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ABSTRACT
At depots with refined oil shortage, arranging a reasonable distribution scheme with
limited supply affects operation costs, demand satisfaction rate of gasoline stations
(hereafter, “station satisfaction”), and overtime penalty. This study considers the
refined oil distribution problem with shortages using a multi-objective optimisation
approach from the perspective of decision makers of oil marketing companies. The
modelling and solving process involves (i) formulation of a crisp multi-depot vehicle
routing model with limited supply (MDVRPLS) which considers station priority
and soft time windows, (ii) development of a robust optimisation model (ROM) to
manage uncertainty in demand, and (iii) the proposal of a multi-objective parti-
cle swarm optimisation (MOPSO)algorithm. Results of numerical experiments show
that (i) the crisp model can better balance operation costs, station satisfaction, and
overtime penalty, which produces 3.33% and 4.60% incerease in station satisfaction
at an increased unit cost and overtime penalty respectively; (ii) ROM successfully
addresses uncertainty in demand compared to the crisp model, which requires an
additional 8.81% in cost and 12.85% in penalty; and (iii) the MOPSO manages these
MDVRPLS models more effectively than other heuristic algorithms. Therefore, ap-
plying ROM of refined oil supply shortage to the management significantly improves
the efficiency and resists the disturbance caused by external uncertainties, providing
scope for efficient distribution of scarce resources.

KEYWORDS
MDVRPLS; refined oil distribution; robust optimisation; multi-objective
optimisation; particle swarm optimisation algorithm.

1. Introduction

In everyday life, refined oil shortages often occur in certain countries or regions due
to seasonality, natural disasters, government policies, crude oil imports, and other un-
certain factors. In general, the refined oil shortages are usually caused by emergencies
(e.g. natural disasters or government policies) or regular reasons (e.g. poor business
operation, holidays). For the former situation, more than 2,000 gasoline stations in
Guangdong, a province in China, were closed owing to refined oil shortages caused by
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a typhoon in 2005.1 In 2019, refined oil shortages transpired in Michoacán, induced
by Mexican government as an attempt to prevent fuel theft.2 For the latter situation,
many gasoline stations of Sinopec in Zhengzhou experience oil shortage, and queuing
is observed everywhere, which is caused by oil hoarding in a disguised manner to gain
benefits from future price rise.3 Owing to holidays, such as the Spring Festival, many
small gasoline stations can only ration refined oil.4 Therefore, it is essential that oil
marketing companies build scientific oil distribution management systems to guide the
oil dispatching centres (ODCs) to distribute refined oil among stations efficiently, so as
to ensure that negative impacts (e.g. rising oil prices, travel disruptions, and recession)
of refined oil shortages could be reduced to the extent possible.

A refined oil shortage is essentially a multi-depot vehicle routing problem with
limited supply (MDVRPLS). Compared to the general MDVRPLS, the refined oil
distribution problem has multiple conflicting objectives, which makes it a complex
issue. In our surveys of the China National Petroleum Corporation (CNPC) and China
Petroleum & Chemical Corporation (Sinopec), we found that ODCs generally assign
different priority levels to downstream stations, and stations with higher priority levels
are supplied first in the case of an oil shortage. Therefore, the ODC expects to meet
the demands of stations with higher levels to the extent possible while minimising
operation costs and overtime penalty. The solution of a distribution scheme of vehicle
allocation and route planning is focussed on the minimum demands for safe operations
and the priority levels associated with stations. To date, existing studies on refined oil
distribution mainly focus on the scenario of sufficient supply (Souza, Goldbarg, and
Goldbarg 2009; Escobar et al. 2014), and only a few studies consider the scenario of
limited supply which concerns either operation costs or operation time (Chakrabortty,
Sarker, and Essam 2016). Station satisfaction as an important performance indicator
for a distribution scheme with limited supply, has not been considered previously.
In this research, a priority-based satisfaction optimisation function is established to
mitigate the negative impact of oil shortages.

By considering the uncertainty from demand fluctuations (Ben-Ammar, Bettayeb,
and Dolgui 2019), traffic congestion, and weather changes (Adelzadeh, Asl, and Koosha
2014), the optimality and even feasibility of an initial distribution scheme could be
eliminated (Xu et al. 2015). We investigated the refined oil distribution of sailing com-
panies from CNPC and Sinopec and found that approximately 25% of initial distribu-
tion schemes were infeasible when addressing uncertainty. Therefore, the robustness of
a distribution scheme should be considered, which makes the MDVRPLS in refined oil
distribution a challenging issue. For a MDVRPLS that is sensitive to uncertainty, ro-
bustness has received more attention (Xu et al. 2018), which can ensure the feasibility
of a solution in a certain range of variations of uncertain factors (Ben-Tal, El Ghaoui,
and Nemirovski 2009). Furthermore, there are various multi-objective robust optimi-
sation models (Ghoddousi et al. 2013), which have been confirmed in dealing with
a MDVRPLS effectively (Dan and Trichakis 2014; Chakrabortty, Sarker, and Essam
2016). However, there are limited applications of multi-objective robust optimisation
in the field of refined oil distribution. We propose a multi-objective robust model to
solve the MDVRPLS in refined oil with uncertain demand.

As a MDVRP is confirmed as a NP-hard problem, classical exact algorithms are
unable to solve large-scale problems timeously and efficiently (Dridi et al. 2020). Con-

1http://www.china.com.cn/chinese/difang/941592.htm
2https://www.sohu.com/a/288026675 115239
3https://finance.huanqiu.com/article/9CaKrnJHHRa
4http://news.sohu.com/20060219/n241899654.shtml
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sequently, many multi-objective heuristic algorithms are proposed and used for man-
aging multi-objective MDVRP (Bo and Qiu 2014; Wang 2013), but only a few, such as
multi-objective particle swarm optimisation (MOPSO), have been applied to address a
multi-objective MDVRPLS (Tian, Hao, and Gen 2019). In this study, we use MOPSO
to solve the proposed multi-objective robust MDVRPLS in refined oil distribution.

With the practical concern about refined oil shortages, this study proposes a multi-
objective robust optimisation model for a MDVRPLS in refined oil distribution from
the perspective of managers of oil marketing companies, hoping to improve the op-
erating efficiency of the refined oil distribution system. The main contributions are
listed as follows: 1) a multi-objective crisp model is established, aimed at minimising
operation costs and overtime penalty, and maximising station satisfaction in refined
oil distribution with limited supply; 2) a robust model is established on the premise
of a multi-objective model to control uncertain demand; 3) a MOPSO algorithm is
developed to solve the proposed multi-objective robust optimisation model.

The remainder of the paper is organised as follows. A literature review is provided
in Section 2. In Section 3, the problem definition and mathematical descriptions are
presented. Then, a crisp multi-objective optimisation model and the robust model of a
MDVRPLS are formulated. The MOPSO algorithm is also designed. Section 4 shows
the results of numerical experiments and comparative analyses. Finally, the conclusions
and scope for future research are provided in Section 5.

2. Literature Review

This study proposes an innovative application of a multi-objective robust MDVRPLS
in the refined oil distribution problem. To provide a better understanding, this sec-
tion reviews the literature on refined oil distribution, multi-objective MDVRP, robust
MDVRP, and MDVRP algorithms, respectively.

2.1. Refined Oil Distribution

Refined oil distribution from oil depots to gasoline stations is the terminal delivery
of the entire distribution network, which has drawn much attention regarding vehicle
allocation and route planning (Chan, Shekhar, and Tiwari 2014). In terms of vehicle
allocation, Guyonnet, Grant, and Bagajewicz (2009) built an integrated model for
daily tanker assignment schemes, which involves unloading, processing, and delivering
in the refined oil supply chain. Zhu, Zhang, and Bao (2011) further incorporated tanker
allocation into the refined oil logistics network, of which the objectives are meeting
more customer needs and reducing distribution costs. With respect to route planning,
Shen et al. (2012) built a nonlinear optimisation model, aimed at minimising total
driving costs in a specific service level.

In particular, refined oil distribution can be divided into two categories in light of
whether they are demand driven, including proactive distribution and reactive distri-
bution. In cases of proactive distribution, ODCs deliver refined oil to gasoline stations
based on the supply level of oil depots and recent sales of gasoline stations, without
considering the realistic demands of gasoline stations. For example, Gromov, Kuzniet-
zov, and Pigden (2019) studied the gasoline station replenishment problem, in which
gasoline stations’ output is demand-determined by a prediction method based on daily
sales. Tong and Li (2019) established an proactive distribution model under real-time
traffic conditions and predicted distribution based on transport and supply. It is found

3



that proactive distribution is usually combined with forecasting. While in cases of re-
active distribution, ODCs deliver the refined oil based on gasoline station demands.
Brown and Graves (1979) are the first to describe the cost problem in reactive dis-
tribution, which involves equitable man and equipment workload, safety standards,
and service levels. Cornillier et al. (2008) proposed a gasoline station replenishment
problem of multi-period, which studied the multiple types of refined oil allocation of
stations, the manner in which to load the oil into tanker compartments, and the rout-
ing from depot to stations. Subsequently, the gasoline station replenishment problem
with time windows was proposed (Cornillier et al. 2009), aimed at optimising several
refined oil types delivery to a number of gasoline stations with the constraints of lim-
ited tankers and time. Although the refined oil distribution problem has been widely
studied based on different scenarios, to the best of our knowledge, only a few studies
focus on limited oil supply (Chakrabortty, Sarker, and Essam 2016). With practical
concerns about oil shortages and literature gaps on oil distribution, this study compre-
hensively considers the importance of station satisfaction, cost, and overtime penalty
and aims to examine the oil distribution method with limited supply.

2.2. Multi-Objective MDVRP

Refined oil distribution is essentially a vehicle routing problem from multiple oil depots
to multiple stations, to satisfy stations with limited vehicle capacity (Luo and Chen
2014). Sumichras and Markham (1995) initially formulated the problem of transporting
raw materials from multiple depots to a number of stations as the MDVRP, and de-
signed a heuristic algorithm with the goal of minimising the delivery costs. Sear (1993)
focused on a MDVRP in a logistics network consisting of refineries and consumers,
and presented a linear programming model for minimising delivery costs with demand
limits. With the complexity and flexibility of dispatching decisions, more objectives
should be considered in addition to the traditional cost-oriented model (Escobar et al.
2014), such as distance deviation (Xu and Xiao 2015) dynamic transport cost (Hu et al.
2015), vehicle load (Olivera and Viera 2007), carbon emissions (Jabali, Woensel, and
Kok 2012), and station satisfaction (Kachitvichyanukul, Sombuntham, and Kunnapa-
pdeelert 2015). Samanlioglu and Funda (2013) developed a multi-objective MDVRP
model for hazardous products, in which three objectives were considered: reducing
total costs, transportation risk, and population risk. Xu and Xiao (2015) presented
a mixed integer linear programming model and a multi-objective genetic clustering
algorithm to manage the MDVRP, where the objectives included travel distance im-
balance minimisation and workload imbalance minimisation of vehicles. Hu, Li, and
Li (2018) formulated a loading-dependent hazmat transportation model, which aims
to obtain the optimal equilibrium between transportation risk and cost.

Although the multi-objective MDVRP has been studied extensively, there are lim-
ited applications in the refined oil distribution problem, and none consider station
satisfaction. This paper presents multi-objective MDVRP models and algorithms for
refined oil distribution problem, in which station satisfaction, operation costs, and
overtime penalty are considered. In Section 4.2, we compare the proposed model with
a single-objective MDVRP model using cost minimisation (Escobar et al. 2014), to
prove the advantages of the multi-objective model in balancing the operation costs,
station satisfaction, and overtime penalty.
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2.3. Robust MDVRP

Considering the uncertainties caused by demand fluctuations, the uncertain MDVRP
has been studied extensively and applied to various industrial fields (Dolgui and Prod-
hon 2007). Dolgui and Proth (2010) gave a particular attention to the bullwhip effect
caused by stochastic demands and highlighted some robust models (e.g., Newsboy
model) to reduce this undesirable phenomenon. Robust optimisation, which as one of
the most effective methods in developing models and making plans that are insensi-
tive to uncertainty (Hazir and Dolgui 2019), has been developed and proved successful
in dealing with uncertain MDVRPs with high performance. In general, most early
studies focus on single objective robust optimisation (Yang, Liu, and Yang 2020). For
example, by focusing on the uncertain demand for cargo services in airline allocation
and planning problems, Mulvey, Vanderbei, and Zenios (1995) proposed a demand sce-
nario based on the robust MDVRP model, which aimed to minimise the penalty costs
of overage or underage supply. Jafari-Eskandari et al. (2010) considered an uncertain
supply in a milk-run system, added a multi-scenario with weight to MDVRP, which
are constructed as deviations of an expected minimum supply value, and proposed a
robust counterpart model with the minimum total cost.

In recent years, the research on MDVRP with uncertainty shifted from a single
objective to multiple objectives. Bahri, Amor, and Talbi (2016) defined the uncertain
customer requirements as a triangular fuzzy number and used the β-robustness ap-
proach to solve the multi-depot vehicle scheduling and route planning problem, with
the objective to minimise the total travelled distance and total tardiness. Men et al.
(2020) set up an uncertain set containing 32 potential incident scenarios with trans-
portation risk parameters and developed two versions of robust criterion to transform
a hazardous material MDVRP with time windows into robust models, pursuing the
balance between the number of vehicles and the transportation risk.

Research on robust MDVRP has attracted increasing attention, but only few studies
focus on the refined oil distribution problem. Inspired by Bertsimas and Sim (2004),
our paper proposes a multi-objective MDVRP (MOMDVRP) model, which aims to
reduce the negative effects caused by demand uncertainty.

2.4. Algorithms for MDVRP

MOMDVRP as a multi-objective optimisation problem is NP-hard, in which obtain-
ing the optimal solution in polynomial time is difficult or infeasible. As an effective
solving algorithm applied for NP-hard problems, multi-objective heuristic algorithms
(MOHAs) are developed and proved successful in the practice of MOMDVRP. Jemai,
Zekri, and Mellouli (2012) focused on a bi-objective MDVRP in green logistics and ap-
plied NSGA-II aimed at the shortest travel distance and the minimum CO2 emission.
Liu and Kachitvichyanukul (2015) studied MOMDVRP focused on the minimum total
cost and the maximum customer demand served and designed two MOPSO includ-
ing different coding to obtain Pareto solutions. Rabbani, Taheri, and Ravanbakhsh
(2016) considered travel distance, vehicle capacity, and service satisfaction, compared
the efficiency and sensitivity of different algorithms on MOMDVRP, and found that
MOPSO are more efficient than NSGA-II. In addition, other MOHAs as MOABC and
MOACO have been applied to manage MOMDVRP (Jia et al. 2013; Hu et al. 2018;
Xu, Hao, and Zheng 2020).

Among these MOHAs, MOPSO has proved successful in managing uncertain op-
timisation problems with high performance. Yang and Xu (2008) considered random
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travel time and fuzzy demand in refined oil distribution, proposed a chance-constrained
model for MOMDVRP, and developed a hybrid MOPSO based on strength Pareto
evolutionary algorithm (SPEA2) to solve the equivalent model with LR-fuzzy random
coefficients. Validi, Bhattacharya, and Byrne (2014) referred to total cost, CO2 emis-
sion, and travel distance and proposed a DoE-guided robust optimisation solution
based on MOPSO to address MOMDVRP. Guo et al. (2018) incorporated random
customer demands into a dynamic MOMDVRP; built a two-phase dynamic program-
ming model aimed at the minimisation of carbon emission, waiting time, and vehicle
quantity; and proposed a robust optimisation based on MOPSO that can generate and
insert virtual routes into executing static routes.

The algorithms for MOMDVRP have been studied extensively, which provide valu-
able references for us to design the robust optimisation solution for MDVRPLS. Conse-
quently, we incorporate the robustness into the multi-objective refined oil distribution
problem with uncertain demands and propose an improved MOPSO algorithm to en-
sure a satisfactory solution.

Based on the researches presented above, a more detail classification of the literature
is illustrated in Table 1. Compared with existing studies, our study takes more factors
into account, including limited supply, demand uncertainty, time, satisfaction, cost.
Based on the above content, we build a multi-objective robust optimization model for
refined oil distribution under limited supply, and design MOPSO to solve the problem.
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Table 1. A Summary of Excisting Studies

Studies
Elements Models Algorithms

Limited
supply

Demand
uncertainty

Time Satisfaction Cost
Single

objective
Multi

objective
Robust

Single

objective
Multi

objective

Dolgui and Prodhon (2007) * * *
Yang and Xu (2008) * * * *
Souza, Goldbarg, and Goldbarg (2009) * * *
Cornillier et al. (2009) * * *
Jafari-Eskandari et al. (2010) * * * *
Zhu, Zhang, and Bao (2011) * * * *
Jabali, Woensel, and Kok (2012) * * * *
Ghoddousi et al. (2013) * * * * * *
Samanlioglu and Funda (2013) * * *
Adelzadeh, Asl, and Koosha (2014) * * * *
Bo and Qiu (2014) * * *
Chan, Shekhar, and Tiwari (2014) * * * *
Escobar et al. (2014) * * *
Luo and Chen (2014) * * *
Kachitvichyanukul, Sombuntham, and Kunnapapdeelert (2015) * * * *
Liu and Kachitvichyanukul (2015) * * * *
Xu and Xiao (2015) * * *
Chakrabortty, Sarker, and Essam (2016) * * * *
Bahri, Amor, and Talbi (2016) * * * * *
Rabbani, Taheri, and Ravanbakhsh (2016) * * * *
Hu et al. (2018) * * * *
Hu, Li, and Li (2018) * * * *
Guo et al. (2018) * * * * *
Xu et al. (2018) * * * * *
Ben-Ammar, Bettayeb, and Dolgui (2019) * * * * * *
Dridi et al. (2020) * * * *
Men et al. (2020) * * * *
Xu, Hao, and Zheng (2020) * * * *
Our work

√ √ √ √ √ √ √ √
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Figure 1. MDVRPLS in Refined Oil Distribution Networks

3. Materials and Methods

3.1. Problem Description

Based on the background of limited supply of refined oil, optimization systems that
comprehensively considers the station satisfaction, operation cost and overtime penalty
are built from the perspective of decision makers of oil marketing companies. We
hope to use the multi-objective optimization models to help oil marketing companies
balance the relationship between service quality, time reputation and cost when the
refined oil supply is in short supply, and guide ODCs to complete the distribution plan
scientifically and efficiently.

In a refined oil distribution problem with limited supplies, the priority of the gasoline
station is an important factor that should be considered. Prioritising the stations will
help ODCs improve station satisfaction. On this basis, the ODC should ensure a more
effective vehicle scheduling by considering station priority to distribute limited refined
oil.

First, stations are prioritised by ODCs according to low, medium, and high levels in
terms of geographic location, demand emergency, and station density. Stations that are
able to meet more customer needs in the market, are a higher priority, while others are
considered a lower priority. Based on different priorities, weights are set for stations.
The higher the priority, the higher the weight. In case of limited supply, the demands
of high-priority stations will be met as much as possible, but low-priority stations
may be granted with only the minimum demands for safe operation. In this study, we
assume that the priorities of stations are known.

Second, a MDVRPLS is applied to allocate vehicles from multiple depots to nu-
merous stations and to optimise travel routes to minimise the total cost and overtime
penalty. In a distribution network as Fig. 1, there are multiple depots and stations.
Each depot is equipped with multi-compartment tankers to transport various types of
refined oil to stations at a time. Each circle represents one closed loop and each tanker
departs with refined oil and returns without a load. Solid lines with arrows represent a
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vehicle route, and dotted lines represent an untravelled route due to supply shortage.
In distribution, the ODC focuses several primary tasks, including refined oil distri-

bution, multi-compartment tanker scheduling, and soft time window matching. Each
station requires different types and quantities of refined oil; hence, the ODC distributes
limited refined oil based on station priority to maximise station satisfaction. Corre-
spondingly, the tankers can carry different types of oil in multiple compartments.
Additionally, the ODC needs to arrange customers for each tanker according to the
type and quantity of oil it carries and optimises routes to minimise the cost. Soft
time windows in distribution can be divided into desired service time and acceptable
service time in multi-objective MDVRPLS. If stations receive the oil within a desired
service time, there is no overtime penalty. The penalty is proportional to the time
spent outside of the desired service time window.

The ODC decides on the quantity and type of refined oil according to a station’s
priority, demand, location, time window, and other parameters. Considering limited
supply, the quantity delivered to each station is not a fixed amount, but an interval
value. The lower limit is the minimum demand for maintaining a safe operation, and
the upper limit is the actual demand of the station. Station satisfaction will decline
when supply fails to meet the demand. In particular, the higher the priority of a station,
the higher the station satisfaction. Subsequently, the ODC should form a distribution
scheme by considering the maximum station satisfaction and minimum operation cost
and overtime penalty.

In addition, the oil demand of a station fluctuates within a certain range due to
uncertain factors. In reality, the ODC can usually predict demand based on historical
data. However, when there is a deviation between actual values and predicted values,
the scheme which is not robust will be directly affected or become impossible to exe-
cute. Since accurate demand cannot be predicted in advance and the cost loss caused
by the remaining supply cannot be ignored in MDVRPLS, we should consider the fluc-
tuation of demand and apply robust optimisation methods to improve the resilience
of the distribution scheme. Hence, the robust distribution scheme is expected to pre-
serve the fluctuation of uncertain factors, reduce total costs and overtime penalty, and
improve satisfaction.

Based on the above problem description, a multi-objective robust optimisation
model is proposed below for a MDVRPLS in refined oil distribution to pursue the
maximum station satisfaction and minimum operation costs and overtime penalty.
The mathematical description of Fig. 1 is as follows: distribution network G = (A, R)
is composed of D depots, N stations with priority level set λn, where A = (D ∪ N),
D = {1, 2, ..., D}, N = {1, 2, ..., N}, R = {rij}. The parameter rij represents the
distance in Amap5 between node i and node j, (i, j ∈ A). There are Kd multi-
compartment oil tankers, each with a maximum load of Q at depot d ∈ D. In addition,
Kd = {1, 2, ...,Kd} is the set of tankers in depot d, P = {1, 2, ..., P} is the set of types
of refined oil in all stations, and U = {1, 2, ..., U} is the set of compartment of each
multi-compartment tanker.

To simplify the problem, we discuss the process of refined oil distribution within
a specific time period. There are Kd oil tankers from depot d carrying several types
of refined oil separately in U compartments with capacity Q/U . The demand of the
p-th oil type at station n is δpn, and the soft time window is [an, bn] (i.e. desired
service time). Tanker k departs from depot d and transports the p-th type of refined
oil with load hpdk. It travels a distance of rij with an average speed of v, arrives at

5https://ditu.amap.com/
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station n at arrival time Tndk, and spends a period of time ts to service the station. It is
necessary to consider the penalty rules of advance or delayed time. After completing
the distribution task at station n, the tanker k drives to the next station until all the
oil loaded is distributed and returns to depot d.

Throughout the distribution process, the ODC decides in advance on the routes of
the tankers, the quantity of refined oil distributed to each station, and the timetable
for each tanker to arrive at each station. When the effective supply of all depots
are less than the total demand of all stations (i.e.

∑D
d=1 ς

p
d ≤

∑N
n=1 δ

pn), this will
inevitably lead to the result wherein the total amount of p-th type of oil distributed
to station n by all tankers from different depots (i.e.

∑D
d=1

∑
k∈Kd

zpndk ) is less than the
demand δpn required at some stations. In conclusion, when refined oil supply is limited,
stations should be prioritised first, ensuring the minimum demand for safe operation at
stations to the extent possible. On this basis, vehicle allocation and route planning can
be implemented to achieve the maximum station satisfaction, the minimum operation
cost, and overtime penalty.

3.2. Models

In this section, we first design a crisp model of MDVRPLS in refined oil distribution,
in which operation costs, station satisfaction and overtime penalty are the objectives.
Then, we further develop a robust optimisation model of MDVRPLS against uncer-
tainty factors, induced by station demands, in order to assist ODC managers to make
efficient refined oil distribution plan. To be specific, the model mainly answers the
following three questions:

(1) Which route should a tanker take;
(2) Which quantity of each type of refined oil should a tanker transport for a gasoline

station;
(3) When will a tanker arrive at a gasoline station with a soft time window.
To answer these questions, we establish a multi-objective optimisation model for

MDVRPLS and pursue the lowest operation cost distribution and the highest demand
station satisfaction. The parameters and variables referred to in this paper are defined
in Table 2.

3.2.1. Station Satisfaction

In case of limited supply, the demand of gasoline stations should be met to the extent
possible to improve the station satisfaction. Here, we use the priority level of the
station as weight coefficient and measure the total station satisfaction as the weighted
sum of deviations between demand and supply; that is,

S(z) =

N∑
n=1

P∑
p=1

λn

(
δpn −

D∑
d=1

∑
k∈Kd

zpndk

)
. (1)

3.2.2. Operation Cost

The operation cost consists of transportation cost and fixed cost. In Eq.(2), the first
part is the total transportation cost of the tankers, which is proportional to the distance
travelled, and the second part is the total dispatching cost of the tankers, which is a
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Table 2. Sets, Parameters, and Decision Variables

Sets Description

G Set of distribution networks, G = (A, R);
A Set of all nodes, A = (D ∪ N);
R Distance matrix travelled by tankers, R = {rij},i, j ∈ A;
D Set of oil depots, D = {1, 2, ..., D}, d ∈ D;
N Set of gasoline stations, N = {1, 2, ..., N}, n ∈ N;
P Set of all types of refined oil, P = {1, 2, ..., P}, p ∈ P;
Kd Set of multi-compartment tankers of depot d, Kd = {1, 2, ...,Kd},

k ∈ Kd;
U Set of compartments of each tanker, U = {1, 2, ..., U}, u ∈ U;
Λ Set of priorities of stations, Λ = {λn}.

Parameters Description

Q Maximum load of a tanker;
ςpd Available supply of the p-th type of oil of depot d;
∆p Total demand of the p-th type of oil in the market;
δpn Demand of the p-th type of oil at station n;
[an, bn] Soft time window, where an, bn are the lower limit and upper

limit of desired service time;
hpdk Amount of the p-th type of oil carried by tanker k , which starts

from depot d;
ts Fixed service time taken to load or unload the oil;
ct Transportation cost per kilometer;
cf Fixed dispatch cost of each time;
v Average speed of a tanker.

Decision varibles Description

xijdk Binary variable, which is equal to 1 if tanker k travels from node
i to j and otherwise, 0;

zpndk Amount of the p-th type of oil distributed to station n by tanker
k from depot d;

Tndk Arriving time at which tanker k arrives at station n.

fixed cost generated by tankers per trip.

C(x) =

D∑
d=1

∑
k∈Kd

∑
i,j∈A

(ctr
ij + cf )xijdk. (2)

3.2.3. Overtime Penalty

The gasoline stations in this study are with the soft time window, which specifies the
distribution time of tankers. When a tanker arrives at the station outside of the soft
time window, some penalty must be imposed. To make it easier to understand, we
define an expression f+ = max(f, 0). To ensure that the model is linear, we use the
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following equations to replace the max notation; that is,

f+ ≥ f
f+ ≥ 0

f+ ≤ f +M(1− ρ1)

f+ ≤M(1− ρ2)

ρ1 + ρ2 ≥ 1

ρ1, ρ2 ∈ {0, 1},

(3)

where M is an infinite constant and ρ1 and ρ2 are the binary variables. Then, the
overtime penalty can be calculated by

P (T) =

D∑
d=1

N∑
n=1

∑
k∈Kd

(an − Tndk)+ +

D∑
d=1

N∑
n=1

∑
k∈Kd

(Tndk − bn)+. (4)

3.2.4. Time Constraints

The time constraints indicate that the tanker needs to complete the refuelling service,
continue on the route, and wait for the start time to proceed to next station between
the arrival time of two adjacent nodes:

Tndk + rnm/v + ts + (am − Tmdk)+ −M
(

1− xnmdk
)
≤ Tmdk,∀n,m ∈ N, k ∈ Kd, d ∈ D, (5)

where Tndk and Tmdk are the arrival times for tanker k at two adjacent stations n and
m, rnm/v is the travelling time, ts is the service time, (am − Tmdk)+ is the potential
waiting time, M is an infinite constant, and xnmdk determines whether the tanker goes
through the path from n to m.

3.2.5. Capacity Constraints

Eq.(6) shows that the quantity of p-th type of refined oil delivered from depot d to
the stations should not exceed the maximum supply of depot d; that is,

N∑
n=1

∑
k∈Kd

zpndk ≤ ς
p
d , ∀d ∈ D, p ∈ P, (6)

where the left side is the total distribution quantity of the p-th type of refined oil
delivered from depot d and ςpd is the available supply of the p-th type of refined oil at
depot d. Eq.(7) ensures that the total delivered quantity of refined oil distributed by

tanker k (i.e.
∑N

n=1 z
pn
dk ) is no more than the total quantity carried hpdk.

N∑
n=1

zpndk ≤ h
p
dk, ∀k ∈ Kd, d ∈ D, p ∈ P (7)
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3.2.6. Restriction of VRP

Eq.(8) is applied to avoid the formation of a loop between two nodes:

xijdk + xjidk ≤ 1,∀i, j ∈ A, k ∈ Kd, d ∈ D, (8)

where xijdk and xjidk are binary variables, indicating whether tanker k passes through
the specified route. Eq.(9) ensures that an equal number of tankers arrive at or leave
a station:

D∑
d=1

∑
k∈Kb

∑
i∈A

xindk =

D∑
d=1

∑
k∈Kb

∑
j∈A

xnjdk,∀n ∈ N. (9)

Eq.(10) ensures that tanker k from depot d will not drive directly to another depot c,
but to a gasoline station that needs to be served.

xdcdk = 0,∀d, c ∈ D, k ∈ Kd, d ∈ D (10)

Eq.(11) represents that a tanker departs from one depot and returns to it, to ensure
a closed-loop operation.

xdndk = xmddk , ∀n,m ∈ N, k ∈ Kd, d ∈ D, (11)

where the left side determines whether the tanker k starts from depot d. If the tanker
departs from depot d, the value of the left side is 1; otherwise, the value is 0. Similarly,
the right side determines whether tanker k arrives at the depot d after distributing
refined oil. Eq.(12)-(14) define the ranges of decision variables.

xijdk ∈ {0, 1}, ∀d ∈ D, i, j ∈ A, k ∈ Kd, (12)

zpndk ≥ 0,∀d ∈ D, n ∈ N, k ∈ Kd, p ∈ P, (13)

Tndk ≥ 0, ∀d ∈ D, n ∈ N, k ∈ Kd. (14)

3.2.7. Crisp Model on MDVRPLS

Based on the abovementioned equations, the crisp MDVRPLS model defines station
satisfaction, operation cost and overtime penalty as the objectives, and considers the
time window, capacity, and VRP constraints, which is established as follows:{

min {S(z), C(x), P (T)}
s.t. Constraints (5)− (14),

(15)

where z = {zpndk , ∀p ∈ P, n ∈ N, d ∈ D, k ∈ Kd}, x = {xijdk,∀i, j ∈ A, d ∈ D, k ∈ Kd},
T = {Tndk, n ∈ N, d ∈ D, k ∈ Kd} are the decision variables.

To demonstrate the effect of the proposed model, we set up a simple case. In Fig.
2, one depot and three stations are located on the four corners of a square with sides
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Figure 2. Illustration of Simple Case

of 1. One tanker k = 1 is departing from depot d = 1 to deliver 1-th type of oil to
stations n = 1, 2, 3. The supply of the 1-th type of oil of depot 1 is ς1

1 = 10, and

the total demand is
∑N

n=1

∑P
p=1 δ

pn = 12. Other parameters are also set in the figure

(unmarked parameter values are set to 1). If we do not consider the limited supply,
station priority, and soft time window, but only optimise the driving cost, the solution
is shown on the left. In this case, the cost and the station satisfaction are lower, but the
overtime penalty is higher. However, when we solve it using the proposed crisp model,
the solution changes. If limited supply, priorities, and time window are considered,
the distribution scheme is no longer with the shortest route, but it is optimised by
considering the operation cost and overtime penalty simultaneously. Thus, the right
solution is superior to the left one in two dimensions, which also displays the effect
the proposed crisp model on MDVRPLS.

3.2.8. Robust Model on MDVRPLS

The model is used to resolve the MDVRPLS in a refined oil distribution in the case
that demand is determined. In practice, the demand cannot be predicted accurately,
but rather fluctuates within a range. Therefore, the boundary values of δ̃pn in a range
can be expressed as follows:

δ̃pn ∈ [δ̃pn−, δ̃pn+],∀n ∈ N, p ∈ P, (16)

where δ̃pn are the fluctuating parameters that are induced by uncertain demand and
δ̃pn− and δ̃pn+ are the lower and upper bounds of demand for the p-th type of refined
oil at station n.

Considering the uncertain parameters present in the objective function that make it
difficult to solve, we are inspired by the study of Bertsimas and Sim (2004), in which
uncertain parameters are transformed into constraint equations with dual theory. The
robust model is intended to replace δpn in the crisp model with uncertain parameters
δ̃pn. Finally, a computable linear robust model is constructed. Considering demand
parameters, which only appear in Eq.(1) of the crisp model, we revise this formulation
and rebuild a new robust model.
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After the replacement with uncertain parameters, Eq.(1) is shown as

S(z) =

N∑
n=1

P∑
p=1

λn

(
δ̃pn −

D∑
d=1

∑
k∈Kd

zpndk

)
. (17)

We can regard the above formulas as maximising S(z) and then minimising the
outcome. Therefore, Eq.(1) can be formulated as

min
zpndk

max
δ̃pn

 N∑
n=1

P∑
p=1

λn

(
δ̃pn −

D∑
d=1

∑
k∈Kd

zpndk

) . (18)

To eliminate the impact of uncertainty, here δ̃pn can be temporarily treated as the
decision variable, and zpndk is regarded as a constant in Eq.(18). Then, Eq.(18) can
be further transferred as Eq.(19), while Eq.(16) can be considered a constraint. The
simplified model can be expressed as follows:

max
N∑
n=1

P∑
p=1

λnδ̃pn

s.t. δ̃pn ≥ δ̃pn−, ∀n ∈ N, p ∈ P
δ̃pn ≤ δ̃pn+, ∀n ∈ N, p ∈ P
N∑
n=1

δ̃pn ≤ ∆p, ∀p ∈ P

δ̃pn ≥ 0,∀n ∈ N, p ∈ P.

(19)

Here, the uncertain demand δ̃pn in the robust model is used to replace δpn in the crisp
model, and the total uncertain demand of p-th type of refined oil does not exceed the
total demand in the market (i.e. ∆p). To obtain a feasible solution, δ̃pn in the objective
function will be transferred into constraint based on dual theory, and the simplified
model will be converted into the min-min form. Thus, the dual model of the linear
model is proposed as follows:

min
N∑
n=1

P∑
p=1

(
δ̃pn−αpn + δ̃pn+βpn

)
+

P∑
p=1

∆pγp

s.t. αpn + βpn + γp ≥ λn,∀n ∈ N, p ∈ P
αpn ≤ 0, βpn ≥ 0, γp ≥ 0, ∀n ∈ N, p ∈ P,

(20)

where αpn, βpn, and γp are the dual variables. The objective of station satisfaction
(i.e. S(z)) is converted into the new robust objective Φ(z) as follows:

Φ(z) =

N∑
n=1

P∑
p=1

(
δ̃pn−αpn + δ̃pn+βpn

)
+

P∑
p=1

∆pγp −
N∑
n=1

P∑
p=1

λn

(
D∑
d=1

∑
k∈Kd

zpndk

)
. (21)

Based on the above, the robust model for multi-objective MDVRPLS in refined oil
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Figure 3. Illustration of Particle

distribution can be formulated as
min {Φ(z), C(x), P (T)}
s.t. αpn + βpn + γp ≥ λn, ∀n ∈ N, p ∈ P

αpn ≤ 0, βpn ≥ 0, γp ≥ 0,∀n ∈ N, p ∈ P
Constraints (5)− (14).

(22)

3.3. MOPSO Algorithm

In general, the analytical algorithm cannot handle the large-scale MDVRPLS effi-
ciently, while heuristic algorithms can solve them effectively (Lahyani, Gouguenheim,
and Coelho 2019). Among them, particle swarm optimisation (PSO) has demonstrated
an efficient and wide applicability on continuous spaces search, compared to other evo-
lutionary algorithms, such as genetic algorithm (GA) (Padhye, Branke, and Mostaghim
2009; Ma, Guan, and Wang 2020). Based on PSO, the MOPSO algorithm was first pro-
posed by Coello and Lechuga (2002), which can easily be implemented and requires less
parameter tuning. MOPSO obtains the non-dominated solutions in terms of particle
fitness. Compared to other MOHAs, MOPSO is suitable to fewer parameters and faster
convergence. In this study, the particle structure of general MOPSO was innovated,
which is multi-segment and multi-layered. In addition, the usual two-dimensional so-
lution space is extended to three-dimensional space; that is, the solutions obtained
can form a Pareto surface based on three objectives for non-dominant sorting. In this
study, MOPSO is adopted to solve both the crisp and robust models.

3.3.1. Particle Structure

In MOPSO, each particle represents a feasible solution to the problem. MOPSO aims
to establish a one-to-one mapping between the solution space and the particle space
and to facilitate subsequent population update steps. The particle structure is shown
in Fig. 3, which is divided into

∑D
d=1Kd segments based on the number of vehicles

dispatched.
In each travelled segment, the first line represents the vehicle number k, the depot

number d, and gasoline stations visited in turn. Correspondingly, each subsequent row
successively represents the p-th type of refined oil loaded by tanker k, loading capacity
hpdk of the p-th type of refined oil, and quantity of the p-th type of refined oil delivered
to each station. The last line, starting from the second column, shows the departure
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time of tanker k from the depot and the arrival time at the gasoline station.

3.3.2. Initialisation

We first generated a swarm of particles, initialising them as described above. Then,
we calculated the fitness values S(z) (or Φ(z)), C(x) and P (T) of each particle. We
initialised X and V for each particle, where X is the position and V is the velocity of
the particle. Both X and V are vectors in the particle space.

There are two concepts in MOPSO: personal best and global best. At this stage, all
initialised particles are personal best, and the global best particle is the best one of
personal best particles in the Pareto set. The Pareto set generation process is described
in the following section.

3.3.3. Pareto Set Selection

The Pareto set was obtained by comparing three fitness values. The particles in the
selected Pareto set are superior to other particles against the three fitness dimensions,
while those in the Pareto set are not inferior to each other. The Pareto set selection
process is summarised as follows:
Step 1 Compare the fitness of any two particles. If all objective values of one particle

are not less than that of the others, the particle is considered superior;
Step 2 Record the superior particle and its position;
Step 3 Repeat Steps 1–2 until all particles in the population are compared;
Step 4 Record the Pareto set with all superior particles.

3.3.4. Update and Optimisation

The iteration process of MOPSO depends on the update of velocity and position, such
as Eq.(23)-(24):

V′ = ωV + c1r1(Ppb −X) + c2r2(Pgb −X), (23)

X′ = X + V′, (24)

where Ppb is the position of the personal best particle, Pgb is the location of global
optimal particle, V is the velocity of a particle, V′ is the updated velocity, X is the
position of a particle, and X′ is the updated position. The dynamic inertia weight ω is
adopted, as shown in Eq.(25), where Maxgen is the maximum evolutionary algebra.
The parameters ωmax and ωmin are the initial and minimum inertia values, respectively,
and the value range is [0.2, 1.2]. ω shows linear decrement with the progress of the
iteration process. The performance of MOPSO will be significantly improved as ω
decreases. The learning factors c1 and c2 are usually equal, and the value range is [0,
4]. In Eq.(23) and (24), each updated particle is reordered in which the ω value is
calculated in Eq.(25). Then, the new particle population is generated.

ω = ωmax − (ωmax − ωmin) ∗ k/Maxgen. (25)

After the new particle population is generated, the fitness values of the particle
are calculated again. Then, the fitness values of the new particle and that of the

17



prior personal best particle are compared. If the fitness values of the cost, penalty,
and satisfaction functions of the new particle are less than or equal to the previous
personal best, the new particle is better; otherwise, the previous personal best particle
is better.

We placed new particles into a non-inferior solution set, if they were not dominated
by other particles and the current non-inferior solution set particles.

The pseudo-code of the proposed MOPSO is shown in Algorithm 1.

Input: The information of MDVRPLS
1 Initialise particle population;
2 Calculate the fitness of first generation;
3 Screening for Pareto set;
4 for iter = 1 to Maxgen do
5 Update the particle swarm;
6 Calculate fitness of each generation;
7 Update pbest and gbest;
8 Update the Pareto set;

9 end
Output: Pareto set

Algorithm 1: MOPSO Process

4. Results

In this section, we first propose a dataset. Then, we establish a crisp multi-objective
MDVRPLS model based on the dataset and validate the superiority compared to
the classical model. Furthermore, the robust model is tested and compared to the
crisp model. The MOHAs are coded in Matlab R2019b, with the following running
environment: a Windows 10 platform with processor speed 1.60 GHz and memory 2
GB. Prior to MOPSO operation, we set population size = 100, ωmax = 1.2, ωmin =
0.2, c1 = c2 = 2, Maxgen = 200.

4.1. Dataset

First, a case of limited supply from CNPC is taken. The detailed information of oil
depot (No.A-C) and gasoline station (No.1-16) is shown in Table. 3, which includes
node location (longitude and latitude), soft time windows, station demand, depot
supply, and demand intervals. Here, the priority reflects the importance and emergency
of a gasoline station and can be divided into three levels: low, medium, and high, scored
one, two, and three, respectively. In this study, the priority setting needs to determine
whether the following conditions are met:

(1) The gasoline station is located near the main road;
(2) The total demand for refined oil at one gasoline stations exceeds 4 kl;
(3) There are other gasoline stations within a radius of 5 km.
If all the above conditions are met, then it is high level. If it satisfies two of them,

then it is medium level; Otherwise, the level is low. In addition, the operating time
of each depot is 8 h, and the tanker used in this case has three compartments in
which the effective volume is 10 kl. The service time at each station ts is 30 min, the
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Table 3. Dataset Information

Nodes Coordinate Priority
Soft Time
Window

Supply/Demand (kl) Demand Intervals
92# 95# 98# 92# 95# 98#

A (113.59,23.09) - [0,480] 13.56 17.10 7.65 - - -
B (113.57,22.95) - [0,480] 12.34 14.50 5.35 - - -
C (113.88,22.51) - [0,480] 7.20 6.70 4.00 - - -
1 (113.82,23.12) 2 [0,300] - 4.00 - - [3.69,4.31] -
2 (113.82,23.08) 3 [0,240] 2.60 4.28 1.44 [2.40,2.80] [3.95,4.61] [1.33,1.55]
3 (113.71,22.80) 2 [61,360] 3.72 2.88 1.44 [3.43,4.01] [2.66,3.10] [1.33,1.55]
4 (113.70,22.95) 2 [301,480] - 3.88 3.88 - [3.58,4.18] [3.58,4.18]
5 (113.89,22.96) 2 [241,480] - 2.88 1.44 - [2.66,3.10] [1.33,1.55]
6 (113.63,23.03) 2 [0,180] 5.82 1.94 - [5.37,6.27] [1.79,2.09] -
7 (114.18,22.96) 1 [61,300] 1.94 1.94 - [1.79,2.09] [1.79,2.09] -
8 (113.77,23.03) 1 [181,480] 1.94 3.88 1.94 [1.79,2.09] [3.58,4.18] [1.79,2.09]
9 (113.83,22.87) 2 [61,240] 1.94 - 1.94 [1.79,2.09] - [1.79,2.09]
10 (113.82,22.86) 3 [0,360] 2.60 2.00 3.44 [2.40,2.80] [1.84,2.16] [3.17,3.71]
11 (113.98,23.02) 2 [0,480] - 2.00 2.80 - [1.84,2.16] [2.58,3.02]
12 (113.96,22.94) 2 [181,360] 4.50 3.54 - [4.15,4.85] [3.27,3.81] -
13 (113.89,23.07) 2 [241,360] 7.82 - - [7.21,8.43] - -
14 (114.17,22.84) 2 [61,420] 3.16 3.44 1.44 [2.92,3.4] [3.17,3.71] [1.33,1.55]
15 (113.68,23.10) 3 [120,480] 3.26 3.58 1.44 [3.01,3.51] [3.30,3.86] [1.33,1.55]
16 (113.67,23.09) 1 [120,480] 1.94 1.94 - [1.79,2.09] [1.79,2.09] -

transportation cost ct is 4 Yuan/km, the fixed dispatch cost cf is 30 Yuan/vehicle each
time, and the average vehicle speed v is 70 km/h.

Second, to verify the robustness of the proposed model, we assume that the demand
from the gasoline station is an interval variable. Suppose that the demand of the p-
th type of refined oil in station n is δ̃pn ∈ [δ̃pn−, δ̃pn+]. The minimum demand of all

stations equals the maximum supply of all depots (i.e.
∑D

d=1 ς̃
p+
d =

∑N
n=1 δ̃

pn−), which
is the threshold of the limited supply. The demand intervals for the robust model is
presented in Table. 3.

4.2. Illustration on Crisp Model

We first developed the crisp model of the case and compared it with the traditional
model without considering satisfaction and penalty, solved by MOPSO. Subsequently,
two other MOHAs were also applied to solve the crisp model, while comparing the
algorithm performance with MOPSO. The Pareto solution (S(z), C(x), P (T)) can
be obtained and shown in Fig. 4; each point in the coordinates corresponds to a
distribution scheme shown in Table. 4.

The obtained Pareto set is located in the three-dimensional space, of which each so-
lution is superior to the others in at least one dimension. To observe the relationships
between each two objectives, we present Fig. 4(c)-(e). With respect to the objec-
tive minimisation of station satisfaction, the operation cost and overtime penalty will
decrease. If companies aim to save their cost, the station satisfaction will suffer. Simul-
taneously, the increased cost implies that tankers travel longer distances to distribute
to more stations, and the complicated routes increases the risk of overtime, resulting
in increasing penalty. The scheme selection decision is highly dependent on business
objectives set by the oil marketing company. For example, the station satisfaction of
scheme 1 is the highest, indicating the minimal impact of limited supply. Meanwhile,
it also leads to a high total cost (i.e. 5207.01 Yuan) and maximum overtime penalty
(i.e. 1469.67 min) in all schemes. Although scheme 62 saves over 60% of the costs
and reduces over 65% of the penalty when compared to scheme 1, station satisfaction
declines, of which S(z) increases from 50.54 to 165.68. That is, station satisfaction is
lower, while the supply of depots is in surplus in case of limited supply, which is not
a feasible scheme in reality. The extreme conditions of the Pareto solution are rarely
adopted by companies, while marketing companies prefer to spend more to improve
the station satisfaction and reduce the overtime penalty.
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Figure 4. The Pareto Set and Fitted Surface of the Crisp Model

The details of several route schemes are presented in Table. 5. Evidently, if the
satisfaction of gasoline stations is ignored, the total cost and time can be significantly
reduced, while many stations may be not serviced or the distribution is limited. For
example, the distribution of scheme 1 accounts for 88.60% of the total supply and
74.86% of the total demand, but high satisfaction implies higher cost and penalty. In
contrast, the cost and penalty of scheme 62 is lower, and the resource utilisation rate
is only 34.61%. Therefore, with respect to limited supply, oil marketing companies
generally prioritise schemes with higher satisfaction and pay less attention to cost and
penalty.

To verify the effectiveness and superiority of the multi-objective model in solving a
MDVRP with limited supply, we used a traditional MDVRP case from Escobar et al.
(2014) in contrast. To compare the results, we adjusted the objective of the traditional
MDVRP model into C(x).

After 200 iterations, the optimisation result is shown in Fig. 5(a). When satisfaction
is not considered, the total cost of the traditional model is 1958.84, which is lower
than the schemes obtained by the crisp model. Meanwhile, the average satisfaction of
stations is a mere 43.18%, as shown in Fig. 5(b). When the cost, station satisfaction,
and overtime penalty are considered the objectives of the crisp model in this study, we
found that a small increase in cost can lead to a significant increase in satisfaction; that
is, each additional unit of cost will result in a 3.33% increase in station satisfaction
at most, and each additional unit of overtime penalty will result in a 4.60% increase
in satisfaction at most. Therefore, considering the total cost, station satisfaction, and
overtime penalty is preferable in the crisp model. The advantage is that it not only
considers station satisfaction with limited supply, but it also effectively balances cost,
satisfaction and overtime penalty to the extent possible. Consequently, the Pareto
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Table 4. Objective Values of the Pareto Set of the Crisp Model

Schemes S(z) C(x) P (T) Schemes S(z) C(x) P (T)
1 50.54 5207.01 1469.67 32 84.22 3735.11 586.67
2 55.25 5725.30 1399.67 33 86.20 3348.56 682.33
3 57.37 4614.53 1178.67 34 88.41 4171.04 521.67
4 57.96 5226.14 1174.00 35 93.71 3272.51 831.00
5 62.03 4826.72 1056.33 36 94.38 3419.19 562.67
6 62.39 5447.24 1014.00 37 94.94 3335.58 721.33
7 63.04 5206.06 940.00 38 95.99 3699.74 471.67
8 63.90 5102.87 974.00 39 96.67 2992.87 719.00
9 65.51 4628.80 1090.33 40 100.19 3411.16 487.00
10 66.52 4571.71 1238.33 41 101.43 2989.05 687.33
11 66.66 4395.60 781.67 42 101.66 3014.21 636.33
12 68.33 4065.89 1209.67 43 105.98 3159.32 625.67
13 68.37 4155.96 1111.33 44 107.30 3345.64 622.00
14 71.47 4356.72 1000.67 45 107.35 2747.15 672.00
15 71.84 4066.41 935.00 46 111.58 3299.91 568.67
16 71.93 3925.75 855.67 47 111.88 3313.37 458.67
17 73.08 4353.66 854.33 48 113.40 2769.56 595.67
18 74.82 4540.52 766.00 49 117.19 3161.14 534.00
19 74.97 3843.79 1181.33 50 117.40 3011.82 437.00
20 76.04 4507.58 767.67 51 118.59 2530.78 637.67
21 77.22 4586.79 631.00 52 119.66 2785.23 519.00
22 78.52 4184.34 794.67 53 131.31 2762.79 532.00
23 78.72 4368.98 727.33 54 132.10 2265.53 668.33
24 78.76 3657.71 877.33 55 132.55 2900.07 506.67
25 79.99 3489.06 1009.67 56 136.76 2808.79 491.67
26 80.12 4165.84 792.67 57 137.20 3007.66 491.33
27 81.65 3753.36 845.67 58 137.38 2751.32 588.67
28 81.84 4014.76 707.00 59 138.78 2639.61 531.00
29 82.30 3511.13 847.67 60 141.59 2660.07 415.00
30 83.52 3605.45 691.67 61 144.27 2158.32 474.67
31 83.66 4540.79 648.33 62 165.68 2049.38 485.67

Table 5. Distribution Schemes of the Crisp Model
Schemes Tankers Routes Arriving Time Distribution(kl)

1

1 A-4-2-5-7-1-3-8-12-A 61-78-148-231-299-305-368-448 4.73,4.94,1.98,2.17,1.61,2.53,1.50,2.55
2 A-2-3-1-6-5-A 70-152-198-242-297 1.03, 4.38, 1.78, 3.09, 1.09
3 B-2-4-6-13-12-15-B 45-108-144-195-284-327 1.46, 1.65, 4.60, 3.21, 3.42, 3.24
4 B-11-9-10-12-14-B 40-90-139-212-257 2.83, 2.04, 3.19, 1.62, 2.42
5 C-8-10-15-16-14-C 98-126-163-196-265 4.24, 3.15, 3.69, 1.57, 2.09

13

1 A-4-2-5-3-A 82-140-187-210 6.52, 6.88, 2.51, 3.41
2 A-3-2-1-6-8-A 69-130-202-259-349 3.80, 1.13, 2.66, 3.59, 1.09
3 B-1-10-8-5-B 42-64-115-162 1.11, 4.24, 3.46, 1.18
4 B-8-12-14-15-B 114-162-241-297 1.88, 4.05, 4.95, 3.47
5 C-7-13-16-15-11-12-C 88-159-249-327-417-495 2.92, 3.73, 1.46, 1.04, 1.75, 1.11
6 C-11-14-C 54-112 2.21, 1.37

25

1 A-6-4-7-2-10-12-A 45-110-177-230-272-316 2.92, 4.61, 2.38, 4.30, 4.23, 1.37
2 A-8-2-10-11-A 61-139-199-282 3.74, 2.53, 1.82, 1.01
3 B-6-10-12-14-15-16-B 46-87-120-145-182-228 2.74, 1.16, 3.28, 3.35, 3.03, 1.07
4 B-4-11-13-B 20-101-142 1.64, 1.65, 4.99
5 C-12-1-8-3-C 88-130-187-253 2.24, 1.08, 2.85, 5.86

37

1 A-5-2-1-3-A 53-139-225-292 3.25, 4.91, 3.39, 3.50
2 A-3-4-8-2-12-A 63-100-157-199-249 3.34, 3.18, 1.18, 2.56, 1.43
3 B-6-10-12-14-B 56-99-136-181 3.09, 6.70, 6.39, 4.14
4 C-4-6-9-8-7-16-C 39-83-129-176-236-287 3.64, 3.05, 2.95, 2.28, 1.47, 1.09

49

1 A-1-2-3-8-5-4-A 86-101-186-220-244-282 2.17, 4.93, 2.22, 1.57, 1.08, 1.69
2 B-1-6-11-8-5-7-12-4-B 25-65-110-123-146-176-217-261 1.72, 5.03, 1.39, 2.65, 1.37, 2.91, 3.80, 1.00
3 B-6-4-13-15-B 54-95-140-211 2.33, 1.96, 1.20, 1.39
4 C-3-2-12-5-8-C 5-44-96-180-220 3.55, 2.09, 2.78, 1.16, 1.54

62
1 A-4-7-6-2-8-9-A 30-87-131-177-238-289 2.58, 1.59, 1.26, 2.40, 3.23, 1.51
2 B-6-5-10-12-B 73-144-170-241 3.33, 1.01, 4.10, 3.89
3 C-10-3-C 69-149 1.23, 4.57

solutions obtained by the crisp model can reflect pertinence and superiority, which
cannot be obtained using the traditional MDVRP model.

To demonstrate the effectiveness of the MOPSO algorithm, two other heuristic
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Figure 5. Result of the Traditional Model

Figure 6. Pareto Sets of the Crisp Model Obtained by Three Algorithms

algorithms are selected for differentiation. For NSGA-II, we set population size = 100,
Maxgen = 200, pcross = 0.8, pmutation = 0.1. For MOABC, we set population size =
100, Maxgen = 200, limit = 30, foodnumber = 50. The results are presented in Fig.
6.

For more scientific evaluation, several metrics (Li, Wang, and Liu 2008; Wu, Chien,
and Gen 2012) are selected to compare the performance of these three MOHAs:

(1) ONVG: Overall nondominated vector generation (ONVG) is the number of dis-
tinct nondominated solutions in the set (Veldhuizen 1999);

(2) CM: A C metric reflect dominance relationship between solutions in two Pareto
sets:

C(Set1, Set2) = |{ε2 ∈ Set2|∃ : ε1 ∈ Set1, ε2 � ε1}|/|Set2|; (26)

(3) Dav ,Dmax : The two distance metrics are used to measure the performance of the
Pareto set relative to a reference set R, which is formed by all the nondominated
solutions from all sets:

Dav =
∑
εR∈R

min
ε∈Set1

d(ε, εR)/|R|, (27)
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Table 6. Comparison of Algorithms for Solving the Crisp Model

Metrics MOPSO NSGA-II MOABC
ONVG 62 65 49

C(MOPSO,·) - 0.7846 0.6531
C(NSGA-II,·) 0.0645 - 0.3469
C(MOABC,·) 0.0000 0.3846 -

Dav 180.1900 181.1741 200.6119
Dmax 560.3834 606.6086 821.0185

TS 9.2124 11.0686 10.3023
RT 177.0266 210.5965 173.2038

Dmax = max
εR∈R

{
min
ε∈Set1

d(ε, εR)
}
. (28)

Here, Dav is the average distance from a solution εR ∈ R to its closest solution
in Set1 (Piotr et al. 1998), and Dmax is the maximum of the minimum distance
from a solution εR ∈ R to any solution in Set1 (Ulungu, Teghem, and Ost 1998).

(4) TS: This spacing metric is used to measure how evenly the solutions are dis-
tributed.

TS =

√√√√ 1

|Set1|

|Set1|∑
i=1

(Di −D)2/D, (29)

where D =
∑Set1

i=1 Di/|Set1| and Di is the Euclid distance in objective space
between solution i and its nearest solution (Tan et al. 2006);

(5) RT: The running time (RT) is used as a key metric to reflect the efficiency of
MOHAs.

For the results presented in Table. 6, MOPSO performs better on most metrics
than NSGA-II and MOABC. From the ONVG metric, it can be observed that NSGA-
II obtains the most solutions, whereas MOPSO obtains fewer. In terms of CM, few
solutions obtained by MOPSO are dominated by those obtained by NSGA-II, and
none is dominated by those obtained by MOABC. In contrast, the solutions obtained
by NSGA-II and MOABC are easier to be dominated by those obtained by MOPSO.
In summary, the MOPSO produces a better Pareto set. With regards to Dav and
Dmax, the values of MOPSO is smaller than two other algorithms, which implies that
MOPSO is able to obtain solutions that are closer to the optimal Pareto set. Further,
the TS values of MOPSO are smaller than NSGA-II and MOABC, which indicates the
Pareto set obtained by MOPSO have a more uniform distribution. Finally, MOPSO
consumes 177.0266 s to solve the program, only about 4 s longer than MOABC. In
summary, MOPSO is superior to NSGA-II and MOABC in four out of six metrics.
Therefore, we believe MOPSO has advantages in solving the problems in this study.

4.3. Illustration on Robust Model

In this section, we define the disturbance indictor of uncertainty as θ. If θ = 1, then
the disturbance achieves the maximum. If θ = 0, then there is no uncertainty in the
system, and the schemes in Section 4.2 become feasible. We discuss five different types
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Figure 7. Pareto Sets of Robust Models with Different θ

of θ. The robust sets are shown in Fig. 7.
In terms of the fluctuation induced by the uncertainty of demand, the distribution

of robust Pareto sets have changed. As we can observed, Pareto sets move to the right
on the Φ(z) dimension with the increase in θ. This implies that the uncertain demand
has a stronger effect on station satisfaction. From a data perspective, the Φ(z) will
increase 5.28% for every 0.2 increase in θ on average. As the uncertainty increases,
achieving the same customer satisfaction rate requires an average additional cost of
8.81% and additional penalty of 12.85%. However, the impact of demand uncertainty
on C(x) and P (T) is not evident. With every 0.2 increase in θ, the cost C(x) and
penalty P (T) increase 0.59% and 0.72% on average respectively, which can be ignored
owing to the state of the data. For Φ(z), the fluctuation in demand will aggravate the
mismatch between supply and demand and the entire Pareto set tends to shift to the
right with the increase of θ. For C(x) and P (T), the influence of uncertain demands
is not strong, which can also be observed from the Eq.(2) and (4) that δ̃pn does not
directly act on these two objectives.

In general, the numerical experiments showed the advantages of the robust model
through the numerical experiment; hence, the larger θ, the more inclusive the model.
For example, when θ = 1, the scheme can accept any fluctuation in demand in the
uncertainty interval, remaining unchanged. This shows strong stability in terms of
the robust model, which can be realised through robust optimisation, avoiding the
problem of frequent change of distribution schemes. Therefore, the robust model is
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Figure 8. The Pareto Sets of the Robust Model Obtained by Three Algorithms

Table 7. Comparison of Algorithms for the Solving Robust Model

Metrics MOPSO NSGA-II MOABC
ONVG 62 55 57

C(MOPSO,·) - 0.6000 0.5439
C(NSGA-II,·) 0.1129 - 0.4035
C(MOABC,·) 0.2742 0.4000 -

Dav 166.3477 199.4334 168.2624
Dmax 1056.4364 1210.3045 603.3461

TS 11.9609 9.7836 10.9299
RT 229.0334 240.6536 203.2354

more valuable than the crisp model in practical applications.
Furthermore, to prove the validity of the algorithm selection, we compared MOPSO

with the other two MOHAs (NSGA-II and MOABC) again. Let θ = 1; the Pareto sets
of the robust model obtained by the three algorithms are shown in Fig. 8. The per-
formance indicators are shown in Table. 7. All three algorithms can obtain a Pareto
set. In terms of ONVG, MOPSO obtains the most solutions compared to NSGA-II
and MOABC. With regards to CM metrics, the solution in Pareto set obtained by
MOPSO dominates the solutions in other two Pareto sets, indicating the superiority
of the Pareto set obtained by MOPSO. The MOPSO obtains the minimum Dav, which
indicates that the Pareto set obtained by MOPSO is closer to the optimal one. How-
ever, MOPSO also has the maximum Dmax, which shows that the Pareto set obtained
by MOPSO is not smooth and sufficiently uniform. Correspondingly, the TS metrics
also confirms this view. From running time, the NSGA-II is better than MOPSO. In
summary, the MOPSO is superior to two other algorithms in more than half of the
targets when solving the robust model.

4.4. Managerial Insights

Based on the above experiments, it is obvious that both the multi-objective robust
optimization model and the improved MOPSO algorithm proposed in this paper are
effective and superior for MDVRPLS in refined oil distribution, which is of practi-
cal significance. Combined with the above analysis, several management insights are
summarized for decision makers of oil marketing companies:
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(1) In the case of limited supply, oil marketing companies should not only focus
on cost or time, but also pay more attention to whether the gasoline station
demand is fully satisfied. The crisp model proposed can better balance operation
costs, station satisfaction, and overtime penalty, which produces 3.33% and
4.60% incereases in station satisfaction at an increased unit cost and overtime
penalty respectively. Considering the supply shortage, the station satisfaction
directly determines the safety of oil supply. Therefore, it is necessary to increase
operation costs and distribution time in exchange for greater station satisfaction
for oil marketing companies in a situation of supply shortage.

(2) Oil marketing companies should fully consider the influence caused by the un-
certain factors in the distribution system. It can be seen that the higher uncer-
tainty indictor θ, the more inclusive the robust scheme. When θ reaches about
0.8, the marginal robustness increases the fastest. To ensure that distribution
scheme is feasible and optimal, the oil distribution management system should
be upgraded to a more robust version to fully withstand the impact caused by
uncertainty. In this way can the oil marketing companies could eliminate the
negative impact of uncertainty and ensure the effective implementation of the
distribution scheme.

(3) The oil marketing companies should consider to apply MOPSO when build the
management system for refined oil distribution. MOPSO shows an efficient and
wide applicability on continuous spaces search. Through algorithm comparison
experiment, we found that MOPSO performs better in terms of the number of
solutions, the evenness of Pareto sets, the probability of non-inferior solutions,
and the computing time. The calculation results of MOPSO can provide more
excellent options for decision makers of oil marketing companies, which is more
suitable for building an oil distribution planning platform.

5. Discussion

In this study, both oil shortage and uncertain demand have been considered in the
distribution planning, vehicle scheduling, and route optimisation for oil distribution
networks. A multi-objective robust optimisation model has been designed to address
the problem, which maximises station satisfaction and minimises operation costs. The
model shows strong stability in handling the demand fluctuation, ensuring a balance
between station satisfaction and cost. In addition, this study examined an oil marketing
company as a case and applied MOPSO to solve the robust model. Considering the
comparative analysis, the conclusions drawn are as follows:

(1) Considering the uncertain factors that affect demand, a robust model has been
proposed to improve scheme robustness while decreasing the total cost and overtime
penalty and increasing gasoline satisfaction. Among the three objectives, Φ(z) is the
most affected, which increases 5.28% on average when the uncertainty of demand
increases. If the satisfaction rate is constant, the cost increases to 8.81%, and over
tie penalty increases to 12.85% on average. The superiority of the robust model is
evident in how it resolves a distribution optimisation problem with low cost, high time
rate, and high station satisfaction in refined oil distribution networks with uncertain
demand, and how it effectively minimise loss of cost and the waste consumed and
reduces station satisfaction caused by uncertain factors.

(2) MOPSO used in this study is more suitable than other MOHAs for multi-
objective MDVRPLS. In terms of Pareto set, MOPSO obtains more solutions than
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NSGA-II and MOABC, especially in handling the robust model. The solutions ob-
tained by MOPSO has a higher probability to dominate the solutions obtained by
other MOHAs. Regarding the optimality of the Pareto set, MOPSO also performs
better. Generally, the Pareto set obtained by MOPSO is more suitable than that ob-
tained by other MOHAs, in terms of optimisation performance and solution quality.
MOPSO has more advantages in solving the robust model than the crisp model.

The proposed approach in this paper can be widely applied in reality. In addition
to the distribution of refined oil and other hazardous products, the robust MDVRPLS
model and MOPSO algorithm can also be applied for other daily goods transporta-
tion under the supply shortage. Moreover, the robust model also plays a role in other
supply-demand scenarios, including supply-demand balances and oversupply, by mod-
ifying constraints (e.g., removing Eq.(6)).

In addition, the distribution scope division has also some limitations. In particular,
the boundaries of the distribution scope is fixed. In reality, depots usually distribute
refined oil jointly, meaning that the distribution scope of each depot is elastic (Xu,
Lin, and Zhu 2020), of which the size can be adjusted and coverage changes based on
various uncertainties. In this situation, the total distribution path is relatively short,
which will help save costs, improve the use efficiency of vehicles, and make it easier
for each ODC to manage vehicles and improve station satisfaction.

In the future, we will continue to conduct more in-depth research on the basis of this
study. In addition to the elastic distribution boundary problem mentioned previously,
the application field of the model in this paper can also be expanded. For example, the
problem of resource distribution in emergency situations (e.g. COVID-19), which is
very popular recently, can also be solved using the robust MDVRPLS model presented
in this paper. In addition, the model in this paper can be applied to the closed-loop
supply chain (Liu et al. 2019), corporate social responsibilities (Bian et al. 2021), and
other fields.
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