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Abstract

Reverse supply chains (RSC) may provide the benefits of reducing pollu-
tion, creating new jobs, and generating income from the recyclable materials.
At the same time, their implementation comes with higher risks and less pre-
dictable outcomes. The model presented in this paper aims to help managers
to better evaluate risks and opportunities while deciding on the design of a
RSC in order to manage the reverse flow of end-of-life (EOL) products in
an existing supply chain. The goal is to set up the disassembly and recov-
ery facilities and organize the flows between them while seeking to maximize
total network profit. We propose a two-stage mixed-integer programming
model with multiple periods where the budget available for decisions at each
period depends on the outcomes of previous periods. We consider that the
demand for EOL products, the quantity of products returned as well as the
time required to reprocess these products are uncertain. To incorporate this
uncertainty into the decision making process, a discrete set of scenarios is
defined. In order to take into account the decision maker’s behavior in the
areas of risks and opportunities, we propose to use R∗ criterion to select
the final solution. To demonstrate the significance and applicability of the
developed model and the relevance of R∗ criterion, never used before for de-
sign problems in logistics, we conduct numerical investigations on an adapted
case study from the literature and do a comparison with classic well-known
criteria.
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1. Introduction

The American Reverse Logistics Executive council defines reverse logis-
tics (RL) as ”the process of planning, implementing, and controlling the
efficient, cost effective flow of raw materials, in-process inventory, finished
goods and related information from the point of consumption to the point of
origin for the purpose of recapturing value or proper disposal” [Rogers and
Tibben-Lembke, 1998]. With increasing awareness about the environmental
impacts of manufacturing such as greenhouse gas impacts, the acceleration
in resource depletion as well as the increase in solid waste, several coun-
tries are promoting the development of collection and recycling systems by
encouraging Reverse Supply Chains (RSC). These are intended to reduce en-
vironmental pollution, boost the economy by creating new jobs, and generate
income from the recyclable materials. At the same time, new economic risks
arise out of less predictable reverse flows of EOL products coming from the
customer in terms of quantity but also quality of returned products, a wider
variety of flow sources, more complex functions in terms of cost, services and
environmental impacts, and unexplored market opportunities [Hanafi et al.,
2007]. The reverse flow is not only more difficult to predict but also more
difficult to control. [Agrawal et al., 2018] showed on four case studies of com-
panies involved in RL processes that all aspect of RL management have to be
accurately investigated in order to make the reprocessing of EOL products
beneficial, from the prediction of the customer’s behaviour to the legislation
including the business model of the company. Thus, the existing models
used for forward supply chain design have to be adapted in order to inte-
grate a more complex network structure of RSC. The combination of both
is referred to as Closed-Loop Supply Chains (CLSC) defined by [Guide Jr
and Van Wassenhove, 2009] as ”systems to maximize value creation over the
entire life cycle of a product with dynamic recovery of value from different
types and volumes of returns over times” (see Figure. 1).

A significant number of recent publications have been devoted to the
design problem for RSC and CLSC. This fact reflects the importance and
relevance of this problem in Supply Chain Management (SCM). Comprehen-
sive reviews of existing approaches can be found in [Fleischmann et al., 2000,
Govindan et al., 2017]. The focus on CLSC is more relevant for OEM (Orig-
inal Equipment Manufacturer) since designing the forward and reverse flows
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Figure 1: Illustration of a CLSC

separately results in sub-optimal solutions [Chen et al., 2015, Fleischmann
et al., 2001, Üster et al., 2007].

The literature acknowledges uncertainty as being the most challenging
factor in design of CLSC and describes various sources of uncertainty [Govin-
dan et al., 2017]. However, existing models dealing with uncertainty have
mainly been designed in a risk-oriented context [Jabbarzadeh et al., 2018,
Zeballos et al., 2016]. As a result, they omit the psychological evidence that
decision makers, in many cases, do not consider uncertainty in the same light
depending on whether it is perceived as a risk or an opportunity [Grabisch,
2006]. Therefore, the scope for opportunities remains under-explored and
potential economic benefits are often underestimated in the decision making
process.

In order to help Decision Makers (DM) to better investigate the oppor-
tunities offered by the creation of a RSC, we propose to use a novel R∗
criterion to select the final solution instead of conservative minmax criterion.
Recently, the theoretical properties of R∗ have been studied for qualitative
sequential decision problems with the focus on the qualitative aspect of this
aggregate function [Fargier and Guillaume, 2018a]. However, this criterion
has never been used in linear programming for design problems in logistics.
In this contribution, we show how it can be applied in the context of creating
of a CLSC and what benefits it can bring to the decision makers.

3



We consider a closed-loop supply chain with three echelons in the forward
direction (i.e. suppliers, plants, and distribution centers) and five echelons
in the backward direction (i.e. collection center, dismantler, repair center,
recycling center and disposal). This configuration matches a Reuse Recycle
Recover (3R) framework. Such a structure is the most frequently used in the
literature [Kirchherr et al., 2017] and can be adapted for various industrial
environments and sectors.

We develop a multi-period model where the budget available for expansion
at each period depends on the decisions taken in previous periods and the
profit accumulated. Although rarely addressed in the literature [Badri et al.,
2017, Dubey et al., 2015], this setting corresponds to the strategies of OEM
who are often cautious about reverse logistics and its outcomes [Ko and
Evans, 2007, Lee and Dong, 2009].

As several studies strongly suggest (see Table 1), the most influential
factors of uncertainty in CLSC are considered to be the initial demand, the
quantity and the quality of returned products. Thus, the uncertainty in the
decision making process of the presented model is related to these factors.
It is easy to see that in comparison to the forward supply chain where the
main uncertain factor is the initial demand, the reverse flow brings two addi-
tional uncertainty factors related to the quantity and quality of the returned
products. In order to be able to take into account the quality of returned
products in a quantitative approach, we consider that the time required to
reprocess EOL products can be related to their quality, accounting the fact
that it will be easier and faster to treat good quality products than products
of poor quality. Taking into account these uncertainties, a discrete set of
scenarios is defined. The objective is to maximize the total network profit.

The paper is organized in the following way. Section 2 reviews the math-
ematical models and solution approaches proposed in the literature to design
CLSC. In Section 3, we recall the notions of two-stage programming and fre-
quently used two-stage programming methods. In Section 4, we expose the
idea behind R∗ criterion. Section 5 presents the two-stage MIP formulation
for the optimization problem considered. In Section 6, we describe the devel-
oped mathematical model. Section 7 deals with computational experiments
applied to a case study of a lead/acid battery CLSC network [Subulan et al.,
2015]. The obtained results are used to derive managerial insights. Firstly,
we compare R∗ criterion with classic criteria from the literature. Then, we
show its benefits for the DM. Particularly, we demonstrate that it allows
the DM to configure the CLSC in a way to make the most of possible op-
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portunities while controlling the level of potential risk. Section 8 provides
conclusions as well as future research options.

2. Literature review

The literature review is organized in the following way: firstly, CLSC
design is discussed, secondly, models addressing the uncertainty are analyzed.

Research on the design of CLSC was initiated in the 1990s. It was driven
by new laws and policies introduced by governments in order to limit the
environmental impact of EOL products. The first publications on CLSC
provided mostly case studies [Jayaraman et al., 1999, Krikke et al., 2001].

During last decades, the CLSC design problem has been receiving an
increasing amount of attention in the academic world resulting in an impor-
tant number of models being developed for different settings. The impact of
different logistics structures on the profitability of re-manufacturing systems
has been studied. Because of the extensive literature available, the following
review is focused on particular settings relevant to our study.

[Geyer et al., 2007] analyzed the economic effect of product life cycle and
component durability on the cost saving potential of CLSC and showed that
production cost structure, collection rate, product life cycle and component
durability must be carefully coordinated in order to maximize cost savings
in CLSC network.

[Guide Jr et al., 2006] demonstrated that companies facing large and in-
creasing flows of EOL products should have a different RL network structure
than the ones with a low rate of returned products.

[Atasu et al., 2008] showed that the profitability of RL systems strongly
depends on the product life cycle as well as on the competition faced by
OEMs. They also demonstrated that there exists a cost threshold that makes
re-manufacturing a profitable alternative.

A strategic vision of the expansion of the CLSC has been introduced
through multi-period models where facilities can be set up at any period of
time [Badri et al., 2017, Dubey et al., 2015]. [De Rosa et al., 2013] consid-
ered a multi-period CLSC network design problem in which facility capacities
could be increased or decreased dynamically over time for all echelons. Fa-
cility and depot locations could be changed and the type of depots and their
general size could be modified. More examples of recent dynamic CLSC
models are available in [Khatami et al., 2015, Mirmajlesi and Shafaei, 2016].
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Several modeling approaches have been used in the literature in order
to address uncertainty which is one of the most challenging issues in CLSC
design [Govindan et al., 2017]. The most commonly used approach is the
stochastic programming applied under the hypothesis of the known proba-
bility distributions of uncertain parameters. [Soleimani and Govindan, 2014]
proposed a two-stage stochastic programming approach in order to design an
RSC. The conditional value at risk (CVaR) was used as a risk estimator and
the return amounts and prices of returned products were considered as two
stochastic parameters. Other recent examples of stochastic programming for
RL can be found in [Amin et al., 2017, Ayvaz and Bolat, 2014, Ayvaz et al.,
2015, Habibi et al., 2017, Zhang and Unnikrishnan, 2016].

However, the data about probability distribution is often missing or not
reliable. In this case, the use of the stochastic method does not guarantee
suitable results. To overcome this difficulty, fuzzy programming is relatively
frequently used [Zadeh, 1999]. Fuzziness helps to model vague information.
Two main families of fuzzy approaches coexist in the literature. In the first
case, a defuzzification is first performed and the deterministic optimization
methods are used to solve the problem obtained. In the second case, the
possibility theory is used to express the objective. [Subulan et al., 2015]
proposed a fuzzy possibilistic programming model for designing a forward-
reverse logistics network with hybrid facilities in the presence of uncertainty
on demand quantities and quality of returns as well as the uncertainty of
variable costs and random facility disruptions. The fuzzy goal programming
model with different priorities was used to solve the developed model. A
case study from the lead/acid industry in Turkey was presented. For more
examples of fuzzy approach, see [Fallah et al., 2015, Govindan et al., 2016,
Hatefi et al., 2015,b, Niknejad and Petrovic, 2014, Özceylan, 2016, Tosarkani
and Amin, 2018].

Finally, if there is no available information about the uncertain parame-
ters, a robust optimization can be used to search for a reliable solution even
for the worst case scenario, a scenario being one of the possible realizations
of the uncertain parameters. For instance, [Ramezani et al., 2013] presented
a robust design model for a generic multi-product, multi-echelon CLSC. The
uncertainty in demand and the return rate was described in the model by a
finite set of possible scenarios. The scenario relaxation algorithm was em-
ployed to reduce the solution time. Another robust model was studied by
[De Rosa et al., 2013] who considered a multi-stage, multi-period, capaci-
tated, CLSC design problem with discrete uncertainty. The problem was
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solved by minimizing the expectations of relative regrets compared to a de-
terministic model. For more detail about this formulation see Section 3.4.
More examples of the use of robust optimization for CLSC design can be
found in [Pishvaee et al., 2011].

The robust approach is known to be very conservative in the sense that
too much weight is given to the worst case. To make it less conservative, the
set of scenarios can be reduced with different methods. For instance, [Soyster,
1973] proposed a linear optimization model to construct a solution that is
feasible for all data that belong to a convex set. [Ben-Tal and Nemirovski,
1998] considered uncertain parameters that are elliptic, this involves solving
the robust counterparts of the nominal problem in the form of conic quadratic
problems. However, this approach leads to nonlinear models, which demand
more computational time. [Bertsimas et al., 2011] proposed to flexibly adjust
the level of conservatism of the robust solutions in terms of probabilistic
bounds of constraint violations. These three approaches have been compared
by [Dubey et al., 2015] for the problem of a multi-period and multi-product
responsive sustainable supply chain design. The parameter-sensitive analysis
showed that Soyster’s approach was still too conservative, and confirmed
that Ben-Tal and Nemirovski’s approach and Bertsimas and Sim’s approach
enhanced the results (with Bertsimas and Sim’s approach being slightly faster
in the experiments performed).

A summary of the main contributions in 2014-2018 for the CLSC design
under uncertainty is presented in Table 1. The anterior work was analyzed in
the review of [Govindan et al., 2017]. Column 2 corresponds to the uncertain
parameters considered in the model, Columns 3 to 5 correspond to the type
of model they used to take into account those uncertain parameters, Column
6 reports the solution method employed.

All the models found in the literature are risk-oriented and never distin-
guish hazard from opportunity. In order to overcome this drawback, in this
paper, we introduce R∗ criterion for the CLSC design problem. It assumes
that the DM is pessimistic in an hazardous zone and optimistic in an oppor-
tunity zone. This is considered under the assumption that the probability
distributions of such uncertain parameters as product return quantity and
demand and time of reprocessing EOL products are unknown.
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Article Uncertainty S F R Solution method
[Amin and Zhang, 2013] R, DR, AF x MIP
[Amin et al., 2017] D, R x MIP
[Ayvaz and Bolat, 2014] R x MIP
[Ayvaz et al., 2015] R, C, PA x MIP + SAA
[Badri et al., 2017] D, R x MIP
[Dubey et al., 2015] R, D x MIP
[Fallah et al., 2015] R, C, CA x MIP
[Govindan et al., 2016] D, C, CA, S x improved GA
[Habibi et al., 2017] D x MIP
[Haddadsisakht and Ryan, 2018] R, D, CT x x Bender’s decomposition
[Hatefi et al., 2015] D, R, C, CA x MIP
[Hatefi et al., 2015b] x MIP
[Jeihoonian et al., 2016] R x Bender’s decomposition
[Jeihoonian et al., 2017] D, R, C x L-shaped method
[Keyvanshokooh et al., 2016] R, C x x Bender’s decomposition
[Khatami et al., 2015] R x Bender’s decomposition
[Niknejad and Petrovic, 2014] R, D x MIP

[Özceylan, 2016] D, CA, DR x MIP
[Sadjadi et al., 2014] R x x x Memetic based heuristic
[Soleimani and Govindan, 2014] D, BP, SP x MIP
[Subulan et al., 2015] D, R, C, AF x MIP
[Subulan et al., 2015b] D, R, C, AF x x MIP
[Tosarkani and Amin, 2018] R, D, C x MIP
[Zhalechian et al., 2016] R, D, C, DS x x MIP + Meta-heuristic
[Zhang and Unnikrishnan, 2016] D x MIP
Our paper R, D, RT x MIP

Table 1: An overview of the state-of-the-art

Parameters. R: Product Return quality and/or quantity, D: Demand, C: Cost, CA:
Capacities, DR: Disposal Rate, PA: Proportion of returned products for different

activities, SP: Selling Price, AF: Availability of Facilities, BP: Buying Price, CT: Carbon
Tax, DS: Distances, S: Social Parameters, RT: Reprocessing time of products

Type of models. S: Stochastic, F: Fuzzy, R: Robust

3. Background

To provide a better understanding of the mathematical model defined in
Section 4, we recall some general notions in this section. In particular, we
give a brief description of two-stage programming and provide examples of
its application.
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3.1. Two-stage programming

In two-stage programming, the decision process is conceptually divided
into two stages. In the first one, the values for decision variables (y) are
chosen before the realization of the scenario is revealed. The values of the
second stage decision variable (x) are calculated for the known values of
uncertain parameters.

Let Γ be a set of discrete scenarios with Γ = 1...S, s ∈ Γ. The general
formulation of two-stage programming in the case of maximization of profit
can be written in the following way:

maxy∈Y [f
1(y) + g(Q1(y), ..., QS(y))] (1)

Where Qs(y) = maxx∈Xy,s f 2
s (x) ∀s ∈ Γ

f 1(y) is the evaluation function taking into account scenario-independent
variables (or first-stage variables), f 2

s (x) is the evaluation function consider-
ing the scenario-dependent variables (or second-stage variables) and g is an
aggregation function. For more information about two-stage programming
concepts and properties, the reader can refer to [Shapiro et al., 2009].

Two-stage programming is widely applied in the field of RL because it
faithfully reproduces the logic of RSC implementation: the facility location
problem often being the first stage problem and the allocation problem the
second stage one. Indeed, opening and closing a facility is both an expensive
and time-consuming process. On the other hand, the quantity of flows be-
tween facilities can be easily adapted to the choice of facility location. For
instance, [Kara and Onut, 2010] proposed a two-stage programming model
for the location-allocation problem in a paper recycling RSC.

3.2. Robust formulation

In a two-stage robust formulation, the aggregation function g is the max-
imum and the function Qs is the minimum. In this way, the minimum profit
is maximized over all scenarios [Ramezani et al., 2014]:

maxy∈Y [f
1(y) + mins∈Γ Qs(y)] (2)

Where Qs(y) = maxx∈Xy,s f 2
s (x) ∀s ∈ Γ

3.3. Average formulation

In a two-stage average formulation, the aggregation function g is the
average of the different profits over all scenarios. Each scenario has an equal
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weight in the final solution. The objective of a two-stage average formulation
can be written as follows:

maxy∈Y f 1(y) + 1
S
∗
∑

s(Qs(y)) (3)

Where Qs(y) = maxx∈Xy,s f 2
s (x) ∀s ∈ Γ

This formulation is used in stochastic programming when the probability
distribution is uniform.

3.4. Regret Average formulation

The two-stage regret average formulation searches for a optimal solution
for each scenario separately and then minimizes the average relative regret
overall scenarios compared to the optimal solutions. This formulation is used
in [De Rosa et al., 2013] and can be written as follows:

maxy∈Y
∑

s∈Γ
f1(y)+Qs(y)

Fs
(4)

Where Fs = maxy∈Y [f
1(y) +Qs(y)] ∀s ∈ Γ

Here, Fs is the total profit of scenario s for the optimal solution.

3.5. Proposed solution method

We propose to use a new criterion R∗ capable of taking the DM perception
of risks and opportunities into account. In recent literature, this criterion
has been used to solve qualitative sequential decision problems [Fargier and
Guillaume, 2018b], but it has never been studied in the context of SCM.

With R∗ criterion, the DM can distinguish the areas of risk and oppor-
tunity by using a threshold of the expected profit e. If the solution provided
by the optimisation is lower than expected, then the DM is in a risky zone, if
the value of the profit is greater than expected, the DM is in the opportunity
zone. The choice of the best solution for the DM depends on the zone.

Let F (x, s) be the evaluation of the objective function for solution x over
scenario s ∈ S, then mathematically R∗ can be defined in the following way:

R∗(F (x, .), e) =

{
mins∈Γ F (x, s) if ∃ s ∈ Γ : F (x, s) ≤ e
maxs∈Γ F (x, s) otherwise

(5)

R∗ specifies that if one of the values of F (x, s) is lower than or equal to e
(zone of risk) then the min operator is applied, otherwise the max is applied
(zone of opportunity).
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To illustrate how the selection works in a simple setting, let us con-
sider a case where a decision is to be made under a discrete set of scenarios
S={s1,s2}. Let f(X, s1) (resp. f(X, s2)) be the value of objective function
on scenario s1 (resp. s2). Let us consider the case where this value has to
be maximized. Let us introduce the parameter e as the risk threshold (or
neutral value) and X1 and X2 as two possible solutions. Figure 2 shows in
red the zones which will be considered by the decision maker as risky and in
green the zone of opportunity.

f(X, s1)

f(X, s2)

0 e

e

X1

X2

•

•

f(X, s1)

f(X, s2)

0 e

e
X1

X2
•

•

Figure 2: Possible solution spaces for a bipolar operator for two scenarios of uncertainty

On the left, both solutions are in the risky zone. The preferred solution
is the more robust in terms of the max-min criterion, i.e. the one with
the maximum value of the minimum objective function over scenarios (here
X2). On the right, one solution is in the risky zone and the other in the
zone of opportunity. In that case, the solution with the highest maximum
scenario in the zone of opportunity (here X1) is preferred. This approach is
capable of taking account not only of risks but also of opportunities for the
decision maker. It should be also noted that if e is equal to the value of the
robust solution obtained with max-min criterion, by definition R∗ will find
the robust solution. The DM has to be open to take some risks and loose a
pat of profit in the worst case in order to search for opportunities for other
scenarios which are not so pessimistic as the worst case.
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4. Two-stage MIP formulation for CLSC design problem

In order to integrate R∗ criterion in MIP formulation for CLSC design
problem, we introduce a new two-stage MIP formulation defined in this sec-
tion. The uncertainty of reverse flows is modeled with a discrete set of sce-
narios representing all possible and equally probable cases. Let Γ = 1...S be
the set of scenarios with s ∈ Γ. A two-stage model integrating R∗ criterion is
defined in the following way. Let y = y1, ..., yn be the scenario-independent
variables, and x = x1, ..., xn the scenario-dependent variables. f 1(y) is thus
the evaluation function for the first stage variables and f 2(x, s) for the sec-
ond stage variables. We apply R∗ criterion on both first and second stage
variables resulting in the following objective function G for the profit maxi-
mization:

G = max
y∈Y

R∗[f
1(y) +Qs(y), e] (6)

The MIP formulation corresponding to this objective is then as follows: let
e be a risk threshold, let Z and z be two continuous variables, let Ys and δs
be two binary variables.

maxZ + z (7)

S.t

(a) Z ≤ f 1(y) +Qs(y) ∀s ∈ Γ

(b) Z ≤ e

(c) f 1(y) +Qs(y) ≥ −B ∗ Ys + e(1− Ys) ∀s ∈ Γ

(d) f 1(y) +Qs(y) ≤ e ∗ Ys + (1− Ys) ∗B ∀s ∈ Γ

(e) z ≤ (1− Ys) ∗B ∀s ∈ Γ

(f)
∑S

s=1 δs = 1

(g) z ≤ f 1(y) +Qs(y) + (1− δs) ∗B ∀s ∈ Γ

Model (7) implies that if the sum of the profit for the first and second stage (or
total profit) is lower than or equal to e in any scenario then the min operator
is applied, otherwise the max operator is applied. Thus, Z corresponds to a
linearization variable for the min operator and z to a linearization variable
for the max operator. Constraints (a) and (b) imply that Z is the minimum
total profit over all scenarios unless the total profit is higher than e on all
scenarios. In that case, the Z value is set to e: the value of the objective will
therefore be too high with the value e, but this is irrelevant on the selection
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of the best solution (as this will then be performed in the opportunistic
manner). Constraints (c) and (d) define the value of Ys as: Ys = 1 if the
total profit is lower than e for scenario s and Ys = 0 otherwise. Constraint
(e) sets z = 0 if the total profit is lower than or equal to e in any scenario.
Constraint (f) translates the fact that the best case scenario can only happen
once. Constraint (g) implies that if there is no scenario for which the sum of
evaluation functions for the first and second stage variables is lower than or
equal to e then z is the maximum total profit over all scenarios.

In the next section, we describe the CLSC location-allocation problem
considered for the mathematical model here above.

5. CLSC location-allocation problem

We consider the case of a Supply Chain for an OEM: it comprises suppli-
ers, production and distribution centers. To establish a CLSC, OEM can turn
its distribution centers into Hybrid Distribution/Collection centers (HDC)
or fully collection centers to gather EOL products. New facilities may also
be implemented: new HDCs to take charge of the flow of EOL products,
dismantling centers for deconstruction of EOL products, repair centers, re-
cycling centers for procurement of raw materials and disposal (see Figure
3).

Figure 3: CLSC network

To provide a clearer understanding of the different possibilities for the
treatment of a EOL product, let us consider here an example of an item and
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the way it can move around the CLSC. After being used by a costumer, a
product is returned to a collection center. In the collection center, the quality
of the product is assessed to see if it is good enough to be repaired or recycled.
If yes, the product is brought to a dismantling center (we assume a predefined
percentage of EOL products to be dismantled). Otherwise, the product is
put in disposal. Once in the dismantling center, the product is disassembled
and another quality assessment is done. The better quality products with
potential to be repaired move on to a repair center, and the un-repairable
products are brought to a recycling center (here again we assume predefined
rates of EOL products to be repaired and recycled). After reprocessing in
the repair center, the product can either be sold in the form of spare part,
or can be re-used in the plant to be re-manufactured. If reprocessed in the
recycling center, extracted recycled material is sold to the supplier while
residual material is disposed.

We consider a multi-period horizon where the CLSC can be expanded pro-
gressively. The budget for expansion at each period depends on the decisions
taken in previous periods. Uncertainty concerns primary and secondary mar-
ket demand, the quantity of returned products and their reprocessing time
are also uncertain. We assume that the quantity of returned products de-
pends on primary market demand: the higher the demand, the higher the
quantity of EOL products collected. Thus, a discrete set of scenarios with
all equally probable cases is created. To support the DM in selecting the
solution corresponding to his/her level of optimism, we use R∗ criterion with
the two-stage MIP formulation defined in Section 4.

5.1. Mathematical model

The indexes, parameters, and decision variables of the mathematical
model are defined in Appendix A. In order to simplify the presentation
of the model, we introduce the following expressions:

- The total income: it includes all sales revenues over all periods. It is
scenario dependent and noted as Incomes.

- The total operational cost : it includes all production costs, assembling
costs, buying costs, dismantling costs and distribution costs of all cen-
ters of the chain. It is scenario dependent and noted as OpCosts.

- The total fixed cost : it is the sum of the opening costs of facilities and
operational fixed costs for all facilities opened in each period. It is
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scenario independent and noted as FixedCost.

- The total transportation cost : it is the sum of travel costs between
connected points of the Supply Chain. It is scenario dependent and
noted as TrtCosts.

All the mathematical formulations of the different expressions are avail-
able in Appendix B. From those expressions we can define the objective of
the model which is to maximize the total profit of the CLSC calculated as:

TotalProfits = Incomes −OpCosts − FixedCost− TrtCosts (8)

We can decompose the total profit in fixed and variable profits regarding the
scenario dependent and independent expressions:

TotalProfits = FixedProfit+ V ariableProfits (9)

With

FixedProfit = −FixedCost

V ariableProfits = Incomes −OpCosts − TrtCosts

Thus, taking into account the definitions of Section 4, we have f 1(y) =
−FixedCosts and f 2(x, s) = V ariableProfits, therefore:

G = maxZ + z
G = maxy∈Y R∗[FixedProfit+Qs(FixedProfit), e)
Where Qs(FixedProfit) = maxx∈Xy,s(V ariableProfits) ∀s ∈ Γ

To this objective we apply several types of constraints described as follows:

- All capacities of all centers must be respected in all periods and in
every scenarios.

- The demand is never over-satisfied. However, the demand can remain
unsatisfied and is considered lost in this case.

- The quantity of collected, dismantled, repaired and recycled EOL prod-
ucts are calculated through predefined rates.

- The flows incoming and outgoing each centers are balanced.
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- The maximum number of opened centers for a period is restricted de-
pending on the available budget.

- The budget is updated at each period regarding the number of opened
centers in the previous period.

- It is forbidden to close opened centers.

All detailed mathematical formulations of the constraints are available
in Appendix C. Finally, the additional constraints corresponding to the
expression of model 7 are taken into account in (A) to (G).

(A) Z ≤ TotalProfits ∀s ∈ S
(B) Z ≤ e1
(C) TotalProfits ≥ −B ∗ Ys + e1(1− Ys) ∀s ∈ S
(D) TotalProfits ≤ e1 ∗ Ys + (1− Ys) ∗B ∀s ∈ S
(E) z ≤ (1− Ys) ∗B ∀s ∈ S

(F )
∑S

s=1 δs = 1
(G) z ≤ TotalProfits + (1− δs) ∗B ∀s ∈ S

6. Numerical investigation

To illustrate the behaviour of the model and the usefulness of the pro-
posed solution methodology, an explicatory numerical investigation has been
performed. The obtained results are reported in this section. The data used
was adapted from the case study presented in [Subulan et al., 2015] where
a lead/acid battery CLSC network design under uncertainty was considered
for a Turkish industry. The model of [Subulan et al., 2015] differs from ours
since it does not include dismantling centers and only considers one type of
center for both recycling and repair, they also only consider three outcomes
for the reprocessed EOL products: 1) re-selling them as spare parts, 2) re-
manufacturing them in the plant, 3) putting them in disposal. They do not
consider the re-selling of recycled material to the supplier. Apart from those
points, both models consider the flows of products in forward and reverse di-
rections. We adapted the data by adding the lacking distances and costs for
the dismantlers and repair centers with the same order of value as those used
for the other centers. Ten time periods were considered with 10 suppliers
and plants, 10 potential locations for establishing the HDC centers and 10
customers and spare market customers. The number of potential locations
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for establishing repair centers, or recycling centers, or disposal centers was
10. The maximum number of opened centers was limited by the available
budget. Other parameters are reported in Table 2. The transportation costs
are defined per product and per 1 kilometer.

Parameters Range of value Parameters Range of value
CapPlant [28000,56000] Ca [0.5,4]
CapHC [5250,20000] Cp [25,65]
Capd [28000,56000] Cass [0.3,0.8]
CapR [28000,56000] Coph [2,5]
CapDec [28000,56000] Cdis [10,12]
Distances [0,500] Crep [7,9]
SP [40,60] Cdecr [0.47,1]
RSP [5,15] TC 0.003
Rev [5,7] Cohyb [6000,23000]
Re 70% Codism [40000,60000]
Rr 90% CoRecy [40000,60000]
CFRep 100 CoDisp [40000,60000]
CFDisp 100 CoRep [40000,60000]
CFRecy 100 CFhyb 100
CFDism 100

Table 2: Nominal data of the model

In the study of [Subulan et al., 2015], 3 uncertain parameters (initial
demand, returned fraction of demand and disposal rate) were considered,
while we consider 7 uncertain parameters (inital demand, spare market de-
mand, demand for recycled products, return rate, reprocessing time of EOL
products at dismantler, repair center and recycling center). For each un-
certain parameter, we consider two possible scenarios of realization given
as follows: for uncertain demand of customers at primary market D: low
level ([1500,1800]) or high level ([2200, 2500]); and secondary markets, spare
market Dsm: low level ([350,500]) or high level ([1200,1750]); supplier sec-
ondary demand Ds: low level ([250, 400]), high level ([1000,1250]) and for
the uncertain return rate of products from consumers R: low level (10%
in the first period + 2% per period), high level (40% in the first period +
5% per period) as well as for the uncertain reprocessing time of products
Tdismantler, Trecycle, Trepair: long time ([5,6]) or short time ([1,2]). We
selected the ”low” and ”high” level of each uncertain parameter in accordance
to the study of [Subulan et al., 2015], the ”high” level corresponding to a
high range of the values used in their work and the ”low” level corresponding
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to a low range of the values used in their work. We consider the uncertain
parameters to be independent and we create eight different scenarios (s1-s8),
each of them is presented in Table 3. Then, for each scenario, one value for
each parameter is randomly selected with the use of a uniform distribution 1

from the intervals presented above. The scenario remains unchanged for the
10 considered periods, i.e. for 10 periods in a scenario with a high demand,
10 values drawn from the high demand range are selected.

Γ DE Dsm Ds R Tdismantler Trecycle Trepair
s1 low low low low long long long
s2 low low low low short short short
s3 low low low high long long long
s4 high high high low long long long
s5 low low low high short short short
s6 high high high low short short short
s7 high high high high long long long
s8 high high high high short short short

Table 3: Uncertain parameters for eight different scenarios

In total, 50 different problem instances were generated. Each problem
instance was solved through the process presented in Figure 4.

At the first step, the problem is solved as described in Section 5. Then,
the values of the scenario independent variables are recorded. The model
is then solved for each scenario separately considering the defined scenario
independent variables, in order to find the values of the scenario dependent
variables for the maximization of the profit.

The numerical investigation was conducted with IBM-ILOG CPLEX 12.6.3
on an Intel Core 2.60 gigahertz machine with 15 gigabyte RAM. The objec-
tive was to compare R∗ criterion with the three approaches mentioned in
Section 3:

1. The robust approach with the objective to maximize the worst-case
scenario.

2. The average approach with the objective to maximize the average over
all scenarios with a uniform probability distribution.

1The uniform distribution was selected over a normal distribution or a mean value be-
cause it better illustrates the lack of information of the decision maker about the behavior
of the uncertain parameters.

18



Figure 4: Resolution process

3. The average regret approach with the objective to maximize the average
of the regret over all scenarios with a uniform probability distribution.

The average solution times for the models tested for the case of 2 (s1 and
s8) and 8 scenarios are reported in Table 4. The results show that while for
2 scenarios the solution times for robust and R∗ models are quite similar, for
8 scenarios it is approximately twice longer for R∗.

6.1. Scenario reduction

The results obtained for 8 scenarios (reported in Table 5) showed the
existence of clusters of similar scenarios. The scenarios belonging to the
same cluster are indicated by the same colour in Table 5. The values of e are
calculated as a percentage of the value of the ”MaxMin” solution. The payoff
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Model Number of scenarios Average solution time(s)
Robust 2 1 623
Average 2 177
R∗ 2 1 714
Robust 8 15 900
Average 8 2 077
R∗ 8 33 217

Table 4: Solution time regarding models and number of scenarios

values reported are the TotalProfit made by the CLSC when scenario s1 to
s8 occur. The following observations can be made.

Model s1(e) s2(e) s3(e) s4(e) s5(e) s6(e) s7(e) s8(e)
Robust 3 319 100 3 404 364 1 363 587 5 315 179 3 063 511 5 479 111 1 125 648 6 453 565
Average 3 418 763 3 508 855 1 320 371 5 368 389 3 167 903 5 596 203 879 353 6 524 019
R∗, e=99% 3 351 986 3 412 147 1 316 274 5 327 129 3 101 006 5 492 417 1 125 453 6 496 221
R∗, e=85% 3 349 895 3 418 813 1 331 187 5 296 488 3 084 977 5 526 364 962 056 6 506 497

Table 5: Total profits for all combinations of scenarios and models (reveal clusters in the
results)

Observation 1. Scenario s8 (in green) is the best case scenario with
maximal TotalProfits. It corresponds to the scenario where demands (DE,
Dsm and DS) and return rate of EOL products (R) are high and the repro-
cessing times of products (Tdismantler, Trepair and Trecycle) are short.
In this situation, we can assume that the company is able to respond to the
high demands due to the high flow of EOL products coming back from the
consumers in addition with a high reprocessing capacity due to the short
times of reprocessing EOL products. Therefore, the number of reprocessed
products sold is high and generates considerable profit for the company.

Observation 2. Scenario s3 and s7 (in red) are the worst case scenarios
with minimal TotalProfits. They correspond to the cases where the rate of
return (R) is high, but the reprocessing times of EOL products (Tdismantler,
Trepair and Trecycle) are long. The number of reprocessed products sold
is low and thus generates less profit than in the other cases.

Observation 3. Scenario s4 and s6 (in blue) are ”medium high” sce-
narios, and correspond to the situation where demands (DE, Dsm and Ds)
are high, but return rate (R) is low. In this case, because of the low rate of
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return, the company doesn’t need a lot of reprocessing facilities to process
all the EOL product, thus, the reprocessing times have no impact on the
profit. All the reprocessed product are sold, creating profit, but a part of
the demand is lost as the flow of reprocessed product is not high enough to
respond to the high demand.

Observation 4. Scenario s1, s2 and s5 (in orange) are ”medium low”
scenarios. They represent the case where the demand is low, and where either
the return rate is high and the reprocessing time of EOL products is short, or
the return rate is low and the reprocessing time of EOL products is long, or
the return rate is low and the reprocessing time of EOL products is short. In
those cases, the company is able to reprocess all the returned EOL products
without additional costs generated from products put in disposal. However,
at the same time, the company is unable to resell all the reprocessed products
as the demand is low, and so no considerable profit is possible.

On the basis of these results, the set of scenarios was reduced to 4, keeping
only one scenario of each group (i.e. s1, s6, s7 and s8). This setting requires
less computational time and provides the same level of managerial insights.
In the next sections, we compare the performances of three models (robust,
average, R∗) for these 4 scenarios and for all possible pairs of them.

6.2. Robust model vs R∗

The robust model is the one conceptually closest to R∗ since it consid-
ers a set of equally possible scenarios. In order to compare their behaviour,
the value of risk threshold e was set up to the value of ”MaxMin” criterion
minus 1% or 3%. The obtained results for 4 scenarios are presented in Ta-
ble 6, where column 1 shows the model used, the values reported are the
TotalProfit made by the CLSC when scenario s1 to s8 occur. They are
colored in green when the R∗ solution brings an improvement compared to
the Robust solution and in red otherwise. The standard deviation σ (i.e the
square root of the variance) among the scenarios is given in the last column.

Model s1 s6 s7 s8 σ
Robust 3 334 384 5 244 279 1 253 605 6 218 444 1 903 483
R∗, e=99% 3 330 883 5 239 336 1 250 748 6 231 859 1 905 423
R∗, e=97% 3 331 035 5 238 529 1 229 414 6 248 992 1 918 007

Table 6: Compared TotalProfits between Robust and R∗ for the case of 4 scenarios
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The obtained results show that R∗ may provide better opportunities to
the decision maker at price of low risks, especially for the case of e = 99% of
the robust value.

When taking more risks (lowering the value of e) the DM invests more
in the implementation of new centers at each period. Thus, if a good case
scenario happens (for instance high demand, high returns and short repro-
cessing time of OEL products), the CLSC is able to collect and reprocess
more products resulting in better total profit. Contrariwise, if a bad case
scenario happens, the additional investment made by the DM won’t be prof-
itable.

To deepen the analysis, we compare the results obtained for each pair of 4
scenarios reported in Table 7. The values reported are the relative percentage
of the best TotalProfit made by the CLSC in each scenario, depending on
the solution method.

Model s1 s8 σ
Robust 100% 73,36% 475 179
R∗, e= 99% 98,96% 90,97% 1 047 111
R∗, e= 97% 97,05% 100% 1 365 222
Model s6 s8 σ
Robust 100% 88,52% 2 619
R∗, e=99% 99,08% 95,93% 261 659
R∗, e=97% 97,28% 100% 440 992
Model s1 s6 σ
Robust 100% 98,10% 974 108
R∗, e=99% 98,97% 99,63% 1031 542
R∗, e=97% 97,13% 100% 1 080 937
Model s8 s7 σ
Robust 99,43% 100% 2 402 857
R∗, e= 99% 99,84% 99,07% 2 421 540
R∗, e= 97% 100% 97,47% 2 436 837
Model s1 s7 σ
Robust 99,68% 100% 1 042 445
R∗, e=99% 99,83% 99,13% 1 050 470
R∗, e=97% 100% 97,19% 1 065 418
Model s6 s7 σ
Robust 99,51% 100% 2 011 897
R∗, e=99% 99,85% 98,58% 2 024 368
R∗, e=97% 100% 96,63% 2 040 881

Table 7: Comparison of profit obtained with Robust and R∗ for the case of 2 scenarios
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The following observations can be made on the obtained results.
Observation 1. The R∗ model is efficient in comparison to the robust

model where both scenarios are not too pessimistic, i.e. opportunities are
possible on at least one of the scenarios (see for instance s1 versus s8 or s6
versus s8.) By allowing a relatively low degradation for the worst case sce-
nario, a significant improvement can be found for the best case. Decreasing
e leads to better opportunities, but also to more important losses, however,
the gain is superior to the loss in the considered setting. From a practical
point of view, when taking more risks, the DM invests more in the implemen-
tation of new centers, therefore when scenario s8 happens, the CLSC is able
to reprocess more EOL products and thus to better respond to the demand
which brings more profit to the company. At the contrary, when scenario s1
or s6 happens, either the demand is low, or the flow of returned products is
low, or the reprocessing capacity of the CLSC is low. In all these cases, the
CLSC is unable to make a considerable profit. Nevertheless, taking a little
risk and implementing more new centers helps to keep a satisfying level of
profit compared to a robust approach.

Observation 2. When the models are compared on the best case scenario
(s8) with the worst case one (s7), or on two middle case scenarios (s1 and s6),
the opportunities are still possible but the DM has to be very careful about
the level of risk to take. Indeed, when we consider the case where the best case
scenario (s8) is faced with the worst case one (s7), taking more risks in the
investment of new centers may bring more profit if s8 happens, as the CLSC
will be able to better respond to the demand. However, this profit is not
always compensated by the loss occurred if s7 happens. When we consider
the situation where the two middle cases (s1 and s6) are confronted to each
other, the room for opportunities is thin in both scenario, as the CLSC may
encounter difficulties to respond to the demand. Thus, implementing new
centers may lead to better opportunities in one of the two cases but does not
necessarily worth the risk in the other case.

Observation 3. Finally, R∗ model cannot help to find new opportunities
unless by taking much higher risks where both scenarios are not optimistic
(the worst case scenario (s7) and either s1 or s6). For such a situation, the
robustness should be preferred in order to limit the losses. Here, from a pro-
duction perspective, taking more risks and thus implementing new centers
will probably not lead to more opportunities. Indeed, when the worst case
scenario (s7) happens, the costs generated by the implementation of new cen-
ters are not compensated by the reprocessing more EOL products. When one
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of the middle case scenarios happens (s1 or s6) the CLSC is unable to make
a considerable profit because of either low demand, a low flow of returned
products, or a low reprocessing capacity. Thus, taking risk and implement-
ing more centers than with a robust solution will not provide substantially
better profit in this case.

In conclusion, the solutions found withR∗ criterion show a greater number
of implemented reverse centers compared to the robust solution. Taking more
risk is synonym to investing more for the implementation of new centers at
the beginning of each period, and thus being able to reprocess and sell more
products when a good case scenario happens. When the two scenarios are not
too pessimistic, a good case scenario is very likely to occur. Consequently,
choosing a solution where more reverse centers are opened will lead to a good
probability of increased profit compared to a safer solution where less centers
are opened. On the contrary, if all possible scenarios are quite pessimistic,
the risk taken by the investment for implementation of additional centers
compared to the robust solution will probably not result in a better profit.

6.3. Average and Regret Average models vs R∗

Since the stochastic models are the most used in the literature for the
CLSC problem, it seems legitimate to compare them with our model even
if they do not take uncertain parameters into account in the same way (a
stochastic model considers a distribution of probability (here uniform) for
the scenarios. The results obtained for the case of 4 scenarios are presented
in Table 8. The comparison of scenarios two by two showed the same results,
we do not present them here. The table is organized in the same way as
previously, with a new column ”Av” for the mean value over all scenarios.
There is also new Column ”Reg” corresponding to the value of the sum of
regret over all scenarios. The risk threshold e is still equal to the value of
”MaxMin” criterion minus 0% (i.e. the robust solution), or -1% and -3%.

Model s1 s6 s7 s8 Av Reg σ
Average 3 374 146 5 287 225 1 190 523 6 262 269 4 028 541 1 102 861 1 940 129
Regret 3 374 215 5 287 219 1 190 381 6 262 349 4 028 541 1 102 861 1 942 797
R∗, e=100% 3 334 384 5 244 279 1 253 605 6 218 444 4 012 678 1 166 311 1 903 483
R∗, e=99% 3 330 883 5 239 336 1 250 748 6 231 859 4 013 207 1 164 197 1 905 423
R∗, e=97% 3 331 035 5 238 539 1 229 414 6 248 992 4 011 992 1 169 054 1 918 007

Table 8: Comparison of the profits found with the two stochastic models and R∗
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It can be observed that the solutions given by the two stochastic models
are almost equivalent. For this reason, only gaps between R∗ model and
average model are reported. Positive gaps are in green and negative ones
are in red. The solutions given by R∗ are more robust than the stochastic
solutions and opportunities can still be found, even if they are less important
than in comparison with the robust model. The mean of TotalProfits over all
scenarios is in the same order of values for all models. Regarding the regret
value for each scenario and for each model, the two stochastic models have
both the lowest regret. The value of the regret seems to increase while the
value of e decreases. However, the regret stays in the same magnitude for all
models.

These results show that R∗ model allows more robustness by controlling
the worst case scenario and still considering opportunities as the best case is
comparable with stochastic solutions. Thus, R∗ offers a compromise between
the ”MaxMin” solution which is too conservative and a stochastic solution
which is not robust enough.

6.4. Variance analysis

Figure 5 reports the standard deviation for all tested 50 problem instances
of the case of 4 scenarios for average model, robust model and R∗ model for
two values of e. The deviation of the regret average model is not reported
because of its quasi equivalence to the average model.

It can be seen that the variances of robust and R∗ models are very close
while the deviation of the average model is relatively dispersed.

Figure 6 shows the value obtained for the best case scenario by the tested
models for all 50 problem instances. Robust model provides the minimal
value. R∗ model is sensible to the value of e: while it decreases, the value
for the best case scenario improves. The values returned by R∗ criterion
are always higher than with the Robust model, confirming the fact that
R∗ criterion allows to better explore opportunities. Finally, average model
is not constant in providing a good value, thus, it does not guarantee the
maximization of opportunities, but it is largely the best one for 18 instances
from 50 (i.e. in about 36% of the cases).

Figure 7 shows the value obtained for the worst case scenario by the tested
models for all 50 problem instances. Here, unsurprisingly, the robust model
provides the best value. R∗ model is again sensible to the value of e: the
profit decreases when the value of e decreases, nevertheless it remains very
close to the value found with the Robust criterion. Average model is again
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Figure 5: Standard deviation provided by the tested models

Figure 6: The value for the best case scenario provided by the tested models

inconstant, it could provide a value as good as the robust model or to be
largely worse (16 instances from 50 i.e. about 32%). Thus, it does not allow
the control of the risk taken by the DM.

When the two figures are considered at the same time, we can see that
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Figure 7: The value for the worst case scenario provided by the tested models

the R∗ criterion offers a compromise between a robust solution with no op-
portunities or an average solution with no control over the robustness.

From the realized analysis we can conclude the following.
If e is superior or equal to the value of the robust solution, model R∗

will give the equivalent solution. The closer the value of e to the value of
the robust model, the closer the solution obtained with R∗ is to the robust
solution and the smaller is the standard deviation of the profits for different
scenarios as well as the gap between the solution’s best and worst scenarios.
The average and regret average models are the ones with the greatest average
over scenarios, but have the worst ”worst case scenarios”.

7. Conclusion

Establishing CLSC is an essential challenge when shifting from linear to
circular economy. A successful CLSC design relies on appropriate modeling of
uncertainty in terms of risk, but also opportunities. In this study, we suggest
a new modeling approach using R∗ to take DM optimism into account in both
hazard and opportunity zones. This approach can be used to set up reverse
facilities and connect them to an existing forward supply chain. The CLSC
can be expanded gradually on the basis of the decisions made in previous
periods. The proposed approach is compared to robust and stochastic models
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in an extensive numerical investigation. The results obtained show that the
use of R∗ criterion makes it possible to better explore the opportunity zone
without loosing control over robustness.

Indeed, it provides the DM with greater control on the investment she/he
is willing to make to open new reverse centers, bringing more profit in a good
case scenario while still controlling the losses when a bad case scenario occurs.
Particularly, we show that in the case where the initial demand is high, the
rate of return is high and the reprocessing time of EOL products is short (s8)
versus the case where the demand and the return are low and the reprocessing
time is long (s1), the solution found with R∗ criterion allows up to 36% more
profit that the robust solution in the fist case for only 3% of losses in the
second case.

This study reveals many new research paths. The proposed model can
be extended by considering not only the best and worst case scenarios but
all scenarios in between. For instance, a Leximax criterion can be applied in
order to rank solutions with the same best and worst case scenarios. Another
research path lies in examining the case of a discrete set of scenarios with
imprecise probabilities. Its extension to a continuous set of scenarios should
also be examined.
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Appendix A. Indexes, Parameters and Variables

Indexes
i = 1..I Index of suppliers
j = 1..J Index of plants
l = 1..L Index of customers
c = 1..C Index of HDC
p = 1..P Index of dismantlers
q = 1..Q Index of repair centers
m = 1..M Index of spare market customers
f = 1..F Index of disposal sites
d = 1..D Index of recycling centers
t = 1..T Index of time periods
s = 1..S Index of scenarios

Demand parameters
Dl,t,s of consumers l for period t and scenario s
Dsmm,t,s of spare market consumers m for period t and scenario s
Dsi,t,s of suppliers i for period t and scenario s

Capacity parameters
CapP lantj Production capacity of plant j
CapHCc Capacity of HDC c
Capdp Production capacity of dismantler p
CapRq Production capacity of repair center q
CapDecd Production capacity of recycling center d

Distance parameters
DisSPi,j Between supplier i and plant j
DisPHj,c Between plant j and HDC c
DisCHl,c Between costumer l and HDC c
DisCoDic,p Between HDC c and dismantler p
DisCoFc,f Between HDC c and disposal f
DisDiDep,d Between dismantler p and recycling center d
DisDeDisd,f Between recycling center d and disposal f
DisDeSd,i Between recycling center d and supplier i
DisDiRp,q Between dismantler p and repair center q
DisRSMq,m Between repair center q and spare market customer m
DisRPPq,j Between repair center q and plant j

Time parameters
Tdismantlers Unit dismantling time
Trecycles Unit recycling time
Trepairs Unit repair time
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Variable cost parameters
Cai Unit cost of buying product at supplier i
Cpj Unit production cost at plant j
Cassj Unit assembling cost at plant j
Cophc Unit operational cost at HDC c
Cdisp Unit dismantling cost at dismantling center p
Crepq Unit repair cost at repair center q
Cdecrd Unit production cost of raw material at recycling center d
Cecoc Unit environmental tax for non-reprocessed products
TC Unit transportation cost for 1 kilometer

Rate parameters
Rt,s Rate of return for period t and scenario s
Re Repairing rate after dismantling
Rr Recycling ratio after decomposition

Unit selling price parameters
SPl of product at market zone l
RSPm of product at spare market m
Revi of recycled product to the supplier i

Fixed opening cost parameters
Cohybc for HDC c
CoDismp for dismantling center p
CoRecyd for recycling center d
CoDispf for disposal f
CoRepq for repair center q

Fixed operational cost parameters
CFhybc,t for HDC c in period t
CFDismp,t for dismantling center p in period t
CFRecyd,t for recycling center d in period t
CFDispf,t for disposal f in period t
CFRepq,t for repair center q in period t
Ct Budget for opening centers in period t

Positives variables (Flow from . to . at period t and scenario s)
XSPi,j,t,s from supplier i to plant j
XPHj,c,t,s from plant j to hybrid center c
XCHDc,l,t,s from HDC c to customer l
XCHCl,c,t,s from customer l to HDC c
XCODIc,p,t,s from HDC c to dismantler p
XCOFc,f,t,s from HDC c to disposal f
XDIRp,q,t,s from dismantler p to repair center q
XRSMq,m,t,s from repair center q to spare market costumer m
XDIREp,d,t,s from dismantler p to recycling center d
XREDISd,f,t,s from recycling center d to disposal f
XPSd,i,t,s from recycling center d to supplier i
XRPPq,j,t,s from repair center q to plant j
hc,l,t,s maximum flow between forward and return from costumer l to HDC center c
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Binary variables
YCHc,t HDC c is opened or not at period t
YPp,t Dismantler p is opened or not at period t
YDd,t Recycling center d is opened or not at period t
YFf,t Disposal f is opened or not at period t
YQq,t Repair center q is opened or not at period t
ZYCHc 1 if HDC c has been opened, 0 otherwise
ZYPp 1 if Dismantler p has been opened, 0 otherwise
ZYDd 1 if Recycling center d has been opened, 0 otherwise
ZYFf 1 if Disposal f has been opened, 0 otherwise
ZYQq 1 if Repair center q has been opened, 0 otherwise

Additional parameters corresponding to the MIP formulation
B A big enough value
e1 Risk threshold

Additional Variables corresponding to the MIP formulation
δs 1 if the best case scenario s occurs, 0 otherwise
z, Z Variables for the linearization of Model (7)
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Appendix B. Mathematical formulations of the expressions

Incomes =
∑T

t=1(
∑L

l=1(
∑C

c=1(SPl ∗XCHDc,l,t,s)))

+
∑T

t=1(
∑M

m=1(
∑Q

q=1(RSPm ∗XRSMq,m,t,s)))

+
∑T

t=1(
∑I

i=1(
∑D

d=1(Revi ∗XPSd,i,t,s)))

(B.1)

OpCosts =
∑T

t=1(
∑J

j=1(
∑I

i=1(Cai ∗XSPi,j,t,s)))

+
∑T

t=1(
∑C

c=1(
∑J

j=1(Cpj ∗XPHj,c,t,s)))

+
∑T

t=1(
∑C

c=1(
∑J

j=1(Cassj ∗XPHj,c,t,s)))

+
∑T

t=1(
∑L

l=1(
∑C

c=1(Cophc ∗ (XCHDc,l,t,s +XCHCl,c,t,s))))

+
∑T

t=1(
∑P

p=1(
∑C

c=1(Cdisp ∗XCODIc,p,t,s)))
+
∑T

t=1(
∑M

m=1(
∑Q

q=1(Crepq ∗XRSMq,m,t,s)))

+
∑T

t=1(
∑J

j=1(
∑Q

q=1(Crepq ∗XRRPq,j,t,s)))

+
∑T

t=1(
∑I

i=1(
∑D

d=1(Cdecrd ∗XPSd,i,t,s)))

+
∑T

t=1(
∑F

f=1(
∑C

c=1(Cecoc ∗XCOFc,f,t,s)))

(B.2)

FixedCost =
∑C

c=1(Cohybc ∗ ZYCHc)

+
∑P

p=1(CoDismp ∗ ZYPp)

+
∑D

d=1(CoRecyd ∗ ZYDd)

+
∑F

f=1(CoDispf ∗ ZYFf )

+
∑Q

q=1(CoRepq ∗ ZYQq)

+
∑T

t=1(
∑C

c=1(CFhybc,t ∗ YCHc,t))

+
∑T

t=1(
∑P

p=1(CFDismp,t ∗ YPp,t))

+
∑T

t=1(
∑D

d=1(CFRecyd,t ∗ YDd,t))

+
∑T

t=1(
∑F

f=1(CFDispf,t ∗ YFf,t))

+
∑T

t=1(
∑Q

q=1(CFRepq,t ∗ YQq,t))

(B.3)
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TrtCosts =
∑T

t=1(
∑J

j=1(
∑I

i=1(TC ∗DisSPi,j ∗XSPi,j,t,s)))

+
∑T

t=1(
∑C

c=1(
∑J

j=1(TC ∗DisPHj,c ∗XPHj,c,t,s)))

+
∑T

t=1(
∑L

l=1(
∑C

c=1(TC ∗DisCHl,c ∗ hl,c,t,s)))

+
∑T

t=1(
∑P

p=1(
∑C

c=1(TC ∗DisCoDic,p ∗XCODIc,p,t,s)))
+
∑T

t=1(
∑Q

q=1(
∑P

p=1(TC ∗DisDiRp,q ∗XDIRp,q,t,s)))

+
∑T

t=1(
∑M

m=1(
∑Q

q=1(TC ∗DisRSMq,m ∗XRSMq,m,t,s)))

+
∑T

t=1(
∑D

d=1(
∑P

p=1(TC ∗DisDiDep,d ∗XDIREp,d,t,s)))

+
∑T

t=1(
∑F

f=1(
∑D

D=1(TC ∗DisDeDisd,f ∗XREDISd,f,t,s)))

+
∑T

t=1(
∑I

i=1(
∑D

d=1(TC ∗DisDeSd,i ∗XPSd,i,t,s)))

+
∑T

t=1(
∑J

j=1(
∑Q

q=1(TC ∗DisRPPq,j ∗XRPPq,j,t,s)))

+
∑T

t=1(
∑F

f=1(
∑C

c=1(TC ∗DisCoFc,f ∗XCOFc,f,t,s)))

(B.4)
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Appendix C. Constraints

Constraints (1) to (6) verify that the different capacities of all centers are
respected.

(1)
∑I

i=1 XSPi,j,t,s +
∑Q

q=1 XRPPq,j,t,s ≤ CapP lantj ∀s ∈ S, t ∈ T, j ∈ J

(2)
∑J

j=1 XPHj,c,t,s +XCHCj,c,t,s ≤ CapHCc ∗ YCHc,t ∀s ∈ S, t ∈ T, c ∈ C

(3)
∑C

c=1XCODIc,p,t,s ∗ Tdismantlers ≤ Capdp ∗ YPp,t ∀s ∈ S, t ∈ T, p ∈ P

(4)
∑P

p=1XDIRp,q,t,s ∗ Trepairs ≤ CapRq ∗ YQq,t ∀s ∈ S, t ∈ T, q ∈ Q

(5)
∑P

p=1 XDIREp,d,t,s ∗ Trecycles ≤ CapDecd ∗ YDd,t ∀s ∈ S, t ∈ T, d ∈ D

(6)
∑D

d=1XREDISd,f,t,s ≤ B ∗ YFf ∀s ∈ S, t ∈ T, f ∈ F

Constraints (7) to (9) are used to verify that the demand is never over-
satisfied. However, the demand can remain unsatisfied and considered lost
in this case.

(7)
∑C

c=1(XCHDc,l,t,s) ≤ Dl,t,s ∀s ∈ S, t ∈ T, l ∈ L

(8)
∑Q

q=1(XRSMq,m,t,s) ≤ Dsmm,t,s ∀s ∈ S, t ∈ T,m ∈ M

(9)
∑D

d=1(XPSd,i,t,s) ≤ Dsi,t,s ∀s ∈ S, t ∈ T, i ∈ I

Constraint (10) calculate the quantity of collected EOL products.

(10)
∑C

c=1(XCHCl,c,t,s) = Rt,s ∗Dl,t,s ∀s ∈ S, t ∈ T, l ∈ L

Constraints (11) and (12) calculate the quantity of the dismantled, re-
paired and recycled products.

(11)
∑C

c=1XCODIc,p,t,s ∗Re =
∑Q

q=1XDIRp,q,t,s ∀p ∈ P, s ∈ S, t ∈ T

(12)
∑P

p=1XDIREp,d,t,s ∗Rr =
∑I

i=1 XPSd,i,t,s ∀d ∈ D, s ∈ S, t ∈ T
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Constraints (13) to (18) are the flow balance constraints.

(13)
∑I

i=1(XSPi,j,t,s) +
∑Q

q=1(XRPPq,j,t,s) =
∑C

c=1(XPHj,c,t,s)

∀s ∈ S, t ∈ T, j ∈ J

(14)
∑J

j=1(XPHj,c,t,s) =
∑L

l=1(XCHDc,l,t,s)

∀s ∈ S, t ∈ T, c ∈ C

(15)
∑L

l=1(XCHCl,c,t,s) =
∑P

p=1(XCODIc,p,t,s) +
∑F

f=1(XCOFc,f,t,s)

∀s ∈ S, t ∈ T, c ∈ C

(16)
∑C

c=1(XCODIc,p,t,s) =
∑Q

q=1(XDIRp,q,t,s) +
∑D

d=1(XDIREp,d,t,s)

∀s ∈ S, t ∈ T, p ∈ P

(17)
∑P

p=1(XDIRp,q,t,s) =
∑M

m=1(XRSMq,m,t,s) +
∑J

j=1(XRPPq,j,t,s)

∀s ∈ S, t ∈ T, q ∈ Q

(18)
∑P

p=1(XDIREp,d,t,s) =
∑F

f=1(XREDISd,f,t,s) +
∑I

i=1(XPSd,i,t,s)

∀s ∈ S, t ∈ T, d ∈ D

Constraint (19) restricts the maximum number of opened centers for a
period depending on the available budget.

(19)
∑C

c=1((YCHc,t − YCHc,t−1) ∗ Cohybc) +
∑P

p=1((YPp,t − YPp,t−1) ∗ CoDismp)

+
∑D

d=1((YDd,t − YDd,t−1) ∗ CoRecyd) +
∑F

f=1((YFf,t − YFf,t−1) ∗ CoDispf )

+
∑Q

q=1((YQq,t − YQq,t−1) ∗ CoRepq) ≤ Ct∀t ∈ T

Constraint (20) updates the budget regarding the number of opened cen-
ters in the previous period.

(20) Ct = C1 −
∑C

c=1(YCHc,t−1 ∗ Cohybc)

−
∑P

p=1(YPp,t−1 ∗ CoDismp)−
∑D

d=1(YDd,t−1 ∗ CoRecyd)

+
∑F

f=1(YFf,t−1 ∗ CoDispf )−
∑Q

q=1(YQq,t−1 ∗ CoRepq) ∀t ∈ T

Constraints (21) to (25) calculate the fixed opening costs.

(21) ZYCHc ≥ (1/T ) ∗
∑T

t=1 YCHc,t ∀c ∈ C

(22) ZYQq ≥ (1/T ) ∗
∑T

t=1 YQq,t ∀q ∈ Q

(23) ZYDd ≥ (1/T ) ∗
∑T

t=1 YDd,t ∀d ∈ D

(24) ZYPp ≥ (1/T ) ∗
∑T

t=1 YPp,t ∀p ∈ P

(25) ZYFf ≥ (1/T ) ∗
∑T

t=1 YFf,t ∀f ∈ F
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Constraints (26) to (30) forbid to close opened centers.

(26) YCHc,t+1 ≥ YCHc,t ∀c ∈ C, t ∈ T
(27) YQq,t+1 ≥ YQq,t ∀q ∈ Q, t ∈ T
(28) YDd,t+1 ≥ YDd,t ∀d ∈ D, t ∈ T
(29) YPp,t+1 ≥ YPp,t ∀p ∈ P, t ∈ T
(30) YFf,t+1 ≥ YFf,t ∀f ∈ F, t ∈ T

Constraints (31) and (32) are used in order to limit the transportation
costs to unidirectional among forward and reverse flows depending on the
maximum number of products transported between.

(31) hc,l,t,s ≥ XCHDc,l,t,s ∀c ∈ C, l ∈ L, s ∈ S, t ∈ T
(32) hc,l,t,s ≥ XCHCl,c,t,s ∀c ∈ C, l ∈ L, s ∈ S, t ∈ T
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