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Abstract

Today, data analytics plays an important role in Smart Manufacturing decision making. Domain 

knowledge is very important to support the development of analytics models. However, in today’s 

data analytics projects, domain knowledge is only documented, but not properly captured and 

integrated with analytics models. This raises problems in interoperability and traceability of the 

relevant domain knowledge that is used to develop analytics models. To address these problems, 

this paper proposes a methodology to enrich analytics models with domain knowledge. To 

illustrate the proposed methodology, a case study is introduced to demonstrate the utilization of 

the enriched analytics model to support the development of a Bayesian Network model. The case 

study shows that the utilization of an enriched analytics model improves the efficiency in 

developing the Bayesian Network model.
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1. Introduction

Due to advances in information technologies and artificial intelligence, the Smart 

Manufacturing (SM) concept has emerged to lead a new paradigm of manufacturing 

systems. In such systems, data analytics can play an important role to turn data into valuable 

insights to assist SM decision making. To successfully perform data analytics, domain 

knowledge is required to support the development of analytics models. Kopanas et al. (2002) 

investigated the role of domain knowledge in industrial data analytics projects. They 

concluded that the use of domain knowledge is crucial in all phases of a data analytics 

project – problem definition, data understanding, data pre-processing, data mining, 

evaluation of the analytics model and deploying the developed analytics model. However, in 

today’s data analytics projects, the relevant domain knowledge, which is used in developing 
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an analytics model, is only documented, but not properly captured and integrated with the 

analytics models.

The lack of properly captured and integrated domain knowledge raises an issue in the 

interoperability of the domain knowledge for developing an analytics model. Currently, there 

are two standards that support analytics models’ interoperability – PMML (Predictive Model 

Markup Language) (Data Mining Group, 2016) and PFA (Portable Format for Analytics) 

(Data Mining Group, 2015). The PMML formally represents analytics models to allow the 

exchange of analytics models between data analytics applications. The PFA covers the main 

functionalities of the PMML and focuses on the deployment of analytics models by 

streamlining the entire scoring flow. However, these standards only capture information that 

is related to the final stages of data analytics projects. They do not possess the capability to 

capture the domain knowledge that is used in the early phases of data analytics projects. The 

information exchange between domain experts and data analysts about the application 

domain relies solely on vocal discussions and written document exchange. To improve the 

efficiency of the information exchange in SM environment, this interoperability problem 

must be addressed.

Another issue that is caused by the lack of properly captured and integrated domain 

knowledge lies in the traceability of analytics models. Without domain knowledge being 

properly captured and integrated, no software tools can process and understand the 

documented natural language-based knowledge. This brings difficulties in carrying out data 

analytics projects for SM systems. As more data is collected from an SM system (as more 

sensors to be plugged), an analytics model that has already been developed for the SM 

system needs to be updated accordingly. This calls for the traceability of the domain 

knowledge that is used to develop the analytics model because the modification or the re-

development of the analytics model needs the previous knowledge. To bring understanding 

of analytics models to downstream activities, the knowledge traceability problem must be 

solved.

The contribution of this paper is twofold. First, we propose to formalize domain knowledge 

to support the development of analytics models. Second, to allow the exchange of the 

domain knowledge with analytics models, we propose to integrate the formalized domain 

knowledge with analytics models by semantically connecting them. This paper is organized 

as follows: Section 2 reviews the related studies about integrating domain knowledge into 

data analytics. Section 3 describes the general framework to enrich analytics model with 

domain knowledge. To illustrate the proposed idea in detail, the development of a Bayesian 

Network (BN) model to predict energy consumption of injection moulding processes is 

investigated. So, section 4 first briefly describes this data analytics project without using the 

proposed enriched analytics model. Then, it elaborates the details of the development and 

utilization of the enriched analytics model for developing the BN model. Finally, section 5 

summarizes the paper.
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2. Related Work

Researchers have previously tried to integrate domain knowledge and engineering models. 

For example, Kim et al. (2017) proposed a local model calibration approach and a local 

model averaging approach to incorporating domain expert knowledge into engineering 

process models. However, these approaches lack model interoperability which is required by 

SM. Kusiak (2018) mentioned that data-driven modelling and enterprise interoperability are 

expected to become the pillars of the future of SM. But the interoperability of analytics 

models was not discussed in his work. Dotoli et al. (2018) pointed out that big data analysis 

and semantic models are crucial for factory automation. Similarly, they did not consider the 

integration between analytics models and semantic models. Palmer et al. (2018) presented a 

comprehensive manufacturing reference ontology to support manufacturing knowledge’s 

interoperability. However, computational models for manufacturing decision-making, 

especially data-driven models, were not included.

Some research was carried out in bridging the semantic gap between data and analytics 

models. For example, Johnson et al. (2010) proposed using an ontology to capture the 

domain concepts which were used to represent important variables for learning a decision 

tree. Although this was a good attempt in using ontologies to capture domain concepts for 

learning a decision tree, this study did not formalize the rules for data processing in the 

ontology. It also did not explicitly represent the decision tree and semantically connect the 

decision tree to the ontology. Trappey et al. (2013) developed a knowledge management 

approach using ontology-based artificial neural networks to automatically classify and 

search documents. In their research, the domain ontology was used as a bridge to map the 

concepts related to the documents to the input nodes of the neural network. However, there 

was no formal representations of the neural network so that there was no semantic links 

between the domain ontology and the neural network. Similar research on formalizing 

domain knowledge to bridge semantic gaps had been performed by Perez-Rey et al. (2006), 

Sinha and Zhao (2008), Munger et al. (2015), and Arena et al. (2018), etc. They also have 

problems in semantically integrating formal domain knowledge with analytics models.

There are also studies on using domain knowledge to construct analytics models. Campos 

and Castellano (2007) proposed learning a BN structure by specifying the structural 

restrictions from expert knowledge. However, no specific domain knowledge formalization 

and integration were shown in this research. Lechevalier et al. (2016) introduced a domain-

specific modelling approach to integrate a manufacturing system model with data analytics 

to facilitate effective and efficient data analytics in manufacturing systems. In this research, 

although the manufacturing domain knowledge was captured, and the knowledge was used 

in creating a Neural Network structure, the domain knowledge and the Neural Network 

model’s structure were loosely coupled. There were no mappings between the pieces of 

knowledge used for creating the structure and the specific structures (e.g., input neurons, 

hidden neurons, the structure of the Neural Network) that were captured explicitly and 

formally by the manufacturing meta-model. Again, the semantic links between the 

manufacturing meta-model and the Neural Network meta-model were missing. Kalet et al. 

(2017) proposed using a dependency-layered ontology, which was implemented in OWL 

(Web Ontology Language), to solve the inconsistency and incompatibility between different 
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BN models in the medical domain. However, the BN model was not formally represented. 

Also, there were no semantic links between the developed BN model and the ontology.

Hartmann et al. (2017) presented a model-driven analytics idea to emphasize the importance 

of using formalized domain knowledge in data analytics. They proposed using a domain 

model to explicitly define the semantics of raw data in the form of metadata, domain 

formula, mathematical models, and learning rules. However, the paper did not specify in 

what format to capture the metadata, mathematical formulas, and learning rules as well as 

how to integrate them. Also, the metadata model was not semantically connected to the 

analytics model.

To sum up, there are research gaps in (1) formalizing domain knowledge for data analytics, 

especially in explicitly and formally modelling the rules to process the data and constructing 

the analytics model; and (2) integrating formalized domain knowledge with analytics model. 

To address these problems, this paper proposes an enriched analytics model to enrich the 

formally captured analytics models with domain knowledge.

3. Proposed Enriched Analytics model

To support the development of an analytics model, knowledge that is needed from the SM 

domain can be: (1) the domain meanings of the analytics model’s entities (e.g., nodes, arcs, 

variables, etc.), (2) the physical or behavioural information that provides insights of a certain 

manufacturing system on which the data analytics project focuses, and (3) reasons or 

descriptions about why or how a certain structure or a parameter of the analytics model is 

defined. To incorporate all these types of knowledge into an analytic model, in this paper, 

they are captured into information model(s), physics-based model(s), and rationales, 

respectively. Figure 1 depicts the relationships between these models and the analytics 

model. From the perspective of facilitating the interoperability of the enriched analytics 

model, all three models along with the analytics model can be modelled using a uniform 

text-based format like XML (Extensible Markup Language), JSON (JavaScript Object 

Notation) or OWL, etc. To support the traceability of the enriched analytics model, the 

entities which are related across models should be semantically connected. The detailed 

descriptions of the four models are described in the following sections.

3.1 Information Model

In software engineering, an information model is a representation of concepts, relationships, 

constraints, rules, and operations to specify data semantics for a chosen domain of discourse 

(Lee, 1999). Here, the information model(s) provides a common terminology for the 

application domain of a data analytics project. Compared to data models which have 

implementation-specific details, information models define concepts and relationships in a 

higher abstract level, and they are protocol neutral (Pras and Schoenwaelder, 2003). In 

manufacturing domain, for example, the ANSI/ISA-95 (ANSI/ISA, 2010) standard is an 

information model that defines concepts and relationships to support the interfacing between 

an enterprise’s business system and its manufacturing control system. The B2MML 

(Business To Manufacturing Markup Language) (Mesa International, 2013) is an XML-

based data model which implements ANSI/ISA-95.
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To explicitly express the domain meanings of other models (i.e., physics-based model, 

analytics model, and rationales), entities from other models need to be semantically linked to 

the corresponding entities in information model(s). Additionally, the information model(s) 

also needs to be semantically connected to the corresponding data model(s) for 

understanding the data.

3.2 Physics-based Model

Physics-based models are mathematical, empirical, simulation-based, and AI-based models, 

etc. that are developed to capture physical mechanics of a phenomenon or behaviours of an 

SM system. For example, forecasting models are developed to predict customer demand; 

production scheduling models are used for shop floor management; and cutting force models 

are developed for modelling material removal processes. Though these models are 

developed for a certain manufacturing application, the physics/behaviours captured in these 

models can provide valuable insights of the manufacturing system for data analytics.

Normally, the physics-based models can only be processed by specific software tools. This is 

because these physics-based models are normally represented as application-specific 

languages. For example, the mathematical optimization problems can be modelled by the 

AMPL (A Mathematical Programming Language) (Fourer et al., 1990) and the OPL 

(Optimization Programming Language) (Hentenryck, 1999), which are processable in 

optimization solvers like CPLEX (IBM, 2018). But it is very difficult to process 

optimization models in these languages outside these application-specific tools.

To enable a universal method to extract information from the physics-based models, physics-

based models need to be transformed into text-based formats. The text-based formats are 

friendly for software tools to parse. Currently, a lot of models have the text-based 

representation formats. For example, The MathML (Mathematical Markup Language) is an 

XML-based markup language which can represent both the meaning (i.e., Content ML) and 

format (i.e., Presentation ML) of mathematical expressions. The PMML, as discussed 

previously, is developed to represent predictive models in XML. The Ontology for 

Optimization (Witherell et al., 2007) represents optimization models in the engineering 

design domain in OWL. It should be noted that, no matter by which text-based format (i.e., 

XML, JSON, or OWL, etc.) a physics-based model is represented, to incorporate the 

physics-based model(s) into an analytics model, the physics-based model(s) should be 

transformed into the same format as the other models (i.e., information model(s), analytics 

model, and rationales).

3.3 Analytics model

The analytics model captured here is the model for developing a data analytics project for an 

SM application. To facilitate the enrichment of the SM domain knowledge, models like 

decision trees, cluster models, regression models, Neural Network models, or BN models, 

etc. also need to be formally represented. To express the domain meanings, the entities in an 

analytics model (e.g., nodes in a BN) should be semantically connected to the corresponding 

domain concepts defined in the information model(s).
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Current standards like PMML and PFA that provide formal representations to support 

interoperability of analytics models can be used to represent the enriched analytics model to 

formally represent analytics models. Again, the analytics model needs to be converted to the 

same representation format as other models.

3.4 Rationales

In a data analytics project, the knowledge, which is a set of rules for guiding the 

development of an analytics model, is represented in rationales. For the knowledge from the 

application domain, rationales need to have connections to the related information models 

for obtaining the semantic meaning of the domain concepts. The rationales may also need to 

be linked to the physics-based models to indicate the part of system behavioural knowledge 

used in developing the analytics models. Also, the rationales need to connect to the analytics 

models to specify the links between the analytics model and the knowledge used in model 

development.

Like other individual models in the enriched analytics model, the rationales are also needed 

to be formally represented to make them processable and understandable by software tools. 

Because of the nature of the rationales, the rationales can be represented as rule-like styles. 

There are some technologies available to formally express rules. For example, the XEXPR 

scripting language (W3C, 2000) enables the expression of rules in XML. JsonLogic 

(Wadhams, 2015) allows the construction of complex rules and serialization of the rules in 

JSON. In OWL, the SWRL (Semantic Web Rule Language) (W3C, 2004) language can be 

used to build rules. The selection of the languages should conform to the overall 

representation technique.

4. Validation of the Proposed Method Using a Case Study

To illustrate the proposed enriched analytics model in detail, this section introduces an 

example of data analytics project in a previous work. The overall data analytics process in 

the previous work without using the enriched analytics model is first introduced. Then, the 

reproduction of the process using the proposed enriched analytics model is elaborated. 

Finally, the utilization of the enriched analytics model and the benefits of using it are 

discussed.

4.1 Development of A Bayesian Network for Predicting Energy Consumption of Injection 
moulding Processes

In a previous study (Li et al., 2017), a BN model was developed to predict the energy 

consumption of the injection moulding process. The advantages of using a BN to predict 

energy consumption of injection moulding are: (1) BN is suitable for small data sets. To 

train a BN model for energy estimation, data from part design, mould design, material, and 

machine needs to be available. Although injection moulding is one of the mass-production 

processes, the collected data for different products/parts may be limited. (2) A BN allows 

efficient use of different sources of knowledge: knowledge provided by domain experts and 

the knowledge learned from data. The ability to learn a BN structure from data can help the 

user to identify new relationships between parameters, which in turn can be used for process 
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improvement. (3) A BN can answer queries based on incomplete information. A designer 

may not possess all the information like the properties of the injection moulding machine 

that will be used for producing the part. A BN can provide an estimate for a query 

considering nearly all possible values for that missing information based on the knowledge 

learned from data.

To study the role of SM domain knowledge in developing the BN, a BN model was first 

created by learning its structure and parameters from data using the ‘bnlearn’ package 

(Scutari and Denis, 2014) in R without the intervention of the domain knowledge. The BN 

nodes were selected from the parameters related to product, material, machine, process, and 

environment, etc. (Table I). The parameters were extracted from Nannapaneni et al. (2016). 

After the learning process, prediction correctness was tested. It was achieved at 76.8%, 

which is relatively low for effective prediction. For more information about the definition of 

prediction correctness, please refer to Li et al. (2017). By carefully studying the structure of 

the learned BN (Figure 2), we found that the learned structure missed finding important 

relationships and captured wrong/weak relationships instead. To improve the learned model, 

expert knowledge was applied to identify the problems in the model. The BN development 

process is shown in Figure 3.

Due to the lack of LCA (Life-cycle assessment) data from real injection moulding processes, 

a simulation-based data generator had been developed to generate the data. This data 

generator had been validated against experimental data from the literature (Ribeiro, 2012). 

Before learning the structure from data, a whitelist which captures important relationships 

between nodes was created. A whitelist, which contains arcs that need to be included in the 

BN, was created based on the knowledge found from mathematical equations (shown in 

Table II) for calculating the energy consumption of injection moulding processes. The 

equations are extracted from Madan et al. (2013). An equation can be considered as defining 

the parent/child relationships for the equation variables. The independent variables (i.e., 

variables on the right-hand side) of an equation are treated as the parent nodes of the 

dependent variable (i.e., the variable on the left-hand side).

Additionally, a blacklist, which prevents the BN from creating arcs between nodes, was 

created from the problems identified in the learned BN structure. Through carefully 

examining the learned BN structure (Figure 2), four problems were identified: (1) a 

parameter node (i.e., nodes which represent material, product, or process parameters) from 

one of the five categories (i.e., product, process, material, machine, and environment) should 

not have causal relationships with parameter nodes from the other four categories. For 

example, in Figure 2, material-related parameters like density ρ and heat capacity Cp are 

found to not dependent on material but are related to a product-related property – maximum 

wall thickness hm, which is wrong. Though there are recommendations for the minimum 

wall thickness according to the injection moulded materials, hm are normally designed as 

thin as possible. This is because thinner walls require less material and less cooling time. 

However, there are no recommendations for hm according to different materials. (2) The 

concept nodes like Material and Machine should not be related to the parameters from 

categories other than Material and Machine, respectively. Figure 2 shows that machine 

property nodes of maximum clamp stroke s and injection power Pinj are found to be 
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dependent on node Material. However, the injection moulding machine is selected based on 

the shot size and the maximum clamp stroke, which are dependent on the product not 

material. (3) Parameter nodes within a category should not have parent-child relationships. It 

is true that within some categories, like Machine and Material, parameter nodes are related. 

But mainly material type or machine type determines the properties. (4) The parameter 

nodes from the five categories should not have any parent nodes other than the concept 

nodes. It can be observed in Figure 2 that parameter nodes from the five categories like 

injection temperature Tinj and ejection temperature Tej are found to have parent nodes in the 

Others category like injection tinj. However, there should not have causal relationships 

between Tinj and tinj.

By utilizing the whitelist and the blacklist, an iterative approach to learn the BN structure 

from data was applied (Figure 3). By using the iterative approach, the wrong arcs can be 

easily identified and handled during each iteration. With the whitelist and the iteratively 

updated blacklist, the learning procedure is repeated until no wrong arcs can be found in the 

BN structure. After learning the BN parameters (i.e., conditional probability tables for 

discrete nodes and Gaussian distributions for continuous nodes) and verifying the BN 

model, the development of the BN was finalized. The prediction correctness of the BN 

model developed with the domain knowledge was achieved at 85%, which is sufficient and 

is higher than the learned BN model (Figure 2).

4.2 Development of the Enriched Analytics model

In this section, the enriched analytics model for the BN is developed. The development of 

each individual model and the integration between the models are introduced. In this paper, 

OWL 2 (W3C, 2012) is used as the format for implementing all the models.

4.2.1 Information Model—Since the application domain of this case study is targeting 

at estimating energy consumption of injection moulding processes, the information model 

used in this paper is selected from a previous work (Zhang et al., 2015). This information 

model was developed to facilitate the sustainability evaluation in the manufacturing domain. 

This model was also extended with respect to the injection moulding process. A compact 

version of the information model, or the Sustainable Manufacturing Ontology (SMO), is 

shown in Figure 4. A brief explanation of some important concepts in the information model 

is narrated below:

• Product: A Product describes an object which is synthesized by a set of parts or 

subassemblies (each subassembly itself is also a product). The spatial relationships and 

contact constraints between parts are also defined within the Product class.

• Part: A Part is a single component that is used to construct a Product. A Part is a minimal 

functional unit of a product; thereby a part must be formed with a type of material and it has 

a certain geometrical shape.

• Material: A Material describes a kind of material associated with a Part. A Material has a 

list of properties like mechanical properties, chemical properties, thermal properties, etc. 

which are captured in the Parameter class.
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• Process Plan: A ProcessPlan defines a sequence of manufacturing operations to produce a 

Part. The types of processes, types of equipment and operation parameters are specified in a 

ProcessPlan.

• Process: A Process describes a series of operations that need to be carried out to produce 

the final product. A Process can be a ManufacturingProcess or an AssemblyProcess. A 

ManufacturingProcess is a process that transforms a raw material into a finished or a semi-

finished Part. It can be a machining process, a casting process, a forging process, or a heat 

treatment process, etc. All the ManufacturingProcesses required to be carried out to produce 

a Part construct a ProcessPlan.

• Activity: An Activity is a minimal operational unit of a Process. For example, an Activity 
of a typical machining process can be setting up the machine, fastening the workpiece, 

positioning the cutting tool, injecting the cutting fluid, etc.

• Environment: The Environment class describes the environment related concepts of an 

Activity or a Process. All types of the environmental impacts are defined here, and each type 

of impacts is represented as a sustainability indicator. The sustainability of a Part or a 

Product can be further evaluated by considering the Processes that are carried out to produce 

the Part or Product.

• Parameter: A Parameter represents an entity that describes a property of a manufacturing 

concept. The properties of a Product, a Part, a Material, a Process, and an Activity are 

modelled as Parameters.

• Equipment: An Equipment can be a tool or a machine on the shop floor.

4.2.2 Physics-based Model—The physics-based models used in developing the BN 

are the mathematical equations which estimate the energy consumption of injection 

moulding (Table II). To represent mathematical equations in OWL, the OntoModel proposed 

by Suresh et al. (2010) has been used. In OntoModel (Figure 5), other than capturing the 

assumption, universal constant and dependent variable, etc., an equation can be represented 

using the Content ML in MathML. In Figure 5, the black boxes represent owl:classes; the 

green boxes are datatypes; the red arrows indicate the has-a object properties; the green 

arrows indicate the data properties. The OntoModel is modified so that it can be connected 

to the domain information model (i.e., SMO). The Variable class in OntoModel is connected 

to the Parameter class in the SMO, which connects the variables in an equation to their 

domain meanings.

4.2.3 Analytics model—To represent a BN (i.e., the analytics model) in OWL, an 

OWL-based BN model is developed. Figure 6 demonstrates this OWL-based BN model in a 

tree structure. The class names in this model are borrowed from PMML 4.3 - Bayesian 

Network Models (Data Mining Group, 2016). The structure of the PMML BN model is 

slightly modified (e.g., adding BayesianNetworkNode class, replacing the ‘has-a’ 

relationship between ContinuousDistribution and NormalDistribution with the 

‘hasSubClass’ relationship) to better fit the OWL structure. This OWL-based BN model has 
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been verified with the BN example provided on the webpage of the PMML BN model. The 

verification proves the OWL-based BN model to be capable of fully representing BNs.

All the parameters in Table I are modelled as the BayesianNetworkNode instances in the 

OWL-based BN model. The semantic connection between a BayesianNetworkNode and a 

manufacturing concept in the SMO is achieved by an isAssociateTo(BayesianNetworkNode, 
domainConcept) object property.

4.2.4 Rationales—To improve the BN structure with domain knowledge, the rationales 

to facilitate the creation of the whitelist and the blacklist have been developed. The whitelist 

rules/rationales are created to capture the BN node relationships provided from the physics-

based models (i.e., equations) and domain rules. Based on the identified four problems of the 

learned BN structure (section 4.1), blacklist rules/rationales are developed. The blacklist 

rules can be used to avoid incorrect structures in the BN. All the whitelist and blacklist rules 

are modelled using SWRL in OWL. Object property hasParentNode represent a whitelist 

relationship. Object property hasWrongArc represents a blacklist relationship. To enhance 

the traceability of the rationales, each rule has its own corresponding numbered object 

property. For example, object property hasParentNode in whitelist rule 1 is hasParentNode1. 

The whitelist rules and blacklist rules are described as follows.

Whitelist Rule 1: This rule is created based on the physics-based models (i.e., equations in 

Table II). As discussed before, an equation can be considered as defining the parent/child 

relationships for the equation variables. The independent variables (i.e., variables on the 

right-hand side of an equation) of an equation are treated as the parents of the dependent 

variable (i.e., the variable on the left-hand side of an equation). Object property 

hasParentNode1 represents a parent/child relationship between two BayesienNetworkNodes.

DependentVariable(?dv), IndependentVariable(?iv), MathematicModel(?m),

Variable(?v_dv), Variable(?v_iv), Parameter(?p1), Parameter(?p2),

BayesianNetworkNode(?n1), BayesianNetworkNode(?n2),

hasDependentVariable(?m, ?dv), hasIndependentVariable(?m, ?iv), hasVariable(?

dv, ?v_dv), hasVariable(?iv, ?v_iv), isAssociatedWith(?n1, ?p1), 

isAssociatedWith(?n2, ?p2), isAssociatedWith(?v_dv, ?p1), isAssociatedWith(?

v_iv, ?p2) -> hasParentNode1(?n1, ?n2)

Whitelist Rule 2: According to the classification of parameters in Table I, the 

manufacturing concept nodes (i.e., Machine and Machine) should have parent-child 

relationships with their related parameter nodes.

ManufacturingConcept(?mc), Parameter(?p), BayesianNetworkNode(?n1), 

BayesianNetworkNode(?n2), isAssociatedWith(?n1, ?mc), isAssociatedWith(?n2, ?

p), hasParameter(?mc, ?p) -> hasParentNode2(?n2, ?n1)
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Whitelist Rule 3: Some process parameters in the injection moulding process are selected 

according to the material. For example, the selection of Tinj, Tej, Tm, and pi are based on the 

material type (Boothroyd et al., 2011). So, causal relationships between the Material node 

and these process parameters should be captured.

Material(?m), Parameter(?pp), Process(?p), BayesianNetworkNode(?n_m), 

BayesianNetworkNode(?n_pp), isAssociatedWith(?n_m, ?m), isAssociatedWith(?

n_pp, ?pp), hasParameter(?p, ?pp) -> hasParentNode3(?n_pp, ?n_m)

Blacklist Rule 1: To address the first problem of the learned BN structure, a set of rules to 

prevent connecting parameter nodes from different categories are created. Here, the rule to 

prevent parameter nodes from the Material and Product categories to be connected is 

demonstrated.

Material(?material), Parameter(?p_material), Parameter(?p_product),

Product(?product), BayesianNetworkNode(?n_p_material),

BayesianNetworkNode(?n_p_product), isAssociatedWith(?n_p_material,

?p_material), isAssociatedWith(?n_p_product, ?p_product),

hasParameter(?material, ?p_material), hasParameter(?product, ?p_product) -> 

hasWrongArc1(?n_p_material, ?n_p_product), hasWrongArc1(?n_p_product, ?

n_p_material)

Blacklist Rule 2: This rule addresses problem # 2. It avoids the Material and the Machine 
nodes to be connected to the parameter nodes from other categories. An example rule is 

shown below to prevent the Material node to be connected to the machine-related parameter 

nodes.

Machine(?machine), Material(?material), Parameter(?p_machine), 

BayesianNetworkNode(?n_material), BayesianNetworkNode(?n_p_machine), 

isAssociatedWith(?n_material, ?material), isAssociatedWith(?n_p_machine, ?

p_machine), hasParameter(?machine, ?p_machine) -> hasWrongArc2(?n_material, ?

n_p_machine), hasWrongArc2(?n_p_machine, ?n_material)

Blacklist Rule 3: Targeting at problem # 3, this blacklist rule avoids the parameter nodes 

within one category to be connected to each other. The example for the material category is 

shown below.

Material(?m), Parameter(?p1), Parameter(?p2), BayesianNetworkNode(?n1), 

BayesianNetworkNode(?n2), isAssociatedWith(?n1, ?p1), isAssociatedWith(?n2, ?

p2), hasParameter(?m, ?p1), hasParameter(?m, ?p2), DifferentFrom (?n1, ?n2) -

> hasWrongArc3(?n1, ?n2)
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Blacklist Rule 4: To prevent the parameter nodes from the 5 categories to have any parent 

nodes other than the ones defined by the whitelist rules (problem 4), an example rule is 

demonstrated below for the process category. In this rule, the “hasTempParentNode” object 

property represents an arc learned from data.

Process(?process), Parameter(?pm), hasParameter(?process, ?pm), 

BayesianNetworkNode(?n_p_m), BayesianNetworkNode(?n_mc), isAssociatedWith(?

n_p_m, ?pm), hasTempParentNode(?n_p_m, ?n_mc) -> hasWrongArc4(?n_p_m, ?n_mc)

4.2.5 Representation of the Enriched BN Model in OWL—During the 

development of the enriched BN model, the individual models for the information model, 

analytics model, and physics-based model are separately created first. These models are 

general and could be applied to any applications and do not have any populated instances. 

After verifying that all the individual OWL-based models can sufficiently represent the 

models, the enriched analytics model is then created by importing the three OWL-based 

models into the OWL-based enriched analytics model. Instances of the domain concepts in 

the SMO, the BayesianNetworkNodes in the BN model, and the equations represented by 

the OntoModel are populated. The whitelist and blacklist rules are then created using the 

SWRL rules. All these models and rules are implemented in protégé 5.2, which is an open-

source ontology editor. The screenshot of the enriched BN model in protégé is demonstrated 

in Figure 7.

Figure 8 shows a screenshot of reasoning the rationales (i.e., whitelist and blacklist rules). 

The object property assertions highlighted in light yellow are inferred relationships from 

reasoning the rationales. It can be observed that the rationale used to create or eliminate an 

arc can be easily tracked by using the numbered object properties.

4.3 Utilization of the Enriched Analytics model

Following the development process (Figure 3), a BN is developed (Figure 9) by utilizing the 

enriched analytics model. In the development process, the enriched analytics model has been 

used to exchange information between a domain expert and a data analyst. The domain 

expert first models the domain knowledge (integrating the information model, adding the 

physics-based model, creating rationales) for the development of the BN. Then, the data 

analyst iteratively learns the BN structure from data with the whitelist and the blacklist, 

which are extracted from the enriched BN model through a parser (that has been developed 

for this purpose). Here, the enriched BN model is used to pass the BN along with its relevant 

domain knowledge between the domain expert and the data analyst. After sending the 

enriched BN model with the learned structures, the domain expert can analyse the BN 

structure and add the corresponding rationales to improve the BN structure. The domain 

expert can directly add or modify domain knowledge on the enriched analytics model in 

GUI (Graphical User Interface) -based software tools like protégé. Figure 10 is a sequence 

diagram that shows the information exchange.
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4.4 Discussion

Two benefits have been identified during the development of the BN using the enriched 

analytics model: (1) Shortened cycle time for the analytics model development. In this case 

study, with the assistance of automatic processing and reasoning from the software tools, the 

development cycle time has been reduced from 2 hours to 15 minutes. With the formally 

defined rationales, the arcs captured by the whitelist and the blacklist can be generated 

automatically instead of working manually. (2) Eliminating human error. Through reasoning 

the formally defined rationales, more arcs in the blacklist have been identified. Some of 

these arcs can be easily missed by manual work.

These two direct benefits are brought by the enhanced interoperability and traceability of the 

enriched analytics model. From the perspective of enhancing interoperability, the enriched 

analytics model can explicitly represent the analytics models with their relevant domain 

knowledge through capturing their concepts, relationships, and rules, etc. without semantic 

ambiguity; the analytics models and their relevant domain knowledge are formally 

represented, which enables the automatic processing through software tools. From the 

perspective of enhancing traceability, the entities of an analytics model can be directly traced 

to its corresponding domain concepts; the analytics models’ structures can also be easily 

traced to the rationales which are used to create these structures. It can be expected that with 

the enhanced interoperability and traceability, more effective and efficient information 

exchange can be achieved by using the enriched analytics model in a distributed 

environment, where the domain experts and the data analysts are not necessarily in the same 

geographical area.

Further efforts need to be done to implement a platform to support the formal 

communications with the proposed enriched analytics model in real production applications. 

Technically, the parser of the OWL-based enriched analytics model is developed on top of 

OWL API (Horridge and Bechhofer, 2010). OWL API is a Java-based open-source OWL 

editor which also supports the same reasoning capability as protégé. So, the authors suggest 

to integrate OWL API-based parsers/reasoners into the industrial tools to support the parsing 

and reasoning of the OWL-based enriched analytics model. Additionally, domain experts 

can use protégé to directly edit an enriched analytics model since protégé has a friendly user 

interface for knowledge modelling.

5. Conclusion

This paper proposed a methodology to enrich analytics models with domain knowledge to 

facilitate data analytics in a Smart Manufacturing environment. The motivation for 

encapsulating an analytics model and its domain knowledge in a single model came from the 

need for interoperability and traceability. To model the SM domain knowledge, this paper 

proposed to explicitly and formally represent domain information models, physics-based 

models, and rationales. Information models are used to bridge the semantic gaps between the 

SM domain and the data analytics applications. By formally representing the physics-based 

models, the knowledge captured in the physics-based models can be reused. The rationales, 

which are used to develop the analytics model, are digitally documented to enhance 

traceability. The formal representation of the targeting analytics model can be modelled 
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based on the existing standards like PMML or PFA. To enrich an analytics model, the 

formally represented domain information models, physics-based models, and rationales 

should be semantically integrated with the analytics model.

A case study from a previous study, where a Bayesian Network model was developed to 

predict the energy consumption of the injection moulding process, was used to illustrate the 

development and utilization of the enriched analytics model. The components of the 

enriched analytics model are: a manufacturing domain information model, a set of 

mathematical equations as the physics-based models, the whitelist/blacklist rationales for 

constructing the BN, and the formally represented BN model. All these models are 

implemented using OWL. The case study demonstrates the benefits from utilizing the 

enriched analytics model: shortened cycle time for model development and eliminating 

human error. These two benefits come from the enhanced interoperability and traceability of 

the analytics model and its relevant domain knowledge.
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Figure 1. 
Enriching Analytics model with Domain Knowledge
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Figure 2. 
A BN Structure Learned from Data
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Figure 3. 
Development Process for the BN
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Figure 4. 
A UML Representation of the Sustainable Manufacturing Ontology (SMO)
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Figure 5. 
OntoModel and Its Connection to the SMO
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Figure 6. 
A Tree Presentation of the OWL-based BN Model
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Figure 7. 
The Enriched BN Model in protégé 5.2
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Figure 8. 
Inferred Whitelist and Blacklist Relationships in protégé 5.2
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Figure 9. 
The final BN Structure
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Figure 10. 
Information Exchange Using the Enriched Analytics model
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TABLE I.

Parameters for Modelling the Bayesian Network Nodes

Category Name Unit Description

Product Vp m3 Volume of the part

Δ N/A Percentage of volume used for gating system

d mm Maximum depth of the part

n N/A Number of cavities

hm mm Maximum wall thickness

Material Material N/A Material type for the injection moulded material

ρ kg/m3 Specific density of polymer

γ mm2/s Thermal diffusivity of the material

Cp J/kg°C Heat capacity of the polymer

Hf kJ/kg Heat of fusion

ϵ N/A Percentage shrinkage rate of the polymer

Machine Machine N/A Machine type for the injection moulding machine

Pb kW Power consumption when the machine is idling

s mm Maximum clamp stroke

td s Dry cycle time

Pinj kW Machine injection power

Process pi MPa Injection pressure

Tm °C Recommended mould temperature

Tinj °C Injection temperature

Tej °C Ejection temperature

Environment Tpol °C Initial temperature of the polymer

Others Q m3 Maximum flow rate for injection

Qavg m3 Average flow rate

Pm kW Melting power

Vs m3 Volume of one shot including gating system

Em kJ Energy consumption in melting

Einj kJ Energy consumption of injection

tinj s Injection time

Ec kJ Energy consumption in cooling

COP N/A Coefficient of performance

Er kJ Energy consumption in resetting

tr s Resetting time

Eshot kJ Energy consumption of a shot

η N/A Efficiency

tcyc s Cycle time
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Category Name Unit Description

Epart kJ Energy consumption of a part
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TABLE II.

Equations for Estimating Energy Consumption of Injection Moulding

Stage Equations

Melting Q = Pinj∗ 1000/pi, Qavg = 0.5Q

Pm =
ρQavgCp Tinj − Tpol + ρQavgHf

1000
V s = V p 1 + ϵ

100 + Δ
100 n, Em = Pm ∗ V s /Q

Injection Einj = Pinjtinj, tinj =
2V spi
Pinj

Cooling
Ec =

ρV sCp Tinj − Tej + ρV sHf
1000 ∗ COP , tc =

ℎm2

π2γ
ln

4 Tinj − Tm
Tej − Tm

Resetting Er = 0.25 Einj + Ec + Em , tr = 1 + 1.75td
2d + 5

s

Whole Process Esℎot = 1.2 ×
0.75Em + Einj

ηinj
+

Er
ηr

+
Ec
ηc

+
0.25Em

ηm
+ Pbtcyc

tcyc = tinj + tc + tr, Epart =
Esℎot

n
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