Appendix

Proof of lemma 2

It is obvious that IT f; is a continuous and non-differentiable function and has a non-differential point at
anbl vy 8Hb2

qf = A\sq’, as the left and right derivatives are not equal, i.e., . The optimal production quantity
of the user is obtained by comparing the maximums of the two parts of the profit function separated by this
point. We first solve the unconstrained solutions to I1?, and II},. It is simple to show that IT}, and I}, are
both strictly concave in g}. Solving the first order conditions yields the unconstrained optimal solutions to
abicbgﬁrfﬂ\bdb and qj, = %_cb_zgz,ﬂ_/\bdb’ as 1y > Pu, py < Gpa-

The constrained optimal solutions to H}j are determined by comparing the unconstrained ones with the

b b b
IIp, and II}),, ie., q4; =

separation point A,q%, which are presented as follows.

(i) If qgl > Asq?, then qgl satisfies the constraint and is the constrained optimal solution to I7 é’l, while qu falls
to the right of A;q® and does not subject to the constraint as qé’l < qu. 17 52 increases as qé’ approaches \,q®
from the left, thus obtaining the maximum value at g2 = A\sq?. Since IT%,(Asqb) = TP, (N\sq?) < ITY, (¢}))
by the definition of optimality and continuity, the optimal production quantity that maximizes the user’s
profit is ¢p* (¢2, puw, 0) = qp;.-

(i) If qu < Asq%, then qlb’2 subjects to the constraint and is the constrained optimal solution to IT 117’2, while qgl
falls to the left of A\,q? and is not the constrained optimal solution. Hgl increases as qg approaches \yq®
from the right, thus obtaining the maximum value at g2 = A\sq%. Since IT2, (Asq%) = 1%y (Asqb) < 115, (%)
by the definition of optimality and continuity, the the user get the optimal profit at qb* (%, pw,0) = q§2.

(iil) If g8, < Asqb < ¢fy, then neither the unconstrained optimal solutions satisfy the constraints. I1?, increases
as qg approaches \,q® from the right, and Hé’Q increases as qf,’ approaches \,q® from the left, thus,
the constrained optimal solutions to Hé’l and Hll)’2 both fall at the separated point. Therefore the user
maximizes his profit at ¢2*(¢%, pw, 0) = As®.

Proof of Lemma 3

b
T is separated by ¢ = qi? into two parts, and is continuous but non-differentiable at ¢? = q%, as the

left and right derivatives are not equal. It is simple to show that 1%, and II%, are both strictly concave in

¢°, solving the first order conditions give the unconstrained optimal solutions to I7% and II%, i.e., ¢, =

QAs—Cs—Ts+AsPw QAs—Cs—Ts—Nsds
2Bs

and ¢%, = By S respectively, since p, > —ds, ¢%; > ¢’s.
The constrained optimal solutions to IT® are determined by comparing the unconstrained ones with the
b
separation point 2. Considering ¢4 > ¢’ and ¢}, < ¢, there are six scenarios to be analyzed.

b b
() If b < ¢4 < % < %2 then ¢}, satisfies the constraint and is the constrained optimal solution to

1%, while qb falls to the left of q”f and is not the constrained optlmal solution. IT% increases as ¢°
approaches i} from the right and reaches the maximum value at qbz . Since I1? is a continuous function,
it (qb2) Hb (q“) and according to the definition of optimality, Hbl (¢b) > It (q”) so the optimal
production quantity that maximizes the generator’s profit is ¢**(p,, ) = ¢%;. In response, the optimal
production quantity of the user is ¢/* (pw,6) = ;.

(ii) If ¢% < % < < %, then ¢b, satisfies the constraint and is the constrained optimal solution to
I

thus obtaining the maximum value at qb? . Since II° (qb2) It (qbz) and I7% (¢%)) > Hb (q“) by the

definition of continuity and optimality, the generator maximizes the profit IT® at ¢**(py,0) = ¢;. In

b
1, while ¢% falls out of the constrained region and increases as q” approaches qﬁ from the right,

response, the optimal production quantity of the generator is ¢%*(py,, 0) = Asqb;.



b b

(ifi) If $1 < gl < gby < %2, then g}, is the constrained optimal solution to %, while g, does not subject
to the constraint. Obviously, this scenario is the same as (ii), as a result, the generator maximizes the
profit 11 at ¢%*(py,0) = ¢, and the user achieves the maximum profit at ¢2* (p.,, 0) = Asq%;.

b b
(iv) If ¢% < % < %’ < g%, then neither the unconstrained optimal solutions to 7% and IT%, satisfy the
b
constraints. Therefore, IT increases as ¢ approaches q)\ﬂ from left and IT%, increases as ¢¥ approaches
b b

qﬂ from right, and both reach the maximum values at 92. Since II? is a continuous function, 1% (qb2 )=
11 b (q“) Hence, the generator gets the optimal profit at ¢ (p.,, 0) = ‘iﬁ. In response, the user achieves
the optlmal proﬁt at @ (puw,0) = ¢’y

Y Gos < < ¢4, then neither the unconstrained optimal solutions to an satis e
Ifqbl<92 qb? b, th ither th t d optimal solutions to IT%; and IT%, satisfy th
constraints. The scenario is same as (iv), consequently, the optimal production quantity of the generator

b
is ¢ (P, 0) = q)\ﬂ, and the optimal production quantity of the user is ¢2*(pu, 0) = ¢bs.
b b
vi DL 22 g q21, then g2, satisfies the constraint and is the constrained optimal solution to ,
D) If 4 < 82 < gby) < gy, then g5, satisfies th traint and is th trained optimal soluti tHb2

while qsl falls out of the constrained region and reaches the maximum value at qb2 . Since II° (qw) =
It (%2) and I7%(q5%,) > HSQ(%) by the definition of continuity and optimality, the generator maximizes
the profit at ¢°* (pw, 0) = ¢%. In response, the user reaches the maximum profit at ¢>*(pu, 0) = ¢Jy.

From the above analysis, we can see there are four pairs solutions to I7® and 1T, é’, i.e., (1) When 0 < ¢4, <
%, the optimal production quantities of the generator and user are (¢%,q¢%,); (ii) When % <¢ < %7
the optimal production quantities of the generator and user are (qi’l,)\sqgl); (iii) When ¢b, < % q£2 < ¢?, the
optimal production quantities of the generator and user are (%\” 7qb2) ; (iv) When ¢5, > q” the optimal
production quantities of the generator and user are (¢%,q%,). The four pairs solutions are characterlzed by

Pw < Pwls Pwl < Puw < Pw2; Puw2 < Pu < puw3, and py > py3, where py1, Pu2, and py3 are values of p,, such
Bs(ap—cp—rp—Apdp) —BpAs (s —cs—7s)

b b
that ¢4, = e ¢ = q)\ﬁ, and ¢b, = %2 respectively. Specifically, p,1 =

ByA2 ’

Dup = Deler—c— Abgsbjrﬁf;;\ 2(2:=¢=7) “and pus = ap — cp — \odp — Bb)‘S(O‘S_CS:”_A*"dS), respectively.
Since p,, subjects to [—ds,rp], separately comparing p.1, Pw2, and p,3 with the constraints, we find
Puw1 > —ds (ie., Bs(ap—cp—1p—Mpdp) > Bos(as—cs—15—Ads)) and puz < 1y (ie., Bs(ap—cp—1p—Apdp) <

Burs(as — ¢s — s — Asds)) are contradictory. Therefore, if p,,1 € [—ds,rp), 1.e., BpAs(as — cs — s + Asrp) >
Bs(ap—cy =15 = Aodp) = BoAs(cs —cs —1s = Asdss), then pug > 14 > puz > pw1 = —ds hold; if pug € [—ds, 1),
ie., Bs(ap —cp —1rp — Npdp) < Bpds(os — s — 15 — Aods) < Bs(ap — cp + ds — Mpdp), then ry > puys > pus >
—ds > pyw1 hold. Hence, there exist two scenarios with respect to py,, i.e., —ds < pw1 < Pw2 < Ty < Pw3 and
Puw1l < —ds < Puwz < Pw3 < 1, and the optimal production decisions of the generator and user are presented
according to the two scenarios.

Proof of corollary 2

L 2
(1) When _ds S Pwl < Pw?2 S Ty < Pw3, for _ds Spw Spw% Hsb*(pwve) +9F - Hév* = % -

w, since py, > —dg, 1% (py,0) + OF > IIN*. For pus < puw < 1, 1% (pu,0) + OF —

s

o o _ o o 2

HéN* _ (OCb Ch—Pw Abdb)[Qﬂb)\s(as (Zﬁg’g\sz'f‘)\spw) /Bs(ab Cb —Pw Abdb)}_(as Cg 4’%: ksds) >ﬁb)\s(as

\od )* [Bs(ap—cb—pPw—Apdp) —BpAs(as—cs —rs—Asds)] + (b —=cb=Pw—=Abdp) [BoAs (s —Cs —Ts+XsPw) = Bs (@b —Cb —Ppuw —Apdb)]

sWs 4ﬁ362>\2 465)\3 ’
b

since ¢%; > % > ¢by, 1% (py,0) + OF > IIN*. In summarize, II%*(p,,0) + 0F — IIN* > 0 re-

gardless of p,. For —d, < py < pwi, H,l)’*(pw,ﬂ) + (1 —-0)F — II}N* = )‘S(Trp“’)(a;gcfrﬁ)‘sp"’), as

Ty > Puy I (pw,0) + (1 — O)F > IIN*. For py1 < puw < puz, I (pw,0) + (1 — O)F — IIN* =

As(@s—cs—rs+As 2Bs(ap—Ccb—Pw —=Aodp) —BpAs(as—Cs—Ts+AsPw —cp—rp—Apdp)®
s(as—cs=Ts+Aspw)[2Bs (p—cp 4P1§ bdb) —BrAs(as—cs—Ts+Aspw)] _ (@p—cp 4;1; bdb) > Bs(ap —cp — 1y — Npdp) *

—Cs—Ts—

[BuAs (as—cs—Ts+Aspw) =Bs (p—cb—mo—=Aodp)] | As(@s—cs =5+ XsPw) [Bs (b —cb—pw—Abdp) —Bprs (s —cs —Ts +AsPw)] . b1
+ 152 , a8 <

48,32



b
¢ < %2, I (pu,0) + (1 = O)F > ILY*. For pya < puw < 75, I)*(pu,0) + (1 = O)F — I}V =

(Otb*617*41;;;;)\17db)2 _ (abfcbzgj)‘bdb)a since 1y > P, Ull;* (Puw,0)+(1=0)F > Hzfv* Therefore, U(l;* (Pw,0)+

OF > ITN* regardless of py,.

(i) When py1 < —ds < puz < w3 < 73, for —ds < py < Du2, We can see from above that I1%*(py,, 0) + 0F >
Hév* and H})’* (Pw,0) + (1= O)F > Hév*. For pys < pw < puws, similar to the results described above,
I (py, 0) + OF > IIN* and I (py,0) + (1 — 0)F > IIN* hold. For pys < pw < 15, I (puw,0) +
OF — [N+ = Qetd)(ovcmpudod) o 0, g0 [15(py, 0) + OF > TN I15(pu, 0) + (1 — O)F — IIV* =

b

(%*Cb*zgz*)\bdb)z _ (ww—cp 4;31; Apdp)? , since 1y > P, Hll;*(pwa 0)+(1-0)F > Hé\/*_ Therefore, Hg*(pwv 0)+

OF > ITN* and IIP* (py, 0) + O0F > IIN* regardless of p,.

Proof of Theorem 2

942 (puw.f .
When —ds < put < puwz < 16 < pus, for —ds < pu < pusa, % 35 > 0, for pw2 < pu < 1y,
94%" (pw,f 1 8ap" (Puw,0 9ay” (pw,f
. aii, ) T 2Bp s < 0. For _d < Pw < Pwi, % = 07 for Pwi < Pw < Pw2, % O and
g% (puw,0
for puwo < puw < 74, 7%8;’; ) — 2ﬁb < 0.

99" (pw,0) _

When Pw1 < _ds < Pw2 < Pw3 < Tb, for _ds < Pw < Pw2, Zﬁ > O for Pw2 < pw < Pw3,

Opw
992" (puw,0) _ 1 892" (Pw.0) _ gy (pw,0) _
a;w = T 2B, < 0, for pus < pw < 1, 3;11; = 0. For —ds < py < pus, b@pw ) = 5 > 0, for
9GE* (pu .0
Pw2 < Pw S Tb, qbagju ) — - 2,31) <0.

Proof of Theorem 3

When —dg < pu1 < pw2 < 75 < Puws, AH% is a continuous function of p,,, since values of AH% at the

AITE _ Ai(rp—pw)
Opw 20s >0,

aAU’; Ae(@e—ce—rs—Aods)

separated points p,, = py1 and p, = P2 are equal, respectively. For —d; < py, < pui,

a?Aamb A2 JAITE A (as—cs—Ts+AsPw) o R ods b -
op3, — 2Bs <0, ory, 28, > 0, and = 28, > 0, so AIl} is an

increasingly concave function of p,, and an increasing function of rp and dg, respectively. For py1 < pw < pw2,

DAIY _ Adew—co—pu=Xods) _ Bodi(as—co—rstAspu) (o PAHp _ —NI(BstB)) _ ) AL _ ap—cp—ro=Dpdy ~
Opw 205 232 > Opz, 205 > Ore 2B
aAH s—co—Ts—Asds . . . . .
0, and 7 — Aslas C;B?ﬁ‘ Asds) 0, so AIT? is an increasingly concave function of p,, and an increasing
. HAITE —Ch—Puw— — s—Co—
function of rp and dg, respectively. For pyo < pw <o, 55 = felorchopw )\bdb)zké\ggb(% caratAepu) o ()
O2AIL  —(Ba+BuA2) OAILL.  ap—cp—ry—ydy 8AHT _ A(as—co—rs—Aods) b
o T g <0, 5, - = TN > 0, and = 55, > 0, so All} is a

decreasingly concave function of p,, and an increasing function of rpy and dg, respectively.

When py1 < —ds < pu2 < pws < T, AH% is a continuous function of p,, since values of AH% at the
separated points p,, = py2 and at p, = py3 are equal, respectively. For —ds; < p,, < pye2, from above, we
can see that AH% is an increasingly concave function of p,,, r, and ds, respectively. For pyo < puw < pus,
form above, we can see that AH% is a decreasingly concave function of p,, and an increasingly concave

b 2
function of 7, and dg, respectively. For p,3 < po» < 7, 86APHT = _(pé‘,’é,td) < 0, g éﬂT = ﬁ < 0,

A} _ ap—cp—rp—Apdy DAY ap—co—puw—Auds b g - .
T = 35 >0, and —5 = 55 > 0, so A} is a decreasingly concave function of

pw and an increasing function of 7, and dg, respectively.

Proof of theorem 4

b
When —ds < pyp1 < Pw2 < Tp < Pws, for —ds < Py < P, 8(?15T = 7[6’"%2”[;1 OIS < 0, so AE®Y decreases
b
with p,,, and get the minimum value at p,, = pyw1. For pyi1 < puw < puo, aaApiT = 5;2, = > 0, so AEL increases
b
with p,, and get the minimum value at p,, = pw1. For pya < pw < 7, aaApET = _f;p <0, so AEb decreases

with p,,, and get the minimum value when p,, = r}.
When py1 < —ds < puw2 < puwz < 7, we can see form above that for —ds < p,, < puo, AE% increases
with pu, for py2 < pw < pus,



b —_— . .
AE?, decreases with py,. For pu,3 < py < 1, BBAIET = B‘Ze”, if eq — de, < 0, then AES. decreases with

Puw, and get the minimum value when p,, = r,, otherwise, AE% increases with p,,, and get the minimum
value when p,, = peys3-

Proof of theorem 5

HAEL, eq\? JAEL,

When —ds < py1 < pw2 < 15 < pus, for —ds < py < pur, ad.,  — 28, > 0, ory 0, for
JAEL A2 QAEL ~t QAEL A2
Pwl < Pw < Puw2y, g - = e;ﬁ.: >0, 5+ = ewbep > 0, for pu2 < pw < T, 55t = 62'15: > 0,
E)AE; _ erte
o = o5, > 0.

HAES ea\? JAE} er+te
When Pwi1 < *ds S Pw2 < Pw3 § Tb, fOf *ds S Pw § Pw?2, aTQT - QdBS > O, TbT = 25bp > 0, fOI‘
JAE} ea\? IAES erte JAE} JAE} erte
Pw2 < Puw < Puws, WST = QdBS' > 0, a,-bT = QBbp > 0, for Pw3 < Puw < 1o, OdST =0, 87';,T = Qﬂbp > 0.

Proof of theorem 6

When —ds < pup1 < puw2 < 1 < puws, from theorem 3, we see that AH% is an increasing concave function
for p, € [—ds, puw2], and a decreasing concave function for p,, € (pwa2,7s). Therefore, AIT%. achieves the
maximum value at p,, = pw2, and the minimum value at either p,, = —ds or p,, = 7. Since AH%(rb) =
AT (py1) > AITS(—dy), so AITS obtains the minimum value at p, = —ds.

When py1 < —ds < puw2 < Puws < 1, AH% is an increasing concave function for p,, € [—ds, puw2], and a
decreasing concave function for p,, € (puwe, ). Therefore, AH% achieves the maximum value at p,, = P2,
and the minimum value at either p,, = —d; or p,, = rp. Since AITL(—ds) = AII%(py3) > AIIL(1y,), so AT
obtains the minimum value at p,, = 7.

Proof of Lemma 4

Considering the complexity of the Nash product in our model, we calculate the waste trading price py,
and share of the fixed investment cost § by maximizing the logarithm of G(p,,,0). Let In G(p,,0) = In G,
when —ds < py < Pwi1, MG (Py,0) = InGy when py1 < puw < Puz or —ds < Py < Pu2, NG (Py, ) = InGs
when pyo < Puw < T OF Puz < Puw < Puws, and In G(py,, 0) = In G4 when py3 < py < 7.

To ensure that I12*(py,0) — IIN > 0 and II}*(py,0) — I > 0, we assume (a5 — ¢ — 7's + Aspw)? —
(s —cs —Ts — Asds)? +2Xs(rp—p,, ) (s — s — 75 + Aspw) — 4BsF > 0. Taking the first-order and second-order

partial derivatives of In G; with regard to p,, and 6, we have

oln G, . 2&5/\5(043 —Cs —Ts+ /\spw)
Opw (s — s — 75+ AsDw)? — (s — €5 — 75 — Ayds)? — 4B,0F
gb[)\g(rb - pw) - )\s(as —Cs —Ts+ )\spw)]

/\s(rb _pw)(O‘s —Cs—Ts+ /\spw) - 263(1 - G)F’

PGy 26X [(as — s — 75 + Aspw)® + (a5 — ¢ — 15 — Ads)? + 4B,0F)
op2, - [(as — s — rs + Aspuw)? — (s — cs — 75 — Asds)? — 48,0 F?
26,02
As(ry — pw)(as — s — s + Aspw) — 2Bs(1 — O)F
&2 (1 — puw) — (s — c5 — 15 + Aspu)]?
[)\s(rb - pw)(as —Cs—Ts+ )\spw) - 2,85(1 - G)F]27

81n6’1 - _4€sBsF
00 (s — s —Ts + Aspw)? — (s — cs — s — Agds)? — 4B0F
2£b/85F

+ )
)\s(rb _pw)(as —Cs —Ts + )‘Spw) - 2BS(1 - 9>F



G, —16£,82F?
96° [(as — s = 7s + Aspuw)? — (s — €5 — 75 — Asdg)? — 4,330F]2
4&,32F?

As(ry — puw) (s — ¢s — T's + Aspuw) — 2B5(1 — O)F]2”

*InG; 8EsAsBsF(as — cs — s + AsPuw)
000p., B [(045 —Cs—Ts+ )\spw)2 - (as —Cs —Ts — )\sds)z - 4B89F]2
2£b)‘sﬁsF[)‘s(Tb - pw) B (aS —Cs —Ts+ )\spw)]

[)\s(rb _pw)(as —Cs—Ts+ )‘Spw) - 268(1 - H)F]Z .

Let A=cags—cs—7Ts+ Aspw, B=0as—cs— 15— Asdg, C = p—¢p — P — Nodp, D = ap — cp — 1 — Apdp.
It is obvious 2 01; G1 <0 and & éngGl < 0, then In Gy is a strictly concave function both in p,, for a
given @, and in 6 for a given p,,. Therefore, we can first calculate the optimal 0 for a given p,, and then

substitute #, which is a function of p,,, into In G; to search the optimal p,,. Solving al“ G1 = 0, we can get
0, (po) = €0(A=B?) —26, [\, (1o —pw) A=28: F]

1{Pw 4B F(€+E)
dln G1

dinG; _ 222 (€5 +8p) (ro—Pw) dlnG .
U e = AT B2\ (ro—pu) A_3B.F] then gy~ > 0s always

true according to the abbumptlon. Therefore, In Gy, constrained by —ds < p,, < pw1, is an increasing function

Substituting 6 (p.,) into , We can ge

in p,, and reaches the maximum value at p}, = p,,1, correspondingly, the optimal share of cost is 0% = 01 (py1).

Taking the first-order and second-order partial derivatives of In G5 with regard to p,, and 6, we can see

that In G is a strictly concave function both in p,, for a given 6, and in 6 for a given p,,, because % <0

and 2 ;0‘202 < 0. Therefore, just like above, we can first calculate the optimal 6 for a given p,, and then

81nG2

substitute 6, which is a function of p,,, into In G5 to search the optimal p,,. Solving
02(po) = sbﬁéﬂb(ﬁ ?) €[22 B, B AC—NIBF A~ B D? 4B, BT F]

2\Pw) = 4By B2F (€5+En)
dln G2

= 0, we can get

{ dnGy _ 286 (&5 +€) A2 (B C— s B A) then
dpw — BaBu(AZ=B%) 12X B By AC— N2 AZ—BZD>—4By B2 F
dlnGz

dp. > > 0 is constantly true, since % (py,0) > IN* and II7*(py, 0) > II}* hold, and B5C > A3, A when

Pw1 < Puw < puwa. Therefore, In Gy increases with p,,, and reaches the maximum value at p, = py2, at which
0" = 02(pw2)-

Taking the first-order and second-order partial derivatives of In G3 with regard to p,, and 6, we can see

2
e <o

Substituting 62 (p,) into , We can ge

that In G35 is a strictly concave function both in p,, for a given €, and in 6 for a given p,,, since
and m < 0. Therefore, we can first calculate the optimal # for a given p, and then substitute 6,

which is a function of p,,, into In G3 to search the optimal p,,. Solving aln G3 — 0, we can get f(pu) =
£0(2X. .y AC—B2C? —A2B2D?) €. B, BpA2(C? =D —4B, F)
4ﬁ5'3b 2(&s+&)F
Substituting 63(p,,) into M

t dinGs __ 25.@(55"‘51))(550_)\55!)14) then
T 20B:BrAC—B2C2—A2B7 B2+ B, BpA2(C2—D2—4B, F)’
dln Gy

s < 0s constantly true, as 1% (py,0) > IN* and II}*(pw,0) > II}¥* hold, and B,C < A\;BA

when pye < pyw < 1. Therefore, In G3 decreases with p,,, and reaches the maximum value at pf, = py2,

, We can ge

correspondingly, the optimal share of cost is 6* = 65(pu2).
Taking the first-order and second-order partial derivatives of In G4 with regard to p,, and 6, we can see

that In G, is a strictly concave function both in p,, for a given €, and in 6 for a given p,,, since % <0

and 2 5226'4 < 0. Therefore, we can first calculate the optimal 6 for a given p, and then substitute 6,

which is a function of p,,, into In G4 to search the optimal p,,. Solving 61“ G4 = 0, we can get O4(py) =
26 (Puwtds)C—&, (C?—D?—4B, F)
4By (Es+E&b) F

Substituting 04 (p.,) into

dlnG4

t dinGy4 __ —2(§b+5s£s)(pw+ds)
d T 2(pwtds)CHC2—D2—4B,F>

true according to the assumptlon. Therefore, In G4, constrained by py3 < pw < 73, IS a decreasmg function

, We can ge then dl“ G4 < 0 is constantly

of py, and reaches the maximum value at p¥, = py3, at which 6* = 04(pws3).



Proof of theorem 7

As p,, is independent of & and &,, we investigate the effects of & and & on 6 by using 0(p,,). When
901 (pw) —&[A?— B2 42X, (rp—py) A= 4B, F]

—ds < pul <2 pw22 < 1y < pus, for —ds < py < pu, o6, 4B, F(€.46,)2 < 0 and
901 (puw A2 B242N, (ry_p,, )A—4B. F .
ég ) — &l 4BSF(ZLZ+§)2) BFL according to IIP* (py, 0) > IIYN and IIP* (py,,0) > II}N. For p,; <
802 (Pw) _ —&b[BsBu(A>—B>)+28.Bu)s AC—Bi A2 A” — B2 D> —482 8, F] 903(pw) _ _ Es , 902(pw)

Pw < Pu2, —5g = 1626, F(E. 76, )2 < Oand =58 = g * =5 >0
according to I1%*(py,0) > IIN and IIP*(py,0) > IIN. For pyo < py < 75, %Eiw) = —2—'; * %&w >0
03 (pw) _  —&b[BsBuA2(CP—D?—4B, F)+28: B\ AC—B2C*— 7 A2 D?] . b N
and gfs = 18 BPN2F (€. 46,)7 b < 0 according to II*(py,0) > IIY and

1Y (py, 0) > IIYN.

When Puwl < _ds S Pw2 < Pw3 S Tb, for _ds S Pw S Pw2 and Pw2 < Pw S Pw3, 92(pw) and 03(pw)
change with £, and &, in the same direction as in the case —ds < py1 < Pwz < 7p < Puws. FOr pus < Dy < 15,
864 (paw —&,[C?—D?—4B, F+2(pw—+ds 864 (paw s . 004(pw .

é(gi ) = =&l 4[3bF(§b+gJ;)2(p +d)l < 0 and 73(5 ) — 7%; * 732 ) > 0 according to I1°*(py,,0) > IIN
and Hf)’* (pw,0) > II}N. Since the optimal profits of the generator and user decrease and increase with 6,

respectively, it is easy to get the effect of & and &, on IT* and ITP*.

Proof of theorem 8

When —ds < py1 < Puw2 < 7 < Pus, from theorem 3, 4, we see that E5*(p,,,0) decreases and 15 (p,,, 0)
increases with p,, for —ds < p, < py1, thus the optimal economic and environmental performance are
simultaneously achieved at p,, = pw1, and the two goals align. For p,1 < py < 1, E%* (Pw, ) and Hé’«* (P, 9)
both first increase then decrease with p,,, hence, the optimal economic performance and worst environmental
performance are both achieved at p,, = py2, and there exist conflicts between the two goals.

When p,1 < —ds < pu2 < pws < 1y, from theorem 3, 4, we see that for p,,1 < py < pws, both E%* (Pw, 0)
and H%* (pw, 0) first increase then decrease with p,,, thus the optimal economic and environmental goals can
not be achieved simultaneously. For p,3 < p, < 19, Hé’f (pw, 0) decreases with p,, while E%* (pw, 0) increases
with p,, when eq > dep, then the optimal economic and environmental performance align if eq > dey,
otherwise, the two goals conflict.

Proof of theorem 9

When —d; < py1 < puz < 1 < Pws, for —ds < py < Dw1, the optimal waste trading price is py, = pwi,

E%*(pm) . EZN* _ (5*1)€p(04b2*5€:*7’b*>\bdb) _ Ased(asfgzzrsf)\sds) _ er(abfcgg:b*Abdb) <0,as 0 <6 <1,

therefore, the interfirm waste utilization is more environmentally preferable than the benchmark case. For

Pl < Pw < Puwz and pyo < puw < 1, the optimal waste trading price is p,, = puwo, E%*(pr) - E]TV* =
ep[ds[as—cs—rs+As(ap—cp—Apdp)]—Bs (Bs +BuA2) (ap —co =16 — Apdp)] _er(ap—cp—rp—Apdy)  Aseq(as—cs—rs—Asds) if § <
286 (Bs+BuA2) 28 20s ’
Bs(Bs+BuA2) (ap—ch—ro—Apds)
Aslas—cs—rs+As(ap—co—Apdp)

7, then E¥ (pw2) < EX*, otherwise, the interfirm waste utilization is environ-

(Bs+BuA2) [Borsea(as—cs—rs—Asds)+Bser(ap—cy,—rp—Apdp)] _
slas—cs—rs+As(ap—co—Apdp)]—Bs (Bs+BoA2) (ap—cp—1p—Apdb)

mentally superior to the benchmark case if e, < 3%

(eq,er).
When p,1 < —ds < pu2 < puws < 15, from above we can see that for py1 < puw < pw2 and pyoe <

Pw < Dws3, the interfirm waste utilization is more environmentally preferable than the benchmark case if § <

Bs (Bs+BuA2) (a,—cp =1y, —Apdy)
Aslas—cs—rs+As(ap—co—Apds)

T otherwise, it is environmentally superior if e, < f)(ed, er). For pus < py < 1,

the optimal waste trading price is p,, = pws, E%* (pws) B E%V* _ % [55’5)\5((157csfrs7)\25;52;55(ocbfcbfrbfAbdb)] .
s s—Cs—Ts—Asds rap—co—ry—Apdp) - Bs(ap—cy—1p—Apd by N .
ca(a ;ﬁs u ) _ erla wa:b vdb) if § < ﬁb)\i(&fésfzs jbrsfﬁ\sfi)s), then EJ (py3) < E7*, otherwise, it is en-

: : : - BoAsed(as—cs—rs—Asds)+Bser(ap—co—rp—Apds) __ H
vironmentally superior to the benchmark case if e, < P18 W sy o v, (s ver s el 2(eq, er).




