
This file was downloaded from BI Open, the institutional repository (open access) at 
BI Norwegian Business School https://biopen.bi.no. 

It contains the accepted and peer reviewed manuscript to the article cited below. It 
may contain minor differences from the journal's pdf version. 

Dauzère-Pérès, S., Hassoun, M., & Sendon, A. (2019). A 

Lagrangian heuristic for minimising risk using multiple 

heterogeneous metrology tools. International Journal of 

Production Research, 1-17. 

https://doi.org/10.1080/00207543.2019.1614693 

Copyright policy of Taylor & Francis, the publisher of this journal:  

'Green' Open Access = deposit of the Accepted Manuscript (after peer review but prior 
to publisher formatting) in a repository, with non-commercial reuse rights, with an 
Embargo period from date of publication of the final article. The embargo period for 
journals within the Social Sciences and the Humanities (SSH) is usually 18 months 

http://authorservices.taylorandfrancis.com/journal-list/ 

https://doi.org/10.1080/00207543.2019.1614693
http://authorservices.taylorandfrancis.com/journal-list/


International Journal of Production Research Lagrangian-Heuristic-Minimizing-Risk-DauzerePeres-Hassoun-Sendon-Final

To appear in the International Journal of Production Research
Vol. 00, No. 00, 00 Month 20XX, 1–24

A Lagrangian Heuristic for Minimizing Risk Using Multiple

Heterogeneous Metrology Tools
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Motivated by the high investment and operational metrology cost, and subsequently the limited
metrology capacity, in modern semiconductor manufacturing facilities, we model and solve the pro-
blem of optimally assigning the capacity of several imperfect metrology tools to minimize the risk
in terms of expected product loss on heterogeneous production machines. In this paper, metrology
tools can differ in terms of reliability and speed. The resulting problem can be reduced to a variant
of the Generalized Assignment Problem (GAP), the Multiple Choice, Multiple Knapsack Problem
(MCMKP). A Lagrangian heuristic, including multiple feasibility heuristics, is proposed to solve
the problem that are tested on randomly generated instances.
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1. Introduction

For more than four decades, Lithography machines, bearing the highest price tag of all,

have been the traditional bottlenecks in semiconductor fabrication plants (fabs). Metrology

tools were relatively cheap, small, and drew very little attention. Any critical congestion at

one of the numerous in-line quality control steps would be solved by the acquisition of an

additional tool. This is no longer the case since metrology tool prices have skyrocketed. As
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a result, the level of monitoring wished by quality engineers is often no longer practicable.

Tightening the control of one production machine often means reducing the control level

on another. By working in tandem with a variety of production machines in the line, the

congestion of metrology tools has a special effect on the line. Many aspects of the metrology

policy in semiconductor manufacturing plants (fabs) have been studied both by practitioners

and researchers (Colledani and Tolio (2011), Bettayeb et al. (2012), Gilenson, Hassoun, and

Yedidsion (2015), Nduhura-Munga et al. (2012), Nduhura-Munga et al. (2013), Lee et al.

(2003), Dauzere-Péres et al. (2010), Rodriguez-Verjan et al. (2013), Shanoun et al. (2011))

In a former publication (Dauzère-Pérès, Hassoun, and Sendon (2016a)), we proposed an

approach to optimize the sampling periods of several production machines competing for the

capacity of a unique and perfectly reliable metrology tool. We characterized the production

machines by their failure propensity, their throughput rate, and their consumption of the

metrology capacity. We formulated the resulting problem as an optimization problem where

the objective is to minimize the risk in terms of expected product loss happening between

the machine failure and its detection, subject to the constraint of metrology capacity, the de-

cision variable being the sampling period applied to each production machine. The problem

was reformulated as a Multiple Choice Knapsack Problem (MCKP), for which we proposed

and analyzed several heuristics based on the work of Sinha and Zoltners (1979) and Pisinger

(1995). Later, in Dauzère-Pérès, Hassoun, and Sendon (2016b), we generalized the problem

by considering multiple identical and reliable metrology tools. In this case, decision variables

include both the assignment of production machines to metrology tools and the sampling pe-

riods of production machines. Heuristics were proposed and validated through computational

experiments.

To better fit the industrial reality, this previous research is extended in two ways in this

paper. First, more often than not, the inspection is not perfectly reliable since it usually sam-

ples only part of the surface of the selected wafers. Second, the same metrology operation can

usually be performed on metrology tools that differ from one another in terms of inspection

rates, reliability, or even qualification (i.e. the ability to perform a given metrology operation).

Hence, in Section 2, we formalize several extensions prompted by multiple heterogeneous and

unreliable metrology tools and propose an Integer Linear Program (ILP). Then, in Section 3,

the Lagrangian Dual Problem (LDP) obtained by relaxing the capacity constraints in (ILP)

is derived. Although the set of feasible solutions of (LDP) satisfies the integrality property,

a Lagrangian heuristic based on subgradient search is proposed to solve the problem. This

heuristic relies on seven feasibility heuristics that are also presented in Section 3. Computa-

tional experiments on the instances of Dauzère-Pérès, Hassoun, and Sendon (2016b) for the

case with identical metrology tools, and new instances for the most general case are discussed

in Section 4. Finally, some conclusions and perspectives are provided in Section 5, where the

use of the Lagrangian heuristic in a Decision Support System is discussed.
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2. Problem modeling

2.1 Problem description

Several metrology tools t = 1, . . . , T inspect the products (wafers) of production machines

r = 1, . . . , R. Production machines are modeled as Bernoulli experiments, and differentiated

by their probability of failure pr. Let us denote by TPr the throughput rate of production

machine r, and by SPr the sampling period, i.e. the number of production cycles on machine

r between two consecutive inspections. For each production machine r, a certain proportion

of the inspection effort is assigned to a given metrology tool t. Differently than in Dauzère-

Pérès, Hassoun, and Sendon (2016b), metrology tools are considered to be not identical and

not reliable. Hence, let TM t
r be the throughput rate of metrology tool t when inspecting

products processed on machine r. Also, inspection is imperfect and returns with probability

αtr a false negative, i.e. the results of metrology tool t are good while machine r does not

work properly. Note that imperfect inspection may also yield a false positive, i.e. the product

inspection returns an out-of-control answer although machine r works properly. However, it is

customary to immediately confirm (or deny) any positive control on a product by immediately

performing an advanced inspection, often on other metrology tools (two-stage quality cont-

rol). This advanced inspection is usually highly reliable. Thus, although regular inspection

can potentially return a false positive, this does not trigger any additional products to be

scrapped or reworked. Therefore false positives have no impact on the objective function.

We further assume that false positives have no significant impact on the consumption of the

metrology capacity itself, either because the advanced inspection is performed on different

metrology tools, or because false positive occurrences are rare enough as to allow neglecting

the additional consumed metrology time.

The decision variables are the sampling periods SPr, r = 1, . . . , R, and the inspection

effort sharing of production machines on metrology tools. We assume that one and only one

metrology tool t is assigned to the inspection of the totality of the production of machine

r. Setting these variables determine both the risk in terms of expected throughput of bad

products from production machine r, and its share in the consumption of the capacity of

metrology tools. Let us denote by gtr(SP ) this consumption when metrology tool t is assigned

to the inspection of products from machine r for a given sampling period SP :

gtr(SP ) =
TPr

SP · TM t
r

(1)

We assume a maximum value SPmax over which the quality control is unacceptable. Follo-

wing a decision to inspect products from production machine r with sampling period SP and

to direct wafers to metrology tool t, wafers are reworked or scrapped at a certain expected

rate WLtr(SP ), which are detailed in the following section. This expected rate measures the

risk in our problem. A reasonable assumption is that the production of a machine in good

condition is perfect, while the production of a defective machine is fully reworked or scrapped.

This classical worst-case assumption can be relaxed in our approach by assuming that only

a given percentage of the production is reworked or scrapped. There is no difference between

the value of products on the different machines. As a consequence, we strive to minimize the

expected overall production rate of defective products.

3
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2.2 Objective function

Let j denote the number of inspections on metrology tool t of products from machine r

until a reliable inspection takes place. We have j = 1 with probability (1 − αtr), j = 2 with

probability αtr(1 − αtr), etc. A sampling cycle on production machine r is a series of j · SP
Bernoulli experiments, each of which corresponds to the production of a product. Therefore,

if a failure occurs in the first production cycle, all the following j · SP products (the number

of products produced until the next reliable inspection takes place) are reworked or scrapped.

Similarly, if a failure occurs in the second production cycle, j ·SP−1 products will be reworked

or scrapped, and so on. A failure occurring in the last production cycle before the next reliable

inspection will yield only one bad product. The expected number of bad products from r with

sampling period SP until the first reliable inspection, denoted WLCtr (for Wafer Loss Count),

is therefore given by:

WLCr(SP, j) = jSPpr + (jSP − 1)(1− pr)pr + · · ·+ 1(1− pr)jSP−1pr

= pr

jSP−1∑
i=0

(jSP − i)(1− pr)i

which, when considering the probability of an inspection to be reliable, allows the total ex-

pected Wafer Loss for machine r to be computed:

WLtr(SP ) = (1−αtr)WLCr(SP, 1)+αtr(1−αtr)WLCr(SP, 2)+(αtr)
2(1−αtr)WLCr(SP, 3)+. . .

+(αtr)
j−1(1− αtr)WLCr(SP, j) + . . . = (1− αtr)

∞∑
j=1

(αtr)
j−1WLCr(SP, j)

= (1− αtr)pr
∞∑
j=1

[
(αtr)

j−1
jSP−1∑
i=0

(jSP − i)(1− pr)i
]

(2)

Because of the new parameter αtr, the analysis and the expression above are more complex

than the ones in Dauzère-Pérès, Hassoun, and Sendon (2016b) and Dauzère-Pérès, Hassoun,

and Sendon (2016a).

2.3 Integer Linear Programming (ILP) model

For each machine r, SPr must be chosen in the set of all possible sampling periods

{1, . . . , SPmax}. Let us define the binary variable ws,tr ∈ {0, 1}, where ws,tr = 1 if production

machine r is assigned to metrology tool t with a sampling period of s, and ws,tr = 0 otherwise.

Hence, as in Dauzère-Pérès, Hassoun, and Sendon (2016a) but with parameters WLtr(s)

and gtr(s) that are metrology tool dependent, our problem can be formulated as the Integer

4
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Linear Program below, denoted by (ILP):

min

T∑
t=1

R∑
r=1

SPmax∑
s=1

WLtr(s)w
s,t
r (3)

s.t.

R∑
r=1

SPmax∑
s=1

gtr(s)w
s,t
r ≤ 1, t = 1, . . . , T (4)

T∑
t=1

SPmax∑
s=1

ws,tr = 1, r = 1, . . . , R (5)

ws,tr ∈ {0, 1} , r = 1, . . . , R; t = 1, . . . , T ; s = 1, . . . , SPmax (6)

Constraint (4) ensures that the metrology capacity is satisfied, and Constraint (5) that

one and only one sampling period and one and only one metrology tool is chosen for each

production machine.

Defined as such, (ILP) corresponds to a Multilevel Generalized Assignment Problem (see

Ceselli and Righini (2006) or Park, Lim, and Lee (1998)). A special instance of this problem

occurs when the metrology tools are all identical, i.e. when both αtr and TM t
r are indepen-

dent of t. In this case, neither the objective function nor the constraints are dependent of

the metrology tool, and the problem is in fact a Multiple Choice Multiple Knapsack Problem

(MCMKP) (Dauzère-Pérès, Hassoun, and Sendon (2016b)). If, in addition, we replace condi-

tion (6) by ws,tr ∈ [0, 1], the problem reduces to a Multiple Choice Knapsack Problem with

capacity T , which is discussed in Dauzère-Pérès, Hassoun, and Sendon (2016a).

3. Problem resolution

In this section, we introduce a Lagrangian Relaxation Heuristic, denoted by LRH, because

it was important for us to have an efficient approach independent of a standard solver (1) to

avoid the cost of the license of a commercial standard solver and (2) to ensure the robustness

of computational times in relation to the problem complexity or size. We first derive and

analyze the Lagrangian Dual Problem, denoted by (LDP), resulting from relaxing the capacity

constraints in (ILP). Although the optimal objective function of (LDP) can be obtained by

solving the linear relaxation of (ILP) and because we want to determine an upper bound for

(ILP), the Lagrangian Relaxation Heuristic LRH is proposed. This heuristic exploits seven

construction heuristics to build feasible solutions from the usually unfeasible solution of the

relaxed problem.
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3.1 General scheme

The Lagrangian Dual Problem (LDP) is defined as follows, where λt are the Lagrangian

multipliers associated to relaxing Constraints (4) (capacity constraints) in (ILP):

max
λt≥0; t=1,...,T

min

T∑
t=1

R∑
r=1

SPmax∑
s=1

(WLtr(s) + gtr(s)λt)w
s,t
r −

T∑
t=1

λt (7)

s.t.

T∑
t=1

SPmax∑
s=1

ws,tr = 1, r = 1, . . . , R (5)

ws,tr ∈ {0, 1} , r = 1, . . . , R; t = 1, . . . , T ; s = 1, . . . , SPmax (6)

For given Lagrangian multipliers λt, t = 1, . . . , T , the Lagrangian Relaxed Problem

(LRP(λt)) is relatively easy to solve. It is possible to independently solve a sub-problem

for each process machine r by selecting the metrology tool t∗, t∗ = 1, . . . , T , and the sam-

pling period s∗, s∗ = 1, . . . , SPmax, such that (WLt
∗

r (s∗) + gt
∗

r (s∗)λt∗) is the smallest, i.e.

(WLt
∗

r (s∗) + gt
∗

r (s∗)λt∗) = mint=1,...,T ; s=1,...,SPmax(WLtr(s) + gtr(s)λt). Then, ws
∗,t∗
r = 1, and

ws,tr = 0 for t = 1, . . . , T and s = 1, . . . , SPmax such that both t 6= t∗ and s 6= s∗.

Because (LRP(λt)) is actually a simple assignment problem, the set of its solutions satisfies

the integrality property for any values of λt, t = 1, . . . , T , i.e. (LRP(λt)) can always be solved

by solving its linear relaxation. In this case, as shown in (Parker and Rardin 1988) and

(Guignard 2003), the optimal objective function of (LDP), which is a lower bound of (ILP),

is actually equal to the linear relaxation of (ILP), i.e. when Constraints (6) are replaced by

ws,tr ∈ [0, 1]. However, since we mainly want to solve (ILP), i.e. to find upper bounds, we

propose to use a subgradient search algorithm to determine both an optimal solution for

(LDP) and an upper bound for (ILP), as shown in (Fisher 1981). This approach, known as

Lagrangian Relaxation Heuristic, has been successfully applied to many problems such as

general assignment problems (e.g. (Jörnsten and Näsberg 1986)), facility locations problems

(e.g. (Klincewicz and Luss 1986)), lot-sizing problems (e.g. (Trigeiro, Thomas, and McClain

1989)) and scheduling problems (e.g. (Dauzère-Pérès and Sevaux 2003)).

The idea behind a Lagrangian Relaxation Heuristic is that, at each iteration of the subgra-

dient search in which the Lagrangian multipliers are updated to converge towards the Lagran-

gian dual, one or more feasible solutions are also determined using the current values of the

Lagrangian multipliers. The general scheme of our Lagrangian Relaxation Heuristic (see e.g.

Parker and Rardin (1988)), denoted LRH in this paper, is presented in Algorithm 1, where

seven feasibility heuristics described in Section 3.2 are used in Step 4. In the remainder of this

paper, let us denote by LRH(Hi) the lagrangian relaxation heuristic in which only feasibility

heuristic Hi is used in Step 4 of LRH.

After some extensive calibration, the following characteristics for LRH have been used in

all the numerical experiments of Section 4. In Step 1, α is initialized to 400 and, in Step 7, α

is multiplied by 0.9 (α := 0.9 · α) if LBk < LBk−1, i.e. if the lower bound has not improved

from iteration k − 1 to iteration k, otherwise α does not change. In Step 5, each Lagrangian

6
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Algorithm 1 Lagrangian Relaxation Heuristic (LRH)

1: Step 1: Initialization.
2: a. Initialize all multipliers to 0, i.e. λt = 0, t = 1, . . . , T .
3: b. Set iteration number k = 1.
4: c. Initialize step length α.
5: d. Initialize lower bound LB = −∞.
6: e. Initialize upper bound UB = +∞.
7: Step 2: Solving the relaxed problem. Solve Lagrangian relaxed problem (LRP(λt))

for current values of multipliers λt and calculate current lower bound LBk.
8: Step 3: Incumbent saving. If LB < LBk, then LB := LBk.
9: Step 4: Feasibility heuristics. Use the values of ws,tr obtained in Step 2 to find feasible

solutions using the feasibility heuristics proposed in Section 3.2, and keep the best upper
bound UBk. If UB > UBk, then UB := UBk.

10: Step 5: Updating multipliers. Lagrangian multipliers λt, t = 1, . . . , T , are updated
using the subgradient optimization method.

11: Step 6: Stopping conditions. If any stopping condition is met, then stop.
12: Step 7: Update step length. Update α.
13: Step 8: Increment k and go to Step 2.

multiplier λt is updated using the following formula:

λt := max

0, λt + α

∑R
r=1

∑SPmax

s=1 gtr(s)w
s,t
r − 1√∑T

t′=1

(∑R
r=1

∑SPmax

s=1 gt′r (s)ws,t
′

r − 1
)2
 .

The stopping criteria are (1) the maximum number of iterations which is set to 200 and (2)

the minimum step size which is set to 0.1% of
∑T

t=1 λt, the sum of the Lagrangian multipliers.

The latter means that LRH is stopped in Step 6 if α ≤ 0.001 ·
∑T

t=1 λt.

3.2 Feasibility heuristics

Seven feasibility heuristics are proposed, whose impact in LRH will be analyzed in Section 4

based on computational results.

3.2.1 Straightforward heuristic H1

The first feasibility heuristic, detailed in Algorithm 2, is the most straightforward. The me-

trology tool t∗ assigned to process machine r is the one assigned when solving the Lagrangian

relaxed problem, i.e. ∃s = 1, . . . , SPmax such that ws,t
∗

r = 1. Only the sampling periods are

adjusted to satisfy the capacity constraints of metrology tools, that are considered one at a

time. For a given metrology tool t, the selection of the production machine and the sampling

period to increase to reduce capacity consumption is based on the ratio between the risk

increase and the capacity decrease. The process is repeated until the metrology capacity of t

is satisfied.

7
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Algorithm 2 Heuristic H1

1: Let F(t) be the set of fixed pairs (machine, sampling period) for metrology tool t.
2: Initialize F(t) by using the optimal solution of the Lagrangian relaxed problem, i.e. (r, s) ∈
F(t) if ws,tr = 1.

3: Let Capat be the capacity used on metrology tool t.

4: Initialize Capat =

R∑
r=1

SPmax∑
s=1;(r,s)∈F(t)

gtr(s), t ∈ 1, . . . , T .

5: for t = 1, . . . , T do
6: while Capat > 1 and s ≤ SPmax do
7: Find the process machine r∗ and sampling period t∗ with the minimal ra-

tio WLt
r∗(s+1)−WLt

r∗(s
∗)

gtr∗(s
∗)−gtr∗(s∗+1) such that (r∗, s∗) ∈ F(t), i.e. WLt

r∗(s
∗+1)−WLt

r∗(s
∗)

gtr∗(s
∗)−gtr∗(s∗+1) =

min(r,s)∈F(t)
WLt

r(s+1)−WLt
r(s)

gtr(s)−gtr(s+1) .

8: Change sampling period of r∗ from s∗ to s∗ + 1, i.e. F(t) ← F(t) − {(r∗, s∗)} ∪
{(r∗, s∗ + 1)} and Capat = Capat − gr∗(s∗) + gr∗(s

∗ + 1).
9: end while

10: end for

Note that, in Heuristic H1, the assignment of production machines to metrology tools is

fixed from the Lagrangian relaxed problem, and the sampling periods are used as inputs.

Also, in LRH, the Lagrangian multipliers λt only depend on the metrology tools. Hence,

if all metrology tools are identical, then all parameters in the objective function of the La-

grangian relaxed problem are the same for all metrology tools except for the Lagrangian

multipliers. Hence, when solving the Lagrangian relaxed problem in Step 2 of LRH, all pro-

duction machines will be assigned to only one metrology tool, i.e. the metrology tool t with

the smallest multiplier λt. This is confirmed in the numerical results of Section 4.2 which

show that LRH(H1) performs poorly when metrology tools are identical.

To overcome the limitations of Heuristic H1, additional feasibility heuristics are proposed

that use as inputs either the sampling periods (Heuristics H2 to H4 in Section 3.2.3) or the

assignment to metrology tools (Heuristics H5 to H7 in Section 3.2.4), but not both informa-

tion. Moreover, in all heuristics, the assignment of production machines to metrology tools

can be changed.

3.2.2 Common phases of heuristics H2 to H7

All the six remaining feasibility heuristics include two phases, an assignment phase and an

improvement phase, that are detailed below.

In the assignment phase, the metrology tool selected for the production machine can change

from the one assigned when solving the Lagrangian relaxed problem. In Algorithm 3, pro-

duction machine r is assigned to metrology tool t with a sampling period s, and the metrology

capacity is updated. If the capacity of t is exceeded, then SP is increased until either the

capacity of t is enough or SP = SPmax. In the latter case, the solution is not feasible.

8
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Algorithm 3 Assignment phase (r∗, t∗, s∗, Capat∗ ,G)

1: if Capat∗ + gt
∗

r∗(s
∗) ≤ 1 then

2: Assign r∗ to t∗ with sampling period s∗, i.e. G ← G ∪ {(r∗, s∗, t∗)}.
3: Capat∗ = Capat∗ + gt

∗

r∗(s
∗).

4: else
5: while Capat∗ + gt

∗

r∗(s
∗) > 1 and s∗ ≤ SPmax do

6: s∗ = s∗ + 1.
7: end while
8: if Capat∗ + gt

∗

r∗(s
∗) ≤ 1 then

9: Assign r∗ to t∗ with sampling period s∗, i.e. G ← G ∪ {(r∗, s∗, t∗)}.
10: Capat∗ = Capat∗ + gt

∗

r∗(s
∗).

11: else
12: Assign r∗ to t∗ with sampling period s∗ = SPmax, i.e. G ← G ∪ {(r∗, SPmax, t∗)}.
13: Capat∗ = Capat∗ + gt

∗

r∗(SP
max) and problem is unfeasible.

14: end if
15: end if

As a final stage of each feasibility heuristic, an improvement phase is performed, which

is detailed in Algorithm 4. A Multi-Choice Knapsack Problem is solved for each metrology

tool with its assigned production machines. This is done using Heuristic H2/3 proposed in

Dauzère-Pérès, Hassoun, and Sendon (2016a). The new solution for each metrology tool is

only kept if it improves the current solution.

Algorithm 4 Improvement phase(G)

1: Set G′ ← G.
2: for t = 1, . . . , T do
3: Solve a Multi-Choice Knapsack Problem with Heuristic H2/3 from Dauzère-Pérès, Has-

soun, and Sendon (2016a) for the process machines r assigned to metrology tool t, i.e.
∃s = {1, . . . , SPmax} such that (r, s, t) ∈ G.

4: Update G′ with new sampling periods for metrology tool t.
5: end for

6: if

T∑
t=1

R∑
r=1

SPmax∑
s=1;(r,s,t)∈G′

WLtr(s) <

T∑
t=1

R∑
r=1

SPmax∑
s=1;(r,s,t)∈G

WLtr(s) then

7: G ← G′.
8: end if

3.2.3 Sampling period based heuristics H2 to H4

For the three heuristics H2 to H4, the sampling periods are obtained from the optimal solution

of the Lagrangian relaxation problem.

Heuristic H2, detailed in Algorithm 5, is metrology tool based. At each iteration, the

metrology tool t with the largest remaining capacity is selected. Then, the production machine

r which provides the larger portion of metrology capacity consumed for t (gtr(s)) among the

production machines not assigned yet is selected. The metrology capacity must be satisfied

when assigning r to t.

9
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Algorithm 5 Heuristic H2

1: Let R = {1, . . . , R} be the set of process machines.
2: Let F be the set of fixed pairs (process machine, sampling period). F ← ∅.
3: Initialize F by using the optimal solution of the Lagrangian relaxation problem.
4: Let G be the set of fixed triplets (process machine, sampling period, metrology tool).
G ← ∅.

5: Let Capat be the capacity used on metrology tool t. Capat = 0, t = 1, . . . , T .
6: while R 6= ∅ do
7: Select t∗, the metrology tool with the lowest current utilization, i.e. such that Capat∗ =

mint=1,...,T Capat.
8: Determine ∆r = {gt∗r (s)−mint’=1,...,T ;t′ 6=t∗ and Capat′+gt

′
r (s)≤1(g

t′
r (s))}, ∀r ∈ R and s such

that (r, s) ∈ F .
9: Let V = {r ∈ R|∆r = maxr′∈R(∆r′)}.

10: Select r∗ ∈ V and s∗ such that (r∗, s∗) ∈ F and t∗ such that gt
∗

r∗(s
∗) =

maxr∈V,(r,s)∈F (gt
∗

r (s)).
11: Assignment phase(r∗, t∗, s∗, Capat∗ ,G).
12: R ← R− {r∗}.
13: end while
14: Improvement phase(G).

Heuristic H3, detailed in Algorithm 6, is process machine based. The differences with Heu-

ristic H2 are shown in blue. The first step is to search the combination of production machine

r and metrology tool t such that the portion of metrology capacity consumed (gtr(s)) is the

largest, and to select the production machine r with the largest gtr(s). Then, the metrology

tool t with the minimum required metrology capacity gtr(s) for r and that satisfies the metro-

logy capacity is assigned. If such a metrology tool cannot be found, then the metrology tool

t with the lowest utilization is selected.

10
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Algorithm 6 Heuristic H3

1: Let R = {1, . . . , R} be the set of process machines.
2: Let F be the set of fixed pairs (process machine, sampling period). F ← ∅.
3: Initialize F by using the optimal solution of the Lagrangian relaxation problem.
4: Let G be the set of fixed triplets (process machine, sampling period, metrology tool).
G ← ∅.

5: Let Capat be the capacity used on metrology tool t. Capat = 0, t = 1, . . . , T .
6: while R 6= ∅ do
7: Determine ∆t

r = {gtr(s)−mint′=1,...,T ;t′ 6=t and Capat′+gt′r (s)≤1(g
t′
r (s))} ∀r ∈ R and s such

that (r, s) ∈ F , ∀t ∈ T .
8: Let V =

{
(r, t) ∈ R× T |∆t

r = maxr′∈R,t′∈T (∆t′
r′)
}

.
9: Select (r∗, t) ∈ V and s∗ such that (r∗, s∗) ∈ F and gtr∗(s

∗) = max(r,t)∈V,(r,s)∈F (gtr(s)).
10: Select t∗ ∈ W with the lowest current utilization, i.e. Capat∗ = mint=1,...,T Capat.
11: Let W = {t ∈ T |gtr∗(s∗) = mint′=1,...,T ;t′ 6=t and Capat′+gt

′
r∗ (s

∗)≤1(g
t′
r∗(s

∗))}.
12: if @t ∈ V t such that Capat + gtr∗(s) ≤ 1 then
13: Select t∗ ∈ T with the lowest current utilization, i.e. Capat∗ = mint=1,...,T Capat.
14: end if
15: Assignment phase(r∗, t∗, s∗, Capat∗ ,G).
16: R ← R− {r∗}.
17: end while
18: Improvement phase(G).

Heuristic H4, detailed in Algorithm 7, is a modification of Heuristic H2. The main difference

is that, after choosing the production machine r∗ and the sampling period s∗, the initially

selected metrology tool t∗ can be changed. The selected metrology tool t∗ is the one with

the smallest and feasible (Capat∗ + gt
∗

r∗(s
∗) ≤ 1) remaining capacity once r∗ is assigned with

sampling period s∗ to t∗.

11
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Algorithm 7 Heuristic H4 (modification of H2)

1: Let R = {1, . . . , R} be the set of process machines.
2: Let F be the set of fixed pairs (process machine, sampling period). F ← ∅.
3: Initialize F by using the optimal solution of the Lagrangian relaxation problem.
4: Let G be the set of fixed triplets (process machine, sampling period, metrology tool).
G ← ∅.

5: Let Capat be the capacity used on metrology tool t. Capat = 0, t = 1, . . . , T .
6: while R 6= ∅ do
7: Select t∗, the metrology tool with the lowest current utilization, i.e. such that Capat∗ =

mint=1,...,T Capat.
8: Determine ∆r = {gt∗r (s)−mint’=1,...,T ;t′ 6=t∗ and Capat′+gt

′
r (s)≤1(g

t′
r (s))}, ∀r ∈ R and s such

that (r, s) ∈ F .
9: Let V = {r ∈ R|∆r = maxr′∈R(∆r′)}.

10: Select r∗ ∈ V and s∗ such that (r∗, s∗) ∈ F and t∗ such that gt
∗

r∗(s
∗) =

maxr∈V,(r,s)∈F (gt
∗

r (s)).
11: Assign t∗, the metrology tool with the lowest remaining and feasible capacity when

r∗ is assigned to t∗ with sampling rate s∗, i.e. such that 1 − (Capat∗ + gt
∗

r∗(s
∗)) =

{mint=1,...,T ; Capat+gtr∗ (s
∗)≤1(1− (Capat + gtr∗(s

∗)))}.
12: Assignment phase(r∗, t∗, s∗, Capat∗ ,G).
13: R ← R− {r∗}.
14: end while
15: Improvement phase(G).

3.2.4 Metrology tool based heuristics H5 to H7

In the three remaining feasibility heuristics H5, H6 and H7, the initial assignment of pro-

duction machines to metrology tools is the one of the optimal solution of the Lagrangian

relaxation problem. The sampling periods are then determined by solving the MCKP with

Heuristic H1 of Dauzère-Pérès, Hassoun, and Sendon (2016a) for a unique metrology tool

with a metrology capacity of T . Heuristics H5, H6 and H7 are based on heuristics H2, H3

and H4, respectively. The main differences are in red in the algorithms of this section.

Heuristic H5, detailed in Algorithm 8, is metrology tool based and is a modification of H2.

12
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Algorithm 8 Heuristic H5 (based on H2)

1: Let R = {1, . . . , R} be the set of process machines.
2: Let F be the set of fixed pairs (process machine, sampling period). F ← ∅.
3: Let M be the set of fixed pairs (process machine, metrology tool). M← ∅.
4: Initialize M by using the optimal solution of the Lagrangian relaxation problem.
5: Determine F by solving the Multi-Choice Knapsack Problem with Heuristic H1 presented

in Dauzère-Pérès, Hassoun, and Sendon (2016a) for the process machines r = 1,. . . , R

considering a unique metrology tool with capacity

T∑
t=1

Capat. Use gtr(s) and WLtr(s) with

the metrology allocation in M.
6: Let G be the set of fixed triplets (process machine, sampling period, metrology tool).
G ← ∅.

7: Let Capat be the capacity used on metrology tool t. Capat = 0, t = 1, . . . , T .
8: while R 6= ∅ do
9: Select t∗, the metrology tool with the lowest current utilization, i.e. Capat∗ =

mint=1,...,T Capat.
10: Determine ∆r = {gt∗r (s)−mint’=1,...,T ;t′ 6=t∗ and Capat′+gt

′
r (s)≤1(g

t′
r (s))} ∀r ∈ R and s such

that (r, s) ∈ F .
11: Let V = {r ∈ R|∆r = maxr′∈R(∆r′)}.
12: Select r∗ ∈ V and s∗ such that (r∗, s∗) ∈ F and t∗ such that gt

∗

r∗(s
∗) =

maxr∈V,(r,s)∈F (gt
∗

r (s)).
13: Assignment phase(r∗, t∗, s∗, Capat∗ ,G).
14: R ← R− {r∗}.
15: end while
16: Improvement phase(G).

Heuristic H6, detailed in Algorithm 9, is process machine based and is a modification of

H3.

13
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Algorithm 9 Heuristic H6 (based on H3)

1: Let R = {1, . . . , R} be the set of process machines.
2: Let F be the set of fixed pairs (process machine, sampling period). F ← ∅.
3: Let M be the set of fixed pairs (process machine, metrology tool). M← ∅.
4: Initialize M by using the optimal solution of the Lagrangian relaxation problem.
5: Determine F by solving the Multi-Choice Knapsack Problem with Heuristic H1 presented

in Dauzère-Pérès, Hassoun, and Sendon (2016a) for the process machines r = 1,. . . , R

considering a unique metrology tool capacity

T∑
t=1

Capat. Use gtr(s) and WLtr(s) with the

metrology allocation in M.
6: Let G be the set of fixed triplets (process machine, sampling period, metrology tool).
G ← ∅.

7: Let Capat be the capacity used on metrology tool t. Capat = 0, t = 1, . . . , T .
8: while R 6= ∅ do
9: Determine ∆t

r = {gtr(s)−mint’=1,...,T ;t′ 6=t and Capat′+gt′r (s)≤1(g
t′
r (s))} ∀r ∈ R and s such

that (r, s) ∈ F , ∀t ∈ T .
10: Let V =

{
(r, t) ∈ R× T |∆t

r = maxr′∈R,t′∈T (∆t′
r′)
}

.
11: Select (r∗, t) ∈ Vand s∗ such that (r∗, s∗) ∈ F and gtr∗(s

∗) = max(r,t)∈V,(r,s)∈F (gtr(s)).

12: Let W = {t ∈ T |gtr∗(s∗) = mint’=1,...,T ;t′ 6=t and Capat′+gt
′

r∗ (s
∗)≤1(g

t′
r∗(s

∗))}.
13: Select t∗ ∈ W with the lowest current utilization, i.e. Capat∗ = mint=1,...,T Capat.
14: if @t ∈ V t such that Capat + gtr∗(s) ≤ 1 then
15: Select t∗ ∈ T with the lowest current utilization, i.e. Capat∗ = mint=1,...,T Capat.
16: end if
17: Assignment phase(r∗, t∗, s∗, Capat∗ ,G).
18: R ← R− {r∗}.
19: end while
20: Improvement phase(G).

Heuristic H7, detailed in Algorithm 10, is metrology tool based and is a modification of

H4.

14



International Journal of Production Research Lagrangian-Heuristic-Minimizing-Risk-DauzerePeres-Hassoun-Sendon-Final

Algorithm 10 Heuristic H7 (based on H4)

1: Let R = {1, . . . , R} be the set of process machines.
2: Let F be the set of fixed pairs (process machine, sampling period). F ← ∅.
3: Let M be the set of fixed pairs (process machine, metrology tool). M← ∅.
4: Initialize M by using the optimal solution of the Lagrangian relaxation problem.
5: Determine F by solving the Multi-Choice Knapsack Problem with Heuristic H1 presented

in Dauzère-Pérès, Hassoun, and Sendon (2016a) for the process machines r = 1,. . . , R

considering a unique metrology tool capacity

T∑
t=1

Capat. Use gtr(s) and WLtr(s) with the

metrology allocation in M.
6: Let G be the set of fixed triplets (process machine, sampling period, metrology tool).
G ← ∅.

7: Let Capat be the capacity used on metrology tool t. Capat = 0, t = 1, . . . , T .
8: while R 6= ∅ do
9: Select t∗, the metrology tool with the lowest current utilization, i.e. Capat∗ =

mint=1,...,T Capat.
10: Determine ∆r = {gt∗r (s)−mint’=1,...,T ;t′ 6=t∗ and Capat′+gt

′
r (s)≤1(g

t′
r (s))} ∀r ∈ R and s such

that (r, s) ∈ F .
11: Let V = {r ∈ R|∆r = maxr′∈R(∆r′)}.
12: Select r∗ ∈ V and s∗ such that (r∗, s∗) ∈ F and t∗ such that gt

∗

r∗(s
∗) =

maxr∈V,(r,s)∈F (gt
∗

r (s)).
13: Assign t∗, the metrology tool with the lowest remaining and feasible capacity when

r∗ is assigned to t∗ with sampling rate s∗, i.e. such that 1 − (Capat∗ + gt
∗

r∗(s
∗)) =

{mint=1,...,T ; Capat+gtr∗ (s
∗)≤1(1− (Capat + gtr∗(s

∗)))}.
14: Assignment phase(r∗, t∗, s∗, Capat∗ ,G).
15: R ← R− {r∗}.
16: end while
17: Improvement phase(G).

4. Numerical experiments

In this section, we analyze the performance of the Lagrangian heuristic LRH, and in parti-

cular the impact of the feasibility heuristics H1−7 in LRH, on numerous randomly generated

instances, and compare it with the results obtained with the ILP and the standard solver

IBM ILOG CPLEX 12.6. LRH running in less than 1 second for each instance, we decided to

limit the standard solver to 60 seconds. Since the optimal solution is not always obtained, we

provide the lower bound (LB) and the upper bound (UB) given by IBM ILOG CPLEX after

60 seconds. We first study in Section 4.1 the general problem described in section 2. Then, we

study in Section 4.2 the performance of LRH for the special case of reliable identical machines

and compare it with the best heuristic introduced in Dauzère-Pérès, Hassoun, and Sendon

(2016b). This comparison is important to ensure that LRH is as effective on this special case

than a dedicated procedure, in particular because LRH is embedded in a Decision Support

System that can be used on problems with identical machines.
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4.1 Results for heterogeneous metrology machines

4.1.1 Experiment description

The scenarios used to study the general case of heterogeneous and unreliable machines were

generated as follows. Note that the scenarios were generated so that the efficiency of LRH

could be analyzed in different extreme cases, in particular regarding the variability of para-

meters and the number of production machines and metrology tools. The number of process

machines is chosen in set {5, 10, 20, 40} and the characteristics of each process machine r

are defined as follows. The probability of failure pr is generated from a uniform distribu-

tion U [pmin; pmax], where pmin is kept constant (pmin = 0.01) and pmax is chosen in the

set {0.05, 0.2}. The throughput rate TPr is generated from a distribution U [TPmin;TPmax],

where TPmax = 1000 and TPmin is chosen in the set {100, 900}. The number of metrology

tools is in the set {3, 5}, and their reliability αtr is randomly generated from U [αmin;αmax]

with αmin = 0.01 and αmax in the set {0.05, 0.1, 0.2}.
Three cases are considered to generate the measurement rate TM t

r for metrology tools

values, which is determined using the ratio R·TPr

T ·TM t
r
. In the first case, all metrology tools are

equally fast (TM t
r = TM), and their measurement rate is independent of the different pro-

ducts processed on process machines r. The ratio R·TPr

T ·TM t
r

is chosen in the set {5, 10, 30}, where

TPr is the average throughput rate for the considered instance, thus leading to a unique

measurement rate for all tools and machines. This case is denoted “Identical Measurement

rate” (IM). Note that, contrary to the case presented in section 4.2, the metrology machines

remain different from one another since their reliabilities (αtr) differ. In the second case, the

measurement rate depends on the metrology tool, but remains independent of the production

machines (TM t
r = TM t, ∀r). One value of R·TPr

T ·TM t
r

is randomly chosen from a uniform distribu-

tion. The distribution range is first set at U [2.5, 7.5], then at U [5, 15] and finally at U [15, 45].

These ranges are defined around the values chosen for the fixed case, and allow for the fas-

test metrology tool to run at most three times faster than the slowest one. This group of

instances is denoted “Related Measurement rate” (RM). In the last case, we allow any value

for each TM t
r , regardless of others, based on the ratio R·TPr

T ·TM t
r

taken from the same uniform

distributions previously mentioned. We denote this last group “Unrelated Measurement rate”

(UM).

A maximum sampling rate of SPmax = 500 is set for all machines. Combining these pa-

rameters leads to 864 instances, with 10 instances generated for each fixed set of distribu-

tion ranges. Thus, a total of 8640 different experiments were conducted. The calculation of

WLtr(SP ) includes an infinite sum that is calculated iteratively. In order to keep the accu-

racy level uniform between experiments, the calculations are stopped when the values of two

consecutive WLtr(SP ) differ by less than 0.1%.

4.1.2 Comparing the impact of the feasibility heuristics

We first justify the need for combining the seven feasibility heuristics in LRH by presenting

their individual performance. Table 1 first shows for each feasibility heuristic the portion of

cases in which it has been the one to provide the best solution. Then, the second and third

rows show the portion of cases in which the heuristic reaches a solution within 1% of the best
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solution, and cases in which not only did it provide the best solution, but no other solution

is within 1% of the best solution. Last, the portion of cases in which the heuristic was within

1% of the upper bound is provided. No heuristic seems superfluous. Although LRH(H2) and

LRH(H5) are exclusively close to the best result in only 0.1% of the cases, they cannot be

removed without impeding the solution in some cases. All heuristics provide the best solution,

or give an excellent solution (within 1% of the best), in numerous cases.

Table 1.: General performance of Heuristics LRH(H1−7) on heterogeneous machines

H1 H2 H3 H4 H5 H6 H7

Best 9.2% 23.1% 40% 22.2% 6.6% 28.8% 8.1%
Close to best 28.8% 52.2% 76.2% 54.1% 45.5% 73.8% 46.4%
Exclusive close to best 2.1% 0.1% 1.1% 0.5% 0.1% 2.9% 0.2%
Close to IBM ILOG CPLEX UB 11.2% 30.2% 47.4% 31.3% 23.2% 43.3% 24.2%

Next, Tables 2 and 3 count the number of times each heuristic yields the best and close-

to-best solution, respectively, together with any other heuristic. As an example, LRH(H2)

reached a close-to-best solution in 4507 cases, 10 of which exclusively, and in 4284 cases,

LRH(H3) also reaches a close-to-best solution. There is no case in which a heuristic appears

to offer a high level of redundancy with another one. This reflects the way the heuristics were

developed and gradually added to LRH to cover for other ones’ blind spots.

Table 2.: Common best solution of Heuristics LRH(H1−7) on heterogeneous machines

Best H1 H2 H3 H4 H5 H6 H7

H1 791 3 27 10 2 27 5
H2 2000 3 1527 904 236 194 183
H3 3455 27 1527 910 204 1037 194
H4 1916 10 904 910 187 214 300
H5 573 2 236 204 187 320 184
H6 2484 27 194 1037 214 320 194
H7 699 5 183 194 300 184 194

Table 3.: Common performance of Heuristics LRH(H1−7) on heterogeneous machines

Close to best Exclusive H1 H2 H3 H4 H5 H6 H7

H1 2488 179 1473 2147 1474 1277 2034 1236
H2 4507 10 1473 4284 4278 3796 3852 3678
H3 6583 96 2147 4284 4325 3742 5862 3705
H4 4671 39 1474 4278 4325 3723 3935 3837
H5 3931 6 1277 3796 3742 3723 3746 3467
H6 6378 248 2034 3852 5862 3935 3746 3624
H7 4007 13 1236 3678 3705 3837 3467 3624
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4.1.3 Performance analysis of LRH

The next step is to analyze the performance of LRH. In Table 4(a), the average and maximum

gaps between the solutions of LRH and of the standard solver IBM ILOG CPLEX 12.6

are detailed for each combination of the number of production machines and number of

metrology tools. Although the maximum gap is above 8% for the instances with 5 production

machines, the average gap is always below 1% for instances with 3 metrology tools and

below 2% for instances with 5 metrology tools. Table 4(b) shows the Lagrangian gaps. The

same behavior than in Table 4(a) can be observed, Lagrangian gaps are reducing when the

ratio between the number of production machines and the number of metrology tools is

increasing. This is interesting and validate the use of LRH in practical settings, since the

number of metrology tools is usually much smaller than the number of production machines

when metrology capacity is tight. Table 4(c) shows the average number of iterations in LRH

to reach the largest lower LB, i.e. close to the Lagrangian dual, and the average number of

iterations in LRH to determine the smallest UB. Note that the first average number is rather

stable between 161 and 171. Looking at the second average number, it is interesting to see

that the subgradient search helps LRH to reach good solutions with the feasibility heuristics

since more than 50 iterations are often required.

Table 4.: General performance of LRH(H1−7)

(a) vs. IBM ILOG CPLEX

T
R 3 5

5
Avg 0.5%
Max 6.4%

10
Avg 0.6% 1.3%
Max 3.9% 8.5%

20
Avg 0.7% 1.3%
Max 3.5% 4.8%

40
Avg 0.7% 1.2%
Max 3.0% 4.4%

(b) Lagrangian gap

T
R 3 5

5
Avg 3.8%
Max 13.4%

10
Avg 1.5% 3.6%
Max 6.1% 14.6%

20
Avg 1.0% 2.3%
Max 4.5% 9.4%

40
Avg 0.9% 2%
Max 5.1% 10.0%

(c) Average number of iterations

T
R 3 5

5
LB 161.2
UB 16.2

10
LB 162.0 164.8
UB 41.0 48.8

20
LB 164.5 167.5
UB 59.5 67.3

40
LB 165.5 171.2
UB 77.2 89.1

The analysis by parameter provided in Tables 5 and 6 shows that LRH tends to perform

better when the variability is lower on parameters αmax, Ratio Level and TPmin, i.e. when

αmax = 0.05, the Ratio Level is equal to 1 and TPmin = 900. This is the opposite for pmax,

since the instances generated with pmax = 0.2 have lower average gaps than the instances

generated with pmax = 0.05. Finally, there is no significant trend for the average gaps whether

the instances are with “Identical”, “Related” or “Unrelated” TM types.

4.2 Special case of reliable identical metrology tools

In Dauzère-Pérès, Hassoun, and Sendon (2016b), we introduce and solve a special case of

the problem presented here, namely with perfectly reliable, identical metrology machines. In

this section, the performance of the seven heuristics presented in Section 3.2 is analyzed, and

LRH is compared with the best heuristic proposed in Dauzère-Pérès, Hassoun, and Sendon
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Table 5.: Break down of LRH performance by parameter (1/2).

(a) By αmax

T
R 3 5

αmax 0.05 0.1 0.2 0.05 0.1 0.2

5
Avg 0.4% 0.4% 0.6%
Max 5.6% 6.4% 4.9%

10
Avg 0.5% 0.6% 0.8% 1.1% 1.2% 1.7%
Max 3.4% 3.6% 3.9% 8.5% 7.8% 7.5%

20
Avg 0.4% 0.6% 1% 0.8% 1.2% 1.8%
Max 1.7% 1.9% 3.5% 4.8% 4% 4.4%

40
Avg 0.4% 0.6% 1% 0.7% 1.1% 1.7%
Max 1.8% 1.8% 3% 2.7% 2.6% 4.4%

(b) By pmax

T
R 3 5

pmax 0.05 0.2 0.05 0.2

5
Avg 0.5% 0.4%
Max 4.9% 6.4%

10
Avg 0.7% 0.5% 1.5% 1.2%
Max 3.9% 3.6% 7.5% 8.5%

20
Avg 0.8% 0.5% 1.5% 1%
Max 3.5% 2.4% 4.8% 4%

40
Avg 0.8% 0.5% 1.4% 0.9%
Max 3% 2.3% 4.4% 3.1%

(c) By Ratio Level

T
R 3 5

Ratio Level 1 2 3 1 2 3

5
Avg 0.6% 0.5% 0.3%
Max 6.4% 4.9% 3.2%

10
Avg 0.9% 0.7% 0.3% 1.9% 1.3% 0.8%
Max 3.5% 3.9% 2.9% 8.5% 6.5% 5.1%

20
Avg 0.9% 0.7% 0.4% 1.7% 1.3% 0.8%
Max 3.5% 2.8% 2.1% 4.8% 4.3% 3.3%

40
Avg 0.9% 0.7% 0.4% 1.5% 1.2% 0.7%
Max 3% 2.8% 1.8% 4.4% 3.9% 2.7%

(2016b), and on the same set of 2880 instances.

4.2.1 Comparing the impact of the feasibility heuristics for reliable identical metrology tools

Let us first consider the question of possible dominance of heuristics LRH(H1−7) among

themselves, when solving the special case of identical reliable metrology machines. Table 7
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Table 6.: Break down of LRH performance by parameter (2/2).

(a) By TPmin

T
R 3 5

TPmin 100 900 100 900

5
Avg 0.5% 0.4%
Max 6.4% 4.2%

10
Avg 0.7% 0.6% 1.5% 1.2%
Max 3.9% 2.8% 8.5% 5.4%

20
Avg 0.7% 0.7% 1.3% 1.3%
Max 3.5% 2.6% 4.8% 4.4%

40
Avg 0.7% 0.7% 1.2% 1.1%
Max 3% 3% 4.3% 4.4%

(b) By type of TM values

T
R 3 5

TM values Identical Related Unrelated Identical Related Unrelated

5
Avg 0.7% 0.2% 0.5%
Max 4.9% 2.5% 6.4%

10
Avg 0.8% 0.6% 0.5% 1.2% 1% 1.8%
Max 3.9% 2.7% 3.6% 7.1% 4% 8.5%

20
Avg 0.8% 0.8% 0.4% 1.3% 1.4% 1.1%
Max 3.5% 2.8% 2.4% 4.4% 4.3% 4.8%

40
Avg 0.8% 0.8% 0.3% 1.3% 1.2% 1%
Max 3% 3% 2% 4.4% 4% 2.9%

provides the proportion of cases in which each heuristic reaches the best solution, followed by

the proportion of cases in which each heuristic provides a solution close to the best one by

less than 1% (“Close to best”) and of cases in which no other heuristic solution is close to the

best one by less than 1%. Finally the ratio of cases in which each heuristic reaches a solution

different by less than 1% than the upper bound found by the standard solver is provided.

Table 7.: General performance of LRH(H1−7) on identical machines

H1 H2 H3 H4 H5 H6 H7

Best 0% 57.8% 57.8% 60.1% 30.8% 30.8% 31.3%
Close to best 0% 99.4% 99.4% 99.8% 93.6% 93.6% 93.9%
Exclusive close to best 0% 0% 0% 0.2% 0% 0% 0%
Close to IBM ILOG CPLEX UB 0% 97.1% 97.1% 98% 88.6% 88.6% 89%

As expected, Heuristic LRH(H1), which is directly based on the Lagrangian relaxation

solution, struggles to provide any good solution when the metrology tools are identical. Heu-

ristics LRH(H2−7) all prove to be highly efficient in solving the identical machine case. Note

that only LRH(H4) provides, extremely rarely (0.2%), an “exclusive” solution (no other heu-
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ristic finds a solution which is within 1% of the best solution). In all other cases, there is

always one or more solutions close to the best one, which clearly prompts the question of

possible dominance between heuristics. In Table 8, for each feasibility heuristic (rows), the

total number of instances in which the heuristic provides the best solution is indicated. Then,

out of this number, the number of times the best solution is reached together with each other

heuristic is indicated. Note that LRH(H2) and LRH(H3) systematically provide the best

solution together. The same holds for LRH(H5) and LRH(H6). The same analysis is provi-

ded for solutions within 1% of the best one, in Table 9, and the same observations can be

made. It is then possible to conclude that heuristics LRH(H2) and LRH(H3), and heuristics

LRH(H5) and LRH(H6) are interchangeable and two of them are unnecessary when solving

the problem for reliable, identical machines.

Table 8.: Common best solution ofLRH(H1−7) on identical machines

Best H1 H2 H3 H4 H5 H6 H7

H1 0 0 0 0 0 0 0
H2 1664 0 1664 994 631 631 589
H3 1664 0 1664 994 631 631 589
H4 1731 0 994 994 600 600 654
H5 886 0 631 631 600 886 589
H6 886 0 631 631 600 886 589
H7 902 0 589 589 654 589 589

Table 9.: Common performance of LRH(H1−7) on identical machines

Close to best Exclusive H1 H2 H3 H4 H5 H6 H7

H1 0 0 0 0 0 0 0 0
H2 2862 0 0 2862 2858 2691 2691 2693
H3 2862 0 0 2862 2858 2691 2691 2693
H4 2874 6 0 2858 2858 2690 2690 2700
H5 2695 0 0 2691 2691 2690 2695 2640
H6 2695 0 0 2691 2691 2690 2695 2640
H7 2704 0 0 2693 2693 2700 2640 2640

4.2.2 Performance analysis of LRH for reliable identical metrology tools

Let us now compare the performance of LRH to heuristic H+
1 proposed in Dauzère-Pérès,

Hassoun, and Sendon (2016b). The performance of both heuristics is deemed equivalent if their

resulting wafer loss figures are within 0.1% of each other, and one of them is considered better

if it provides a wafer loss lower than the other by more than 0.1%. Overall, LRH provides

strictly better results in 39.6% of the cases (1140 instances). Both heuristics are equivalent

in 60.4% of the cases (1232 instances). Hence, LRH strictly dominates H+
1 . Additionally,

LRH is so efficient for identical machines that a drill down analysis by factor, as conducted

in Dauzère-Pérès, Hassoun, and Sendon (2016b) for cases offering some difficulties for H+
1 ,

21



International Journal of Production Research Lagrangian-Heuristic-Minimizing-Risk-DauzerePeres-Hassoun-Sendon-Final

is unnecessary. Table 10 shows that the average gaps between LRH and the best solution

obtained by IBM ILOG CPLEX is always lower than 0.6%.

Table 10.: Comparison between LRH(H1−7) and IBM ILOG CPLEX

T
3 5

R Non-opt. Opt. Non-opt. Opt.

5
Avg. 0% 0.2%
Min. 0% 0%
Max. 0% 2.3%

10
Avg. 0.1% 0.3% 0.1% 0.4%
Min. 0% 0% 0% 0%
Max. 0.7% 1.2% 0.4% 1.7%

20
Avg. 0.1% 0.2% 0.2% 0.6%
Min. 0% 0% -0.1% 0.2%
Max. 0.3% 0.6% 1.1% 1.1%

40
Avg. 0% 0.1% 0.1% 0.2%
Min. 0% 0% -0.1% 0.1%
Max. 0.1% 0.2% 0.4% 0.4%

5. Conclusions and perspectives

In a previous body of work, we first tackled the problem of assigning a unique metrology tool

capacity to minimize the risk in terms of expected product loss of several different production

machines. This problem was defined as a Multiple-Choice Knapsack Problem. Later, we solved

an extension of this first problem that considers several similar metrology tools, which was

defined as a Multiple Choice Multiple Knapsack Problem. In both these works, heuristics

were proposed.

In the present paper, we significantly extend the scope of the problem by assuming, first,

that the metrology tools are no longer reliable, and second, that they differ in their characte-

ristics (measurement rate, reliability). This problem emerges as a Multiple Choice Generalized

Assignment Problem for which greedy or simple heuristics fail to provide an acceptable so-

lution. To avoid using a standard solver and solve the problem in less than one second, we

proposed a Lagrangian Relaxation Heuristic (LRH). LRH is based on the mathematical for-

mulation of the problem and combines seven feasibility heuristics, that proved to be efficient

both on a large set of scenarios designed to cover various situations, and on the special case

of identical machines solved previously with a much simpler heuristic. The feasibility heu-

ristics derive a solution from the resolution of the Lagrangian relaxed problem in a variety

of manners, starting from measurement rates or from assignments of production machines

to metrology tools. The results, when compared to the optimal solution, show that LRH is

efficient over a broad range of scenarios.

The Lagrangian heuristics has been implemented in a Decision Support System (DSS) for

the factory of the semiconductor manufacturing company in which one of the co-authors per-
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formed his PhD thesis. The primary use of the DSS is to propose optimal sampling rates

that users can modify before implementation in the control system of the factory. However,

the DSS can also help to evaluate the impact in terms of risk reduction, respectively incre-

ase, associated to increasing, respectively reducing, metrology capacity. This is in particular

important to justify the acquisition of new metrology tools. From another angle, when new

production machines are added, the DSS can also help to analyze the impact in terms of risk

increase if the same set of metrology tools is used.

Further directions can be explored based on the results obtained so far. Up to this point,

our problem allows the metrology capacity to be fully utilized. The underlying assumption

allowing this is that there is a perfect synchronization between the monitoring needs and

the metrology availability. In industrial scenarios, this is not always the case. The queue at

the metrology tool is expected to induce a delay which could impede quality. Other future

research could include additional features of the problem as it presents itself to practitioners in

factories. In particular, our model is applicable to cases where a single-stage inspection takes

place, i.e. the inspection operation only controls process machines that are right before the

metrology tools. Cases where a series of process operations, and therefore a series of process

machines, are controlled through a concluding inspection operation add a level of complexity

that is far from trivial. Also, we are studying an extension of the current framework that

considers the effects of false positives when metrology tools are not only used for ongoing

monitoring of the process, but also contributes to the investigation following an out-of-control

result.

Acknowledgments

Parts of this research were carried out whilst the second author was visiting the Department

of Manufacturing Sciences and Logistics of the Center of Microelectronics in Provence of the

Ecole des Mines de Saint-Etienne, Gardanne, France in September and October 2016 and

October 2017.

This work has been partially financed by the ANRT (Association Nationale de la Recherche et

de la Technologie) through the PhD number 2014/0079 with CIFRE funds and a cooperation

contract between STMicroelectronics and Mines Saint-Etienne.

References

Bettayeb, Belgacem, Samuel Bassetto, Philippe Vialletelle, and Michel Tollenaere. 2012. “Quality
and exposure control in semiconductor manufacturing. Part I: Modelling.” International Journal of
Production Research 50 (23): 6835–6851.

Ceselli, Alberto, and Giovanni Righini. 2006. “A branch-and-price algorithm for the multilevel gene-
ralized assignment problem.” Operations Research 54 (6): 1172–1184.

Colledani, Marcello, and Tullio Tolio. 2011. “Integrated analysis of quality and production logistics
performance in manufacturing lines.” International Journal of Production Research 49 (2): 485–518.
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