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An Analysis of the Ripple Effect for Disruptions Occurring 

in Circular Flows of a Supply Chain Network 

Abstract 

This paper examines the ripple effect in supply chains due to circular flows embedded in supply 

chain design. Although supply chains are complex and nonlinear, circular flows exist in real-

world supply chains but are often unknown or hidden to supply chain managers. These circular 

flows exist when a Tier 2 supplier is also a Tier 3 (or higher) supplier in the supply chain 

network. Additionally, a circular network can occur when a supplier is also a customer in the 

same network. In the presence of these types of supply chain network structures, supply chains 

may experience a ripple effect (or disruption propagation) in which disruptions impact supply 

chain performance. Using a real-world supply chain structure, we examine the effect of circular 

flows on the ripple effect and identify how this influences the supply chain’s resilience to 

disruptions. We offer managers and researchers insights that improve the understanding of how 

circular flows exacerbate the ripple effect. 

Keywords: Supply Chain Disruptions, Ripple Effect, Circular Flow Supply Chain Networks; 

Supply Chain Design, Supply Chain Risk 

 Introduction  

A supply chain disruption is defined as an unanticipated event that disrupts the flow of 

goods and materials in the supply chain (Craighead, Blackhurst, Rungtusanatham, & Handfield, 

2007), causing the supply chain to deviate from normal operations (Garvey, 2018). A disruption 

in the supply chain may impact not only the particular node where the disruption originated but 

may spread to other parts of the supply chain beyond the local node to affect large portions of the 

supply chain and degrade long term performance (Kinra et al., 2020; Craighead et al., 2007; 

Blackhurst Scheibe & Johnson, 2008). This propagation or spread of a disruption event has been 

discussed in research using terms such as cascading failures (Hearnshaw & Wilson 2013; Zobel & 

Khansa, 2014), contagion (Bellamy & Basole, 2013), and the ripple effect (Ivanov, Sokolov & 

Dolgui, 2014a; Ivanov, Sokolov & Pavlov, 2014b; Solokov, Ivanov, Dolgui, & Pavlov, 2016, 

Dolgui, Ivanov, & Sokolov, 2018), which describe how a disruption may spread or ripple out to 
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other parts of the supply chain, often with increasingly adverse effects on supply chain 

performance metrics such as sales, service levels, and costs (Ivanov, Dolgui & Sokolov, 2019b).  

As a disruption ripples to other nodes in the supply chain, the impact may intensify 

(Blackhurst, Dunn, & Craighead, 2011; Scheibe & Blackhurst, 2018). In other words, a minor 

disruption in one location may grow and spread in the network with increasingly negative effects 

(Fiksel, Polyviou, Croxton, & Pettit, 2015; Pettit, Croxton, & Fiksel, 2019). The ability to 

withstand, adapt, and recover from a disruption is the resilience of a supply chain. (Hosseini, 

Ivanov, & Dolgui, 2019; Dolgui, Ivanov, & Rozhkov, 2020). Despite the crucial importance of 

such effects, disruption propagation (i.e., the ripple effect) and supply chain resilience to 

disruptions remains poorly understood (Bhamra, Dani, & Burnard, 2011; Wu, Blackhurst, & 

O’Grady, 2007; Blackhurst et al. 2011; Ivanov et al. 2014a; Ivanov et al., 2014b).  

Therefore, research to understand the ripple effect of supply chain disruptions is an ongoing 

effort. For example, Ivanov, Dolgui, Sokolov, & Ivanova (2017) note a shortage of research 

investigating how firms can recover from supply chain disruptions. Kinra et al. (2020) note that 

understanding the ripple effect can help identify previously hidden risk exposure in the supply 

chain and prioritize where to focus mitigation efforts. Others have called for further exploration of 

disruption propagation and impacts beyond simple dyads (Ghadge, Dani, & Kawalsky, 2012) and 

even how networks can interact, leading to unforeseen risk exposure (Ivanov, 2020a). Research 

has focused on the development of understanding of how structure affects supply chain 

performance (Kim, Choi, Yan, & Dooley, 2011; Nair & Vidal, 2011) and how examining the ripple 

effect at the network level, with all the intertwined structural relationships, can help researchers 

better understand risk and supply chain viability (Ivanov & Dolgui, 2021; Hosseini & Ivanov, 

2020). Basole & Bellamy (2014) note that the structure of the supply chain, i.e., system architecture 



  Ripple Effect and Circular Flows 

4 

 

(Bellamy & Basole, 2013), has a significant impact on the spread of a disruption which can 

negatively influence the health of that supply chain. It is important to understand how systems 

react when hit with disruption and why it can ripple through the supply chain (Bellamy & Basole, 

2013). Also, it has been noted that propagation (the ripple effect) is influenced by supply chain 

structure (Garvey, Carnovale, & Yeniyurt, 2015). The network structure can amplify the negative 

impacts of the disruption (Zhao, Zuo, & Blackhurst, 2019). Speier, Whipple, Closs, and Voss 

(2011) note that the design of a supply chain has risk management implications and emphasize 

that managers should be mindful of the role that supply chain design plays in risk exposure to 

disruptions. This research answers specific calls to understand which structures in a supply chain 

lead to higher susceptibility levels to the ripple effect of a disruption (Dolgui et al., 2018).  

One underexplored supply chain network structural characteristic is circular linkages. 

Scheibe & Blackhurst (2019) present the concept of a cyclical (or circular) linkage (see Figure 1) 

where a disruption in Node A can propagate to Node B, which can then propagate to Node C and 

then to Node D, which, in turn, may exert a feedback effect onto Node A (Eisenberg & Noe, 2001), 

depending on the structure of the supply chain (Scheibe & Blackhurst, 2018). The real-world 

existence of circular linkages highlights that supply chain networks are complex and often lack 

neat linear flows, even though supply chain managers may not recognize such structures. Since 

circular linkages are capable of causing an interesting phenomenon in which a disruption evolves 

into a self-sustaining disaster (Ackermann, Eden, Williams, & Howick, 2007), supply chain 

managers and their partners should be vigilant in identifying these structural pitfalls in their supply 

chains (Scheibe & Blackhurst, 2018). Therefore, the research question we seek to answer is: 

 How do circular supply chain structures impact both the ripple effect of supply chain 

disruptions and the supply chain’s resilience? 
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To answer this question, we model a supply chain network based on real-world data and structures 

to examine 1) the impact of circular supply chain structures on the ripple effect and 2) how these 

structures influence supply chain resilience. Specifically, we present a prescriptive analysis to 

illuminate weaknesses in the supply chain that are often not visible to or poorly understood by 

supply chain managers and demonstrate how circular linkages in a supply chain structure pose 

“hidden dangers” to supply chain managers.  

Figure 1: Circular linkages example in a supply chain network  

 

 

The remainder of this paper is organized as follows. We first discuss literature related to 

supply chain disruptions and the ripple effect, and we introduce the concept of circular flows. Then, 

we present models for prescriptive analysis using both a simple network and a more complex 

network in a simulation model based on a real-world supply chain containing circular linkages. 

Next, we offer supply chain network performance measurements in terms of production level, 

demand satisfaction, and inventory levels. We then examine the impact of disruptions in supply 

chains with circular linkages regarding the robustness of the supply chain, the backlogged demand, 

and the overall recovery period. Finally, we address the influence of disruptions occurring at 

different supply chain locations (nodes), as well as those occurring at more than one location, and 

conclude with a discussion of how a better understanding of the effect of circular linkages on 



  Ripple Effect and Circular Flows 

6 

 

disruption propagation and supply chain resilience will help supply chain managers make better 

and more informed risk management decisions.  

 Literature Review 

This section discusses how disruptions can spread through a supply chain and the impact 

of structure on disruption propagation. We also outline the particular supply chain structural 

characteristic of circular linkages, which is the focus of this study, and briefly discuss how supply 

chain risks, disruption, and resilience are analyzed in the existing literature.  

2.1 Supply Chain Disruptions and the Ripple Effect 

Disruptions occur in a supply chain, which can disrupt and alter the flow of goods and 

impact its performance. The propagation of disruptions, along with their impacts on the supply 

chain, is known as the “ripple effect” (Ivanov, Dolgui, & Sokolov, 2019a; Ivanov & Dolgui, 2020). 

Researchers have noted that the complexity, connectivity, and intertwined nature of supply chains 

can lead to disruptions that propagate or spread through a supply chain (Hearnshaw & Wilson, 

2013; Fiksel et al., 2015; Zhao et al., 2019; Ivanov & Dolgui, 2020). As such, a disruption at one 

location in the supply chain can spread or ripple to other nodes in the supply chain. The ripple 

effect of a disruption leads to decreased performance and may even fail entire portions of the 

supply chain (Jüttner & Maklan, 2011; Ivanov et al., 2014a; Ivanov & Dolgui, 2020). This, in turn, 

affects the supply chain’s overall resilience (Ambulkar, Blackhurst, & Grawe, 2015; Kamalahmadi 

& Parast, 2015).  

The structure of a supply chain may facilitate propagation and amplification of the negative 

impacts of a disruption, especially given that managers often fail to recognize or adequately 

understand this structure (Kim et al., 2011; Zhao et al., 2019), its impact on disruption propagation, 



  Ripple Effect and Circular Flows 

7 

 

and the notion of disruption propagation itself (Fiksel et al., 2015). Because of this generally 

insufficient understanding of how a disruption ripples through a supply chain at the system or 

supply chain level (Ghadge et al. 2012; Ivanov et al. 2014a; Ivanov et al., 2014b), researchers have 

called for work that better articulates how the structure of the supply chain impacts risk exposure 

and the ability to recover from a disruption (Wagner & Neshat, 2010; Mizgier, Juttner, & Wagner, 

2013; Bellamy & Basole, 2013; Dolgui et al., 2020; Ivanov & Dolgui, 2020).  

2.2 Complex Supply Networks 

The complex, interdependent nature of supply chains increases the risk of disruption effects 

(Zhao et al., 2019). Complexity in the supply chain can be due to its structure, geographic 

proximities, or interconnections between the nodes in the supply chain network. This section 

discusses some of the supply chain complexities and how they influence supply chain disruption, 

risk transmission, and resilience.  

Due to globalization, supply chain networks are becoming multinational, and such 

multinational supply chains are known as transactional supply chain networks. The dynamic trend 

of risk transmission in transactional supply chain networks is studied by Lei et al (2020) using an 

improved susceptible-improved-susceptible model. Supply chain networks are also considered 

complex adaptive systems to study disruption propagation and adaptive strategies to reduce the 

harmful effects of supply chain disruptions (Zhao et al., 2019). These studies suggest that complex 

supply chain networks make a firm more vulnerable to disruptions. 

Complex supply chain networks may sometimes exhibit “nestedness.” Nestedness is a 

pattern that emerges when generalist suppliers also supply products supplied by specialist suppliers. 

Supply chain resilience in nested supply chains is studied using a tri-partite (product-supplier-
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buyer) network (Chauhan et al., 2021). The performance of a supply chain network can depend on 

the structure of the network. A disruption can propagate both forward and backward in a supply 

chain network, and the network structure can moderate its effect on disruption propagation 

behavior. Li et al. (2020a) showed that the forward and backward propagation rates interact with 

the supply chain network structure in determining a firm’s vulnerability and network health.  

Studies have looked into how different network types influence resilience behavior. The 

scale-free network, the small-world network, and the random network are frequently studied 

(Basole & Bellamy, 2014; Kim et al., 2015; Nair & Vidal 2011; Zhao, Kumar, Harrison & Yen, 

2011). Li et al. (2020b) suggest that studying such network types has limitations because real 

supply chain networks might not belong to one network type. Hence, using network characteristics 

is a more realistic option. Network characteristics provide greater insights than network types 

when tested on real-world supply chain networks. Some of these network characteristics can 

provide insights into circular linkages. Ledwoch et al. (2018) discuss various network 

characteristics using centrality metrics to assess supply chain risks. The six centrality measures are 

degree centrality, eigenvector centrality, hub and authority centrality, closeness centrality, radiality 

centrality, and betweenness centrality. Degree centrality measures the number of nodes connected 

to the node. It denotes the connectivity and influence of a node to the rest of the network. 

Eigenvector centrality measures the relative importance of a node. Hubs are nodes that point 

towards many authorities, and authorities are pointed to by many hubs. This measure is used in the 

supply chain context to identify if a firm has many customers or suppliers. The inverse of the mean 

distance from a node to other nodes is known as closeness centrality. A high closeness centrality 

value for a firm indicates that the firm has a small average distance to other parts of the network. 

The measure of how a node is connected and reachable within a network is radiality centrality. A 
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high radiality centrality between two firms, “i” and “j,” indicates that firm i and j are not close 

partners. Betweenness centrality measures the extent to which a node lies on the path between 

other nodes. This metric measures the global importance of a node and the spread of a network, 

including intermediaries. Even though these network characteristics can define circular networks, 

they do not inherently discuss the cyclic flow in circular linkages. 

Circular linkages can be considered an extension of intertwined supply networks (ISN) 

defined by Ivanov and Dolgui (2020). ISNs are a group of intersecting supply chains that are 

intertwined. The viability of ISN was demonstrated using the three-level trophic model developed 

in the area of ecological modeling. Ivanov and Dolgui (2020) call for more research examining 

ripple effects in ISNs. Our study investigates the ripple effect in networks having circular linkages 

focusing mainly of the flow of products. 

2.3 Circular Linkages  

Circular linkages can be considered as an extension of the concepts of triads in supply 

chain networks. Triads are the smallest unit with multiple links within a supply chain (Choi and 

Wu, 2009). Triads have been noted as fundamental building blocks of a network where link-based 

system dynamics can be studied (Autry, Williams, & Golicic, 2014). Much of the work in triads 

have focused on relationships and competition in the supply chain. For example, Choi and Wu 

(2009) discuss examples of a triad being a buyer (A) with two competing suppliers (B and C) for 

dual sourcing of a product. The connection of B and C forms a circular link to which this paper is 

referring may or may not take place – it depends on the coordination of the competing suppliers 

(Choi & Wu, 2009; Wynstra, Spring, & Schoenherr, 2015). This paper seeks to understand how 

circular linkages impact the ripple effect and supply chain resilience. These circular linkages exist 

in today’s complex and intertwined supply chain networks and can be overlooked or even 
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unknown to a supply chain manager (for example, a supplier could also be a customer).  Therefore, 

we note that circular linkages expand the concept of buyer-supplier-supplier triad and represent 

the complexities of real-world supply chain networks.  

Despite the obvious presence of circular linkages in today’s complex, global supply chains, 

in an investigation of the bankruptcy of supply chain partners, Yang, Birge, & Parker (2015) note 

that the impact of the structure of the supply chain on firm performance is not always obvious or 

intuitive. Thererfore, many firms may simply fail to recognize them. Circular linkages are 

evidenced, for example, by supply chain nodes that engage with products multiple times in 

different capacities or by those that serve as a supplier for one product and a customer for another 

product offered by the same firm (see, e.g., Scheibe & Blackhurst’s (2018) discussion of such a 

case). Studies have considered circular flows as cycles in the form of triads as ego-networks (Choi 

& Wu, 2009; Garvey, 2018). Firms must consider the complexities of their supply chain structures 

given that one firm may fulfill multiple roles within a single chain, which may increase 

dependencies in an unknown manner.  

Traditional supply chain risk management models tend to be overly simplistic and often 

fail to recognize hidden interactions within the supply chain network (Pettit et al., 2019). Therefore, 

decision tools are needed to prescribe what managers should do when facing disruptions in supply 

chain networks with circular linkages. For example, Adenso-Diaz, Mar-Ortiz, & Lazano (2018) 

studied the failure of links in the supply chain by investigating the percentage of demand that can 

be satisfied when links fail, which could assist managers in handling link failures. In contrast to 

their paper, we examine node failure, as opposed to link failure, and investigate supply chains with 

multiple tiers. Recently, Ivanov (2018) demonstrated that firms facing a disruption could respond 

by adapting metrics such as inventory levels or structures or by adding resources such as a backup 
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supplier. We go beyond this by examining the impact of inventory levels and safety stocks and 

investigating how the utilization of resources can mitigate the impact of a supply chain disruption.  

2.4 Supply Chain Simulation Analysis 

Optimization and simulation are two common methods used to analyze the behaviors of 

supply chain networks. The complexity of supply chain networks can be reduced by using 

optimization methods to identify feasible solutions that can be implemented in a reasonable time 

frame. However, the randomness and time-related aspects of disruption and recovery are complex 

and may not be easily modeled in a closed-form equation. Thus, since simulations allow for the 

incorporation of randomness and the real-time effects of problem complexity, simulations can be 

used to model the dynamic nature of disruption and recovery policies and their effect on 

performance (Ivanov, 2017). Ivanov et al. (2017) conducted a review of disruption and recovery 

considerations in the supply chain literature. They confirmed that simulation is a suitable tool for 

analyzing the ripple effects of supply chain disruptions. Tordecilla, Juan, Montoya-Torres, 

Quintero-Araujo, & Pandero (2020) conducted a review of the literature on the simulation-

optimization methods to study resilience in supply chain networks, and Dolgui et al. (2018) note 

that simulation is an effective tool for studying the ripple effect because it can handle complex 

problem settings and changes to the system over time.  

In research using simulation to examine disruptions in the supply chain network, Tang, 

Jing, He, & Stanley (2016) analyzed the robustness of interdependent supply chain networks using 

a time-varying cascade failure model simulation. The simulation results show that interdependent 

supply chain networks collapse suddenly after a failure. Similarly, Ojha, Ghadge, Tiwari, & Bititci 

(2018) studied the behavior of risks in supply chain disruption propagation, and Ivanov (2019) 

used discrete event simulation to study the effect of revival policies (policies developed for a 
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transition from recovery to disruption-free operation mode) on “disruption tails,” which constitute 

the backlogs and delay in orders that arise due to the disruption-driven changes in supply chain 

behavior. Garvey & Carnovale (2020) proposed the “rippled newsvendor” model by leveraging a 

Bayesian network to explore optimal inventory and production policy through the lens of risk 

severity objective. They conducted multiple simulation experiments to understand the nature of 

the objective function, optimality of the solution and sensitivity analysis. In another study by 

Ivanov (2020b), the COVID-19 epidemic outbreak is articulated as a disruption risk and its impacts 

on global supply chains are demonstrated through simulation experiments. 

Moreover, simulations are also helpful in studying the ripple effect and supply chain 

resilience. Carvalho, Barroso, Machado, Azevedo, & Cruz-Machado (2012) used a simulation 

study investigating various supply chain scenarios to identify how to improve supply chain 

resilience. Likewise, Ivanov (2018) used a simulation-based study to identify how different 

sustainability factors influence ripple effects in supply chains and found that sustainable single 

sources increase ripple effects while facility fortification at major regional employers mitigate 

them. Because of the need to consider vulnerabilities and recovery capabilities at individual firms 

in a network, ripple effect assessment in multistage supply chains can be challenging. Hosseini, 

Ivanov, & Dolgui (2020) simulation study based on the discrete time Markov chain (DTMC) and 

the dynamic Bayesian network (DBN) demonstrated the disruption propagation behavior of 

suppliers in a multistage supply chain. 

Simulation is a very useful tool for capturing multiple sources of uncertainties and 

incorporating various policies relating to decision-making surrounding complex phenomena 

(Meisel, & Bierwirth, 2014). Simulation can also be useful for studying supply chain risks and 

resilience, theory development, theory testing, and the description and exploration of various 
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phenomena (Macdonald, Zobel, Melnyk, & Griffis, 2018). The ripple effect is one such 

phenomena. Five simulation perspectives have been used to analyze ripple effect – system 

dynamics (to simulate ripple effect in the supply chain), agent-based simulation and modeling (to 

model supply chain disruption and impact on supply chain performance), discrete event simulation 

(used in the area of severe supply chain disruption and resilience analysis), graph-theory based 

simulation (to analyze disruption propagation through the supply chain and evaluate its impact on 

performance), and optimization-based simulation (Ivanov, 2017). This study examines the ripple 

effect of supply chain disruption in circular networks using discrete event simulation. 

 Method 

Whereas mathematical models or closed-form solutions may not be capable of handling 

complex problem settings (Dolgui, et al., 2018), simulation is an effective descriptive and 

prescriptive analytical tool for investigating phenomena and evaluating decision-making options. 

The most common simulation technique used in supply chain studies is discrete event simulation. 

Discrete event simulation models (DESM) are used to understand how systems react over time 

and compare their performance under different conditions (Borshchev & Filippov, 2004). Tako & 

Robinson (2012) provide a literature review using discrete event simulation model in logistic and 

supply chain literature. DESM is used to study and analyze various strategic, operational, and 

tactical issues in the supply chain, including supply chain structure, replenishment control policies, 

supply chain optimization, cost reduction, system performance, inventory planning and forecasting 

demand, production planning and scheduling, and dispatching rules. DESM is also used to analyze 

the ripple effect in supply chain networks. Dolgui et al. (2018) conducted a review of the literature 

on ripple effect analysis that summarizes the use of DESM in ripple effect studies. These studies 

analyze the effect of different strategies and policies on recovery, the performance impact of 
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disruption, ripple effect and sustainability, and how performance varies under different disruption 

scenarios. 

We analyze the impact of disruptions to circular flow supply chains using a discrete-event 

simulation. In our simulation, several parts (or subassemblies) are processed and moved between 

multiple companies (or nodes in the supply chain) within a supply chain system. We then introduce 

disruptions into the systems and analyze their impact on system performance. Using the simulation 

model developed in this section, we test multiple hypotheses (illustrated in Figure 2) and test the 

effects of circular and multiple disruptions and the disruptions’ location in a given network. For 

the network in Figure 2 involving 11 companies, we assume that one circular flow exists (Company 

9  Company 11  Company 9) for illustration purposes. The supply chain network used in our 

simulation study, introduced in Section 3.2.1, involves multiple circular flows. 

Figure 2: Illustration of hypotheses tested 

H1.  Simultaneous disruptions that occur within circular linkages will have longer backlog 

and recovery periods compared with simultaneous disruptions occurring in 

noncircular linkages, all else being equal. 

Effect of multiple 

disruptions in circular 

flows (vs. noncircular) 

to backlog periods and 

recovery periods 

 

H2.  Single disruptions that occur within circular linkages will have longer backlog and 

recovery periods compared with a disruption that occurs in noncircular linkages, all 

else being equal. 
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Effect of single 

disruption in circular 

flows (vs. noncircular) 

to backlog periods and 

recovery periods 

 

H3.  Disruptions that occur in different locations within the same circular flow will have 

different backlog and recovery periods. 

Effect of disruption 

location to backlog 

periods and recovery 

periods 

 

 

Based on the hypotheses (which will be discussed below in more detail), we investigate: 

(1) how multiple disruptions affect the supply chain when the disruptions occur within circular 

flows, (2) how a single disruption affects the supply chain when the disruption occurs within the 

circular linkages, and (3) how the location of the disruption (in the same circular flow) affects the 

supply chain.  

3.1 Model Development  

To measure the impact of disruptions on system resilience and performance, we adapted 

the quantification of resilience expressed by Bruneau, Chang, Eguchi, Lee, O’Rourke, Reinhorn, 

Shinozuka, Tierney, Wallace, & Winterfeldt (2003), where they investigated the seismic resilience 

of communities. They state that resilient systems will have reduced failure probabilities, reduced 

consequences of failures, and reduced time to recovery to a normal performance level. We assessed 

the following three metrics and used them to derive performance measures:  
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 First, the production level computes the ratio between the production quantity and 

demand of the final product, defined as the production level = (production quantity) 

/ demand.  

 Second, the demand satisfaction level computes the cumulative demand percentage 

satisfied for the final product, defined as demand satisfaction level = (cumulative 

production quantity) / (cumulative demand).  

 Third, the relative inventory level computes the ratio between the part inventory 

level and the safety stock, defined as relative inventory level = (part inventory) / 

(desired part safety stock inventory level). Note that the first two measures are 

defined only for the final product, and the last measure is defined for each part. 

Figures 3 to 5 present the three metrics over time when a firm faces a disruption event. The 

figures are obtained by generalizing the simulation outputs using various settings. Figures 3 and 4 

show the production level and demand satisfaction level, respectively, of the final product affected 

by the disruption event. Figure 5 shows the relative inventory level of a part affected by the 

disruption event.  

Figure 3: Relative Production Level 
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Figure 4: Cumulative Demand Satisfied 

 

Figure 5: Relative Inventory Level 

 

In our model, a disruption event has six distinct time phases:  

1. Time T1: the time at which a disruption begins. 

2. Time T2: the time at which all in-process units and safety stocks begin to show the effects 

of disruption. 

3. Time T3: the time at which disruption ends. 

4. Time T4: the time at which the network returns to normal capacity following the disruption 

event. 

5. Time T5: the time at which all backlogged demands are satisfied. 

6. Time T6: the time at which overproduction ends because safety stock levels have fully 

recovered from the disruption event. 
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Note that the triangle in Figure 3 with angles at T2 and T4 is slightly different from the 

resilience triangle of Bruneau et al. (2003) because our vertical axis indicates the relative 

production level. In contrast, Bruneau et al. (2003) use the infrastructure’s quality for the vertical 

axis. In Figure 3, the effect of the disruption to the production level is delayed because (1) 

disruptions at earlier stages will slowly affect the production of the final product, and (2) the safety 

stock and in-process parts delay the effect of the disruptions, which explains the time difference 

between T1 and T2. Similarly, the production level is not 100% at the end of the disruption at T3. 

Instead, the effect of the disruption appears at T2 and disappears at T4 in Figure 3, while the actual 

disruption occurs from T1 to T3. However, during periods T2 through T4, demands are backlogged, 

and overproduction is needed following a disruption event to meet the unsatisfied demand. The 

overproduction starts immediately after removing the disruption (T3) and ends when all the 

backlogged demands are satisfied and all part inventory levels reach the baseline safety stock level 

(T6). The manager determines the overproduction level, P2, and the overproduction stops at T6 in 

Figure 3 because the relative inventory level reaches 100% at T6 in Figure 5, implying that the 

part inventory levels have reached the baseline safety stock level.  

Supply chain literature uses a variety of performance metrics to analyze supply chain 

resilience. Han et al. (2020) provide a systematic review of literature on the various capabilities 

and performance metrics used in supply chain resilience. Based on Han, Chong, & Li (2020), the 

main performance metrics include fulfilling customer requirements, efficiency in completing 

supply chain processes, efficiency in recovery to normality, production performance, inventory, 

financial performance, and disruption damage. Many simulation studies investigating supply 

chains with disruptions address capacity degradation and recovery duration (Dolgui et al., 2018). 

In this paper, we focus mainly on the supply chain’s ability to recover to normality. Hence, we 
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evaluate supply chain resilience based on the performance measures derived from the three system 

quantities introduced below. 

(1) Robustness is measured by the lowest relative production level (P1 in Figure 3—with 100% 

being normal). This measures the system’s strength and ability to resist the impact of a 

disruption event (Bruneau et al., 2003; Nair & Vidal, 2011; Zobel & Khansa, 2014). 

(2) The backlogged period is measured by the number of days from the day the disruption ends 

to the day when the demand satisfaction level reaches 1 for the first time (T5-T3). This 

shows the system’s stability (Ivanov & Dolgui, 2020) by measuring the time required to 

meet the backlogged demand at the end of a disruption event. We measure the backlogged 

period because this shows that the system is now stable and meets demand. This is different 

than recovering backlog AND safety stock. Including safety stock is a measure to prepare 

for future disruptions rather than returning to a stable state with the downstream customer. 

This is measured in our next measure, the recovery period. 

(3) The recovery period is measured by the number of days from the day the disruption ends 

to the day on which the relative inventory level reaches 1 for the first time (T6-T3). This 

also measures the stability of the system (Ivanov & Sokolov, 2013; Ivanov & Dolgui, 2020) 

by capturing the time required to return to the baseline safety stock level at the end of the 

disruption event. It is similar to the time to full system service resilience used in Pant, 

Barker, Ramirez-Marquez, & Rocco (2014). 

Using the three performance measures, we assess: (1) how single or simultaneous disruptions at 

different locations affect performance, and (2) how manager decisions regarding the 

overproduction level (P2) and safety stock level affect performance. 



  Ripple Effect and Circular Flows 

20 

 

3.2 Simulation Model 

3.2.1 Example Supply Chain Network 

In our simulation study, we considered a supply chain network (presented in Figure 6) 

based on real-world supply chain data and structures—specifically, the Boeing supply chain 

structure extracted from the Mergent Horizon (Mergent Inc., n.d.) database. Companies included 

in the supply chain network are listed in Table 1 below. 

Table 1 List of companies in the supply chain network 

Company # Company Name Company # Company Name 

Company 1 Alcoa Corporation Company 7 United Technologies Corp 

Company 2 Zodiac Aerospace Company 8 General Dynamics 

Company 3 Hexel Corp Company 9 TransDigm Group 

Company 4 General Electric Company 10 Korea Aerospace 

Company 5 Mitsubishi Company 11 Boeing 

Company 6 Triumph Group  

 

Note that two circular relationships are indicated here: Companies 9 and 11 provide parts to each 

other and Companies 1, 4, and 11 form a cycle. 

Figure 6: Example real-world supply chain network structure 
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We consider a final product produced at Company 11 within this network. The required 

parts and flow for producing each part are listed in Table 2. Each row of the table shows how the 

part is produced and indicates the production rate for all companies involved. Parts 5a and 5b are 

combined to produce Part 5, supplied to Company 11. When Company 11 holds ten units of Parts 

1, 2, and 3 and five units of Parts 4 and 5, one unit of the final product is produced. Hence, one 

unit of the final product is produced per day without considering delivery delays per day on average. 

Table 2: Parts and flows required for the production of the final product 

Part type Flow Regular production rate 

(units per day) 

Number of units required  

for each final product 

Part 1 1 – 4 – 7 – 5 – 11 10 10 

Part 2 2 – 5 – 11 – 9 – 11  10 10 

Part 3 3 – 4 – 8 – 11 10 10 

Part 4 4 – 11 – 1 – 4 – 11 5 5 

Part 5a 10 – 6 – 8*  5 5 

Part 5b 3 – 9 – 8* – 11 5 5 

Note: * indicate that Parts 5a and 5b are required to produce Part 5 at Company 8. 

3.3 Simulation Experiment Settings  

3.3.1 Supply Chain System Settings 

In our simulation, we assume batch production in a push-based supply chain 1 . The 

production or processing of a part is scheduled when the number of parts needed exceeds the sum 

of the parts contained in the safety stock and the batch production number. The production is 

scheduled in batches, where the batch size is equal to the regular production rate (in our simulation, 

either 5 or 10 units per day). The production time (in days) to produce a batch is modeled as a 

normally distributed random variable with a mean of 1 and a standard deviation of 0.1. The 

                                                 

1 In a push-based system, products are pushed through the process, from the raw materials to finished goods. 

The production levels are set by the manufacturer in advance in accord with historical ordering or demand patterns. 



  Ripple Effect and Circular Flows 

22 

 

deliveries are scheduled with larger-sized batches: 2 * production batch size. We assume that the 

companies do not hold the inventories they produce and schedule delivery when the number of 

parts in the inventory exceeds the sum of the safety stock and delivery batch size. The time (in 

days) to deliver a delivery batch (of two production batches) is modeled as a normally distributed 

random variable with a mean of 1 and a standard deviation of 0.1. The production and delivery are 

scheduled every hour rather than in real-time, which means the production and delivery can be 

delayed up to one hour even if all requirements are met in the simulation. 

3.3.2 Disruption Settings 

A disruption occurs between randomly generated start and end dates. To check the effect 

of various disruption durations, we use the uniform distributions to generate disruption lengths in 

a wide range instead of using a fixed-length or several discrete duration lengths (Ivanov, 2020b; 

Olivares-Aguila & ElMaraghy, 2020) or a firm-specific formula (Schmitt & Singh, 2009). The 

start date follows a uniform distribution between Day 180 and Day 220, and the end date follows 

a uniform distribution between Day 280 and Day 320. Hence, the average length of the disruption 

is 100 days, with the shortest and longest disrupted lengths being 60 days and 140 days, 

respectively. When a disruption occurs, the disrupted company’s production rate is reduced, and 

the reduction rate follows a uniform distribution between 20% and 80%. For example, if Company 

1 is disrupted with a reduced rate of 50%, the production rates of Parts 1 and 4 at Company 1 

become 5 and 2.5 units per day, respectively. Similar to the generated disruption durations, our 

generation procedures cover various disruption rates in a wide range. Our generation procedures 

for the disruption durations and rates consider much more disruption scenarios than using a fixed 

value or multiple discrete values. To model the linearly increasing production rate immediately 

after a disruption, the reduced production rate linearly increases until the date on which the 
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disruption ends. The delivery time is also affected by the disruption. With a disruption rate of 50%, 

the mean delivery time is doubled; i.e., the delivery time would be extended from 1 day to 2 days. 

Conversely, during the overproduction period, delivery times are reduced—e.g., an 

overproduction rate of 30% would reduce the normal delivery time from 1 day to 0.77 days. A 

summary of the simulation settings and parameters is found in Table 3. 

Table 3: Simulation settings and parameters 

 

3.3.3 Performance Measures and Scenarios 

Based on the simulation study, we assess the three performance measures of robustness, 

backlogged period, and recovery period introduced in Section 3.1. To calculate the performance 

measures, the following three values were calculated for each simulation day and each part: 

 Descriptions 

System 

settings 
 Push-based supply chain 

 Backlogged final product 

 Batch productions and deliveries scheduled every hour 

Deliveries are scheduled when the stock level exceeds the sum of safety stock and 

delivery batch size 

 Variable Corresponding value or distribution 

Decisions Overproduction levels {20%, 30%, 40%} 

 Safety stock levels {2 days, 3 days, 4 days} 

Scenarios D-j: 11 Single disruption scenarios 

D-(j,k): 55 Two disruptions scenarios  

Company j is disrupted  

Companies j and k are disrupted  

Parameters Number of replications 200 simulations per scenarios and decision 

alternative 

 Number of simulation days 1000 days 

 Warm-up period 150 days 

 Regular production rate 5 or 10 units per day 

 Production batch size Regular production rate 

 Production time Normal (mean = 1, sd = 0.1) 

 Delivery batch size 2*production batch size 

 Time to deliver Normal (mean = 1, sd = 0.1) 

 Disruption start date Uniform(180, 220) 

 Disruption end date Uniform(280, 320) 

 Reduction rate of production (after 

disruption) 

Uniform(20%,80%) 

 Production rate recovery Recovered linearly during the disrupted periods 

Performance 

measures 

Backlogged period # days to reach demand satisfaction level 1 

 Recovery period 

Robustness 

# days to reach relative inventory level 1 

Minimum production level due to disruption 
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average production level = (10 days production quantity) / (10 days demand); demand satisfaction 

level = (cumulative production quantity) / (cumulative demand); and relative inventory level = 

(part inventory level) / (desired safety stock inventory level). We used these three values to 

calculate the performance measures robustness, backlogged period and recovery period. In all of 

the simulation experiments, we considered the following two types of scenarios: 

(1) Single disruption scenario, where one company, Company j, faces a disruption, which is 

denoted as D-j. 

(2) Simultaneous disruptions scenario, where two companies, Companies j and k, face 

disruptions, which is denoted as D-(j,k). 

3.3.4 Other Simulation Parameters 

Finally, we discuss the setup of the simulation parameters summarized in Table 3, such as 

the number of days, the number of simulation runs, and warm-up periods. To observe how the 

system works without a disruption, we conducted a pilot study that ran a 1000-day simulation 200 

times for the network in Figure 6 with a fixed safety stock level of 3 days and an overproduction 

rate of 30%. In Figure 7, the number of final products produced on each day is displayed over time. 

Each value in the series was obtained by averaging the number of final products produced during 

one day using over 200 replications. Because the daily production level fluctuates in the warm-up 

period (Day 1-149) and stabilized, we discarded all the records collected during the warm-up 

period. The average number of final products produced each day was 0.967, which is the value 

used as the daily demand in our simulation. 
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Figure 7: Number of final products produced in each day (average of 200 replications) 

 

To determine the length of each simulation run, we conducted a pilot study and concluded 

that a 1000-day simulation is sufficient. To determine the number of simulation runs, we conducted 

a pilot study with two randomly disrupted companies (uniform distribution is used) in each 

simulation run. Because 11 companies exist in the network, there are 55 simultaneous disruptions 

scenarios. To obtain the average performance for each scenario, we averaged the output from 

multiple simulation runs with randomly created pairs of disrupted companies. In Figure 8, the 

average recovery periods and robustness values are plotted for increasing numbers of simulation 

runs. The plain black line represents the average values, and the shaded areas indicate the upper 

and lower bounds; the bounds are defined as one standard deviation from the mean. 

Figure 8: Average of recovery periods (plain black line in the left figure) and 

robustness values (plain black line in the right figure) and the upper and lower bounds 

(shaded area) 
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The standard deviations are relatively large compared to the averages because the disrupted 

locations are randomly selected, and the disruption rates follow a uniform distribution of between 

20% and 80%, which yields large variances. However, the averages and standard deviations 

become stable quickly, within 50 simulation runs. To generate more stable results, we ran 

approximately 200 simulations for each disruption scenario for the network in Figure 6. For the 

single disruption cases, in which only one company was disrupted, we ran 19,800 simulations (i.e., 

11 scenarios of single disruptions * 200 replications * 9 decision alternatives), where each run 

randomly selected a company to be disrupted. Hence, each scenario corresponded to 200 

simulation runs on average. For the multiple disruption cases in which two companies were 

simultaneously disrupted, we ran 99000 simulations (i.e., 55 scenarios of two simultaneous 

disruptions * 200 replications * 9 decision alternatives), where each run randomly selected two 

companies to be disrupted. Hence, for each scenario, we had an average of 200 simulation runs. 

3.3.5 Simulation Implementation and Flows 

We implement our simulation experiment in C#. In Figure 9, the flowchart of the 

simulation steps is presented. The bullet points next to each box briefly explain the steps executed. 

Note that some events are represented as a single event in the diagram for simplicity (e.g., events 

defined for multiple companies). The hourly check event enumerates all steps needed (productions, 

deliveries, updates, and records) for each Part i at Company j and the Final Product. 

Figure 9 Simulation Flowchart 



  Ripple Effect and Circular Flows 

27 

 

3.4 Simulation Experiment Results 

We test the supply chain network in Figure 6 using the simulation settings discussed in the 

previous section. Based on our results, we observed that: (1) the recovery period depends 

significantly on the overproduction-rate decision; (2) simultaneous multiple disruptions decrease 

the robustness of the system—the average robustness values for the single and multiple disruptions 

scenarios are 0.588 and 0.523, respectively. However, because there are numerous scenarios (594 

scenarios = 66 single and multiple disruption cases * 9 decision alternatives), rather than presenting 

the aggregated result according to the scenario, we focus on testing the hypotheses for this model 

as explained below. For all of the hypothesis tests conducted in this section, we use Welch’s t-test, 
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or unequal variances t-test, for comparing the means of two populations (e.g., circular vs. 

noncircular, company A vs. B). To further validate our conclusion, we provide a regression 

analysis for the hypotheses in the appendix. 

3.4.1 Effect of multiple simultaneous disruptions in circular flows 

In Figure 6, there are two circular flows: 4 – 11 – 1 – 4 – 11 and 11 – 9 – 11. According to the 

analysis in this section, two simultaneous disruptions are simultaneous circular disruptions if the 

two disrupted companies are part of any circular flows. That is, disruptions D-(1,4), D-(1,9), D-

(1,11), D-(4,9), D-(4,11), and D-(9,11) are considered simultaneous circular disruptions. All other 

pairs are defined as simultaneous disruptions in noncircular flows. The performance differences 

between multiple simultaneous disruptions in circular and noncircular flows are presented in Table 

4.  
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Table 4: Average performance measures for multiple disruptions in circular/noncircular 

flows 

Circular Safety Over- Robustness Backlogged Periods Recovery Periods 

or Not Stock production AVG SD AVG SD AVG SD 

0 2 days 20% 0.525 0.128 168 46 169 46 

0 2 days 30% 0.525 0.128 117 31 117 32 

0 2 days 40% 0.525 0.128 88 24 89 24 

0 3 days 20% 0.525 0.128 168 46 188 89 

0 3 days 30% 0.525 0.128 116 31 127 52 

0 3 days 40% 0.525 0.128 88 24 97 42 

0 4 days 20% 0.525 0.128 168 46 273 245 

0 4 days 30% 0.525 0.128 116 31 203 220 

0 4 days 40% 0.525 0.128 88 24 169 215 

1 2 days 20% 0.508 0.124 175 46 180 46 

1 2 days 30% 0.508 0.124 122 32 125 32 

1 2 days 40% 0.508 0.124 92 24 95 25 

1 3 days 20% 0.508 0.125 175 47 268 177 

1 3 days 30% 0.508 0.125 121 32 176 129 

1 3 days 40% 0.508 0.125 92 24 139 102 

1 4 days 20% 0.508 0.125 175 46 532 363 

1 4 days 30% 0.508 0.125 121 32 439 364 

1 4 days 40% 0.508 0.125 91 24 379 351 

 

We observed that simultaneous multiple disruptions decreased the robustness of the system 

but not significantly. The average robustness values for the multiple disruption scenarios in 

circular and noncircular flows are 0.500 and 0.525, respectively.  

H1a.  Simultaneous disruptions that occur within circular linkages will have longer backlog 

periods compared with simultaneous disruptions occurring in noncircular linkages, all 

else being equal. 

H1b.  Simultaneous disruptions that occur within circular linkages will have longer recovery 

periods compared with simultaneous disruptions occurring in noncircular linkages, all 

else being equal. 

Conversely, backlogged and recovery periods are significantly different across different 

disruption scenarios. For example, we compare the average backlogged and recovery periods for 

disruptions in circular and noncircular flows, given a fixed safety stock level of 2 days and an 

overproduction rate of 20%. For the average backlogged period, the null and alternative hypotheses 
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are H1a0: mean(backlogged period for circular disruptions) = mean(backlogged period for 

noncircular disruptions) and H1a1: mean(backlogged period for circular disruptions) != 

mean(backlogged period for noncircular disruptions). For this test, we calculate:  

t =  
175.4−167.9 

√45.92

1197
+

46.22

9803

= 5.361 > 1.962 = t0.05

2
,930.8

. 

Hence, we reject H1a0 and conclude that the mean backlogged periods are different. For the 

recovery period, the null and alternative hypothesis are H1b0: mean(recovery period for circular 

disruptions) = mean(recovery period for noncircular disruptions) and H1b1: mean(recovery period 

for circular disruptions) ≠ mean(recovery period for noncircular disruptions). For this test, we 

calculate: 

t =  
180.3−169.0 

√46.52

1197
+

46.32

9803

= 7.933 > 1.963 = t0.05

2
,928.9

. 

Hence, we reject H1b0 and conclude the mean recovery periods are different. 

3.4.2 Effect of single disruptions in circular flows 

Similar to the definitions of the disruptions for circular and noncircular flows, we use the 

two circular flows in the network: 4 – 11 – 1 – 4 – 11 and 11 – 9 – 11. For this single disruption 

case, companies involved with any of the circular flows are considered to be single disruptions in 

circular flows: disruptions D-1, D-4, D-9, and D-11. All the other single disruptions D-2, D-3, D-

5, D-6, D-7, D-8, and D-10 are considered single disruptions in noncircular flows. The 

performance differences between single disruptions in circular and noncircular flows are presented 

in Table 5. There are significant differences regardless of management decisions. 
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Table 5 Average performance measures for single disruption in circular/noncircular flows 

Circular Safety Over- Robustness Backlogged Periods Recovery Periods 

or Not Stock production AVG SD AVG SD AVG SD 

0 2 days 20% 0.594 0.149 135 51 135 51 

0 2 days 30% 0.594 0.150 94 35 94 35 

0 2 days 40% 0.594 0.150 71 26 71 26 

0 3 days 20% 0.594 0.149 135 51 135 51 

0 3 days 30% 0.594 0.150 94 35 94 35 

0 3 days 40% 0.594 0.150 71 26 71 26 

0 4 days 20% 0.594 0.149 135 51 135 51 

0 4 days 30% 0.594 0.150 94 35 94 35 

0 4 days 40% 0.594 0.150 71 26 71 26 

1 2 days 20% 0.577 0.151 143 52 144 52 

1 2 days 30% 0.577 0.151 100 36 101 36 

1 2 days 40% 0.577 0.151 76 27 76 27 

1 3 days 20% 0.577 0.151 144 52 156 63 

1 3 days 30% 0.578 0.151 100 36 107 38 

1 3 days 40% 0.577 0.151 76 27 82 31 

1 4 days 20% 0.577 0.151 143 52 252 225 

1 4 days 30% 0.578 0.151 100 36 176 169 

1 4 days 40% 0.578 0.151 75 27 143 164 

 

H2a.  Single disruptions that occur within circular linkages will have longer backlog periods 

compared with a disruption that occurs in noncircular linkages, all else being equal 

H2b.  Single disruptions that occur within circular linkages will have longer recovery periods 

compared with a disruption that occurs in noncircular linkages, all else being equal 

Let us consider a fixed-decision pair with two days of safety stock and 20% overproduction. 

We use the same hypothesis tests, and the null hypotheses are the equal average hypotheses. For 

the backlogged period, we calculate:  

t =  
143.3−135.1 

√51.92

800
+

51.42

1400

= 3.614 > 1.961 = t0.05

2
,1647.8

. 

Hence, we reject H2a0 and conclude that the mean backlogged periods are different. For the 

recovery period, we calculate: 

t =  
144.2−135.1 

√52.12

800
+

51.42

1400

= 3.990 > 1.961 = t0.05

2
,1643.8

. 
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Therefore, we reject H2b0 and conclude the mean recovery periods are different. 

3.4.3 Effect of disruption locations 

Company 9 is the fourth company processing Part 2, Company 11 represents the third and 

fifth company processing Part 2, and Part 2 includes a circular flow (11-9-11). Therefore, to 

illustrate the effect of the locations within the same circular flow, we present the performance 

differences between single disruptions at Company 9 (D-9) and single disruptions at Company 11 

(D-11) in Table 6.  

Table 6 Average performance measures for disruptions at Companies 9 and 11 

Disrupted Safety Over- Robustness Backlogged periods Recovery periods 

company stock production AVG SD AVG SD AVG SD 

9 2 days 20% 0.587 0.154 135 50 135 50 

9 2 days 30% 0.587 0.154 94 35 94 35 

9 2 days 40% 0.587 0.154 71 26 71 26 

9 3 days 20% 0.587 0.154 135 50 135 50 

9 3 days 30% 0.587 0.154 94 35 94 35 

9 3 days 40% 0.587 0.154 71 26 71 26 

9 4 days 20% 0.587 0.154 135 50 135 50 

9 4 days 30% 0.587 0.154 94 35 94 35 

9 4 days 40% 0.587 0.154 71 26 71 26 

11 2 days 20% 0.567 0.153 146 52 148 52 

11 2 days 30% 0.567 0.153 101 35 103 35 

11 2 days 40% 0.567 0.153 77 26 78 26 

11 3 days 20% 0.567 0.153 146 52 186 78 

11 3 days 30% 0.567 0.153 101 35 124 40 

11 3 days 40% 0.567 0.153 76 27 97 35 

11 4 days 20% 0.567 0.153 145 52 499 311 

11 4 days 30% 0.567 0.153 101 35 361 246 

11 4 days 40% 0.567 0.153 76 27 317 252 

 

H3a.  Disruptions that occur in different locations within the same circular flow will have 

different backlog periods 

H3b.  Disruptions that occur in different locations within the same circular flow will have 

different recovery periods 
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Let us consider a fixed-decision pair with two days of safety stock and 20% overproduction. 

The null hypotheses are the equal average hypotheses. For the backlog period, we calculate: 

t =  
145.6−134.8 

√51.92

199
+

50.02

200

= 2.122 > 1.966 = t0.05

2
,396.3

. 

Hence, we reject H3a0 and conclude that the mean backlog periods are different. For the recovery 

period, we calculate: 

t =  
147.7−134.8 

√52.02

199
+

50.02

200

= 2.515 > 1.966 = t0.05

2
,396.2

. 

We reject H3b0 and conclude that the mean recovery periods are different. 

 Discussion of Results 

There are several aspects of the results that warrant attention and discussion. First, a 

disruption’s ripple effect is more severe when it occurs inside circular flows than a disruption 

occurring outside circular flows. It is expected that when multiple disruptions occur in a supply 

chain network, the impact of the disruptions should be greater than if a single disruption occurs, 

given that the disruptions occur in similarly prominent network locations. Of course, when a 

disruption occurs at a critical point in a network, the disruption’s effect can be greater than multiple 

disruptions at non-critical points. Thus, understanding the supply chain structure can make a 

difference in planning mitigation strategies for ripple effects. Specifically, when disruptions occur 

inside networks with circular flows, the effect will ripple further, creating longer backlog periods 

to meet demand and longer recovery periods. 

Second, like hypotheses H1a and H1b, hypotheses H2a and H2b show that supply chains 

can experience different ripple effects caused by a single disruption simply on whether that 
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disruption occurs inside or outside of circular flowing portions of the network. This highlights the 

influence of circular flows in a network as the effect of a single disruption would be expected to 

be less than multiple disruptions in a similar network. Thus, to show an increased ripple effect 

even with a single disruption demonstrates the importance of the network structure in terms of 

circular flows. In our experiments, disruptions that occurred in circular flows led to longer backlog 

periods and longer recovery periods than those that occurred outside of circular connections. Thus, 

compared to similar flows without circular relationships, when a disruption occurs in a supply 

chain, the ripple effect is greater when it occurs within a circular flow. 

Third, when disruptions occur in similarly complex flows but in different circular flows, 

the ripple effect can be greater. For example, when comparing disruptions at different locations in 

circular flows, we showed that the backlogs are significantly different when safety stock levels 

and overproduction rates are unequal. However, when safety stock levels and overproduction rates 

are similar, but they exist in different circular flows, the ripple effect is less pronounced. Lastly, 

when a disruption occurs at different companies in the same circular flow, the disruption causes 

the ripple effect to be significantly different, even though the companies are in the same flow. 

4.1 Managerial Implications  

It is essential to understand the supply chain structure to mitigate the ripple effect’s risk 

when circular flows are present. Unfortunately, it may be impossible to remove circular flows. 

When that is the case, supply chain managers may help the mitigation process by multi-sourcing 

a part and thus remove a potential dependency in a circular flow. They may also increase safety 

stock to buffer the effect of a disruption. 
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A difficulty in recognizing circular flows is they may be present unbeknownst to the supply 

chain manager. When building our real-world supply chains for this research, we found circular 

flows to be a common occurrence. It is often the case that details in a supply chain network are 

obscure beyond two levels up. Thus, a company may know who their suppliers and their suppliers’ 

suppliers are, but beyond that, it is impractical or impossible to know, let alone manage those 

relationships. Therefore, it would be beneficial if managers clearly understood the structure of 

their supply network so that they could ascertain whether there were circular flows in the network, 

which would allow them to adjust their safety stock or overproduction capabilities in circular flow 

areas to mitigate the risk of disruption ripple effects. This is in line with recent calls to understand 

the impact of the ripple effect in supply chains that are complex and intertwined (Ivanov & Dolgui, 

2021; Ivanov 2020a). Circular linkages exacerbate complexity and can lead to intertwined 

networks. Because our research articulates the influence of ripple effects in supply chains with 

circular flowing networks, it could help managers better understand risk in their supply chains and 

facilitate the development of insights to bolster supply chain resilience.  

Given improved understanding among supply chain managers regarding the structure of 

their networks, network analysis using a simulation approach like the one employed here could 

help identify appropriate resiliency measures. However, managers must understand that the 

organization’s location within that circular flow can generate different ripple effects. 

4.2 Research Implications  

Supply chain disruptions have long been of interest to both practitioners and researchers 

and continue to be relevant due to the growing complexity of supply chains in a highly connected 

world. Suppliers across the globe engage with partners that are not geo-proximate. Consequently, 

supply chain risks such as the ripple effect are prominent, and researchers must continue 
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investigating means and methods to mitigate these types of risk. Analytic capabilities are growing 

in supply chains, giving decision makers greater ability to predict disruptions (Hazen, Skipper, 

Ezell, & Boone, 2016; Wang, Gunasakaren, Ngai, & Papadopulos, 2016). Our research improves 

the understanding of supply chain exposure through simulation, which is an effective prescriptive 

analytic technique that can also allow decision makers to perform “what-if” analyses in varying 

scenarios to determine the influence and effectiveness of disruption mitigation strategies. 

We show that disruptions inside circular flows have a greater ripple effect than those 

occurring outside circular flows. The ripple effect is greater when multiple disruptions occur and 

even when a single disruption occurs. We also show that the location of a disruption within a 

circular flow will influence the ripple effect, even when the disruptions occur within the same 

circular flow. Finally, our research delves into supply chain operations’ resilience (Choi, Chan, & 

Yue, 2017). Specifically, we demonstrate that the network structure, in terms of circular versus 

noncircular flows, has a significant influence on supply chain resiliency. We demonstrate that the 

length of time it takes to return to normal operating levels and safety stock levels is extended 

following disruptions occurring in networks with circular linkages. 

 Conclusion 

Sheffi & Rice (2005) propose eight phases of a firm’s response to a disruption: preparation, 

the disruptive event, first response, initial impact, full impact, preparation for recovery, recovery, 

and long-term impact. This study investigates preparation vis-à-vis the relationship between 

circular flows within a supply chain network and the ripple effect of disruptions. Our results show 

that disruptions that occur within circular flows experience more substantial ripple effects than 

those without. Supply chain managers should consider whether their networks contain the hidden 

danger of circular flows. If they do, they should take steps to reduce the potential for ripple effects 
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by adjusting their safety stocks and/or overproduction rates. Our main finding indicates that 

circular linkages are associated with challenges, particularly in the preparation phase of supply 

chain planning. These circular linkages are often unobserved yet significantly impacting a 

supplier’s resiliency to disruptions. Zobel and Khansa (2014) argue that multiple characteristics of 

a system’s response should be simultaneously measured to reflect system performance better and 

more effectively characterize resilient behavior. However, our research demonstrates one 

characteristic that has not previously been measured—the ripple effect caused by circular linkages. 

Future supply chain resiliency research should consider further investigation of this characteristic. 

Specifically, as observed during the COVID-19 pandemic, supply chain resilience, disruptions, 

and the ripple effect need even greater study (Ivanov & Dolgui, 2021; Hosseini, Ivanov, & 

Blackhurst, 2020; Ivanov, 2020b; Ivanov & Dolgui, 2020). 

This research is not without limitations. First, to articulate the impact of disruptions on 

circular flowing networks, we derived a simplified network and used simulated disruptions. We 

assumed certain distributions for duration, severity, and reduction rates and attempted to model 

these distributions based on the supply chain literature, but actual networks will vary. Additionally, 

we considered a single final product, again for clarity and demonstration, although actual supply 

chains are more complex and have multiple final products. While the derived networks were 

modeled using actual networks and real-world connections, the influence of disruptions on circular 

flow networks is likely understated, given that authentic networks may be more complex than 

those modeled here. 

Furthermore, the database containing the actual network connections did not list every 

dependency level (Mergent Inc., n.d.). For example, the database listed suppliers with a high 

percentage of business dealing with a focal firm but did not list values for lesser importance 
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suppliers. Thus, it is challenging to model true and complete networks based on these data. Lastly, 

our experiment consisted of a single supply chain network with disruptions occurring inside and 

outside circular linkages. However, it is well known that disruptions can and do propagate to other 

portions of the network (Basole & Bellamy, 2014; Li et al., 2020a; Zhao et al., 2019). Thus, even 

though disruptions may occur inside circular linkages, the ripple effect can travel to nodes outside 

those circular flows and vice versa. Despite this weakness, we have shown a significant effect of 

the location of the disruption in circular linkages via the ripple effect on a supply chain network. 

An important focus of this research is the supply chain structure, particularly when there 

are loops that may provide a level of feedback that increases the ripple effect. These looping 

structures exist in real-world supply chains, but many supply chain decision makers are unaware 

of their presence, let alone their potential influence on the network. As managers strive to increase 

coordination, efforts to mitigate the ripple effect in circular flowing networks should be further 

examined not only by increasing safety stock and overproduction rates but also by investing in 

coordination and control efforts. 
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Appendix A: Regression Analysis 

In this section, we test the six hypotheses in Section 3.4 based on regression analysis. Let 𝒚𝒃𝒂𝒄𝒌𝒍𝒐𝒈 

and 𝒚𝒓𝒆𝒄𝒐𝒗𝒆𝒓 be the backlog and recovery periods, respectively, used as dependent variables in the 

regression models. Let us also define the following independent variables for notational 

convenience. 

 DL: disruption length (averaged if two disruptions are involved) 

 DR: disruption rate (averaged if two disruptions are involved) 

 CD: 1 if simultaneous disruptions (single disruption) occurs in a circular flow for testing 

H1 (H2), 0 otherwise 

 SS: safety stock level 

 OP: overproduction level 

 CPj: 1 if a disruption occurs at company j for testing H3, 0 otherwise 

The regression data sets are obtained from the output of the 99,000 simulation runs of 

simultaneous disruption scenarios (for M1a and M1b) and the output of the 19,800 simulation 

runs of single disruption scenarios (for the other regression models). The regression models for 

the six hypotheses are summarized in Table A1. In the regression analysis, either 𝑦𝑏𝑎𝑐𝑘𝑙𝑜𝑔 or 

𝑦𝑟𝑒𝑐𝑜𝑣𝑒𝑟 are used as dependent variables. Note that disruption length (DL), disruption rate (DR), 

safety stock level (SS), and overproduction level (OP) are included as independent variables for 

all models. For testing the impact of simultaneous disruptions in a circular flow (Hypotheses H1a 

and H1b), Models M1a and M1b additionally include CD in the independent variable sets. For 

testing the impact of single disruption in circular flows (Hypotheses H2a and H2b), CD is added 

to the independent variable sets for Models M2a and M2b. To test the impact of different 
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disrupted companies in the same circular flow (H3a and H3b), we build a regression model for 

each circular flow and dependent variable pair. For the circular flow 4-11-1-4-11, Models M3aX 

and M3bX have CP1, CP4, CP11 in the independent variable sets. For the circular flow 11-9-11, 

Models M3aY and M3bY use CP9 and CP11 as independent variables.  

Table A1 Regression models 

Model # Hypothesis 
Dependent 

Variable 

Independent variables 

DL DR SS OP CD CP1 CP4 CP9 CP11 

M1a H1a 𝑦𝑏𝑎𝑐𝑘𝑙𝑜𝑔 1 1 1 1 1     

M1b H1b 𝑦𝑟𝑒𝑐𝑜𝑣𝑒𝑟  1 1 1 1 1     

M2a H2a 𝑦𝑏𝑎𝑐𝑘𝑙𝑜𝑔 1 1 1 1 1     

M2b H2b 𝑦𝑟𝑒𝑐𝑜𝑣𝑒𝑟  1 1 1 1 1     

M3aX H3a 𝑦𝑏𝑎𝑐𝑘𝑙𝑜𝑔 1 1 1 1  1 1  1 

M3bX H3b 𝑦𝑟𝑒𝑐𝑜𝑣𝑒𝑟  1 1 1 1  1 1  1 

M3aY H3a 𝑦𝑏𝑎𝑐𝑘𝑙𝑜𝑔 1 1 1 1    1 1 

M3bY H3b 𝑦𝑟𝑒𝑐𝑜𝑣𝑒𝑟  1 1 1 1    1 1 

 

From the eight regression models in Table A1, the following independent variables are used to 

check the hypotheses. 

 H1a and H1b: CD 

 H2a and H2b: CD 

 H3a and H3b (for cycle 4-11-1-4-11): CP1, CP4, and CP11 

 H3a and H3b (for cycle 11-9-11): CP9 and CP11 

The results for all regression models are presented in Table A2. In all models, DL, DR, SS, and 

OP show face validities: Disruption length (DL) shows positive effects; Disruption rate (DR), 

where lower rates imply severe disruptions, has negative effects; Overproduction (OP) reduces 

the backlogged and recovery periods; Safety stock (SS) reduces the backlogged periods while it 
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increases the recovery periods. From the result of Models M1a and M1b, we observe that the 

simultaneous disruptions in a circular flow (CD) positively impact the backlogged and recovery 

periods, which support the hypotheses H1a and H1b. From the result of Models M2a and M2b, 

single disruption in a circular flow (CD) increases the backlogged and recovery periods, which 

confirm the hypotheses H2a and H2b. From the result of Models M3aX and M3bX, we observe 

that different companies (CP1, CP4, and CP11) in the circular flow 4-11-1-4-11 have different 

coefficients showing positive impacts on the backlogged and recovery periods. From the result of 

Models M3aY and M3bY, the two companies (CP9 and CP11) in the circular flow 11-9-11 have 

different signs in the coefficients. The results of Models M3aX, M3bX, M3aY, and M3bY 

provide evidence for the hypotheses H3a and H3b.  

 

Table A2 Regression results 

Hypothesis 

(Models) 

Independent Variable Dependent Variable = 𝑦𝑏𝑎𝑐𝑘𝑙𝑜𝑔 Dependent Variable = 𝑦𝑟𝑒𝑐𝑜𝑣𝑒𝑟 

Estimate t-statistic Pr(>|t|) Estimate t-statistic Pr(>|t|) 

H1 

(M1a, M1b) 

(Intercept) 241.78 333.66 0.00 147.47 39.77 0.00 

CD (circular disruption) 5.56 21.82 0.00 123.88 94.98 0.00 

DL (disruption length) 1.08 189.52 0.00 1.01 34.36 0.00 

DR (disruption rate) -211.49 -390.59 0.00 -187.99 -67.86 0.00 

SS (safety stock) -0.13 -1.55 0.12 43.91 105.92 0.00 

OP (over production) -399.64 -493.19 0.00 -446.67 -107.74 0.00 

Adjusted R2 0.8139 0.2761 

H2 

(M2a, M2b) 

(Intercept) 202.83 221.87 0.00 169.25 48.63 0.00 

CD (circular disruption) 6.46 29.61 0.00 34.13 41.08 0.00 

DL (disruption length) 0.92 140.44 0.00 0.88 35.64 0.00 

DR (disruption rate) -194.32 -319.34 0.00 -187.62 -80.99 0.00 

SS (safety stock) -0.01 -0.08 0.94 13.29 27.14 0.00 

OP (over production) -326.02 -253.51 0.00 -347.79 -71.04 0.00 

Adjusted R2 0.9037 0.4343 

H3 

(M3aX, 

M3bX) 

(Intercept) 202.79 223.81 0.00 170.55 53.81 0.00 

CP1 (Company 1) 7.77 21.19 0.00 7.67 5.98 0.00 

CP4 (Company 4) 9.51 26.01 0.00 29.48 23.05 0.00 

CP11 (Company 11) 6.90 18.79 0.00 98.12 76.38 0.00 
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DL (disruption length) 0.92 141.64 0.00 0.87 38.31 0.00 

DR (disruption rate) -194.10 -321.54 0.00 -186.43 -88.29 0.00 

SS (safety stock) -0.01 -0.08 0.94 13.29 29.78 0.00 

OP (over production) -326.02 -255.58 0.00 -347.79 -77.94 0.0 

Adjusted R2 0.9053 0.5300 

H3 

(M3aY, 

M3bY) 

(Intercept) 204.98 221.23 0.00 174.85 54.57 0.00 

CP9 (Company 9) -0.74 -1.99 0.05 -3.01 -2.34 0.02 

CP11 (Company 11) 5.10 13.62 0.00 94.09 72.72 0.00 

DL (disruption length) 0.91 137.77 0.00 0.87 37.83 0.00 

DR (disruption rate) -194.25 -313.89 0.00 -187.00 -87.38 0.00 

SS (safety stock) -0.01 -0.08 0.94 13.29 29.38 0.00 

OP (over production) -326.02 -249.30 0.00 -347.79 -76.90 0.00 

Adjusted R2 0.9004 0.5173 

 

Appendix B: Result for 15-Companies Network 

 

In this section, we test the hypotheses in the main section with a different larger network to 

improve the robustness of the conclusions and to claim that the conclusions are not network 

specific. We consider a supply chain network with 15 companies presented in Figure B1.  

Figure B1: Supply chain network structure with 15 companies 

 

 

Note that the network in Figure B1 has a completely different structure and flows from the 

network in Figure 6, while both networks have circular flows. We consider a final product 
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produced at Company 15 within this network, and the required parts and flow for producing each 

part are summarized in Table B1. 

Table B1 Parts and flows required for the production of the final product 

Part Type Flow Regular production rate 

(units per day) 

Number of units required 

for each final product 

Part 1 1 – 4 – 7 – 10 – 15 10 10 

Part 2 5 – 8 – 15 – 14 – 15 10 10 

Part 3 6 – 8 – 6 – 9 – 11 – 15 10 10 

Part 4 12 – 15 – 14 – 11 – 15 5 5 

Part 5 5 – 6 – 8 – 10 – 13 – 15 5 5 

Part 6a 2 – 5 – 7 – 10* 5 5 

Part 6b 3 – 6 – 8 – 10* – 15 5 5 

Note: * indicate that Parts 6a and 6b are required to produce Part 6 at Company 10 

Note that there are three circular flows in the network: (i) 15 – 14 – 15 for Part 2, (ii) 6 – 8 – 6 

for Part 3, and (iii) 15 – 14 – 11 – 15 for Part 4. This gives us the following set of multiple 

simultaneous disruptions: D-(6,8), D-(6,11), D-(6,15), D-(8,14), D-(8,15), D-(11,14), D-(11,15), 

and D-(14,15). All other simulation settings and parameters are identical to those in the main 

section experiment with the 11-companies network.  

We ran 216,000 simulations, 200 replications for each scenario and decision alternative pair: 

189,000 for two simultaneous disruptions (i.e., 105 scenarios of two simultaneous disruptions * 

200 replications * 9 decision alternatives) and 27,000 for single disruptions (i.e., 15 scenarios of 

single disruptions * 200 replications * 9 decision alternatives). Then, we analyze the results 

following the procedure in the main section. We present the summarized hypothesis test results 

in Table B2 for a fixed safety stock level of 2 days and overproduction rate 20%. For H1a and 

H1b, we consider multiple simultaneous disruptions in circular flows (average performances 

presented in Table B3). For H2a and H2b, we study single disruption in circular flows (average 

performances presented in Table B4). For H3a and H3b, we compare single disruption at 
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Companies 14 and 15 (average performances presented in Table B5). The t-statistic values in 

Table B2 are greater than 2 for all hypothesis tests and the p-values are significantly smaller than 

0.05. This indicates all our hypotheses hold for this new network. 

Table B2 Hypothesis test results (with safety stock = 2 days, overproduction=20%) 

Hypothesis Disruption type Performance measures t-statistic p-value 

H1a Multiple in circular flows Backlogged periods 3.7708 0.0017 

H1b Multiple in circular flows Recovery periods 8.2002 <0.0001 

H2a Single in circular flows Backlogged periods 3.6804 0.0002 

H2b Single in circular flows Recovery periods 4.088 <0.0001 

H3a Disruption location (14 vs 15) Backlogged periods 2.6725 0.0078 

H3b Disruption location (14 vs 15) Recovery periods 3.3156 0.0010 

 

Table B3 Average performance measures for multiple disruptions in circular/noncircular 

flows 

Circular Safety Over- Robustness Backlogged Periods Recovery Periods 

or Not Stock production AVG SD AVG SD AVG SD 

0 2 days 20% 0.526 0.129 172 47 173 47 

0 2 days 30% 0.526 0.129 120 32 121 32 

0 2 days 40% 0.527 0.129 91 24 92 24 

0 3 days 20% 0.527 0.129 172 47 193 107 

0 3 days 30% 0.527 0.129 120 32 134 79 

0 3 days 40% 0.527 0.129 91 24 103 71 

0 4 days 20% 0.526 0.129 172 47 255 225 

0 4 days 30% 0.526 0.129 120 32 193 215 

0 4 days 40% 0.527 0.129 91 24 160 212 

1 2 days 20% 0.511 0.124 178 48 186 52 

1 2 days 30% 0.511 0.124 124 33 130 35 

1 2 days 40% 0.511 0.124 93 25 99 27 

1 3 days 20% 0.511 0.124 177 48 323 266 

1 3 days 30% 0.511 0.124 123 33 232 220 

1 3 days 40% 0.511 0.124 93 25 190 199 

1 4 days 20% 0.511 0.124 177 48 545 369 

1 4 days 30% 0.511 0.124 123 33 482 385 

1 4 days 40% 0.511 0.124 93 25 439 394 

 

 

Table B4 Average performance measures for single disruption in circular/noncircular 

flows 

Circular Safety Over- Robustness Backlogged Periods Recovery Periods 
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or Not Stock production AVG SD AVG SD AVG SD 

0 2 days 20% 0.596 0.149 139 52 139 52 

0 2 days 30% 0.597 0.149 98 35 98 35 

0 2 days 40% 0.597 0.150 74 27 74 27 

0 3 days 20% 0.596 0.149 139 52 139 52 

0 3 days 30% 0.597 0.149 98 35 98 35 

0 3 days 40% 0.597 0.150 74 27 74 27 

0 4 days 20% 0.596 0.149 139 52 139 52 

0 4 days 30% 0.597 0.149 98 35 98 35 

0 4 days 40% 0.597 0.150 74 27 74 27 

1 2 days 20% 0.579 0.150 146 52 147 52 

1 2 days 30% 0.579 0.150 103 36 103 36 

1 2 days 40% 0.579 0.150 78 27 78 27 

1 3 days 20% 0.579 0.150 147 52 161 80 

1 3 days 30% 0.579 0.150 103 36 109 50 

1 3 days 40% 0.579 0.150 78 27 83 35 

1 4 days 20% 0.579 0.150 147 52 234 220 

1 4 days 30% 0.579 0.150 103 36 176 201 

1 4 days 40% 0.579 0.150 78 27 138 179 

 

Table B5 Average performance measures for disruptions at Companies 14 and 15  

Disrupted Safety Over- Robustness Backlogged periods Recovery periods 

company stock production AVG SD AVG SD AVG SD 

14 2 days 20% 0.590 0.153 134 51 134 51 

14 2 days 30% 0.590 0.153 94 35 94 35 

14 2 days 40% 0.590 0.153 71 26 71 26 

14 3 days 20% 0.590 0.153 134 51 134 51 

14 3 days 30% 0.590 0.153 94 35 94 35 

14 3 days 40% 0.590 0.153 71 26 71 26 

14 4 days 20% 0.590 0.153 134 51 134 51 

14 4 days 30% 0.590 0.153 94 35 94 35 

14 4 days 40% 0.590 0.153 71 26 71 26 

15 2 days 20% 0.565 0.150 147 52 151 51 

15 2 days 30% 0.565 0.150 103 35 106 35 

15 2 days 40% 0.565 0.150 78 26 80 26 

15 3 days 20% 0.565 0.150 148 51 211 130 

15 3 days 30% 0.565 0.150 102 35 133 81 

15 3 days 40% 0.565 0.150 78 26 104 52 

15 4 days 20% 0.565 0.150 148 51 557 316 

15 4 days 30% 0.565 0.150 103 35 451 318 

15 4 days 40% 0.565 0.150 78 26 365 304 
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Appendix B: Result for 15-Companies Network 

 

In this section, we test the hypotheses in the main section with a different larger network to 

improve the robustness of the conclusions and to claim that the conclusions are not network 

specific. We consider a supply chain network with 15 companies presented in Figure B1.  

Figure B2: Supply chain network structure with 15 companies 

 

 

Note that the network in Figure B1 has a completely different structure and flows from the 

network in Figure 6, while both networks have circular flows. We consider a final product 

produced at Company 15 within this network, and the required parts and flow for producing each 

part are summarized in Table B1. 

Table B1 Parts and flows required for the production of the final product 

Part Type Flow Regular production rate 

(units per day) 

Number of units required 

for each final product 

Part 1 1 – 4 – 7 – 10 – 15 10 10 

Part 2 5 – 8 – 15 – 14 – 15 10 10 

Part 3 6 – 8 – 6 – 9 – 11 – 15 10 10 

Part 4 12 – 15 – 14 – 11 – 15 5 5 

Part 5 5 – 6 – 8 – 10 – 13 – 15 5 5 

Part 6a 2 – 5 – 7 – 10* 5 5 

Part 6b 3 – 6 – 8 – 10* – 15 5 5 

Note: * indicate that Parts 6a and 6b are required to produce Part 6 at Company 10 
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Note that there are three circular flows in the network: (i) 15 – 14 – 15 for Part 2, (ii) 6 – 8 – 6 

for Part 3, and (iii) 15 – 14 – 11 – 15 for Part 4. This gives us the following set of multiple 

simultaneous disruptions: D-(6,8), D-(6,11), D-(6,15), D-(8,14), D-(8,15), D-(11,14), D-(11,15), 

and D-(14,15). All other simulation settings and parameters are identical to those in the main 

section experiment with the 11-companies network.  

We ran 216,000 simulations, 200 replications for each scenario and decision alternative pair: 

189,000 for two simultaneous disruptions (i.e., 105 scenarios of two simultaneous disruptions * 

200 replications * 9 decision alternatives) and 27,000 for single disruptions (i.e., 15 scenarios of 

single disruptions * 200 replications * 9 decision alternatives). Then, we analyze the results 

following the procedure in the main section. We present the summarized hypothesis test results 

in Table B2 for a fixed safety stock level of 2 days and overproduction rate 20%. For H1a and 

H1b, we consider multiple simultaneous disruptions in circular flows (average performances 

presented in Table B3). For H2a and H2b, we study single disruption in circular flows (average 

performances presented in Table B4). For H3a and H3b, we compare single disruption at 

Companies 14 and 15 (average performances presented in Table B5). The t-statistic values in 

Table B2 are greater than 2 for all hypothesis tests and the p-values are significantly smaller than 

0.05. This indicates all our hypotheses hold for this new network. 

Table B2 Hypothesis test results (with safety stock = 2 days, overproduction=20%) 

Hypothesis Disruption type Performance measures t-statistic p-value 

H1a Multiple in circular flows Backlogged periods 3.7708 0.0017 

H1b Multiple in circular flows Recovery periods 8.2002 <0.0001 

H2a Single in circular flows Backlogged periods 3.6804 0.0002 

H2b Single in circular flows Recovery periods 4.088 <0.0001 

H3a Disruption location (14 vs 15) Backlogged periods 2.6725 0.0078 

H3b Disruption location (14 vs 15) Recovery periods 3.3156 0.0010 

 

Table B3 Average performance measures for multiple disruptions in circular/noncircular 

flows 

Circular Safety Over- Robustness Backlogged Periods Recovery Periods 

or Not Stock production AVG SD AVG SD AVG SD 

0 2 days 20% 0.526 0.129 172 47 173 47 

0 2 days 30% 0.526 0.129 120 32 121 32 

0 2 days 40% 0.527 0.129 91 24 92 24 
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0 3 days 20% 0.527 0.129 172 47 193 107 

0 3 days 30% 0.527 0.129 120 32 134 79 

0 3 days 40% 0.527 0.129 91 24 103 71 

0 4 days 20% 0.526 0.129 172 47 255 225 

0 4 days 30% 0.526 0.129 120 32 193 215 

0 4 days 40% 0.527 0.129 91 24 160 212 

1 2 days 20% 0.511 0.124 178 48 186 52 

1 2 days 30% 0.511 0.124 124 33 130 35 

1 2 days 40% 0.511 0.124 93 25 99 27 

1 3 days 20% 0.511 0.124 177 48 323 266 

1 3 days 30% 0.511 0.124 123 33 232 220 

1 3 days 40% 0.511 0.124 93 25 190 199 

1 4 days 20% 0.511 0.124 177 48 545 369 

1 4 days 30% 0.511 0.124 123 33 482 385 

1 4 days 40% 0.511 0.124 93 25 439 394 

 

 

Table B4 Average performance measures for single disruption in circular/noncircular 

flows 

Circular Safety Over- Robustness 
Backlogged 

Periods 
Recovery Periods 

or Not Stock production AVG SD AVG SD AVG SD 

0 2 days 20% 0.596 0.149 139 52 139 52 

0 2 days 30% 0.597 0.149 98 35 98 35 

0 2 days 40% 0.597 0.150 74 27 74 27 

0 3 days 20% 0.596 0.149 139 52 139 52 

0 3 days 30% 0.597 0.149 98 35 98 35 

0 3 days 40% 0.597 0.150 74 27 74 27 
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0 4 days 20% 0.596 0.149 139 52 139 52 

0 4 days 30% 0.597 0.149 98 35 98 35 

0 4 days 40% 0.597 0.150 74 27 74 27 

1 2 days 20% 0.579 0.150 146 52 147 52 

1 2 days 30% 0.579 0.150 103 36 103 36 

1 2 days 40% 0.579 0.150 78 27 78 27 

1 3 days 20% 0.579 0.150 147 52 161 80 

1 3 days 30% 0.579 0.150 103 36 109 50 

1 3 days 40% 0.579 0.150 78 27 83 35 

1 4 days 20% 0.579 0.150 147 52 234 220 

1 4 days 30% 0.579 0.150 103 36 176 201 

1 4 days 40% 0.579 0.150 78 27 138 179 

 

Table B5 Average performance measures for disruptions at Companies 14 and 15  

Disrupte

d 
Safety Over- Robustness 

Backlogged 

periods 
Recovery periods 

company stock 
productio

n 
AVG SD AVG SD AVG SD 

14 2 days 20% 0.590 0.153 134 51 134 51 

14 2 days 30% 0.590 0.153 94 35 94 35 

14 2 days 40% 0.590 0.153 71 26 71 26 

14 3 days 20% 0.590 0.153 134 51 134 51 

14 3 days 30% 0.590 0.153 94 35 94 35 

14 3 days 40% 0.590 0.153 71 26 71 26 

14 4 days 20% 0.590 0.153 134 51 134 51 

14 4 days 30% 0.590 0.153 94 35 94 35 

14 4 days 40% 0.590 0.153 71 26 71 26 

15 2 days 20% 0.565 0.150 147 52 151 51 
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15 2 days 30% 0.565 0.150 103 35 106 35 

15 2 days 40% 0.565 0.150 78 26 80 26 

15 3 days 20% 0.565 0.150 148 51 211 130 

15 3 days 30% 0.565 0.150 102 35 133 81 

15 3 days 40% 0.565 0.150 78 26 104 52 

15 4 days 20% 0.565 0.150 148 51 557 316 

15 4 days 30% 0.565 0.150 103 35 451 318 

15 4 days 40% 0.565 0.150 78 26 365 304 
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