the Robust Possibilistic Programming-II
(RPP-II) version is applied. For more information about the other versions of the RPP programming approach, enthusiastic
readers can refer to Pishvaee, Razmi, and Torabi (2012). Here, according to the available data type in the considered case
study in Section 4.2, trapezoidal possibility distributions (see Figure 4) are adapted to model the imprecise parameters.
Trapezoidal fuzzy numbers can be represented by their four prominent points (e.g. ξ̃ = (ξ (1), ξ (2), ξ (3), ξ (4))).

Model 3:
This model is completely same as Model 2 except the second objective function and Constraint (19) which are changed

based on the RPP-II as follows:

Min E[z2] + γ (zmax
2 − E[z2]) + δ[de(4) − (1 − θ)de(3) − θde(4)] (53)

s.t.

wt, n+1,1 ≥ (1 − θ)de(3) + θde(4) ∀t (54)

where:

E[z2] = E[RC] + E[SC] + E[P] + E[IC] + E[MC] + E[PC] (55)

zmax
2 = RCmax + SCmax + Pmax + ICmax + MCmax + PCmax (56)

E[RC] =
T∑

t=1

n∑
j=1

fj1

(
rc(1)

j1 + rc(2)
j1 + rc(3)

j1 + rc(4)
j1

4

)
αjwdtj1

− fj1

(
rc(1)

j1 + rc(2)
j1 + rc(3)

j1 + rc(4)
j1

4

)
αj

(
T∑

i=1

εijxwdtji1

)

+
T∑

t=1

n∑
j=1

fj1

(
rc(1)

j2 + rc(2)
j2 + rc(3)

j2 + rc(4)
j2

4

)(
T∑

i=1

εijxwdtji1

)



+ fj1

(
rc(1)

j2 + rc(2)
j2 + rc(3)

j2 + rc(4)
j2

4

)
wdtj2

− fj1

(
rc(1)

j2 + rc(2)
j2 + rc(3)

j2 + rc(4)
j2

4

)
βj

(
T∑

i=1

εijxwdtji1

)

− fj1

(
rc(1)

j2 + rc(2)
j2 + rc(3)

j2 + rc(4)
j2

4

)
βjwdtj2 (57)

RCmax =
T∑

t=1

n∑
j=1

fj1rc(4)
j1 αjwdtj1 − fj1rc(4)

j1 αj

(
T∑

i=1

εijxwdtji1

)

+
T∑

t=1

n∑
j=1

fj1rc(4)
j2

(
T∑

i=1

εijxwdtji1

)
+ fj1rc(4)

j2 wdtj2

− fj1rc(4)
j2 βj

(
T∑

i=1

εijxwdtji1

)
− fj1rc(4)

j2 βjwdtj2

(58)

E[SC] =
T∑

t=1

n∑
j=1

fj2

(
sc(1)

j + sc(2)
j + sc(3)

j + sc(4)
j

4

)
αjwdtj1

− fj2

(
sc(1)

j + sc(2)
j + sc(3)

j + sc(4)
j

4

)
αj

(
T∑

i=1

εijxwdtji1

)

+
T∑

t=1

n∑
j=1

fj2

(
sc(1)

j + sc(2)
j + sc(3)

j + sc(4)
j

4

)(
T∑

i=1

εijxwdtji1

)

+ fj2

(
sc(1)

j + sc(2)
j + sc(3)

j + sc(4)
j

4

)
wdtj2

− fj2

(
sc(1)

j + sc(2)
j + sc(3)

j + sc(4)
j

4

)
βj

(
T∑

i=1

εijxwdtji1

)

− fj2

(
sc(1)

j + sc(2)
j + sc(3)

j + sc(4)
j

4

)
βjwdtj2

(59)

SCmax =
T∑

t=1

n∑
j=1

fj2sc(4)
j αjwdtj1 − fj2sc(4)

j αj

(
T∑

i=1

εijxwdtji1

)

+
T∑

t=1

n∑
j=1

fj2sc(4)
j

(
T∑

i=1

εijxwdtji1

)
+ fj2

(
sc(1)

j + sc(2)
j + sc(3)

j + sc(4)
j

4

)
wdtj2

− fj2sc(4)
j βj

(
T∑

i=1

εijxwdtji1

)
− fj2sc(4)

j βjwdtj2

(60)

E[P] =
T∑

t=1

n∑
j=1

(
p(1)

j + p(2)
j + p(3)

j + p(4)
j

4

)
(wtj1 + wtj2) (61)

Pmax =
T∑

t=1

n∑
j=1

p(4)
j (wtj1 + wtj2) (62)



E[IC] =
T∑

t=1

n∑
j=1

(
ic(1)

j + ic(2)
j + ic(3)

j + ic(4)
j

4

)
(wtj1 + wtj2)dtj (63)

ICmax =
T∑

t=1

n∑
j=1

ic(4)
j (wtj1 + wtj2)dtj (64)

E[MC] =
T∑

t=1

n∑
j=1

(
mc(1)

j + mc(2)
j + mc(3)

j + mc(4)
j

4

)
× mdtj (65)

MCmax =
T∑

t=1

n∑
j=1

mc(4)
j × mdtj (66)

E[PC] =
T∑

t=1

(
pc(1)

j + pc(2)
j + pc(3)

j + pc(4)
j

4

)
× wt,n+1,2 (67)

PCmax =
T∑

t=1

pc(4)
j × wt,n+1,2 (68)

The significance of the second term against the other terms in the function is represented by γ and this term controls opti-
mality robustness. The third term specifies the confidence level of each chance constraint where δ is the penalty unit of
possible violation of each constraint containing vague parameter(s) and [de(4) − (1 − θ)de(3) − θde(4)] shows the differ-
ence between the worst-case value of vague demand parameter and the value that is applied in chance constraints. Hence,
the feasibility robustness of the solution vector is controlled by this term. Noteworthy, that is not just a meaningless and the-
oretical parameter, rather the value of penalty can be properly specified regarding the application context (Pishvaee, Razmi,
and Torabi 2012).

3.3. Step 3: single objective counterpart Model

In this paper, the augmented ε-constraint technique is used to transform the bi-objective Model 3 to the single objective
counterpart. First, the traditional ε-constraint technique is explored and then its augmented version is elaborated. In the
general ε-constraint technique, the most significant objective function (i.e. the first objective in this research that is chosen
regarding the opinion of the DM) is optimised while the other objective (i.e. the second function) is transformed into a
constraint as follows.

Max z1 =
T∑

t=1

ϑt (69)

s.t.

E[z2] + γ (zmax
2 − E[z2]) + δ[de(4) − (1 − θ)de(3) − θde(4)] ≤ ε2

Equations (15)–(24), (30)–(52) and (54)–(68).
Then, the efficient solutions of Model 4 are achieved by parametrical variation in the RHS (i.e. ε2) of the constrained

objective function (Mavrotas 2009). The range of ε2 can be obtained by optimising the constrained second objective func-
tions separately considering the constraints and constructing the payoff table (Rezaei-Malek et al. 2016). Next, different
values for ε2 can be obtained by dividing the range of the constrained second objective (i.e. r2) to q equal intervals as
follows.

r2 = zmax
2 − zmin

2 ; εl
2 = zmax

2 − r2

q
× l l = 0, . . . , q − 1 (70)

The traditional form of the ε-constraint method has some drawbacks. For example, this method does not guarantee the
efficiency of the achieved solutions (i.e. achieving weakly efficient solutions) (Rossit et al. 2017). Mavrotas (2009) explained



some of these drawbacks and proposed an improved version of the ε-constraint technique, called ‘augmented ε-constraint
method’. The formulation of the augmented ε-constraint technique for the Model 3 is as follows.

Model 4:

Max z1 + (ϕ2 × s2) (71)

s.t.

E[z2] + γ (zmax
2 − E[z2]) + s2 = ε2

Equations(15)–(23), (29)–(51) and (53)–(66)

s2 > 0

where ϕ2 is a sufficiently small number (generally between 10−3 and 10−6) and augmented term ϕ2 × s2 guarantees achiev-
ing only an efficient solution for each epsilon vector. This approach is then used to solve the bi-objective model to obtain
efficient solutions.

4. Experimental results

4.1. Model verification

To verify the presented implied system productivity objective function and the RPP-II approach, a numerical example is
explored. This numerical example and its features specifications are inspired from a part of a real SMMS that is an assembly
line for ‘PC250’ reciprocating compressor. It contains a three-stage system and the duration of the planning horizon is
considered 12 periods. All the three stages have the same deterioration processes because the system contains identical
machines for performing different operations. According to the historical data, the εij behaviour of each manufacturing
stage as a function of i is estimated as εij = 0.05 × i. The number of the unit material that enters the SMMS is 100 units
per time period and 5% of them are non-conforming items (i.e. εt0 = 0.05). Uniform distribution is used to randomly
generate prominent values of each trapezoidal fuzzy number while the ranges are estimated according to the available data
and experts’ knowledge of the assembly line for ‘PC250’ (see Table 1). Similarly, the value of γ and δ are experimentally
selected 0.2 and 100, respectively.

The presented models are coded in the GAMS software (ver. 24.1.2) and handled through the CPLEX solver (ver.
12.5.1.0), that is capable to solve MILP models by the branch-and-cut algorithm, on the data of the case study and the
numerical example applying a laptop with Intel

®
CoreTM i7-6300U CPU, 1.73 GHz and 8 GB of RAM and Windows7

operating system is applied as a technical platform.
Table 2 depicts the generated solutions using different objective functions of the proposed Model 3. Since the combi-

nation of the performed PM and inspection activities in each solution are different, it can be implied that the results from
employing different objective functions are not necessarily consistent, and so objective functions should be considered sep-
arately. In addition, Table 3 shows the detail of the obtained solution by the deterministic Model 2 (considering the single
objective function (27)) and the right part of Table 2 illustrates the solution of the uncertain Model 3 (considering the single
objective function (53)). The difference between two solutions proves the influence of the RPP-II method on the optimum
obtained solution.

Figure 5 depicts the values of the objective functions of the Pareto-optimal solutions obtained by solving Model 4.
This observation also proves the above-mentioned conclusion as an increase of the implied system productivity (i.e. the first

Table 1. Data of the numerical example.

Uncertain parameter Distribution

p̃j = (p(1)
j , p(2)

j , p(3)
j , p(4)

j ) ∼ U(1,50); p(i+1)
j > p(i)

j

ĩcj = (ic(1)
j , ic(2)

j , ic(3)
j , ic(4)

j ) ∼ U(0,2); ic(i+1)
j > ic(i)

j

r̃cj1 = (rc(1)
j1 , rc(2)

j1 , rc(3)
j1 , rc(4)

j1 ) ∼ U(1,10); rc(i+1)
j1 > rc(i)

j1

r̃cj2 = (rc(1)
j2 , rc(2)

j2 , rc(3)
j2 , rc(4)

j2 ) ∼ U(1,50); rc(i+1)
j2 > rc(i)

j2

s̃cj = (sc(1)
j , sc(2)

j , sc(3)
j , sc(4)

j ) ∼ U( − 5,55);sc(i+1)
j > sc(i)

j

m̃cj = (mc(1)
j , mc(2)

j , mc(3)
j , mc(4)

j ) ∼ U(50,170);mc(i+1)
j > mc(i)

j

p̃c = (pc(1), pc(2), pc(3), pc(4)) ∼ U(15,25);pc(i+1) > pci

d̃e = (de(1), de(2), de(3), de(4)) ∼ U(40,60);de(i+1) > dei



Table 2. PM (M) and inspection (I) activities performed in the 
SMMS with different objectives.

Objective1 Stage Objective2 Stage

Period 1 2 3 Period 1 2 3

1 I,M M M 1 I,M M M
2 I,M M M 2 I
3 I,M M M 3 I I M
4 I,M M M 4 I I
5 I,M M M 5 I I M
6 I,M M M 6 I I
7 I,M M M 7 I I M
8 I,M M M 8 I I
9 I,M M M 9 I M M
10 I,M M M 10 I
11 I,M M M 11 I I
12 I,M M M 12 I I M

Table 3. PM (M) and inspection (I) activi-
ties performed in the SMMS with deterministic
approach.

Model 2 Stage

Period 1 2 3

1 M,I M M
2 I I M
3 I I M
4 I I M
5 I I M
6 I I M,I
7 I M M
8 I I M
9 I I M
10 I M,I
11 I,M M M
12 I,M M M

Figure 5. Obtained Pareto curve.

objective function) leads to an increase in the cost objective and vice versa. It is notable that the cost objective function has a
tendency towards production of less final conforming items via minimising the use of PM activities (i.e. achieving the cost-
efficiency). On the other hand, the first objective function has a tendency towards production of more conforming items to



maximise the system productivity. For instance, considering the results of Model 4, when z1 = 11.335 and z2 = 74,126.635
(i.e. the last Pareto-optimal solution), the number of produced conforming items is 1164 and the system delivers no non-
conforming item, whereas when z1 = 9.143 and z2 = 67,471.280 (i.e. the first Pareto-optimal solution), the number of the
produced conforming items is 1045 and the system delivers 10 non-conforming items.

To show the usefulness of the applied RPP-II approach, 10 random realisations of the numerical example are first gener-
ated. For instance, if ξ̃ = (ξ (1), ξ (2), ξ (3), ξ (4)) is a vague parameter with a trapezoidal distribution. To perform a realisation,
a random number is uniformly generated between the two extreme points of the corresponding trapezoidal possibility distri-
bution. Then, the obtained optimal solutions by the deterministic Model 2 (x*, y*) and uncertain Model 3 (x**, y**) under
deterministic and nominal data, will be replaced respectively in the following linear programming models (considering
realisations) that their compact forms are as follows.

Min frealy
∗ + crealx

∗

s.t.

Ax∗ ≥ dereal

Bx∗ = 0

(72)

Min frealy
∗∗ + crealx

∗∗ + δRd

s.t.

Ax∗∗ + Rd ≥ dereal

Bx∗∗ = 0

Rd ≥ 0

(73)

In the linear programming model (72), Rd is the only decision variable that specifies the violation of chance constraints
under random realisation. To assess the uncertain Model 3, the mean and standard deviation of the objective function values
under random realisations are employed. The results of these experiments are shown in Table 4. As can be seen, the obtained
solution by the uncertain Model 3 provides lower total costs for different realisations. On average, it results in 1.1% reduction
in the total costs. In addition, applying the uncertain Model 3 achieves 0.3% reduction in the standard deviation that means
the lower risk of additional imposed costs to the system.

The first objective function contains the piecewise linear segments to model the non-linear behaviour of the implied
system productivity (see Section 3.1). By increasing the number of linear segments, we can achieve a more accurate esti-
mation for the non-linear behaviour. Figure 6 depicts the obtained Pareto curve while applying different numbers of linear
segments. The three-segment approximation has the lowest accuracy and employing equal and more than four segments
almost causes the same result/accuracy (as it is shown for the four- and five-segment cases). Table 5 provides the obtained
Pareto-optimal solutions for the different numbers of segments and shows that the average values of the objective functions
for the four- and five-segment approaches are almost the same and accordingly they provide the similar accuracy for the
system.

Table 4. Performance of the developed models
under realisations.

Realisation number Model 2 Model 3

1 66,407.115 65,705.241
2 74,281.224 73,569.489
3 56,613.398 55,881.472
4 49,663.407 48,963.740
5 53,234.151 52,687.414
6 66,000.509 65,553.609
7 43,519.911 43,095.735
8 67,653.938 67,039.298
9 58,425.099 57,735.315
10 53,832.192 53,067.514
Average 58,963.09 58,329.88
Standard deviation 8972.447 8946.283



Figure 6. Pareto curve while applying different numbers of segments.

Table 5. Obtained Pareto solutions while considering different numbers of segments.

Three-segment Four-segment Five-segment

Z1 Z2 Z1 Z2 Z1 Z2

Pareto solutions 11.388 74,126.64 11.388 74,126.64 11.33 74,126.64
11.302 73,498.81 11.241 73,498.81 11.236 73,498.81
11.173 72,557.07 11.101 72,557.07 11.094 72,557.07
11.055 71,766.05 10.973 71,766.06 10.965 71,766.05
10.942 70,905.91 10.85 70,925.18 10.841 70,905.91
10.808 70,033.3 10.704 70,033.3 10.695 70,033.3
10.433 69,179.63 10.297 69,179.63 10.284 69,179.63
9.921 68,336.2 9.74 68,336.2 9.726 68,336.2
9.36 67,471.28 9.143 67,471.28 9.153 67,471.28
8.65 66,566.81 8.443 66,610.86 8.468 66,611.74

Mean 10.875 70,469.6 10.777 70,479.24 10.768 70,469.6

4.2. Model validation: a real case study

A real case study within the car manufacturing industry in France is investigated in this section to validate the presented
model and to shows the effectiveness and significance of the contributions of this paper which are the introduction of the
implied system productivity objective function and the application of the RPP-II approach for dealing with the uncertainty
of the cost components and demand amount.

Figure 7(a) illustrates the solid frame of the considered product and its 15 QCs are indicated in Figure 7(b). This prod-
uct is manufactured by a plant in the supply chain of ‘Renault Groupe’. The 15 QCs are processed along 15 different
manufacturing stages. The data of the case study are gathered regarding the proposed deterministic Model 2 and uncer-
tain Model 3 and are available upon request. The possibility distribution of vague parameters is estimated through a focus
group of firm’s managers and field experts. The four prominent values of each trapezoidal fuzzy number are specified
regarding the available data and their knowledge. Similarly, the value of γ and δ are considered 0.2 and 100, respec-
tively. In addition, the planning horizon for this SMMS is 12 periods (i.e. 12 months) and the demand amount is estimated
d̃e = (550, 600, 630, 680).

To show the advantage of the obtained solution by the RPP-II technique, a similar experiment to that which was done
in Section 4.1 is performed here (see Table 6). According to Table 6, the obtained solution for the deterministic Model 2 is
feasible just for 50% of the realisations. Hence, it can be concluded that applying Model 2 imposes a huge feasibility risk to
the system.

Tables 7 and 8 depict the obtained optimal solution by the deterministic Model 2 and uncertain Model 3, respectively.
As can be seen, the uncertain Model 3’s optimum solution costs 13.46% more than the deterministic Model 2’s; however as
mentioned before, it can respond to all the realisations and decreases the feasibility risk around 50%.
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Figure 7. Solid frame and QCs of the oil pump housing. (a) Solid frame. (b) QCs of the oil pump housing.

Table 6. Performance of the developed models
under realisations.

Realisation number Model 2 Model 3

1 54,061.998 54,859.966
2 Infeasible 56,798.442
3 Infeasible 52,771.405
4 54,964.901 55,742.102
5 53,326.721 54,014.608
6 Infeasible 53,376.714
7 54,229.969 54,841.489
8 Infeasible 56,148.684
9 53,199.339 53,796.880
10 Infeasible 53,556.824

The RPP-II approach contains two technical parameters, whose importance in the considered case study needs to be
analysed. To this aim, a sensitivity analysis study on these two parameters is performed.

The importance/weight of the minimisation of the difference between the expected total cost and the worst-case cost
against the other terms in the objective (53) is represented by γ . Table 9 shows the value of this difference and the obtained
confidence level of the chance constraint (i.e. α) regarding the different applied values for γ . As can be seen, the uncertain
Model 3 has the best performance when the value of γ is considered equal to 0.5. Because the difference between the
expected total cost and the worst-case cost is minimum, (which means the least risk of imposed additional cost in the worst
case) while the obtained confidence level of chance constraint is maximum (no risk). On the other side, the expected total
cost and the worst-case cost have the lowest amount that confirms the cost-efficiency of this value (γ = 0.5).



Table 7. Places and periods in which inspection (I) and PM (M) activities are done by using the deterministic Model 
2.

Stage

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Period 1 M M M M,I M M M M M M M M M M M
2 I M I M M M M M M
3 I M I M M M M M M
4 I I I M M M M M M
5 I I I M I M M M M
6 I I I M I M M
7 I I M,I M I M,I M
8 I I I I M,I M,I
9 I I I I I M I M

10 I M,I I I M I M,I
11 I I I M,I I M M M,I M
12 I I I M,I I M M M M M

Table 8. Places and periods in which inspection (I) and PM (M) activities are done by using the uncertain Model 3.

Stage

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Period 1 M M M M,I M M M M M M M M M M M
2 I I M M M M M M
3 I I I M M M M M M
4 I M M I M M M M M M
5 I I I M I M M
6 I I I M I M M,I
7 I I I I M M,I
8 I I M,I M M M I M
9 I I M,I M M M,I

10 I I M M M M,I M M M,I
11 I I I M M M M M I M M
12 I M I M M M M,I M M

Table 9. Impact of γ on the expected total cost, worst-
case cost, and confidence level.

γ zmax
1 E[z1] zmax

1 − E[z1] α

0.01 69,732.01 57,181.39 12,550.62 1
0.1 69,908.67 57,340.77 12,567.9 1
0.2 69,532.05 57,030.65 12,501.4 1
0.5 69,411.41 56,930.76 12,480.65 1
1 69,986.34 57,399.41 12,586.93 0.996
10 69,789.65 57,250.43 12,539.22 0.976
100 69,784.04 57,265.72 12,518.32 0.5

Table 10. Performance of the uncertain Model 3 while
considering different values for δ.

δ zmax
1 E[z1] zmax

1 − E[z1] α

1 69,684.95 57,160.46 12,524.49 0.526
10 69,885.69 57,329.88 12,555.8 0.954
50 69,603.77 57,069.6 12,534.18 0.889
100 69,411.41 56,930.76 12,480.65 1
200 69,773.81 57,234.89 12,538.91 1
300 69,876.18 57,325.14 12,551.04 1
500 69,974.67 57,397.28 12,577.38 1



Figure 8. Sensitivity of the total cost objective function on the known parameter.



The third term of the objective function (53) (i.e. δ[de(4) − (1 − θ)de(3) − θde(4)]) specifies the confidence level of the
demand chance constraint, in which δ is the penalty unit of possible violation of the constraint containing vague parameter
and [de(4) − (1 − θ)de(3) − θde(4)] shows the difference between the worst-case value of imprecise parameter and the value
that is applied in the demand chance constraint. Hence, the feasibility robustness of the solution vector is controlled by this
term. It is notable that δ is not just a meaningless parameter and theoretical, rather the value of penalty can be properly
specified according to the application context (Pishvaee, Razmi, and Torabi 2012). For example, in our case study, the value
of δ can be considered as the penalty of shortage that is known as a popular parameter in the context of manufacturing.

Table 10 shows the performance of the uncertain Model 3 regarding different values of δ. The best value considered for
δ is 100 because the uncertain Model 3 reaches not only the highest confidence level (α = 1), but also the least values for
average and worst-case total cost. In other words, the solution obtained by considering δ = 100, is the most risk-averse and
cost-efficient solution.

By employing the RPP-II, this paper tries to handle the uncertainty about cost components and demand amount that are
rooted in the external reasons to provide a robust solution. However, the rest of the parameters may undergo fluctuations
because of the internal reasons. Figure 8 shows the impacts of these fluctuations on the total cost objective function. As
can be seen, even if the system undergoes 20% fluctuations for the α, β, ε, and ε0 parameter, the changes of the objective
function are not more than 1.7%, which is negligible. Hence, it can be concluded that the obtained solution by the uncertain
Model 3 is remained robust under 20% miscalculation/underestimate of the deterministic parameters.

In this section, we utilise the four-segment linear approximation and do not go further (e.g. six-segment and more)
because of the obtained same accuracy after applying the four-segment approximation. It is notable that each run for obtain-
ing a Pareto-optimal solution takes time around 24–36 hours and the DM is satisfied to select between these fives; however,
one may prefer more options to select and obtain more Pareto solutions as it is possible by consuming more time.

Figure 9 and Table 11 show the obtained Pareto curve for the case study. As can be seen, by improving the system
productivity, the total cost is getting worse. Since there is no optimal solution for the multi-objective problems, one of the
Pareto-optimal solutions should be selected based on the DM’s preference. The DM prefers the third Pareto solution (see
Table 12 for the details of the solution) because the company can increase its system productivity by around 15% through
investing about 4% more. The fourth solution also can be a preferable solution for the DM, but the company is not able to
invest 5% and more.

Figure 9. Obtained Pareto curve for the case study.

Table 11. Pareto-optimal solutions for the case study.

No Epsilon Total cost ($) System productivity

1 72,330.661 63,027.01 11.995
2 70,554.491 63,027.01 11.995
3 68,778.322 62,026.94 11.244
4 67,002.152 60,446.32 10.429
5 65,225.983 58,829.67 9.6310



Table 12. Third Pareto-optimal solution: places and periods, in which inspection (I) activities and PM (M) 
activities are done.

Stage

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Period 1 M M M M,I M M M M M M M M M M M
2 I M M M M M M M M M M M M M M
3 I M M M M M M M I M M M M
4 M M M M M M M M M M I M M M M
5 M M M M M M M M M M,I M M M M M
6 M I M M M M M M M M M M M M M
7 M M M M M M M M M,I M M M M M
8 M M M M M M M M M M,I M M M M M
9 M M M M I M M M M M M M M M M

10 M M M M M M M M M M M,I M M M M
11 M M M M M M M M M I M M M M
12 M M M M M M M M,I M M M M M

5. Conclusion and future research direction

This work has presented a robust possibilistic, bi-objective, MILP model for the integrated planning problem of the PM and
part quality inspection activities in deteriorating SMMSs. The proposed model specifies the optimum time and place for
the PM and part quality inspection activities while simultaneously optimising two objectives: (1) system productivity (2)
total cost. A non-linear utility function of produced conforming items was defined as a measure of system productivity and
a piecewise linear approximation approach has been employed to deal with the non-linearity. This new objective function
makes an opportunity for the manufacturing companies to establish a trade-off between system productivity and total cost
which would be a great advantage in today’s competitive environment. In addition, a RPP approach has been used to handle
the uncertainty which is rooted in the dynamic nature of the problem. Finally, a numerical example and a real case study
have been investigated for the validation and verification purposes. The results show that the robust possibilistic approach
decreases the variance of the total cost in any realisation of uncertain parameters in comparison to the deterministic approach.
Hence, through applying the robust possibilistic approach, the fluctuations in the cost components cannot impose a huge
unpredictable cost to the company.

In this paper, it was assumed that the cost parameters and demand amount are uncertain because of the market fluctuation.
However, the other parameters of the problem (e.g. DPR, error probability of inspection activities and a repairable fraction
of the rejected items) are uncertain because of the dynamic nature of different production stages. Therefore, considering
these uncertainties and immunising the obtained solution against them is an interesting direction for future studies.

Most of the actual manufacturing systems follow the non-serial and convergent structures. In these structures, mathe-
matically tracking the root defects after each stage is too complex. So, investigating the challenging IPQIPMP problem in
the context of a non-serial or convergent structure is a big step to help a bigger number of manufacturing systems.

In recent years, some scientists have attempted to design production systems that are psychologically consistent with
operators (e.g. see Azadeh et al. 2015a, 2017). This consistency impacts the accuracy of the operators (Rezaei-Malek et al.
2017). Since operators do an inspection process in the most of production systems, it would be interesting to integrate this
new concept into the IPQIPMP problem.

Reduction of inventory has a positive consequence on the product quality because quality defects are determined earlier
and are not propagated throughout the manufacturing system (Colledani et al. 2014). In this regard, some researchers have
attempted to consider production and PM planning in conjunction with the determination of inventory-related decisions
(e.g. see Liu, Wang, and Peng 2015). However, incorporation of the inventory-related issues into the IPQIPMP problem is
one of the research gaps that would be interesting as a future research direction.
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