
Appendix

Proof of lemma 2

It is obvious that Πb
b is a continuous and non-differentiable function and has a non-differential point at

qbb = λsq
b
s, as the left and right derivatives are not equal, i.e.,

∂Πb
b1

∂qbb
̸= ∂Πb

b2

∂qbb
. The optimal production quantity

of the user is obtained by comparing the maximums of the two parts of the profit function separated by this

point. We first solve the unconstrained solutions to Πb
b1 and Πb

b2. It is simple to show that Πb
b1 and Πb

b2 are

both strictly concave in qbb . Solving the first order conditions yields the unconstrained optimal solutions to

Πb
b1 and Πb

b2, i.e., q
b
b1 = αb−cb−rb−λbdb

2βb
and qbb2 = αb−cb−pw−λbdb

2βb
, as rb ≥ pw, q

b
b1 ≤ qbb2.

The constrained optimal solutions to Πb
b are determined by comparing the unconstrained ones with the

separation point λsq
b
s, which are presented as follows.

(i) If qbb1 > λsq
b
s, then qbb1 satisfies the constraint and is the constrained optimal solution toΠb

b1, while q
b
b2 falls

to the right of λsq
b
s and does not subject to the constraint as qbb1 ≤ qbb2.Π

b
b2 increases as q

b
b approaches λsq

b
s

from the left, thus obtaining the maximum value at qbb = λsq
b
s. Since Πb

b2(λsq
b
s) = Πb

b1(λsq
b
s) < Πb

b1(q
b
b1)

by the definition of optimality and continuity, the optimal production quantity that maximizes the user’s

profit is qb∗b (qbs, pw, θ) = qbb1.

(ii) If qbb2 < λsq
b
s, then qbb2 subjects to the constraint and is the constrained optimal solution to Πb

b2, while q
b
b1

falls to the left of λsq
b
s and is not the constrained optimal solution. Πb

b1 increases as qbb approaches λsq
b
s

from the right, thus obtaining the maximum value at qbb = λsq
b
s. Since Π

b
b1(λsq

b
s) = Πb

b2(λsq
b
s) < Πb

b2(q
b
b2)

by the definition of optimality and continuity, the the user get the optimal profit at qb∗b (qbs, pw, θ) = qbb2.

(iii) If qbb1 ≤ λsq
b
s ≤ qbb2, then neither the unconstrained optimal solutions satisfy the constraints.Πb

b1 increases

as qbb approaches λsq
b
s from the right, and Πb

b2 increases as qbb approaches λsq
b
s from the left, thus,

the constrained optimal solutions to Πb
b1 and Πb

b2 both fall at the separated point. Therefore the user

maximizes his profit at qb∗b (qbs, pw, θ) = λsq
b
s.

Proof of Lemma 3

Πb
s is separated by qbs =

qbb2
λs

into two parts, and is continuous but non-differentiable at qbs =
qbb2
λs

, as the

left and right derivatives are not equal. It is simple to show that Πb
s1 and Πb

s2 are both strictly concave in

qbs, solving the first order conditions give the unconstrained optimal solutions to Πb
s1 and Πb

s2, i.e., q
b
s1 =

αs−cs−rs+λspw

2βs
and qbs2 = αs−cs−rs−λsds

2βs
, respectively, since pw ≥ −ds, q

b
s1 ≥ qbs2.

The constrained optimal solutions to Πb
s are determined by comparing the unconstrained ones with the

separation point
qbb2
λs

. Considering qbs1 ≥ qbs2 and qbb1 ≤ qbb2, there are six scenarios to be analyzed.

(i) If qbs2 ≤ qbs1 <
qbb1
λs

≤ qbb2
λs

, then qbs1 satisfies the constraint and is the constrained optimal solution to

Πb
s1, while qbs2 falls to the left of

qbb2
λs

and is not the constrained optimal solution. Πb
s2 increases as qbs

approaches
qbb2
λs

from the right and reaches the maximum value at
qbb2
λs

. Since Πb
s is a continuous function,

Πb
s1(

qbb2
λs

) = Πb
s2(

qbb2
λs

), and according to the definition of optimality, Πb
s1(q

b
s1) > Πb

s1(
qbb2
λs

), so the optimal

production quantity that maximizes the generator’s profit is qb∗s (pw, θ) = qbs1. In response, the optimal

production quantity of the user is qb∗b (pw, θ) = qbb1.

(ii) If qbs2 <
qbb1
λs

≤ qbs1 ≤ qbb2
λs

, then qbs1 satisfies the constraint and is the constrained optimal solution to

Πb
s1, while qbs2 falls out of the constrained region and increases as qbs approaches

qbb2
λs

from the right,

thus obtaining the maximum value at
qbb2
λs

. Since Πb
s1(

qbb2
λs

) = Πb
s2(

qbb2
λs

) and Πb
s1(q

b
s1) ≥ Πb

s1(
qbb2
λs

) by the

definition of continuity and optimality, the generator maximizes the profit Πb
s at qb∗s (pw, θ) = qbs1. In

response, the optimal production quantity of the generator is qb∗s (pw, θ) = λsq
b
s1.
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(iii) If
qbb1
λs

< qbs2 ≤ qbs1 <
qbb2
λs

, then qbs1 is the constrained optimal solution to Πb
s1, while qbs2 does not subject

to the constraint. Obviously, this scenario is the same as (ii), as a result, the generator maximizes the

profit Πb
s at qb∗s (pw, θ) = qbs1, and the user achieves the maximum profit at qb∗b (pw, θ) = λsq

b
s1.

(iv) If qbs2 <
qbb1
λs

≤ qbb2
λs

< qbs1, then neither the unconstrained optimal solutions to Πb
s1 and Πb

s2 satisfy the

constraints. Therefore, Πb
s1 increases as qbs approaches

qbb2
λs

from left and Πb
s2 increases as qbs approaches

qbb2
λs

from right, and both reach the maximum values at
qbb2
λs

. Since Πb
s is a continuous function, Πb

s1(
qbb2
λs

) =

Πb
s2(

qbb2
λs

). Hence, the generator gets the optimal profit at qb∗s (pw, θ) =
qbb2
λs

. In response, the user achieves

the optimal profit at qb∗b (pw, θ) = qbb2.

(v) If
qbb1
λs

≤ qbs2 ≤ qbb2
λs

< qbs1, then neither the unconstrained optimal solutions to Πb
s1 and Πb

s2 satisfy the

constraints. The scenario is same as (iv), consequently, the optimal production quantity of the generator

is qb∗s (pw, θ) =
qbb2
λs

, and the optimal production quantity of the user is qb∗b (pw, θ) = qbb2.

(vi) If
qbb1
λs

≤ qbb2
λs

< qbs2 ≤ qbs1, then qbs2 satisfies the constraint and is the constrained optimal solution to Πb
s2,

while qbs1 falls out of the constrained region and reaches the maximum value at
qbb2
λs

. Since Πb
s1(

qbb2
λs

) =

Πb
s2(

qbb2
λs

) and Πb
s2(q

b
s2) > Πb

s2(
qbb2
λs

) by the definition of continuity and optimality, the generator maximizes

the profit at qb∗s (pw, θ) = qbs2. In response, the user reaches the maximum profit at qb∗b (pw, θ) = qbb2.

From the above analysis, we can see there are four pairs solutions to Πb
s and Πb

b , i.e., (i) When 0 < qbs1 <
qbb1
λs

, the optimal production quantities of the generator and user are (qbs1,q
b
b1); (ii) When

qbb1
λs

≤ qbs1 ≤ qbb2
λs

,

the optimal production quantities of the generator and user are (qbs1,λsq
b
s1); (iii) When qbs2 ≤ qbb2

λs
< qbs1, the

optimal production quantities of the generator and user are (
qbb2
λs

,qbb2) ; (iv) When qbs2 >
qbb2
λs

, the optimal

production quantities of the generator and user are (qbs2,q
b
b2). The four pairs solutions are characterized by

pw < pw1, pw1 ≤ pw ≤ pw2, pw2 < pw ≤ pw3, and pw > pw3, where pw1, pw2, and pw3 are values of pw such

that qbs1 =
qbb1
λs

, qbs1 =
qbb2
λs

, and qbs2 =
qbb2
λs

, respectively. Specifically, pw1 = βs(αb−cb−rb−λbdb)−βbλs(αs−cs−rs)
βbλ2

s
,

pw2 = βs(αb−cb−λbdb)−βbλs(αs−cs−rs)
βs+βbλ2

s
, and pw3 = αb − cb − λbdb − βbλs(αs−cs−rs−λsds)

βs
, respectively.

Since pw subjects to [−ds, rb], separately comparing pw1, pw2, and pw3 with the constraints, we find

pw1 ≥ −ds (i.e., βs(αb−cb−rb−λbdb) ≥ βbλs(αs−cs−rs−λsds)) and pw3 ≤ rb (i.e., βs(αb−cb−rb−λbdb) ≤
βbλs(αs − cs − rs − λsds)) are contradictory. Therefore, if pw1 ∈ [−ds, rb], i.e., βbλs(αs − cs − rs + λsrb) ≥
βs(αb−cb−rb−λbdb) ≥ βbλs(αs−cs−rs−λsds), then pw3 > rb ≥ pw2 > pw1 ≥ −ds hold; if pw3 ∈ [−ds, rb],

i.e., βs(αb − cb − rb − λbdb) ≤ βbλs(αs − cs − rs − λsds) ≤ βs(αb − cb + ds − λbdb), then rb ≥ pw3 > pw2 ≥
−ds > pw1 hold. Hence, there exist two scenarios with respect to pw, i.e., −ds ≤ pw1 < pw2 ≤ rb < pw3 and

pw1 < −ds ≤ pw2 < pw3 ≤ rb, and the optimal production decisions of the generator and user are presented

according to the two scenarios.

Proof of corollary 2

(i) When −ds ≤ pw1 < pw2 ≤ rb < pw3, for −ds ≤ pw ≤ pw2, Π
b∗
s (pw, θ) + θF −ΠN∗

s = (αs−cs−rs+λspw)2

4βs
−

(αs−cs−rs−λsds)
2

4βs
, since pw ≥ −ds, Π

b∗
s (pw, θ) + θF ≥ ΠN∗

s . For pw2 < pw ≤ rb, Π
b∗
s (pw, θ) + θF −

ΠN∗
s = (αb−cb−pw−λbdb)[2βbλs(αs−cs−rs+λspw)−βs(αb−cb−pw−λbdb)]

4β2
bλ

2
s

− (αs−cs−rs−λsds)
2

4βs
> βbλs(αs−cs−rs−

λsds)∗ [βs(αb−cb−pw−λbdb)−βbλs(αs−cs−rs−λsds)]
4βsβ2

bλ
2
s

+ (αb−cb−pw−λbdb)[βbλs(αs−cs−rs+λspw)−βs(αb−cb−pw−λbdb)]
4β2

bλ
2
s

,

since qbs1 >
qbb2
λs

> qbs2, Πb∗
s (pw, θ) + θF > ΠN∗

s . In summarize, Πb∗
s (pw, θ) + θF − ΠN∗

s ≥ 0 re-

gardless of pw. For −ds ≤ pw < pw1, Π
b∗
b (pw, θ) + (1 − θ)F − ΠN∗

b = λs(rb−pw)(αs−cs−rs+λspw)
2βs

, as

rb ≥ pw, Πb∗
b (pw, θ) + (1 − θ)F ≥ ΠN∗

b . For pw1 ≤ pw ≤ pw2, Πb∗
b (pw, θ) + (1 − θ)F − ΠN∗

b =
λs(αs−cs−rs+λspw)[2βs(αb−cb−pw−λbdb)−βbλs(αs−cs−rs+λspw)]

4β2
s

− (αb−cb−rb−λbdb)
2

4βb
> βs(αb − cb − rb −λbdb) ∗

[βbλs(αs−cs−rs+λspw)−βs(αb−cb−rb−λbdb)]
4βbβ2

s
+λs(αs−cs−rs+λspw)[βs(αb−cb−pw−λbdb)−βbλs(αs−cs−rs+λspw)]

4β2
s

, as
qbb1
λs

≤

2



qbs1 ≤ qbb2
λs

, Πb∗
b (pw, θ) + (1 − θ)F > ΠN∗

b . For pw2 < pw ≤ rb, Πb∗
b (pw, θ) + (1 − θ)F − ΠN∗

b =
(αb−cb−pw−λbdb)

2

4βb
− (αb−cb−rb−λbdb)

2

4βb
, since rb ≥ pw, Π

b∗
b (pw, θ)+(1−θ)F ≥ ΠN∗

b . Therefore, Πb∗
b (pw, θ)+

θF ≥ ΠN∗
b regardless of pw.

(ii) When pw1 < −ds ≤ pw2 < pw3 ≤ rb, for −ds ≤ pw ≤ pw2, we can see from above that Πb∗
s (pw, θ)+ θF ≥

ΠN∗
s and Πb∗

b (pw, θ) + (1 − θ)F > ΠN∗
b . For pw2 < pw ≤ pw3, similar to the results described above,

Πb∗
s (pw, θ) + θF > ΠN∗

s and Πb∗
b (pw, θ) + (1 − θ)F ≥ ΠN∗

b hold. For pw3 < pw ≤ rb, Π
b∗
s (pw, θ) +

θF −ΠN∗
s = (pw+ds)(αb−cb−pw−λbdb)

2βb
> 0, so Πb∗

s (pw, θ) + θF > ΠN∗
s . Πb∗

b (pw, θ) + (1 − θ)F −ΠN∗
b =

(αb−cb−pw−λbdb)
2

4βb
− (αb−cb−rb−λbdb)

2

4βb
, since rb ≥ pw, Π

b∗
b (pw, θ)+(1−θ)F ≥ ΠN∗

b . Therefore, Πb∗
s (pw, θ)+

θF ≥ ΠN∗
s and Πb∗

b (pw, θ) + θF ≥ ΠN∗
s regardless of pw.

Proof of Theorem 2

When −ds ≤ pw1 < pw2 ≤ rb < pw3, for −ds ≤ pw ≤ pw2,
∂qb∗s (pw,θ)

∂pw
= λs

2βs
> 0, for pw2 < pw ≤ rb,

∂qb∗s (pw,θ)
∂pw

= − 1
2βbλs

< 0. For −ds ≤ pw < pw1,
∂qb∗b (pw,θ)

∂pw
= 0, for pw1 ≤ pw ≤ pw2,

∂qb∗b (pw,θ)
∂pw

=
λ2
s

2βs
> 0, and

for pw2 < pw ≤ rb,
∂qb∗b (pw,θ)

∂pw
= −1

2βb
< 0.

When pw1 < −ds ≤ pw2 < pw3 ≤ rb, for −ds ≤ pw ≤ pw2,
∂qb∗s (pw,θ)

∂pw
= λs

2βs
> 0, for pw2 < pw ≤ pw3,

∂qb∗s (pw,θ)
∂pw

= − 1
2βbλs

< 0, for pw3 < pw ≤ rb,
∂qb∗s (pw,θ)

∂pw
= 0. For −ds ≤ pw ≤ pw2,

∂qb∗b (pw,θ)
∂pw

=
λ2
s

2βs
> 0, for

pw2 < pw ≤ rb,
∂qb∗b (pw,θ)

∂pw
= −1

2βb
< 0.

Proof of Theorem 3

When −ds ≤ pw1 < pw2 ≤ rb < pw3, ∆Πb
T is a continuous function of pw, since values of ∆Πb

T at the

separated points pw = pw1 and pw = pw2 are equal, respectively. For−ds ≤ pw < pw1,
∂∆Πb

T

∂pw
=

λ2
s(rb−pw)

2βs
> 0,

∂2∆Πb
T

∂p2
w

=
−λ2

s

2βs
< 0,

∂∆Πb
T

∂rb
= λs(αs−cs−rs+λspw)

2βs
> 0, and

∂∆Πb
T

∂ds
= λs(αs−cs−rs−λsds)

2βs
> 0, so ∆Πb

T is an

increasingly concave function of pw and an increasing function of rb and ds, respectively. For pw1 ≤ pw ≤ pw2,
∂∆Πb

T

∂pw
=

λ2
s(αb−cb−pw−λbdb)

2βs
− βbλ

3
s(αs−cs−rs+λspw)

2β2
s

> 0,
∂2∆Πb

T

∂p2
w

=
−λ2

s(βs+βbλ
2
s)

2βs
< 0,

∂∆Πb
T

∂rb
= αb−cb−rb−λbdb

2βb
>

0, and
∂∆Πb

T

∂ds
= λs(αs−cs−rs−λsds)

2βs
> 0, so ∆Πb

T is an increasingly concave function of pw and an increasing

function of rb and ds, respectively. For pw2 < pw ≤ rb,
∂∆Πb

T

∂pw
= βs(αb−cb−pw−λbdb)−λsβb(αs−cs−rs+λspw)

2λ2
sβ

2
b

< 0,

∂2∆Πb
T

∂p2
w

=
−(βs+βbλ

2
s)

2λ2
sβ

2
b

< 0,
∂∆Πb

T

∂rb
= αb−cb−rb−λbdb

2βb
> 0, and

∂∆Πb
T

∂ds
= λs(αs−cs−rs−λsds)

2βs
> 0, so ∆Πb

T is a

decreasingly concave function of pw and an increasing function of rb and ds, respectively.

When pw1 < −ds ≤ pw2 < pw3 ≤ rb, ∆Πb
T is a continuous function of pw since values of ∆Πb

T at the

separated points pw = pw2 and at pw = pw3 are equal, respectively. For −ds ≤ pw ≤ pw2, from above, we

can see that ∆Πb
T is an increasingly concave function of pw, rb and ds, respectively. For pw2 < pw ≤ pw3,

form above, we can see that ∆Πb
T is a decreasingly concave function of pw and an increasingly concave

function of rb and ds, respectively. For pw3 < pw ≤ rb,
∂∆Πb

T

∂pw
= −(pw+ds)

2βb
< 0,

∂2∆Πb
T

∂p2
w

= −1
2βb

< 0,

∂∆Πb
T

∂rb
= αb−cb−rb−λbdb

2βb
> 0, and

∂∆Πb
T

∂ds
= αb−cb−pw−λbdb

2βb
> 0, so ∆Πb

T is a decreasingly concave function of

pw and an increasing function of rb and ds, respectively.

Proof of theorem 4

When −ds ≤ pw1 < pw2 ≤ rb < pw3, for −ds ≤ pw < pw1,
∂∆Eb

T

∂pw
=

−[er+ep(1−δ)]λ2
s

2βs
< 0, so ∆Eb

T decreases

with pw, and get the minimum value at pw = pw1. For pw1 ≤ pw ≤ pw2,
∂∆Eb

T

∂pw
=

δepλ
2
s

2βs
> 0, so ∆Eb

T increases

with pw, and get the minimum value at pw = pw1. For pw2 < pw ≤ rb,
∂∆Eb

T

∂pw
=

−δep
2βb

< 0, so ∆Eb
T decreases

with pw, and get the minimum value when pw = rb.

When pw1 < −ds ≤ pw2 < pw3 ≤ rb, we can see form above that for −ds ≤ pw ≤ pw2, ∆Eb
T increases

with pw, for pw2 < pw ≤ pw3,

3



∆Eb
T decreases with pw. For pw3 < pw ≤ rb,

∂∆Eb
T

∂pw
=

ed−δep
2βb

, if ed − δep < 0, then ∆Eb
T decreases with

pw, and get the minimum value when pw = rb, otherwise, ∆Eb
T increases with pw, and get the minimum

value when pw = pw3.

Proof of theorem 5

When −ds ≤ pw1 < pw2 ≤ rb ≤ pw3, for −ds ≤ pw < pw1,
∂∆Eb

T

∂ds
=

edλ
2
s

2βs
> 0,

∂∆Eb
T

∂rb
= 0, for

pw1 ≤ pw ≤ pw2,
∂∆Eb

T

∂ds
=

edλ
2
s

2βs
> 0,

∂∆Eb
T

∂rb
=

er+ep
2βb

> 0, for pw2 < pw ≤ rb,
∂∆Eb

T

∂ds
=

edλ
2
s

2βs
> 0,

∂∆Eb
T

∂rb
=

er+ep
2βb

> 0.

When pw1 < −ds ≤ pw2 < pw3 ≤ rb, for −ds ≤ pw ≤ pw2,
∂∆Eb

T

∂ds
=

edλ
2
s

2βs
> 0,

∂∆Eb
T

∂rb
=

er+ep
2βb

> 0, for

pw2 < pw ≤ pw3,
∂∆Eb

T

∂ds
=

edλ
2
s

2βs
> 0,

∂∆Eb
T

∂rb
=

er+ep
2βb

> 0, for pw3 < pw ≤ rb,
∂∆Eb

T

∂ds
= 0,

∂∆Eb
T

∂rb
=

er+ep
2βb

> 0.

Proof of theorem 6

When −ds ≤ pw1 < pw2 ≤ rb < pw3, from theorem 3, we see that ∆Πb
T is an increasing concave function

for pw ∈ [−ds, pw2], and a decreasing concave function for pw ∈ (pw2, rb]. Therefore, ∆Πb
T achieves the

maximum value at pw = pw2, and the minimum value at either pw = −ds or pw = rb. Since ∆Πb
T (rb) =

∆Πb
T (pw1) > ∆Πb

T (−ds), so ∆Πb
T obtains the minimum value at pw = −ds.

When pw1 < −ds ≤ pw2 < pw3 ≤ rb, ∆Πb
T is an increasing concave function for pw ∈ [−ds, pw2], and a

decreasing concave function for pw ∈ (pw2, rb]. Therefore, ∆Πb
T achieves the maximum value at pw = pw2,

and the minimum value at either pw = −ds or pw = rb. Since ∆Πb
T (−ds) = ∆Πb

T (pw3) > ∆Πb
T (rb), so ∆Πb

T

obtains the minimum value at pw = rb.

Proof of Lemma 4

Considering the complexity of the Nash product in our model, we calculate the waste trading price pw

and share of the fixed investment cost θ by maximizing the logarithm of G(pw, θ). Let lnG(pw, θ) = lnG1

when −ds ≤ pw < pw1, lnG(pw, θ) = lnG2 when pw1 ≤ pw ≤ pw2 or −ds ≤ pw ≤ pw2, lnG(pw, θ) = lnG3

when pw2 < pw ≤ rb or pw2 < pw ≤ pw3, and lnG(pw, θ) = lnG4 when pw3 < pw ≤ rb.

To ensure that Πb∗
s (pw, θ) − ΠN

s > 0 and Πb∗
b (pw, θ) − ΠN

b > 0, we assume (αs − cs − rs + λspw)
2 −

(αs− cs− rs−λsds)
2+2λs(rb−pw)(αs− cs− rs+λspw)− 4βsF > 0. Taking the first-order and second-order

partial derivatives of lnG1 with regard to pw and θ, we have

∂ lnG1

∂pw
=

2ξsλs(αs − cs − rs + λspw)

(αs − cs − rs + λspw)2 − (αs − cs − rs − λsds)2 − 4βsθF

+
ξb[λ

2
s(rb − pw)− λs(αs − cs − rs + λspw)]

λs(rb − pw)(αs − cs − rs + λspw)− 2βs(1− θ)F
,

∂2 lnG1

∂p2w
=

−2ξsλ
2
s[(αs − cs − rs + λspw)

2 + (αs − cs − rs − λsds)
2 + 4βsθF ]

[(αs − cs − rs + λspw)2 − (αs − cs − rs − λsds)2 − 4βsθF ]2

− 2ξbλ
2
s

λs(rb − pw)(αs − cs − rs + λspw)− 2βs(1− θ)F

− ξbλ
2
s[λs(rb − pw)− (αs − cs − rs + λspw)]

2

[λs(rb − pw)(αs − cs − rs + λspw)− 2βs(1− θ)F ]2
,

∂ lnG1

∂θ
=

−4ξsβsF

(αs − cs − rs + λspw)2 − (αs − cs − rs − λsds)2 − 4βsθF

+
2ξbβsF

λs(rb − pw)(αs − cs − rs + λspw)− 2βs(1− θ)F
,

4



∂2 lnG1

∂θ2
=

−16ξsβ
2
sF

2

[(αs − cs − rs + λspw)2 − (αs − cs − rs − λsds)2 − 4βsθF
]2

− 4ξbβ
2
sF

2

[λs(rb − pw)(αs − cs − rs + λspw)− 2βs(1− θ)F ]2
,

∂2 lnG1

∂θ∂pw
=

8ξsλsβsF (αs − cs − rs + λspw)

[(αs − cs − rs + λspw)2 − (αs − cs − rs − λsds)2 − 4βsθF ]2

− 2ξbλsβsF [λs(rb − pw)− (αs − cs − rs + λspw)]

[λs(rb − pw)(αs − cs − rs + λspw)− 2βs(1− θ)F ]2
.

Let A = αs − cs − rs + λspw, B = αs − cs − rs − λsds, C = αb − cb − pw − λbdb, D = αb − cb − rb − λbdb.

It is obvious ∂2 lnG1

∂p2
w

< 0 and ∂2 lnG1

∂θ2 < 0, then lnG1 is a strictly concave function both in pw for a

given θ, and in θ for a given pw. Therefore, we can first calculate the optimal θ for a given pw and then

substitute θ, which is a function of pw, into lnG1 to search the optimal pw. Solving
∂ lnG1

∂θ = 0, we can get

θ1(pw) =
ξb(A

2−B2)−2ξs[λs(rb−pw)A−2βsF ]
4βsF (ξs+ξb)

.

Substituting θ1(pw) into
d lnG1

dpw
, we can get d lnG1

dpw
=

2λ2
s(ξs+ξb)(rb−pw)

A2−B2+2[λs(rb−pw)A−2βsF ] , then
d lnG1

dpw
> 0 is always

true according to the assumption. Therefore, lnG1, constrained by −ds ≤ pw < pw1, is an increasing function

in pw, and reaches the maximum value at p∗w = pw1, correspondingly, the optimal share of cost is θ∗ = θ1(pw1).

Taking the first-order and second-order partial derivatives of lnG2 with regard to pw and θ, we can see

that lnG2 is a strictly concave function both in pw for a given θ, and in θ for a given pw, because
∂2 lnG2

∂p2
w

< 0

and ∂2 lnG2

∂θ2 < 0. Therefore, just like above, we can first calculate the optimal θ for a given pw and then

substitute θ, which is a function of pw, into lnG2 to search the optimal pw. Solving
∂ lnG2

∂θ = 0, we can get

θ2(pw) =
ξbβsβb(A

2−B2)−ξs[2λsβsβbAC−λ2
sβ

2
bA

2−β2
sD

2−4βbβ
2
sF ]

4βbβ2
sF (ξs+ξb)

.

Substituting θ2(pw) into d lnG2

dpw
, we can get d lnG2

dpw
=

2βb(ξs+ξb)λ
2
s(βsC−λsβbA)

βsβb(A2−B2)+2λsβsβbAC−λ2
sβ

2
bA

2−β2
sD

2−4βbβ2
sF

, then
d lnG2

dpw
> 0 is constantly true, since Πb∗

s (pw, θ) > ΠN∗
s and Πb∗

b (pw, θ) > ΠN∗
b hold, and βsC > λsβbA when

pw1 ≤ pw ≤ pw2. Therefore, lnG2 increases with pw, and reaches the maximum value at p∗w = pw2, at which

θ∗ = θ2(pw2).

Taking the first-order and second-order partial derivatives of lnG3 with regard to pw and θ, we can see

that lnG3 is a strictly concave function both in pw for a given θ, and in θ for a given pw, since
∂2 lnG3

∂p2
w

< 0

and ∂2 lnG3

∂θ2 < 0. Therefore, we can first calculate the optimal θ for a given pw and then substitute θ,

which is a function of pw, into lnG3 to search the optimal pw. Solving
∂ lnG3

∂θ = 0, we can get θ3(pw) =
ξb(2λsβsβbAC−β2

sC
2−λ2

sβ
2
bD

2)−ξsβsβbλ
2
s(C

2−D2−4βbF )

4βsβ2
bλ

2
s(ξs+ξb)F

.

Substituting θ3(pw) into d lnG3

dpw
, we can get d lnG3

dpw
= 2βs(ξs+ξb)(βsC−λsβbA)

2λsβsβbAC−β2
sC

2−λ2
sβ

2
bB

2+βsβbλ2
s(C

2−D2−4βbF )
, then

d lnG3

dpw
< 0 is constantly true, as Πb∗

s (pw, θ) > ΠN∗
s and Πb∗

b (pw, θ) > ΠN∗
b hold, and βsC < λsβbA

when pw2 < pw ≤ rb. Therefore, lnG3 decreases with pw, and reaches the maximum value at p∗w = pw2,

correspondingly, the optimal share of cost is θ∗ = θ3(pw2).

Taking the first-order and second-order partial derivatives of lnG4 with regard to pw and θ, we can see

that lnG4 is a strictly concave function both in pw for a given θ, and in θ for a given pw, since
∂2 lnG4

∂p2
w

< 0

and ∂2 lnG4

∂θ2 < 0. Therefore, we can first calculate the optimal θ for a given pw and then substitute θ,

which is a function of pw, into lnG4 to search the optimal pw. Solving
∂ lnG4

∂θ = 0, we can get θ4(pw) =
2ξb(pw+ds)C−ξs(C

2−D2−4βbF )
4βb(ξs+ξb)F

.

Substituting θ4(pw) into
d lnG4

dpw
, we can get d lnG4

dpw
= −2(ξb+βsξs)(pw+ds)

2(pw+ds)C+C2−D2−4βbF
, then d lnG4

dpw
< 0 is constantly

true according to the assumption. Therefore, lnG4, constrained by pw3 < pw ≤ rb, is a decreasing function

of pw, and reaches the maximum value at p∗w = pw3, at which θ∗ = θ4(pw3).
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Proof of theorem 7

As pw is independent of ξs and ξb, we investigate the effects of ξs and ξb on θ by using θ(pw). When

−ds ≤ pw1 < pw2 ≤ rb < pw3, for −ds ≤ pw < pw1,
∂θ1(pw)

∂ξs
= −ξb[A

2−B2+2λs(rb−pw)A−4βsF ]
4βsF (ξs+ξb)2

< 0 and

∂θ1(pw)
∂ξb

=
ξs[A

2−B2+2λs(rb−pw )A−4βsF ]
4βsF (ξs+ξb)2

> 0 according to Πb∗
s (pw, θ) > ΠN

s and Πb∗
b (pw, θ) > ΠN

b . For pw1 ≤

pw ≤ pw2,
∂θ2(pw)

∂ξs
=

−ξb[βsβb(A
2−B2)+2βsβbλsAC−β2

bλ
2
sA

2−β2
sD

2−4β2
sβbF ]

4β2
sβbF (ξs+ξb)2

< 0 and ∂θ2(pw)
∂ξb

= − ξs
ξb

∗ ∂θ2(pw)
∂ξs

> 0

according to Πb∗
s (pw, θ) > ΠN

s and Πb∗
b (pw, θ) > ΠN

b . For pw2 < pw ≤ rb,
∂θ3(pw)

∂ξb
= − ξs

ξb
∗ ∂θ3(pw)

∂ξs
> 0

and ∂θ3(pw)
∂ξs

=
−ξb[βsβbλ

2
s(C

2−D2−4βbF )+2βsβbλsAC−β2
sC

2−β2
bλ

2
sD

2]

4βsβ2
bλ

2
sF (ξs+ξb)2

< 0 according to Πb∗
s (pw, θ) > ΠN

s and

Πb∗
b (pw, θ) > ΠN

b .

When pw1 < −ds ≤ pw2 < pw3 ≤ rb, for −ds ≤ pw ≤ pw2 and pw2 < pw ≤ pw3, θ2(pw) and θ3(pw)

change with ξs and ξb in the same direction as in the case −ds ≤ pw1 < pw2 ≤ rb < pw3. For pw3 < pw ≤ rb,
∂θ4(pw)

∂ξs
= −ξb[C

2−D2−4βbF+2(pw+ds)]
4βbF (ξs+ξb)2

< 0 and ∂θ4(pw)
∂ξb

= − ξs
ξb

∗ ∂θ4(pw)
∂ξs

> 0 according to Πb∗
s (pw, θ) > ΠN

s

and Πb∗
b (pw, θ) > ΠN

b . Since the optimal profits of the generator and user decrease and increase with θ,

respectively, it is easy to get the effect of ξs and ξb on Πb∗
s and Πb∗

b .

Proof of theorem 8

When −ds ≤ pw1 < pw2 ≤ rb < pw3, from theorem 3, 4, we see that Eb∗
T (pw, θ) decreases and Πb∗

T (pw, θ)

increases with pw for −ds ≤ pw < pw1, thus the optimal economic and environmental performance are

simultaneously achieved at pw = pw1, and the two goals align. For pw1 ≤ pw ≤ rb, E
b∗
T (pw, θ) and Πb∗

T (pw, θ)

both first increase then decrease with pw, hence, the optimal economic performance and worst environmental

performance are both achieved at pw = pw2, and there exist conflicts between the two goals.

When pw1 < −ds ≤ pw2 < pw3 ≤ rb, from theorem 3, 4, we see that for pw1 ≤ pw ≤ pw3, both Eb∗
T (pw, θ)

and Πb∗
T (pw, θ) first increase then decrease with pw, thus the optimal economic and environmental goals can

not be achieved simultaneously. For pw3 < pw ≤ rb, Π
b∗
T (pw, θ) decreases with pw while Eb∗

T (pw, θ) increases

with pw when ed > δep, then the optimal economic and environmental performance align if ed > δep,

otherwise, the two goals conflict.

Proof of theorem 9

When −ds ≤ pw1 < pw2 ≤ rb < pw3, for −ds ≤ pw < pw1, the optimal waste trading price is pw = pw1,

Eb∗
T (pw1) − EN∗

T =
(δ−1)ep(αb−cb−rb−λbdb)

2βb
− λsed(αs−cs−rs−λsds)

2βs
− er(αb−cb−rb−λbdb)

2βb
< 0, as 0 < δ < 1,

therefore, the interfirm waste utilization is more environmentally preferable than the benchmark case. For

pw1 ≤ pw ≤ pw2 and pw2 < pw ≤ rb, the optimal waste trading price is pw = pw2, E
b∗
T (pw2) − EN∗

T =
ep[δλs[αs−cs−rs+λs(αb−cb−λbdb)]−βs(βs+βbλ

2
s)(αb−cb−rb−λbdb)]

2βsβb(βs+βbλ2
s)

− er(αb−cb−rb−λbdb)
2βb

− λsed(αs−cs−rs−λsds)
2βs

, if δ <

βs(βs+βbλ
2
s)(αb−cb−rb−λbdb)

λs[αs−cs−rs+λs(αb−cb−λbdb)]
, then Eb∗

T (pw2) < EN∗
T , otherwise, the interfirm waste utilization is environ-

mentally superior to the benchmark case if ep <
(βs+βbλ

2
s)[βbλsed(αs−cs−rs−λsds)+βser(αb−cb−rb−λbdb)]

δλs[αs−cs−rs+λs(αb−cb−λbdb)]−βs(βs+βbλ2
s)(αb−cb−rb−λbdb)

=

Ω̃(ed, er).

When pw1 < −ds ≤ pw2 < pw3 ≤ rb, from above we can see that for pw1 ≤ pw ≤ pw2 and pw2 <

pw ≤ pw3, the interfirm waste utilization is more environmentally preferable than the benchmark case if δ <
βs(βs+βbλ

2
s)(αb−cb−rb−λbdb)

λs[αs−cs−rs+λs(αb−cb−λbdb)]
, otherwise, it is environmentally superior if ep < Ω̃(ed, er). For pw3 < pw ≤ rb,

the optimal waste trading price is pw = pw3, E
b∗
T (pw3)−EN∗

T =
ep[δβbλs(αs−cs−rs−λsds)−βs(αb−cb−rb−λbdb)]

2βsβb
−

λsed(αs−cs−rs−λsds)
2βs

− er(αb−cb−rb−λbdb)
2βb

, if δ < βs(αb−cb−rb−λbdb)
βbλs(αs−cs−rs−λsds)

, then Eb∗
T (pw3) < EN∗

T , otherwise, it is en-

vironmentally superior to the benchmark case if ep < βbλsed(αs−cs−rs−λsds)+βser(αb−cb−rb−λbdb)
δβbλs(αs−cs−rs−λsds)−βs(αb−cb−rb−λbdb)

= Ω̂(ed, er).
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