Appendix

Proof of lemma 2

It is obvious that Π_{b}^{b} is a continuous and non-differentiable function and has a non-differential point at $q_{b}^{b}=\lambda_{s} q_{s}^{b}$, as the left and right derivatives are not equal, i.e., $\frac{\partial \Pi_{b 1}^{b}}{\partial q_{b}^{b}} \neq \frac{\partial \Pi_{b 2}^{b}}{\partial q_{b}^{b}}$. The optimal production quantity of the user is obtained by comparing the maximums of the two parts of the profit function separated by this point. We first solve the unconstrained solutions to $\Pi_{b 1}^{b}$ and $\Pi_{b 2}^{b}$. It is simple to show that $\Pi_{b 1}^{b}$ and $\Pi_{b 2}^{b}$ are both strictly concave in q_{b}^{b}. Solving the first order conditions yields the unconstrained optimal solutions to $\Pi_{b 1}^{b}$ and $\Pi_{b 2}^{b}$, i.e., $q_{b 1}^{b}=\frac{\alpha_{b}-c_{b}-r_{b}-\lambda_{b} d_{b}}{2 \beta_{b}}$ and $q_{b 2}^{b}=\frac{\alpha_{b}-c_{b}-p_{w}-\lambda_{b} d_{b}}{2 \beta_{b}}$, as $r_{b} \geq p_{w}, q_{b 1}^{b} \leq q_{b 2}^{b}$.

The constrained optimal solutions to Π_{b}^{b} are determined by comparing the unconstrained ones with the separation point $\lambda_{s} q_{s}^{b}$, which are presented as follows.
(i) If $q_{b 1}^{b}>\lambda_{s} q_{s}^{b}$, then $q_{b 1}^{b}$ satisfies the constraint and is the constrained optimal solution to $\Pi_{b 1}^{b}$, while $q_{b 2}^{b}$ falls to the right of $\lambda_{s} q_{s}^{b}$ and does not subject to the constraint as $q_{b 1}^{b} \leq q_{b 2}^{b} . \Pi_{b 2}^{b}$ increases as q_{b}^{b} approaches $\lambda_{s} q_{s}^{b}$ from the left, thus obtaining the maximum value at $q_{b}^{b}=\lambda_{s} q_{s}^{b}$. Since $\Pi_{b 2}^{b}\left(\lambda_{s} q_{s}^{b}\right)=\Pi_{b 1}^{b}\left(\lambda_{s} q_{s}^{b}\right)<\Pi_{b 1}^{b}\left(q_{b 1}^{b}\right)$ by the definition of optimality and continuity, the optimal production quantity that maximizes the user's profit is $q_{b}^{b *}\left(q_{s}^{b}, p_{w}, \theta\right)=q_{b 1}^{b}$.
(ii) If $q_{b 2}^{b}<\lambda_{s} q_{s}^{b}$, then $q_{b 2}^{b}$ subjects to the constraint and is the constrained optimal solution to $\Pi_{b 2}^{b}$, while $q_{b 1}^{b}$ falls to the left of $\lambda_{s} q_{s}^{b}$ and is not the constrained optimal solution. $\Pi_{b 1}^{b}$ increases as q_{b}^{b} approaches $\lambda_{s} q_{s}^{b}$ from the right, thus obtaining the maximum value at $q_{b}^{b}=\lambda_{s} q_{s}^{b}$. Since $\Pi_{b 1}^{b}\left(\lambda_{s} q_{s}^{b}\right)=\Pi_{b 2}^{b}\left(\lambda_{s} q_{s}^{b}\right)<\Pi_{b 2}^{b}\left(q_{b 2}^{b}\right)$ by the definition of optimality and continuity, the the user get the optimal profit at $q_{b}^{b *}\left(q_{s}^{b}, p_{w}, \theta\right)=q_{b 2}^{b}$.
(iii) If $q_{b 1}^{b} \leq \lambda_{s} q_{s}^{b} \leq q_{b 2}^{b}$, then neither the unconstrained optimal solutions satisfy the constraints. $\Pi_{b 1}^{b}$ increases as q_{b}^{b} approaches $\lambda_{s} q_{s}^{b}$ from the right, and $\Pi_{b 2}^{b}$ increases as q_{b}^{b} approaches $\lambda_{s} q_{s}^{b}$ from the left, thus, the constrained optimal solutions to $\Pi_{b 1}^{b}$ and $\Pi_{b 2}^{b}$ both fall at the separated point. Therefore the user maximizes his profit at $q_{b}^{b *}\left(q_{s}^{b}, p_{w}, \theta\right)=\lambda_{s} q_{s}^{b}$.

Proof of Lemma 3

Π_{s}^{b} is separated by $q_{s}^{b}=\frac{q_{b 2}^{b}}{\lambda_{s}}$ into two parts, and is continuous but non-differentiable at $q_{s}^{b}=\frac{q_{b 2}^{b}}{\lambda_{s}}$, as the left and right derivatives are not equal. It is simple to show that $\Pi_{s 1}^{b}$ and $\Pi_{s 2}^{b}$ are both strictly concave in q_{s}^{b}, solving the first order conditions give the unconstrained optimal solutions to $\Pi_{s 1}^{b}$ and $\Pi_{s 2}^{b}$, i.e., $q_{s 1}^{b}=$ $\frac{\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}}{2 \beta_{s}}$ and $q_{s 2}^{b}=\frac{\alpha_{s}-c_{s}-r_{s}-\lambda_{s} d_{s}}{2 \beta_{s}}$, respectively, since $p_{w} \geq-d_{s}, q_{s 1}^{b} \geq q_{s 2}^{b}$.

The constrained optimal solutions to Π_{s}^{b} are determined by comparing the unconstrained ones with the separation point $\frac{q_{b 2}^{b}}{\lambda_{s}}$. Considering $q_{s 1}^{b} \geq q_{s 2}^{b}$ and $q_{b 1}^{b} \leq q_{b 2}^{b}$, there are six scenarios to be analyzed.
(i) If $q_{s 2}^{b} \leq q_{s 1}^{b}<\frac{q_{b 1}^{b}}{\lambda_{s}} \leq \frac{q_{b 2}^{b}}{\lambda_{s}}$, then $q_{s 1}^{b}$ satisfies the constraint and is the constrained optimal solution to $\Pi_{s 1}^{b}$, while $q_{s 2}^{b}$ falls to the left of $\frac{q_{b 2}^{b}}{\lambda_{s}}$ and is not the constrained optimal solution. $\Pi_{s 2}^{b}$ increases as q_{s}^{b} approaches $\frac{q_{b 2}^{b}}{\lambda_{s}}$ from the right and reaches the maximum value at $\frac{q_{b 2}^{b}}{\lambda_{s}}$. Since Π_{s}^{b} is a continuous function, $\Pi_{s 1}^{b}\left(\frac{q_{b 2}^{b}}{\lambda_{s}}\right)=\Pi_{s 2}^{b}\left(\frac{q_{b 2}^{b}}{\lambda_{s}}\right)$, and according to the definition of optimality, $\Pi_{s 1}^{b}\left(q_{s 1}^{b}\right)>\Pi_{s 1}^{b}\left(\frac{q_{b 2}^{b}}{\lambda_{s}}\right)$, so the optimal production quantity that maximizes the generator's profit is $q_{s}^{b *}\left(p_{w}, \theta\right)=q_{s 1}^{b}$. In response, the optimal production quantity of the user is $q_{b}^{b *}\left(p_{w}, \theta\right)=q_{b 1}^{b}$.
(ii) If $q_{s 2}^{b}<\frac{q_{b 1}^{b}}{\lambda_{s}} \leq q_{s 1}^{b} \leq \frac{q_{b 2}^{b}}{\lambda_{s}}$, then $q_{s 1}^{b}$ satisfies the constraint and is the constrained optimal solution to $\Pi_{s 1}^{b}$, while $q_{s 2}^{b}$ falls out of the constrained region and increases as q_{s}^{b} approaches $\frac{q_{b 2}^{b}}{\lambda_{s}}$ from the right, thus obtaining the maximum value at $\frac{q_{b 2}^{b}}{\lambda_{s}}$. Since $\Pi_{s 1}^{b}\left(\frac{q_{b 2}^{b}}{\lambda_{s}}\right)=\Pi_{s 2}^{b}\left(\frac{q_{b 2}^{b}}{\lambda_{s}}\right)$ and $\Pi_{s 1}^{b}\left(q_{s 1}^{b}\right) \geq \Pi_{s 1}^{b}\left(\frac{q_{b 2}^{b}}{\lambda_{s}}\right)$ by the definition of continuity and optimality, the generator maximizes the profit Π_{s}^{b} at $q_{s}^{b *}\left(p_{w}, \theta\right)=q_{s 1}^{b}$. In response, the optimal production quantity of the generator is $q_{s}^{b *}\left(p_{w}, \theta\right)=\lambda_{s} q_{s 1}^{b}$.
(iii) If $\frac{q_{b 1}^{b}}{\lambda_{s}}<q_{s 2}^{b} \leq q_{s 1}^{b}<\frac{q_{b 2}^{b}}{\lambda_{s}}$, then $q_{s 1}^{b}$ is the constrained optimal solution to $\Pi_{s 1}^{b}$, while $q_{s 2}^{b}$ does not subject to the constraint. Obviously, this scenario is the same as (ii), as a result, the generator maximizes the profit Π_{s}^{b} at $q_{s}^{b *}\left(p_{w}, \theta\right)=q_{s 1}^{b}$, and the user achieves the maximum profit at $q_{b}^{b *}\left(p_{w}, \theta\right)=\lambda_{s} q_{s 1}^{b}$.
(iv) If $q_{s 2}^{b}<\frac{q_{b 1}^{b}}{\lambda_{s}} \leq \frac{q_{b 2}^{b}}{\lambda_{s}}<q_{s 1}^{b}$, then neither the unconstrained optimal solutions to $\Pi_{s 1}^{b}$ and $\Pi_{s 2}^{b}$ satisfy the constraints. Therefore, $\Pi_{s 1}^{b}$ increases as q_{s}^{b} approaches $\frac{q_{b 2}^{b}}{\lambda_{s}}$ from left and $\Pi_{s 2}^{b}$ increases as q_{s}^{b} approaches $\frac{q_{b 2}^{b}}{\lambda_{s}}$ from right, and both reach the maximum values at $\frac{q_{b 2}^{b}}{\lambda_{s}}$. Since Π_{s}^{b} is a continuous function, $\Pi_{s 1}^{b}\left(\frac{q_{b 2}^{b}}{\lambda_{s}}\right)=$ $\Pi_{s 2}^{b}\left(\frac{q_{b 2}^{b}}{\lambda_{s}}\right)$. Hence, the generator gets the optimal profit at $q_{s}^{b *}\left(p_{w}, \theta\right)=\frac{q_{b 2}^{b}}{\lambda_{s}}$. In response, the user achieves the optimal profit at $q_{b}^{b *}\left(p_{w}, \theta\right)=q_{b 2}^{b}$.
(v) If $\frac{q_{b 1}^{b}}{\lambda_{s}} \leq q_{s 2}^{b} \leq \frac{q_{b 2}^{b}}{\lambda_{s}}<q_{s 1}^{b}$, then neither the unconstrained optimal solutions to $\Pi_{s 1}^{b}$ and $\Pi_{s 2}^{b}$ satisfy the constraints. The scenario is same as (iv), consequently, the optimal production quantity of the generator is $q_{s}^{b *}\left(p_{w}, \theta\right)=\frac{q_{b 2}^{b}}{\lambda_{s}}$, and the optimal production quantity of the user is $q_{b}^{b *}\left(p_{w}, \theta\right)=q_{b 2}^{b}$.
(vi) If $\frac{q_{b 1}^{b}}{\lambda_{s}} \leq \frac{q_{b 2}^{b}}{\lambda_{s}}<q_{s 2}^{b} \leq q_{s 1}^{b}$, then $q_{s 2}^{b}$ satisfies the constraint and is the constrained optimal solution to $\Pi_{s 2}^{b}$, while $q_{s 1}^{b}$ falls out of the constrained region and reaches the maximum value at $\frac{q_{b 2}^{b}}{\lambda_{s}}$. Since $\Pi_{s 1}^{b}\left(\frac{q_{b 2}^{b}}{\lambda_{s}}\right)=$ $\Pi_{s 2}^{b}\left(\frac{q_{b 2}^{b}}{\lambda_{s}}\right)$ and $\Pi_{s 2}^{b}\left(q_{s 2}^{b}\right)>\Pi_{s 2}^{b}\left(\frac{q_{b 2}^{b}}{\lambda_{s}}\right)$ by the definition of continuity and optimality, the generator maximizes the profit at $q_{s}^{b *}\left(p_{w}, \theta\right)=q_{s 2}^{b}$. In response, the user reaches the maximum profit at $q_{b}^{b *}\left(p_{w}, \theta\right)=q_{b 2}^{b}$.

From the above analysis, we can see there are four pairs solutions to Π_{s}^{b} and Π_{b}^{b}, i.e., (i) When $0<q_{s 1}^{b}<$ $\frac{q_{b 1}^{b}}{\lambda_{s}}$, the optimal production quantities of the generator and user are $\left(q_{s 1}^{b}, q_{b 1}^{b}\right)$; (ii) When $\frac{q_{b 1}^{b}}{\lambda_{s}} \leq q_{s 1}^{b} \leq \frac{q_{b 2}^{b}}{\lambda_{s}}$, the optimal production quantities of the generator and user are $\left(q_{s 1}^{b}, \lambda_{s} q_{s 1}^{b}\right)$; (iii) When $q_{s 2}^{b} \leq \frac{q_{b 2}^{b}}{\lambda_{s}}<q_{s 1}^{b}$, the optimal production quantities of the generator and user are $\left(\frac{q_{b 2}^{b}}{\lambda_{s}}, q_{b 2}^{b}\right)$; (iv) When $q_{s 2}^{b}>\frac{q_{b 2}^{b}}{\lambda_{s}}$, the optimal production quantities of the generator and user are $\left(q_{s 2}^{b}, q_{b 2}^{b}\right)$. The four pairs solutions are characterized by $p_{w}<p_{w 1}, p_{w 1} \leq p_{w} \leq p_{w 2}, p_{w 2}<p_{w} \leq p_{w 3}$, and $p_{w}>p_{w 3}$, where $p_{w 1}, p_{w 2}$, and $p_{w 3}$ are values of p_{w} such that $q_{s 1}^{b}=\frac{q_{b 1}^{b}}{\lambda_{s}}, q_{s 1}^{b}=\frac{q_{b 2}^{b}}{\lambda_{s}}$, and $q_{s 2}^{b}=\frac{q_{b 2}^{b}}{\lambda_{s}}$, respectively. Specifically, $p_{w 1}=\frac{\beta_{s}\left(\alpha_{b}-c_{b}-r_{b}-\lambda_{b} d_{b}\right)-\beta_{b} \lambda_{s}\left(\alpha_{s}-c_{s}-r_{s}\right)}{\beta_{b} \lambda_{s}^{2}}$, $p_{w 2}=\frac{\beta_{s}\left(\alpha_{b}-c_{b}-\lambda_{b} d_{b}\right)-\beta_{b} \lambda_{s}\left(\alpha_{s}-c_{s}-r_{s}\right)}{\beta_{s}+\beta_{b} \lambda_{s}^{2}}$, and $p_{w 3}=\alpha_{b}-c_{b}-\lambda_{b} d_{b}-\frac{\beta_{b} \lambda_{s}\left(\alpha_{s}-c_{s}-r_{s}-\lambda_{s} d_{s}\right)}{\beta_{s}}$, respectively.

Since p_{w} subjects to $\left[-d_{s}, r_{b}\right]$, separately comparing $p_{w 1}, p_{w 2}$, and $p_{w 3}$ with the constraints, we find $p_{w 1} \geq-d_{s}$ (i.e., $\left.\beta_{s}\left(\alpha_{b}-c_{b}-r_{b}-\lambda_{b} d_{b}\right) \geq \beta_{b} \lambda_{s}\left(\alpha_{s}-c_{s}-r_{s}-\lambda_{s} d_{s}\right)\right)$ and $p_{w 3} \leq r_{b}$ (i.e., $\beta_{s}\left(\alpha_{b}-c_{b}-r_{b}-\lambda_{b} d_{b}\right) \leq$ $\left.\beta_{b} \lambda_{s}\left(\alpha_{s}-c_{s}-r_{s}-\lambda_{s} d_{s}\right)\right)$ are contradictory. Therefore, if $p_{w 1} \in\left[-d_{s}, r_{b}\right]$, i.e., $\beta_{b} \lambda_{s}\left(\alpha_{s}-c_{s}-r_{s}+\lambda_{s} r_{b}\right) \geq$ $\beta_{s}\left(\alpha_{b}-c_{b}-r_{b}-\lambda_{b} d_{b}\right) \geq \beta_{b} \lambda_{s}\left(\alpha_{s}-c_{s}-r_{s}-\lambda_{s} d_{s}\right)$, then $p_{w 3}>r_{b} \geq p_{w 2}>p_{w 1} \geq-d_{s}$ hold; if $p_{w 3} \in\left[-d_{s}, r_{b}\right]$, i.e., $\beta_{s}\left(\alpha_{b}-c_{b}-r_{b}-\lambda_{b} d_{b}\right) \leq \beta_{b} \lambda_{s}\left(\alpha_{s}-c_{s}-r_{s}-\lambda_{s} d_{s}\right) \leq \beta_{s}\left(\alpha_{b}-c_{b}+d_{s}-\lambda_{b} d_{b}\right)$, then $r_{b} \geq p_{w 3}>p_{w 2} \geq$ $-d_{s}>p_{w 1}$ hold. Hence, there exist two scenarios with respect to p_{w}, i.e., $-d_{s} \leq p_{w 1}<p_{w 2} \leq r_{b}<p_{w 3}$ and $p_{w 1}<-d_{s} \leq p_{w 2}<p_{w 3} \leq r_{b}$, and the optimal production decisions of the generator and user are presented according to the two scenarios.

Proof of corollary 2

(i) When $-d_{s} \leq p_{w 1}<p_{w 2} \leq r_{b}<p_{w 3}$, for $-d_{s} \leq p_{w} \leq p_{w 2}, \Pi_{s}^{b *}\left(p_{w}, \theta\right)+\theta F-\Pi_{s}^{N *}=\frac{\left(\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}\right)^{2}}{4 \beta_{s}}-$ $\frac{\left(\alpha_{s}-c_{s}-r_{s}-\lambda_{s} d_{s}\right)^{2}}{4 \beta_{s}}$, since $p_{w} \geq-d_{s}, \Pi_{s}^{b *}\left(p_{w}, \theta\right)+\theta F \geq \Pi_{s}^{N *}$. For $p_{w 2}<p_{w} \leq r_{b}, \Pi_{s}^{b *}\left(p_{w}, \theta\right)+\theta F-$ $\Pi_{s}^{N *}=\frac{\left(\alpha_{b}-c_{b}-p_{w}-\lambda_{b} d_{b}\right)\left[2 \beta_{b} \lambda_{s}\left(\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}\right)-\beta_{s}\left(\alpha_{b}-c_{b}-p_{w}-\lambda_{b} d_{b}\right)\right]}{4 \beta_{b}^{2} \lambda_{s}^{2}}-\frac{\left(\alpha_{s}-c_{s}-r_{s}-\lambda_{s} d_{s}\right)^{2}}{4 \beta_{s}}>\beta_{b} \lambda_{s}\left(\alpha_{s}-c_{s}-r_{s}-\right.$ $\left.\lambda_{s} d_{s}\right) * \frac{\left[\beta_{s}\left(\alpha_{b}-c_{b}-p_{w}-\lambda_{b} d_{b}\right)-\beta_{b} \lambda_{s}\left(\alpha_{s}-c_{s}-r_{s}-\lambda_{s} d_{s}\right)\right]}{4 \beta_{s} \beta_{b}^{2} \lambda_{s}^{2}}+\frac{\left(\alpha_{b}-c_{b}-p_{w}-\lambda_{b} d_{b}\right)\left[\beta_{b} \lambda_{s}\left(\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}\right)-\beta_{s}\left(\alpha_{b}-c_{b}-p_{w}-\lambda_{b} d_{b}\right)\right]}{4 \beta_{b}^{2} \lambda_{s}^{2}}$, since $q_{s 1}^{b}>\frac{q_{b 2}^{b}}{\lambda_{s}}>q_{s 2}^{b}, \Pi_{s}^{b *}\left(p_{w}, \theta\right)+\theta F>\Pi_{s}^{N *}$. In summarize, $\Pi_{s}^{b *}\left(p_{w}, \theta\right)+\theta F-\Pi_{s}^{N *} \geq 0$ regardless of p_{w}. For $-d_{s} \leq p_{w}<p_{w 1}, \Pi_{b}^{b *}\left(p_{w}, \theta\right)+(1-\theta) F-\Pi_{b}^{N *}=\frac{\lambda_{s}\left(r_{b}-p_{w}\right)\left(\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}\right)}{2 \beta_{s}}$, as $r_{b} \geq p_{w}, \Pi_{b}^{b *}\left(p_{w}, \theta\right)+(1-\theta) F \geq \Pi_{b}^{N *}$. For $p_{w 1} \leq p_{w} \leq p_{w 2}, \Pi_{b}^{b *}\left(p_{w}, \theta\right)+(1-\theta) F-\Pi_{b}^{N *}=$ $\frac{\lambda_{s}\left(\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}\right)\left[2 \beta_{s}\left(\alpha_{b}-c_{b}-p_{w}-\lambda_{b} d_{b}\right)-\beta_{b} \lambda_{s}\left(\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}\right)\right]}{4 \beta_{s}^{2}}-\frac{\left(\alpha_{b}-c_{b}-r_{b}-\lambda_{b} d_{b}\right)^{2}}{4 \beta_{b}}>\beta_{s}\left(\alpha_{b}-c_{b}-r_{b}-\lambda_{b} d_{b}\right) *$ $\frac{\left[\beta_{b} \lambda_{s}\left(\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}\right)-\beta_{s}\left(\alpha_{b}-c_{b}-r_{b}-\lambda_{b} d_{b}\right)\right]}{4 \beta_{b} \beta_{s}^{2}}+\frac{\lambda_{s}\left(\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}\right)\left[\beta_{s}\left(\alpha_{b}-c_{b}-p_{w}-\lambda_{b} d_{b}\right)-\beta_{b} \lambda_{s}\left(\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}\right)\right]}{4 \beta_{s}^{2}}$, as $\frac{q_{b 1}^{b}}{\lambda_{s}} \leq$
$q_{s 1}^{b} \leq \frac{q_{b 2}^{b}}{\lambda_{s}}, \Pi_{b}^{b *}\left(p_{w}, \theta\right)+(1-\theta) F>\Pi_{b}^{N *}$. For $p_{w 2}<p_{w} \leq r_{b}, \Pi_{b}^{b *}\left(p_{w}, \theta\right)+(1-\theta) F-\Pi_{b}^{N *}=$ $\frac{\left(\alpha_{b}-c_{b}-p_{w}-\lambda_{b} d_{b}\right)^{2}}{4 \beta_{b}}-\frac{\left(\alpha_{b}-c_{b}-r_{b}-\lambda_{b} d_{b}\right)^{2}}{4 \beta_{b}}$, since $r_{b} \geq p_{w}, \Pi_{b}^{b *}\left(p_{w}, \theta\right)+(1-\theta) F \geq \Pi_{b}^{N *}$. Therefore, $\Pi_{b}^{b *}\left(p_{w}, \theta\right)+$ $\theta F \geq \Pi_{b}^{N *}$ regardless of p_{w}.
(ii) When $p_{w 1}<-d_{s} \leq p_{w 2}<p_{w 3} \leq r_{b}$, for $-d_{s} \leq p_{w} \leq p_{w 2}$, we can see from above that $\Pi_{s}^{b *}\left(p_{w}, \theta\right)+\theta F \geq$ $\Pi_{s}^{N *}$ and $\Pi_{b}^{b *}\left(p_{w}, \theta\right)+(1-\theta) F>\Pi_{b}^{N *}$. For $p_{w 2}<p_{w} \leq p_{w 3}$, similar to the results described above, $\Pi_{s}^{b *}\left(p_{w}, \theta\right)+\theta F>\Pi_{s}^{N *}$ and $\Pi_{b}^{b *}\left(p_{w}, \theta\right)+(1-\theta) F \geq \Pi_{b}^{N *}$ hold. For $p_{w 3}<p_{w} \leq r_{b}, \Pi_{s}^{b *}\left(p_{w}, \theta\right)+$ $\theta F-\Pi_{s}^{N *}=\frac{\left(p_{w}+d_{s}\right)\left(\alpha_{b}-c_{b}-p_{w}-\lambda_{b} d_{b}\right)}{2 \beta_{b}}>0$, so $\Pi_{s}^{b *}\left(p_{w}, \theta\right)+\theta F>\Pi_{s}^{N *} . \Pi_{b}^{b *}\left(p_{w}, \theta\right)+(1-\theta) F-\Pi_{b}^{N *}=$ $\frac{\left(\alpha_{b}-c_{b}-p_{w}-\lambda_{b} d_{b}\right)^{2}}{4 \beta_{b}}-\frac{\left(\alpha_{b}-c_{b}-r_{b}-\lambda_{b} d_{b}\right)^{2}}{4 \beta_{b}}$, since $r_{b} \geq p_{w}, \Pi_{b}^{b *}\left(p_{w}, \theta\right)+(1-\theta) F \geq \Pi_{b}^{N *}$. Therefore, $\Pi_{s}^{b *}\left(p_{w}, \theta\right)+$ $\theta F \geq \Pi_{s}^{N *}$ and $\Pi_{b}^{b *}\left(p_{w}, \theta\right)+\theta F \geq \Pi_{s}^{N *}$ regardless of p_{w}.

Proof of Theorem 2

When $-d_{s} \leq p_{w 1}<p_{w 2} \leq r_{b}<p_{w 3}$, for $-d_{s} \leq p_{w} \leq p_{w 2}, \frac{\partial q_{s}^{b *}\left(p_{w}, \theta\right)}{\partial p_{w}}=\frac{\lambda_{s}}{2 \beta_{s}}>0$, for $p_{w 2}<p_{w} \leq r_{b}$, $\frac{\partial q_{s}^{b *}\left(p_{w}, \theta\right)}{\partial p_{w}}=-\frac{1}{2 \beta_{b} \lambda_{s}}<0$. For $-d_{s} \leq p_{w}<p_{w 1}, \frac{\partial q_{b}^{b *}\left(p_{w}, \theta\right)}{\partial p_{w}}=0$, for $p_{w 1} \leq p_{w} \leq p_{w 2}, \frac{\partial q_{b}^{b *}\left(p_{w}, \theta\right)}{\partial p_{w}}=\frac{\lambda_{s}^{2}}{2 \beta_{s}}>0$, and for $p_{w 2}<p_{w} \leq r_{b}, \frac{\partial q_{b}^{b *}\left(p_{w}, \theta\right)}{\partial p_{w}}=\frac{-1}{2 \beta_{b}}<0$.

When $p_{w 1}<-d_{s} \leq p_{w 2}<p_{w 3} \leq r_{b}$, for $-d_{s} \leq p_{w} \leq p_{w 2}, \frac{\partial q_{s}^{b *}\left(p_{w}, \theta\right)}{\partial p_{w}}=\frac{\lambda_{s}}{2 \beta_{s}}>0$, for $p_{w 2}<p_{w} \leq p_{w 3}$, $\frac{\partial b_{s}^{b *}\left(p_{w}, \theta\right)}{\partial p_{w}}=-\frac{1}{2 \beta_{b} \lambda_{s}}<0$, for $p_{w 3}<p_{w} \leq r_{b}, \frac{\partial q_{s}^{b *}\left(p_{w}, \theta\right)}{\partial p_{w}}=0$. For $-d_{s} \leq p_{w} \leq p_{w 2}, \frac{\partial q_{b}^{b *}\left(p_{w}, \theta\right)}{\partial p_{w}}=\frac{\lambda_{s}^{2}}{2 \beta_{s}}>0$, for $p_{w 2}<p_{w} \leq r_{b}, \frac{\partial q_{b}^{b *}\left(p_{w}, \theta\right)}{\partial p_{w}}=\frac{-1}{2 \beta_{b}}<0$.

Proof of Theorem 3

When $-d_{s} \leq p_{w 1}<p_{w 2} \leq r_{b}<p_{w 3}, \Delta \Pi_{T}^{b}$ is a continuous function of p_{w}, since values of $\Delta \Pi_{T}^{b}$ at the separated points $p_{w}=p_{w 1}$ and $p_{w}=p_{w 2}$ are equal, respectively. For $-d_{s} \leq p_{w}<p_{w 1}, \frac{\partial \Delta \Pi_{T}^{b}}{\partial p_{w}}=\frac{\lambda_{s}^{2}\left(r_{b}-p_{w}\right)}{2 \beta_{s}}>0$, $\frac{\partial^{2} \Delta \Pi_{T}^{b}}{\partial p_{w}^{2}}=\frac{-\lambda_{s}^{2}}{2 \beta_{s}}<0, \frac{\partial \Delta \Pi_{T}^{b}}{\partial r_{b}}=\frac{\lambda_{s}\left(\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}\right)}{2 \beta_{s}}>0$, and $\frac{\partial \Delta \Pi_{T}^{b}}{\partial d_{s}}=\frac{\lambda_{s}\left(\alpha_{s}-c_{s}-r_{s}-\lambda_{s} d_{s}\right)}{2 \beta_{s}}>0$, so $\Delta \Pi_{T}^{b}$ is an increasingly concave function of p_{w} and an increasing function of r_{b} and d_{s}, respectively. For $p_{w 1} \leq p_{w} \leq p_{w 2}$, $\frac{\partial \Delta \Pi_{T}^{b}}{\partial p_{w}}=\frac{\lambda_{s}^{2}\left(\alpha_{b}-c_{b}-p_{w}-\lambda_{b} d_{b}\right)}{2 \beta_{s}}-\frac{\beta_{b} \lambda_{s}^{3}\left(\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}\right)}{2 \beta_{s}^{2}}>0, \frac{\partial^{2} \Delta \Pi_{T}^{b}}{\partial p_{w}^{2}}=\frac{-\lambda_{s}^{2}\left(\beta_{s}+\beta_{b} \lambda_{s}^{2}\right)}{2 \beta_{s}}<0, \frac{\partial \Delta \Pi_{T}^{b}}{\partial r_{b}}=\frac{\alpha_{b}-c_{b}-r_{b}-\lambda_{b} d_{b}}{2 \beta_{b}}>$ 0 , and $\frac{\partial \Delta \Pi_{T}^{b}}{\partial d_{s}}=\frac{\lambda_{s}\left(\alpha_{s}-c_{s}-r_{s}-\lambda_{s} d_{s}\right)}{2 \beta_{s}}>0$, so $\Delta \Pi_{T}^{b}$ is an increasingly concave function of p_{w} and an increasing function of r_{b} and d_{s}, respectively. For $p_{w 2}<p_{w} \leq r_{b}, \frac{\partial \Delta \Pi_{T}^{b}}{\partial p_{w}}=\frac{\beta_{s}\left(\alpha_{b}-c_{b}-p_{w}-\lambda_{b} d_{b}\right)-\lambda_{s} \beta_{b}\left(\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}\right)}{2 \lambda_{s}^{2} \beta_{b}^{2}}<0$, $\frac{\partial^{2} \Delta \Pi_{T}^{b}}{\partial p_{w}^{2}}=\frac{-\left(\beta_{s}+\beta_{b} \lambda_{s}^{2}\right)}{2 \lambda_{s}^{2} \beta_{b}^{2}}<0, \frac{\partial \Delta \Pi_{T}^{b}}{\partial r_{b}}=\frac{\alpha_{b}-c_{b}-r_{b}-\lambda_{b} d_{b}}{2 \beta_{b}}>0$, and $\frac{\partial \Delta \Pi_{T}^{b}}{\partial d_{s}}=\frac{\lambda_{s}\left(\alpha_{s}-c_{s}-r_{s}-\lambda_{s} d_{s}\right)}{2 \beta_{s}}>0$, so $\Delta \Pi_{T}^{b}$ is a decreasingly concave function of p_{w} and an increasing function of r_{b} and d_{s}, respectively.

When $p_{w 1}<-d_{s} \leq p_{w 2}<p_{w 3} \leq r_{b}, \Delta \Pi_{T}^{b}$ is a continuous function of p_{w} since values of $\Delta \Pi_{T}^{b}$ at the separated points $p_{w}=p_{w 2}$ and at $p_{w}=p_{w 3}$ are equal, respectively. For $-d_{s} \leq p_{w} \leq p_{w 2}$, from above, we can see that $\Delta \Pi_{T}^{b}$ is an increasingly concave function of p_{w}, r_{b} and d_{s}, respectively. For $p_{w 2}<p_{w} \leq p_{w 3}$, form above, we can see that $\Delta \Pi_{T}^{b}$ is a decreasingly concave function of p_{w} and an increasingly concave function of r_{b} and d_{s}, respectively. For $p_{w 3}<p_{w} \leq r_{b}, \frac{\partial \Delta \Pi_{T}^{b}}{\partial p_{w}}=\frac{-\left(p_{w}+d_{s}\right)}{2 \beta_{b}}<0, \frac{\partial^{2} \Delta \Pi_{T}^{b}}{\partial p_{w}^{2}}=\frac{-1}{2 \beta_{b}}<0$, $\frac{\partial \Delta \Pi_{T}^{b}}{\partial r_{b}}=\frac{\alpha_{b}-c_{b}-r_{b}-\lambda_{b} d_{b}}{2 \beta_{b}}>0$, and $\frac{\partial \Delta \Pi_{T}^{b}}{\partial d_{s}}=\frac{\alpha_{b}-c_{b}-p_{w}-\lambda_{b} d_{b}}{2 \beta_{b}}>0$, so $\Delta \Pi_{T}^{b}$ is a decreasingly concave function of p_{w} and an increasing function of r_{b} and d_{s}, respectively.

Proof of theorem 4

When $-d_{s} \leq p_{w 1}<p_{w 2} \leq r_{b}<p_{w 3}$, for $-d_{s} \leq p_{w}<p_{w 1}, \frac{\partial \Delta E_{T}^{b}}{\partial p_{w}}=\frac{-\left[e_{r}+e_{p}(1-\delta)\right] \lambda_{s}^{2}}{2 \beta_{s}}<0$, so ΔE_{T}^{b} decreases with p_{w}, and get the minimum value at $p_{w}=p_{w 1}$. For $p_{w 1} \leq p_{w} \leq p_{w 2}, \frac{\partial \Delta E_{T}^{b}}{\partial p_{w}}=\frac{\delta e_{p} \lambda_{s}^{2}}{2 \beta_{s}}>0$, so ΔE_{T}^{b} increases with p_{w}, and get the minimum value at $p_{w}=p_{w 1}$. For $p_{w 2}<p_{w} \leq r_{b}, \frac{\partial \Delta E_{T}^{b}}{\partial p_{w}}=\frac{-\delta e_{p}}{2 \beta_{b}}<0$, so ΔE_{T}^{b} decreases with p_{w}, and get the minimum value when $p_{w}=r_{b}$.

When $p_{w 1}<-d_{s} \leq p_{w 2}<p_{w 3} \leq r_{b}$, we can see form above that for $-d_{s} \leq p_{w} \leq p_{w 2}, \Delta E_{T}^{b}$ increases with p_{w}, for $p_{w 2}<p_{w} \leq p_{w 3}$,
ΔE_{T}^{b} decreases with p_{w}. For $p_{w 3}<p_{w} \leq r_{b}, \frac{\partial \Delta E_{T}^{b}}{\partial p_{w}}=\frac{e_{d}-\delta e_{p}}{2 \beta_{b}}$, if $e_{d}-\delta e_{p}<0$, then ΔE_{T}^{b} decreases with p_{w}, and get the minimum value when $p_{w}=r_{b}$, otherwise, ΔE_{T}^{b} increases with p_{w}, and get the minimum value when $p_{w}=p_{w 3}$.

Proof of theorem 5

When $-d_{s} \leq p_{w 1}<p_{w 2} \leq r_{b} \leq p_{w 3}$, for $-d_{s} \leq p_{w}<p_{w 1}, \frac{\partial \Delta E_{T}^{b}}{\partial d_{s}}=\frac{e_{d} \lambda_{s}^{2}}{2 \beta_{s}}>0, \frac{\partial \Delta E_{T}^{b}}{\partial r_{b}}=0$, for $p_{w 1} \leq p_{w} \leq p_{w 2}, \frac{\partial \Delta E_{T}^{b}}{\partial d_{s}}=\frac{e_{d} \lambda_{s}^{2}}{2 \beta_{s}}>0, \frac{\partial \Delta E_{T}^{b}}{\partial r_{b}}=\frac{e_{r}+e_{p}}{2 \beta_{b}}>0$, for $p_{w 2}<p_{w} \leq r_{b}, \frac{\partial \Delta E_{T}^{b}}{\partial d_{s}}=\frac{e_{d} \lambda_{s}^{2}}{2 \beta_{s}}>0$, $\frac{\partial \Delta E_{T}^{b}}{\partial r_{b}}=\frac{e_{r}+e_{p}}{2 \beta_{b}}>0$.

When $p_{w 1}<-d_{s} \leq p_{w 2}<p_{w 3} \leq r_{b}$, for $-d_{s} \leq p_{w} \leq p_{w 2}, \frac{\partial \Delta E_{T}^{b}}{\partial d_{s}}=\frac{e_{d} \lambda_{s}^{2}}{2 \beta_{s}}>0, \frac{\partial \Delta E_{T}^{b}}{\partial r_{b}}=\frac{e_{r}+e_{p}}{2 \beta_{b}}>0$, for $p_{w 2}<p_{w} \leq p_{w 3}, \frac{\partial \Delta E_{T}^{b}}{\partial d_{s}}=\frac{e_{d} \lambda_{s}^{2}}{2 \beta_{s}}>0, \frac{\partial \Delta E_{T}^{b}}{\partial r_{b}}=\frac{e_{r}+e_{p}}{2 \beta_{b}}>0$, for $p_{w 3}<p_{w} \leq r_{b}, \frac{\partial \Delta E_{T}^{b}}{\partial d_{s}}=0, \frac{\partial \Delta E_{T}^{b}}{\partial r_{b}}=\frac{e_{r}+e_{p}}{2 \beta_{b}}>0$.

Proof of theorem 6

When $-d_{s} \leq p_{w 1}<p_{w 2} \leq r_{b}<p_{w 3}$, from theorem 3, we see that $\Delta \Pi_{T}^{b}$ is an increasing concave function for $p_{w} \in\left[-d_{s}, p_{w 2}\right]$, and a decreasing concave function for $p_{w} \in\left(p_{w 2}, r_{b}\right]$. Therefore, $\Delta \Pi_{T}^{b}$ achieves the maximum value at $p_{w}=p_{w 2}$, and the minimum value at either $p_{w}=-d_{s}$ or $p_{w}=r_{b}$. Since $\Delta \Pi_{T}^{b}\left(r_{b}\right)=$ $\Delta \Pi_{T}^{b}\left(p_{w 1}\right)>\Delta \Pi_{T}^{b}\left(-d_{s}\right)$, so $\Delta \Pi_{T}^{b}$ obtains the minimum value at $p_{w}=-d_{s}$.

When $p_{w 1}<-d_{s} \leq p_{w 2}<p_{w 3} \leq r_{b}, \Delta \Pi_{T}^{b}$ is an increasing concave function for $p_{w} \in\left[-d_{s}, p_{w 2}\right]$, and a decreasing concave function for $p_{w} \in\left(p_{w 2}, r_{b}\right]$. Therefore, $\Delta \Pi_{T}^{b}$ achieves the maximum value at $p_{w}=p_{w 2}$, and the minimum value at either $p_{w}=-d_{s}$ or $p_{w}=r_{b}$. Since $\Delta \Pi_{T}^{b}\left(-d_{s}\right)=\Delta \Pi_{T}^{b}\left(p_{w 3}\right)>\Delta \Pi_{T}^{b}\left(r_{b}\right)$, so $\Delta \Pi_{T}^{b}$ obtains the minimum value at $p_{w}=r_{b}$.

Proof of Lemma 4

Considering the complexity of the Nash product in our model, we calculate the waste trading price p_{w} and share of the fixed investment $\operatorname{cost} \theta$ by maximizing the logarithm of $G\left(p_{w}, \theta\right)$. Let $\ln G\left(p_{w}, \theta\right)=\ln G_{1}$ when $-d_{s} \leq p_{w}<p_{w 1}, \ln G\left(p_{w}, \theta\right)=\ln G_{2}$ when $p_{w 1} \leq p_{w} \leq p_{w 2}$ or $-d_{s} \leq p_{w} \leq p_{w 2}, \ln G\left(p_{w}, \theta\right)=\ln G_{3}$ when $p_{w 2}<p_{w} \leq r_{b}$ or $p_{w 2}<p_{w} \leq p_{w 3}$, and $\ln G\left(p_{w}, \theta\right)=\ln G_{4}$ when $p_{w 3}<p_{w} \leq r_{b}$.

To ensure that $\Pi_{s}^{b *}\left(p_{w}, \theta\right)-\Pi_{s}^{N}>0$ and $\Pi_{b}^{b *}\left(p_{w}, \theta\right)-\Pi_{b}^{N}>0$, we assume $\left(\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}\right)^{2}-$ $\left(\alpha_{s}-c_{s}-r_{s}-\lambda_{s} d_{s}\right)^{2}+2 \lambda_{s}\left(r_{b-p_{w}}\right)\left(\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}\right)-4 \beta_{s} F>0$. Taking the first-order and second-order partial derivatives of $\ln G_{1}$ with regard to p_{w} and θ, we have

$$
\begin{aligned}
& \frac{\partial \ln G_{1}}{\partial p_{w}}=\frac{2 \xi_{s} \lambda_{s}\left(\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}\right)}{\left(\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}\right)^{2}-\left(\alpha_{s}-c_{s}-r_{s}-\lambda_{s} d_{s}\right)^{2}-4 \beta_{s} \theta F} \\
&+\frac{\xi_{b}\left[\lambda_{s}^{2}\left(r_{b}-p_{w}\right)-\lambda_{s}\left(\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}\right)\right]}{\lambda_{s}\left(r_{b}-p_{w}\right)\left(\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}\right)-2 \beta_{s}(1-\theta) F} \\
& \frac{\partial^{2} \ln G_{1}}{\partial p_{w}^{2}}= \frac{-2 \xi_{s} \lambda_{s}^{2}\left[\left(\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}\right)^{2}+\left(\alpha_{s}-c_{s}-r_{s}-\lambda_{s} d_{s}\right)^{2}+4 \beta_{s} \theta F\right]}{\left[\left(\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}\right)^{2}-\left(\alpha_{s}-c_{s}-r_{s}-\lambda_{s} d_{s}\right)^{2}-4 \beta_{s} \theta F\right]^{2}} \\
&-\frac{2 \xi_{b} \lambda_{s}^{2}}{\lambda_{s}\left(r_{b}-p_{w}\right)\left(\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}\right)-2 \beta_{s}(1-\theta) F} \\
&-\frac{\xi_{b} \lambda_{s}^{2}\left[\lambda_{s}\left(r_{b}-p_{w}\right)-\left(\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}\right)\right]^{2}}{\left[\lambda_{s}\left(r_{b}-p_{w}\right)\left(\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}\right)-2 \beta_{s}(1-\theta) F\right]^{2}} \\
& \frac{\partial \ln G_{1}}{\partial \theta}=\frac{-4 \xi_{s} \beta_{s} F}{\left(\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}\right)^{2}-\left(\alpha_{s}-c_{s}-r_{s}-\lambda_{s} d_{s}\right)^{2}-4 \beta_{s} \theta F} \\
&+\frac{2 \xi_{b} \beta_{s} F}{\lambda_{s}\left(r_{b}-p_{w}\right)\left(\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}\right)-2 \beta_{s}(1-\theta) F},
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial^{2} \ln G_{1}}{\partial \theta^{2}} & =\frac{-16 \xi_{s} \beta_{s}^{2} F^{2}}{\left[\left(\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}\right)^{2}-\left(\alpha_{s}-c_{s}-r_{s}-\lambda_{s} d_{s}\right)^{2}-4 \beta_{s} \theta F\right]^{2}} \\
& -\frac{4 \xi_{b} \beta_{s}^{2} F^{2}}{\left[\lambda_{s}\left(r_{b}-p_{w}\right)\left(\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}\right)-2 \beta_{s}(1-\theta) F\right]^{2}}, \\
\frac{\partial^{2} \ln G_{1}}{\partial \theta \partial p_{w}} & =\frac{8 \xi_{s} \lambda_{s} \beta_{s} F\left(\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}\right)}{\left[\left(\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}\right)^{2}-\left(\alpha_{s}-c_{s}-r_{s}-\lambda_{s} d_{s}\right)^{2}-4 \beta_{s} \theta F\right]^{2}} \\
& -\frac{2 \xi_{b} \lambda_{s} \beta_{s} F\left[\lambda_{s}\left(r_{b}-p_{w}\right)-\left(\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}\right)\right]}{\left[\lambda_{s}\left(r_{b}-p_{w}\right)\left(\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}\right)-2 \beta_{s}(1-\theta) F\right]^{2}}
\end{aligned}
$$

Let $A=\alpha_{s}-c_{s}-r_{s}+\lambda_{s} p_{w}, B=\alpha_{s}-c_{s}-r_{s}-\lambda_{s} d_{s}, C=\alpha_{b}-c_{b}-p_{w}-\lambda_{b} d_{b}, D=\alpha_{b}-c_{b}-r_{b}-\lambda_{b} d_{b}$.
It is obvious $\frac{\partial^{2} \ln G_{1}}{\partial p_{w}^{2}}<0$ and $\frac{\partial^{2} \ln G_{1}}{\partial \theta^{2}}<0$, then $\ln G_{1}$ is a strictly concave function both in p_{w} for a given θ, and in θ for a given p_{w}. Therefore, we can first calculate the optimal θ for a given p_{w} and then substitute θ, which is a function of p_{w}, into $\ln G_{1}$ to search the optimal p_{w}. Solving $\frac{\partial \ln G_{1}}{\partial \theta}=0$, we can get $\theta_{1}\left(p_{w}\right)=\frac{\xi_{b}\left(A^{2}-B^{2}\right)-2 \xi_{s}\left[\lambda_{s}\left(r_{b}-p_{w}\right) A-2 \beta_{s} F\right]}{4 \beta_{s} F\left(\xi_{s}+\xi_{b}\right)}$.

Substituting $\theta_{1}\left(p_{w}\right)$ into $\frac{d \ln G_{1}}{d p_{w}}$, we can get $\frac{d \ln G_{1}}{d p_{w}}=\frac{2 \lambda_{s}^{2}\left(\xi_{s}+\xi_{b}\right)\left(r_{b}-p_{w}\right)}{A^{2}-B^{2}+2\left[\lambda_{s}\left(r_{b}-p_{w}\right) A-2 \beta_{s} F\right]}$, then $\frac{d \ln G_{1}}{d p_{w}}>0$ is always true according to the assumption. Therefore, $\ln G_{1}$, constrained by $-d_{s} \leq p_{w}<p_{w 1}$, is an increasing function in p_{w}, and reaches the maximum value at $p_{w}^{*}=p_{w 1}$, correspondingly, the optimal share of cost is $\theta^{*}=\theta_{1}\left(p_{w 1}\right)$.

Taking the first-order and second-order partial derivatives of $\ln G_{2}$ with regard to p_{w} and θ, we can see that $\ln G_{2}$ is a strictly concave function both in p_{w} for a given θ, and in θ for a given p_{w}, because $\frac{\partial^{2} \ln G_{2}}{\partial p_{w}^{2}}<0$ and $\frac{\partial^{2} \ln G_{2}}{\partial \theta^{2}}<0$. Therefore, just like above, we can first calculate the optimal θ for a given p_{w} and then substitute θ, which is a function of p_{w}, into $\ln G_{2}$ to search the optimal p_{w}. Solving $\frac{\partial \ln G_{2}}{\partial \theta}=0$, we can get $\theta_{2}\left(p_{w}\right)=\frac{\xi_{b} \beta_{s} \beta_{b}\left(A^{2}-B^{2}\right)-\xi_{s}\left[2 \lambda_{s} \beta_{s} \beta_{b} A C-\lambda_{s}^{2} \beta_{b}^{2} A^{2}-\beta_{s}^{2} D^{2}-4 \beta_{b} \beta_{s}^{2} F\right]}{4 \beta_{b} \beta_{s}^{2} F\left(\xi_{s}+\xi_{b}\right)}$.

Substituting $\theta_{2}\left(p_{w}\right)$ into $\frac{d \ln G_{2}}{d p_{w}}$, we can get $\frac{d \ln G_{2}}{d p_{w}}=\frac{2 \beta_{b}\left(\xi_{s}+\xi_{b}\right) \lambda_{s}^{2}\left(\beta_{s} C-\lambda_{s} \beta_{b} A\right)}{\beta_{s} \beta_{b}\left(A^{2}-B^{2}\right)+2 \lambda_{s} \beta_{s} \beta_{b} A C-\lambda_{s}^{2} \beta_{b}^{2} A^{2}-\beta_{s}^{2} D^{2}-4 \beta_{b} \beta_{s}^{2} F}$, then $\frac{d \ln G_{2}}{d p_{w}}>0$ is constantly true, since $\Pi_{s}^{b *}\left(p_{w}, \theta\right)>\Pi_{s}^{N *}$ and $\Pi_{b}^{b *}\left(p_{w}, \theta\right)>\Pi_{b}^{N *}$ hold, and $\beta_{s} C>\lambda_{s} \beta_{b} A$ when $p_{w 1} \leq p_{w} \leq p_{w 2}$. Therefore, $\ln G_{2}$ increases with p_{w}, and reaches the maximum value at $p_{w}^{*}=p_{w 2}$, at which $\theta^{*}=\theta_{2}\left(p_{w 2}\right)$.

Taking the first-order and second-order partial derivatives of $\ln G_{3}$ with regard to p_{w} and θ, we can see that $\ln G_{3}$ is a strictly concave function both in p_{w} for a given θ, and in θ for a given p_{w}, since $\frac{\partial^{2} \ln G_{3}}{\partial p_{w}^{2}}<0$ and $\frac{\partial^{2} \ln G_{3}}{\partial \theta^{2}}<0$. Therefore, we can first calculate the optimal θ for a given p_{w} and then substitute θ, which is a function of p_{w}, into $\ln G_{3}$ to search the optimal p_{w}. Solving $\frac{\partial \ln G_{3}}{\partial \theta}=0$, we can get $\theta_{3}\left(p_{w}\right)=$ $\frac{\xi_{b}\left(2 \lambda_{s} \beta_{s} \beta_{b} A C-\beta_{s}^{2} C^{2}-\lambda_{s}^{2} \beta_{b}^{2} D^{2}\right)-\xi_{s} \beta_{s} \beta_{b} \lambda_{s}^{2}\left(C^{2}-D^{2}-4 \beta_{b} F\right)}{4 \beta_{s} \beta_{b}^{2} \lambda_{s}^{2}\left(\xi_{s}+\xi_{b}\right) F}$.

Substituting $\theta_{3}\left(p_{w}\right)$ into $\frac{d \ln G_{3}}{d p_{w}}$, we can get $\frac{d \ln G_{3}}{d p_{w}}=\frac{2 \beta_{s}\left(\xi_{s}+\xi_{b}\right)\left(\beta_{s} C-\lambda_{s} \beta_{b} A\right)}{2 \lambda_{s} \beta_{s} \beta_{b} A C-\beta_{s}^{2} C^{2}-\lambda_{s}^{2} \beta_{b}^{2} B^{2}+\beta_{s} \beta_{b} \lambda_{s}^{2}\left(C^{2}-D^{2}-4 \beta_{b} F\right)}$, then $\frac{d \ln G_{3}}{d p_{w}}<0$ is constantly true, as $\Pi_{s}^{b *}\left(p_{w}, \theta\right)>\Pi_{s}^{N *}$ and $\Pi_{b}^{b *}\left(p_{w}, \theta\right)>\Pi_{b}^{N *}$ hold, and $\beta_{s} C<\lambda_{s} \beta_{b} A$ when $p_{w 2}<p_{w} \leq r_{b}$. Therefore, $\ln G_{3}$ decreases with p_{w}, and reaches the maximum value at $p_{w}^{*}=p_{w 2}$, correspondingly, the optimal share of cost is $\theta^{*}=\theta_{3}\left(p_{w 2}\right)$.

Taking the first-order and second-order partial derivatives of $\ln G_{4}$ with regard to p_{w} and θ, we can see that $\ln G_{4}$ is a strictly concave function both in p_{w} for a given θ, and in θ for a given p_{w}, since $\frac{\partial^{2} \ln G_{4}}{\partial p_{w}^{2}}<0$ and $\frac{\partial^{2} \ln G_{4}}{\partial \theta^{2}}<0$. Therefore, we can first calculate the optimal θ for a given p_{w} and then substitute θ, which is a function of p_{w}, into $\ln G_{4}$ to search the optimal p_{w}. Solving $\frac{\partial \ln G_{4}}{\partial \theta}=0$, we can get $\theta_{4}\left(p_{w}\right)=$ $\frac{2 \xi_{b}\left(p_{w}+d_{s}\right) C-\xi_{s}\left(C^{2}-D^{2}-4 \beta_{b} F\right)}{4 \beta_{b}\left(\xi_{s}+\xi_{b}\right) F}$.

Substituting $\theta_{4}\left(p_{w}\right)$ into $\frac{d \ln G_{4}}{d p_{w}}$, we can get $\frac{d \ln G_{4}}{d p_{w}}=\frac{-2\left(\xi_{b}+\beta_{s} \xi_{s}\right)\left(p_{w}+d_{s}\right)}{2\left(p_{w}+d_{s}\right) C+C^{2}-D^{2}-4 \beta_{b} F}$, then $\frac{d \ln G_{4}}{d p_{w}}<0$ is constantly true according to the assumption. Therefore, $\ln G_{4}$, constrained by $p_{w 3}<p_{w} \leq r_{b}$, is a decreasing function of p_{w}, and reaches the maximum value at $p_{w}^{*}=p_{w 3}$, at which $\theta^{*}=\theta_{4}\left(p_{w 3}\right)$.

Proof of theorem 7

As p_{w} is independent of ξ_{s} and ξ_{b}, we investigate the effects of ξ_{s} and ξ_{b} on θ by using $\theta\left(p_{w}\right)$. When $-d_{s} \leq p_{w 1}<p_{w 2} \leq r_{b}<p_{w 3}$, for $-d_{s} \leq p_{w}<p_{w 1}, \frac{\partial \theta_{1}\left(p_{w}\right)}{\partial \xi_{s}}=\frac{-\xi_{b}\left[A^{2}-B^{2}+2 \lambda_{s}\left(r_{b}-p_{w}\right) A-4 \beta_{s} F\right]}{4 \beta_{s} F\left(\xi_{s}+\xi_{b}\right)^{2}}<0$ and $\frac{\partial \theta_{1}\left(p_{w}\right)}{\partial \xi_{b}}=\frac{\xi_{s}\left[A^{2}-B^{2}+2 \lambda_{s}\left(r_{\left.b-p_{w}\right)}\right) A-4 \beta_{s} F\right]}{4 \beta_{s} F\left(\xi_{s}+\xi_{b}\right)^{2}}>0$ according to $\Pi_{s}^{b *}\left(p_{w}, \theta\right)>\Pi_{s}^{N}$ and $\Pi_{b}^{b *}\left(p_{w}, \theta\right)>\Pi_{b}^{N}$. For $p_{w 1} \leq$ $p_{w} \leq p_{w 2}, \frac{\partial \theta_{2}\left(p_{w}\right)}{\partial \xi_{s}}=\frac{-\xi_{b}\left[\beta_{s} \beta_{b}\left(A^{2}-B^{2}\right)+2 \beta_{s} \beta_{b} \lambda_{s} A C-\beta_{\lambda_{d}^{2}}^{2} A^{2}-\beta_{s}^{2} D^{2}-4 \beta_{s}^{2} \beta_{b} F\right]}{4 \beta_{s}^{2} \beta_{b} F\left(\xi_{s}+\xi_{b}\right)^{2}}<0$ and $\frac{\partial \theta_{2}\left(p_{w}\right)}{\partial \xi_{b}}=-\frac{\xi_{s}}{\xi_{b}} * \frac{\partial \theta_{2}\left(p_{w}\right)}{\partial \xi_{s}}>0$ according to $\Pi_{s}^{b *}\left(p_{w}, \theta\right)>\Pi_{s}^{N}$ and $\Pi_{b}^{b *}\left(p_{w}, \theta\right)>\Pi_{b}^{N}$. For $p_{w 2}<p_{w} \leq r_{b}, \frac{\partial \theta_{3}\left(p_{w}\right)}{\partial \xi_{b}}=-\frac{\xi_{s}}{\xi_{b}} * \frac{\partial \theta_{3}\left(p_{w}\right)}{\partial \xi_{s}}>0$ and $\frac{\partial \theta_{3}\left(p_{w}\right)}{\partial \xi_{s}}=\frac{-\xi_{b}\left[\beta_{s} \beta_{b} \lambda_{s}^{2}\left(C^{2}-D^{2}-4 \beta_{b} F\right)+2 \beta_{s} \beta_{b} \lambda_{s} A C-\beta_{s}^{2} C^{2}-\beta_{b}^{2} \lambda_{s}^{2} D^{2}\right]}{4 \beta_{s} \beta_{b}^{2} \lambda_{s}^{2} F\left(\xi_{s}+\xi_{b}\right)^{2}}<0$ according to $\Pi_{s}^{b *}\left(p_{w}, \theta\right)>\Pi_{s}^{N}$ and $\Pi_{b}^{b *}\left(p_{w}, \theta\right)>\Pi_{b}^{N}$.

When $p_{w 1}<-d_{s} \leq p_{w 2}<p_{w 3} \leq r_{b}$, for $-d_{s} \leq p_{w} \leq p_{w 2}$ and $p_{w 2}<p_{w} \leq p_{w 3}, \theta_{2}\left(p_{w}\right)$ and $\theta_{3}\left(p_{w}\right)$ change with ξ_{s} and ξ_{b} in the same direction as in the case $-d_{s} \leq p_{w 1}<p_{w 2} \leq r_{b}<p_{w 3}$. For $p_{w 3}<p_{w} \leq r_{b}$, $\frac{\partial \theta_{4}\left(p_{w}\right)}{\partial \xi_{s}}=\frac{-\xi_{b}\left[C^{2}-D^{2}-4 \beta_{b} F+2\left(p_{w}+d_{s}\right)\right]}{4 \beta_{b} F\left(\xi_{s}+\xi_{b}\right)^{2}}<0$ and $\frac{\partial \theta_{4}\left(p_{w}\right)}{\partial \xi_{b}}=-\frac{\xi_{s}}{\xi_{b}} * \frac{\partial \theta_{4}\left(p_{w}\right)}{\partial \xi_{s}}>0$ according to $\Pi_{s}^{b *}\left(p_{w}, \theta\right)>\Pi_{s}^{N}$ and $\Pi_{b}^{b *}\left(p_{w}, \theta\right)>\Pi_{b}^{N}$. Since the optimal profits of the generator and user decrease and increase with θ, respectively, it is easy to get the effect of ξ_{s} and ξ_{b} on $\Pi_{s}^{b *}$ and $\Pi_{b}^{b *}$.

Proof of theorem 8

When $-d_{s} \leq p_{w 1}<p_{w 2} \leq r_{b}<p_{w 3}$, from theorem 3, 4, we see that $E_{T}^{b *}\left(p_{w}, \theta\right)$ decreases and $\Pi_{T}^{b *}\left(p_{w}, \theta\right)$ increases with p_{w} for $-d_{s} \leq p_{w}<p_{w 1}$, thus the optimal economic and environmental performance are simultaneously achieved at $p_{w}=p_{w 1}$, and the two goals align. For $p_{w 1} \leq p_{w} \leq r_{b}, E_{T}^{b *}\left(p_{w}, \theta\right)$ and $\Pi_{T}^{b *}\left(p_{w}, \theta\right)$ both first increase then decrease with p_{w}, hence, the optimal economic performance and worst environmental performance are both achieved at $p_{w}=p_{w 2}$, and there exist conflicts between the two goals.

When $p_{w 1}<-d_{s} \leq p_{w 2}<p_{w 3} \leq r_{b}$, from theorem 3,4 , we see that for $p_{w 1} \leq p_{w} \leq p_{w 3}$, both $E_{T}^{b *}\left(p_{w}, \theta\right)$ and $\Pi_{T}^{b *}\left(p_{w}, \theta\right)$ first increase then decrease with p_{w}, thus the optimal economic and environmental goals can not be achieved simultaneously. For $p_{w 3}<p_{w} \leq r_{b}, \Pi_{T}^{b *}\left(p_{w}, \theta\right)$ decreases with p_{w} while $E_{T}^{b *}\left(p_{w}, \theta\right)$ increases with p_{w} when $e_{d}>\delta e_{p}$, then the optimal economic and environmental performance align if $e_{d}>\delta e_{p}$, otherwise, the two goals conflict.

Proof of theorem 9

When $-d_{s} \leq p_{w 1}<p_{w 2} \leq r_{b}<p_{w 3}$, for $-d_{s} \leq p_{w}<p_{w 1}$, the optimal waste trading price is $p_{w}=p_{w 1}$, $E_{T}^{b *}\left(p_{w 1}\right)-E_{T}^{N *}=\frac{(\delta-1) e_{p}\left(\alpha_{b}-c_{b}-r_{b}-\lambda_{b} d_{b}\right)}{2 \beta_{b}}-\frac{\lambda_{s} e_{d}\left(\alpha_{s}-c_{s}-r_{s}-\lambda_{s} d_{s}\right)}{2 \beta_{s}}-\frac{e_{r}\left(\alpha_{b}-c_{b}-r_{b}-\lambda_{b} d_{b}\right)}{2 \beta_{b}}<0$, as $0<\delta<1$, therefore, the interfirm waste utilization is more environmentally preferable than the benchmark case. For $p_{w 1} \leq p_{w} \leq p_{w 2}$ and $p_{w 2}<p_{w} \leq r_{b}$, the optimal waste trading price is $p_{w}=p_{w 2}, E_{T}^{b *}\left(p_{w 2}\right)-E_{T}^{N *}=$ $\frac{e_{p}\left[\delta \lambda_{s}\left[\alpha_{s}-c_{s}-r_{s}+\lambda_{s}\left(\alpha_{b}-c_{b}-\lambda_{b} d_{b}\right)\right]-\beta_{s}\left(\beta_{s}+\beta_{b} \lambda_{s}^{2}\right)\left(\alpha_{b}-c_{b}-r_{b}-\lambda_{b} d_{b}\right)\right]}{2 \beta_{s} \beta_{b}\left(\beta_{s}+\beta_{b} \lambda_{s}^{2}\right)}-\frac{e_{r}\left(\alpha_{b}-c_{b}-r_{b}-\lambda_{b} d_{b}\right)}{2 \beta_{b}}-\frac{\lambda_{s} e_{d}\left(\alpha_{s}-c_{s}-r_{s}-\lambda_{s} d_{s}\right)}{2 \beta_{s}}$, if $\delta<$ $\frac{\beta_{s}\left(\beta_{s}+\beta_{b} \lambda_{s}^{2}\right)\left(\alpha_{b}-c_{b}-r_{b}-\lambda_{b} d_{b}\right)}{\lambda_{s}\left[\alpha_{s}-c_{s}-r_{s}+\lambda_{s}\left(\alpha_{b}-c_{b}-\lambda_{b} d_{b}\right)\right]}$, then $E_{T}^{b *}\left(p_{w 2}\right)<E_{T}^{N *}$, otherwise, the interfirm waste utilization is environmentally superior to the benchmark case if $e_{p}<\frac{\left(\beta_{s}+\beta_{b} \lambda_{s}^{2}\right)\left[\beta_{b} \lambda_{s} e_{d}\left(\alpha_{s}-c_{s}-r_{s}-\lambda_{s} d_{s}\right)+\beta_{s} e_{r}\left(\alpha_{b}-c_{b}-r_{b}-\lambda_{b} d_{b}\right)\right]}{\delta \lambda_{s}\left[\alpha_{s}-c_{s}-r_{s}+\lambda_{s}\left(\alpha_{b}-c_{b}-\lambda_{b} d_{b}\right)\right]-\beta_{s}\left(\beta_{s}+\beta_{b} \lambda_{s}^{2}\right)\left(\alpha_{b}-c_{b}-r_{b}-\lambda_{b} d_{b}\right)}=$ $\widetilde{\Omega}\left(e_{d}, e_{r}\right)$.

When $p_{w 1}<-d_{s} \leq p_{w 2}<p_{w 3} \leq r_{b}$, from above we can see that for $p_{w 1} \leq p_{w} \leq p_{w 2}$ and $p_{w 2}<$ $p_{w} \leq p_{w 3}$, the interfirm waste utilization is more environmentally preferable than the benchmark case if $\delta<$ $\frac{\beta_{s}\left(\beta_{s}+\beta_{b} \lambda_{s}^{2}\right)\left(\alpha_{b}-c_{b}-r_{b}-\lambda_{b} d_{b}\right)}{\lambda_{s}\left[\alpha_{s}-c_{s}-r_{s}+\lambda_{s}\left(\alpha_{b}-c_{b}-\lambda_{b} d_{b}\right)\right]}$, otherwise, it is environmentally superior if $e_{p}<\widetilde{\Omega}\left(e_{d}, e_{r}\right)$. For $p_{w 3}<p_{w} \leq r_{b}$, the optimal waste trading price is $p_{w}=p_{w 3}, E_{T}^{b *}\left(p_{w 3}\right)-E_{T}^{N *}=\frac{e_{p}\left[\delta \beta_{b} \lambda_{s}\left(\alpha_{s}-c_{s}-r_{s}-\lambda_{s} d_{s}\right)-\beta_{s}\left(\alpha_{b}-c_{b}-r_{b}-\lambda_{b} d_{b}\right)\right]}{2 \beta_{s} \beta_{b}}-$ $\frac{\lambda_{s} e_{d}\left(\alpha_{s}-c_{s}-r_{s}-\lambda_{s} d_{s}\right)}{2 \beta_{s}}-\frac{e_{r}\left(\alpha_{b}-c_{b}-r_{b}-\lambda_{b} d_{b}\right)}{2 \beta_{b}}$, if $\delta<\frac{\beta_{s}\left(\alpha_{b}-c_{b}-r_{b}-\lambda_{b} d_{b}\right)}{\beta_{b} \lambda_{s}\left(\alpha_{s}-c_{s}-r_{s}-\lambda_{s} d_{s}\right)}$, then $E_{T}^{b *}\left(p_{w 3}\right)<E_{T}^{N *}$, otherwise, it is environmentally superior to the benchmark case if $e_{p}<\frac{\beta_{b} \lambda_{s} e_{d}\left(\alpha_{s}-c_{s}-r_{s}-\lambda_{s} d_{s}\right)+\beta_{s} e_{r}\left(\alpha_{b}-c_{b}-r_{b}-\lambda_{b} d_{b}\right)}{\delta \beta_{b} \lambda_{s}\left(\alpha_{s}-c_{s}-r_{s}-\lambda_{s} d_{s}\right)-\beta_{s}\left(\alpha_{b}-c_{b}-r_{b}-\lambda_{b} d_{b}\right)}=\widehat{\Omega}\left(e_{d}, e_{r}\right)$.

