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Revised Triple Sampling X  Control Charts for the Mean with Known and Estimated 

Process Parameters 

 

Abstract  

The primary aim of this research is to propose a revised triple sampling (TS) 𝑋̅ chart, where the 

derivations of new formulae for computing the average run length of the triple sampling (TS) 𝑋̅ chart correctly are provided. The secondary aim is to develop the revised TS 𝑋̅ chart with 

estimated process parameters. The revised TS 𝑋̅ charts are compared with the double sampling 

(DS) 𝑋̅, two stage adaptive sample size (AS2) 𝑋̅ and three stage adaptive sample size (AS3 ) 𝑋̅ 

charts when process parameters are known and estimated using the average run length (ARL), 

average number of observations to signal (ANOS), average of the average run lengths (AARL), 

standard deviation of the average run lengths (SDARL), average of the average number of 

observations to signal (AANOS) and standard deviation of the average number of observations 

to signal (SDANOS) criteria, where the revised TS 𝑋̅ charts are found to be superior. 

Additionally, a table giving the minimum number of Phase-I samples for estimating the process 

mean so that the revised TS 𝑋̅ chart with estimated process parameters has the desired in-control 

AARL and AANOS performances is provided. 

Keywords  

control charts; triple sampling; double sampling; known process parameters; estimated process 

parameters  

 

1. Introduction 

 

 



An efficient operation of manufacturing processes is considered as one of the key elements that 

ensure product quality and process efficiency. The real challenge faced by a manufacturing 

company is to comprehensively consider the major factors that influence the production 

process, as well as to improve the process quality during the manufacturing process. To avoid 

unintended deviations from production design and operations, the process fault identification 

and diagnosis has always been a top priority by management. A quick detection and recognition 

of such irregularities in a manufacturing process will provide operators with the information 

they need to make the best decision about the state of a process, thereby achieving the goals of 

attaining improved product quality, increased product output and lowering manufacturing costs. 

The study in this article is connected to the aforementioned real-life problem by presenting the 

revised TS 𝑋̅ chart, as a control chart is the most effective tool in Statistical Process Control 

employed in manufacturing companies to detect process irregularities as early as possible so 

that the necessary corrective actions can be taken immediately, in order to avoid a large number 

of defective products from being manufactured.  

Over the years, numerous enhancements and extensions have been made on different types 

of control charts, for example, see De la Torre Gutiérrez and Pham (2018); Qu et al. (2018a); 

Qu et al. (2018b); Abbasi and Haq (2019); Stankus and Castillo-Villar (2019); Li, Wang, and 

Zhu (2019); Krupskii et al. (2020); Haridy et al. (2020); Wang and Tsung (2020); Celano and 

Chakraborti (2020); and Hou and Yu (2021); to name some of the recent ones.  

A production process can be monitored by adopting an appropriate control chart for a quick 

detection of process shifts from the nominal operating condition. Different types of control 

charts have been investigated in the literature, among them are the adaptive control charts, such 

as the variable sampling interval (VSI) (Reynolds et al., 1988; Guo and Wang, 2016), variable 

sample size (Prabhu, Runger and Keats, 1993; Costa, 1994; Zimmer, Montgomery and Runger, 

1998; Aparisi et al., 2014) and variable parameters (Costa, 1999) charts.  



A type of adaptive charts that has received a great deal of attention among researchers are 

the DS charts. The DS control charting technique based on the sample mean 𝑋̅ was pioneered 

by Croasdale (1974), where a decision about the status of a process (in-control or out-of-

control) depends on the information from the second sample only. Daudin (1992) modified 

Croasdale’s DS 𝑋̅ control charting procedure, where the new DS 𝑋̅ chart uses the information 

from either the first sample or combined samples in deciding about the status of the process. 

Irianto and Shinozaki (1998) presented an optimal design procedure for the DS 𝑋̅ chart, where 

the power of the chart in detecting shifts is maximized, instead of minimizing the average 

sample size for small shifts as advised by Daudin (1992). The more recent studies on charts 

using the DS technique were made Costa (2017); Haq and Khoo (2018); and Huang, Yang, and 

Xie (2020).  

In the literature, the DS control charting procedure is combined with another control chart 

at hand in the development of a more advanced chart. Carot, Jabaloyes and Carot (2002) 

investigated the combined DS and VSI 𝑋̅ charts. Khoo et al. (2010) combined the DS and 

synthetic control charting procedures and introduced the synthetic DS 𝑋̅ chart for monitoring 

the process mean. Khoo et al. (2015) merged the DS and side sensitive group runs (SSGR) 

charting techniques to propose the SSGRDS 𝑋̅ chart and showed that this new chart performs 

better than the SSGR 𝑋̅ chart. Subsequently, Saha et al. (2018) incorporated the side sensitive 

modified group runs (SSMGR) approach into the DS chart in developing the SSMGRDS 𝑋̅ 

chart.  

With the aim of increasing the sensitivity of the DS 𝑋̅ chart in detecting mean shifts, He, 

Grigoryan, and Sigh (2002) proposed the triple sampling (TS) 𝑋̅ chart, where the latter uses 

either the first, combined first and second, or combined first, second and third samples in 

deciding about the status of a process. They showed that the TS 𝑋̅ chart is more efficient than 

the DS 𝑋̅ chart in minimizing the average sample size (ASS) when the process is in-control. 



Hsu (2004) claimed that the conclusion made by He, Grigoryan and Sigh (2002) is controversial 

as the out-of-control ASS is not taken into account in comparing the efficiency of the TS 𝑋̅ and 

DS 𝑋̅ charts.  

Control charts are usually designed by assuming that the process parameters are known. 

However, in practice, in most process monitoring situations, the process parameters are usually 

unknown and need to be estimated from an in-control Phase-I dataset or historical data. When 

the unknown parameters are replaced by their estimates, the performance of the control chart is 

significantly different from its known process parameters counterpart. Researches on the effects 

of parameter estimation on the efficiency of various types of control charts are actively being 

conducted in recent years. Recent researches on the estimation of process parameters on control 

charts include Faraz, Woodall, and Heuchenne (2015); Hu et al. (2018); Aparisi, Mosquera, and 

Epprecht (2018); Faraz, Heuchenne, and Saniga (2018); Saha et al. (2019); and Hu and 

Castagliola (2019); to name some. Accurate estimations of process parameters in Phase-I is 

crucial for the computation of reliable control limits in monitoring a Phase-II process, which 

explains why so much attention is given to researches on the various charts with estimated 

process parameters.  

Most of the earlier researches on DS charts in the literature assume that process parameters 

are known. The DS 𝑋̅ chart with estimated process parameters was introduced by  Khoo et al. 

(2013), where three different optimal designs were presented. You et al. (2015) proposed the 

synthetic DS 𝑋̅ chart with estimated process parameters by suggesting an adequate number of 

Phase-I samples to estimate the process parameters in order to have approximately the same in-

control performance as the corresponding chart’s known process parameters counterpart. 

Meanwhile, the design of the DS S2 chart with estimated process variance and its statistical 

properties for evaluating the efficiency of the chart in monitoring the variance were given by 



Castagliola, Oprime, and Khoo (2017). More recent studies on the DS charts with estimated 

process parameters were made by Lee and Khoo (2019); and Motsepa et al. (2020).  

In relation to the TS 𝑋̅ chart, Hsu (2004) encountered problems in computing the chart’s 

Type-II error rate using the mathematical model in He, Grigoryan and Sigh (2002) as no output 

was generated by the Mathematica program that he employed. To date, the error in the 

mathematical model of the TS 𝑋̅ chart in He, Grigoryan and Sigh (2002) has not been pointed 

out by researchers in the literature. Furthermore, even though the impact of parameter 

estimation on control charts has been extensively developed in the literature, the TS 𝑋̅ chart 

with estimated process parameters still does not exist in the literature. In view of these setbacks, 

two major research perspectives have been advocated in this paper. Firstly, the oversight in the 

mathematical model of He, Grigoryan and Sigh (2002) will be pointed out, where corrections 

to rectify this oversight will be provided in the form of the proposed revised TS 𝑋̅ chart. 

Numerical analysis will be conducted to illustrate the problem in the mathematical model of 

He, Grigoryan and Sigh (2002). Secondly, the revised TS 𝑋̅ chart with estimated process 

parameters will be developed. The recommended minimum number of Phase-I samples 

required in the estimation of process parameters so that the revised TS 𝑋̅ chart with estimated 

process parameters has an in-control AANOS (or AARL) performance that is close to that of 

the chart’s known process parameters counterpart will be given. 

The contribution of this study involves providing optimal parameters of the revised TS 𝑋̅ 

chart with known process parameters in minimizing the out-of-control ARL (ARL(𝛿)) and 

ANOS (ANOS(𝛿)) values, and that of the revised TS 𝑋̅ chart with estimated process parameters 

in minimizing the out-of-control AARL (AARL(𝛿)) and AANOS (AANOS(𝛿)) values, for 

various sizes of process mean shifts, δ (> 0). The ARL and ANOS criteria are used in evaluating 

the performance of the revised TS 𝑋̅ chart with known process parameters, while the AARL, 

SDARL, AANOS and SDANOS criteria are employed in evaluating the estimated process 



parameters based revised TS 𝑋̅ chart. An illustrative example using a real dataset on flow width 

measurements from the production system is given to explain the design and implementation 

procedure of the new revised TS 𝑋̅ chart with estimated process parameters. The inclusion of 

process parameter estimation in the design and implementation of the estimated process 

parameters based revised TS 𝑋̅ chart and evaluation of the chart’s performances using the 

AARL, SDARL, AANOS and SDANOS criteria constitute the innovative contribution of this 

study. Prior to this study, the design of the TS 𝑋̅ chart in the literature is only confined to 

situations with known process parameters. 

The remainder of this manuscript is organized as follows: Section 2 discusses the TS 𝑋̅ chart 

of He, Grigoryan, and Sigh (2002). Section 3 entails the new mathematical model with the 

correct formulae for the design of the revised TS 𝑋̅ chart, where the erroneous formulae in He, 

Grigoryan, and Sigh (2002) are pointed out. The statistical properties and correct formulae in 

computing the performance measures of the known and estimated process parameters based 

revised TS 𝑋̅ charts are elaborated in this section. In Section 4, the optimal designs of the revised 

TS 𝑋̅ chart with known and estimated process parameters are presented. Section 5 provides 

numerical results for the performance comparisons of the following charts when process 

parameters are known: (i) revised TS 𝑋̅, (ii) DS 𝑋̅, (iii) two stage adaptive sample size (AS2 𝑋̅) 

and (iv) three stage adaptive sample size (AS3 𝑋̅) charts. Additionally, when process parameters 

are estimated, the revised TS 𝑋̅ chart is compared with the DS 𝑋̅ chart. In addition, the required 

minimum number of Phase-I samples to estimate the process parameters so that the AANOS(0) 

and AARL(0) performances of the estimated process parameters based revised TS 𝑋̅ chart is 

close to the ANOS(0) and ARL(0) performances of the revised TS 𝑋̅ chart with known process 

parameters, respectively, are given. Section 6 illustrates the implementation of the revised TS 𝑋̅ chart with estimated process parameters using data from a hard bake process. Finally, 

concluding remarks are drawn and future researches are suggested in Section 7. 



  

2. The revised TS 𝑿̅ chart 

Assume that the quality characteristic, X follows a normal distribution, where the in-control 

population mean and standard deviation are denoted as 0  and 0 , respectively. The process 

being monitored will become out-of-control when the process mean shifts from 0  to 

0 0 − , where it is assumed that the process standard deviation remains unchanged and  is 

the size of the standardized process mean shift. It is shown in Figure 1 that the revised TS 𝑋̅ 

chart has three levels of inspections. The warning and control limits in level 1 are 11L  and 

12L , respectively, while that for level 2 are 21L  and 22L , respectively, and the control 

limits in level 3 are 3.L  Note that 12 11L L  and 22 21L L . All the limits in the revised TS 𝑋̅ 

chart are referred to as standardized limits. The sample sizes for the first, second and third 

samples are denoted as 1n , 2n  and 3n , respectively. Let ,li j
X  denote the jth observation of 

inspection level l at sampling stage i, where j = 1, 2, …, ln  and l = 1, 2 or 3. By referring to 

Figure 1, the revised TS 𝑋̅ chart is implemented as follows: 

Insert Figure 1 here 

Step 1. Determine the limits 11L , 12L , 21L , 22L  and 3L . 

Step 2. At sampling stage i, take an initial sample of size 1n  (inspection level 1) and compute 

the sample mean 
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in-control and the control flow returns to Step 2. 

Step 4. If 1 13iW I = ( )12, L− − ( )12,L + , the process is out-of-control and the control flow  

proceeds to Step 11. 



Step 5. If 1 12iW I =  ) ( 12 11 11 12, , ,L L L L− −   take a second sample of size 2n  (inspection level 

2) and compute the mean of the second sample 
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Step 6. If  2 21 21 21,iW I L L = − , the process is in-control and the control flow returns to Step 2. 

Step 7. If ( ) ( )2 23 22 22, ,iW I L L = − −  + , the process is out-of-control and the control flow 

proceeds to Step 11. 

Step 8. If  ) ( 2 22 22 21 21 22, , ,iW I L L L L = − −   take a third sample of size 3n  (inspection level 

3). Compute the mean of the third sample 
3
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Step 9. If   3 3 3 3,iW I L L = − , the process is in-control and the control flow returns to Step 2.  

Step 10. If 3 3iW I , the process is out-of-control and the control flow proceeds to Step 11. 

Step 11. An out-of-control is signaled at sampling stage i and corrective actions are needed to 

investigate and remove the assignable cause(s). Then return to Step 2. 

Table 1 gives a summary of the statistics used in the 11 steps procedure and their distributions.  

Insert Table 1 here 

 

3. Properties of the revised TS X  chart with known and estimated process parameters  



This section consists of two subsections. The statistical properties of the revised TS 𝑋̅ chart 

with known process parameters (called the revised TS𝐾  𝑋̅ chart, hereafter) are explained in 

Section 3.1, while the revised TS 𝑋̅ chart with estimated process parameters (called the revised TS𝐸 𝑋̅ chart, hereafter) are discussed in Section 3.2. 

 

3.1. Properties of the revised 𝑻𝑺𝑲 𝑿̅ chart   

Let aP  represent the probability of declaring the process as in-control and alP  is the probability 

of declaring the process as in-control at inspection level l, for l = 1, 2 and 3. Thus,  

aP =
1aP  + 2aP + 3aP .  (1) 

The formulae for computing alP , for l = 1, 2 and 3 are explained in the discussion that follows. 

As pointed out by Daudin (1992), the probability that the process is declared as in-control at 

inspection level 1 is 

1aP  = ( )1 11Pr iW I  = ( ) ( )11 1 11 1L n L n  + − − + , (2)  

while the probability that the process is declared as in-control at inspection level 2 is 

2aP = ( )
1

1 12
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normal probability density function (pdf) and distribution function, respectively.  

In He, Grigoryan, and Sigh (2002), the probability of declaring the process as in-control at 

inspection level 3 is 3aP  = ( ) ( )
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X , 

respectively. The 3aP  formula in Equation (4) is not correct as the random variables 2iY  and 

1i
X  are not independent and its associated double integral should not contain the product of 

their pdfs, i.e. ( )
2iYf y  and ( )

1iX
f x  (as if 2iY  and 1i

X  are independent). Furthermore, the ARL 

values computed by the authors of this manuscript based on 3aP  in Equation (4) are significantly 

different from those obtained by simulation. 

At sampling stage i, the probability that the process is in-control at inspection level 3 (i.e. 

3aP ) is equal to the probability that 𝑊3𝑖 falls in interval 3I , given that 𝑊2𝑖 and 𝑊1𝑖 fall in 

interval 22I  at inspection level 2 and in interval 12I  at inspection level 1, respectively.  

Then, asserting that 1 12iW I  is equivalent to saying that 
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mathematical derivation to show that 1 12iW I  is equivalent to *

1 12i
Z I   is given in Appendix 

A.1. 
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this discussion. The other notations are defined as ( )2 2 2 0 0 0i
z n x    = − + , 

3 1 2 3r n n n= + +  and 1 2 3

3

3

n n n
c

n

+ +
= . As 1iZ   and 2iZ   are standard normal random 

variables, their pdfs can also be written as ( )
1 1iZf z   = ( )1z  and ( )

2 1iZf z   = ( )2z , respectively. 

The problem raised in Equation (4) no longer exists as 1iZ   and 2iZ   are by definitions 

independent and using the product of their pdfs as in Equation (5) now makes sense.  



Table 2 shows the ARL(0) values of the (i) TS𝐾  𝑋̅ chart adopted from He, Grigoryan, and 

Sigh (2002), (ii) revised TS𝐾  𝑋̅ chart computed using MATLAB based on the model proposed 

in this section, and (iii) revised TS𝐾  𝑋̅ chart simulated using SAS, as well as the 95% confidence 

interval for ARL(0) of the revised TS𝐾  𝑋̅ chart simulated using SAS, all obtained based on the 

parameters in He, Grigoryan, and Sigh (2002). It is observed that the ARL(0) values of the 

revised TS𝐾  𝑋̅ chart computed using the proposed model are about the same as that simulated. 

Additionally, the ARL(0) values obtained using the proposed model fall in their corresponding 

95% confidence intervals. However, the ARL(0) values adopted from He, Grigoryan, and Sigh 

(2002) are totally different from the simulated ones and none of them falls in their respective 

95% confidence intervals. For example, when the parameter combination (𝑛1, 𝑛2, 𝑛3, 𝐿11, 𝐿12 𝐿21, 𝐿22, 𝐿3) = (2, 2, 1, 1.47, 3.00, 3.30, 1.80, 2.87) is considered, ARL(0) = 181.96 is obtained 

for the revised TS𝐾  𝑋̅ chart using the model proposed in this section, where this ARL(0) value 

is close to that simulated using SAS (ARL(0) = 182.41). Furthermore, the ARL(0) (= 181.96) 

value computed based on the proposed model falls in the 95% confidence interval for ARL(0), 

i.e. (179.15, 184.51). It is obvious that, for this example, the ARL(0) (= 370.40) value reported 

in He, Grigoryan, and Sigh (2002) is incorrect as it is different from the simulated ARL(0) value 

of 182.41. Moreover, the ARL(0) (= 370.40) value in He, Grigoryan, and Sigh (2002) does not 

fall in the corresponding 95% confidence interval for ARL(0), i.e. (179.15, 184.51). The 

findings explained in this paragraph show that the formula provided by He, Grigoryan, and Sigh 

(2002) in computing the ARL is incorrect. 

Insert Table 2 here 

The average sample size (ASS) at sampling stage i of the revised TS𝐾 𝑋̅ chart is computed 

as 

ASS = 1 2 2 3 3 ,n n P n P+ +    (6) 



where 2P  and 3P  denote the probabilities of taking the second and third samples, respectively. 

Consequently, 

( )2 1 12Pr iP W I=   

    ( ) ( ) ( ) ( )12 1 11 1 11 1 12 1 ,L n L n L n L n   =  + − + +  − + − − +  (7) 

while 3P  = ( )2 22 1 12Pr
i i

W I W I  ( ) ( )
1

1 12
2 22 1 1 1 1Pr d

ii i W
w I

W I W w f w w


=  =    

       ( )
1 12

1 1
2 21 2 2 1 2 22 2 2 1 1 1

2 2

d
z I

n n
c L r c z c L r c z z z

n n
 



    
   =  − + − −  − + −             

  + 

       ( )
1 12

1 1
2 22 2 2 1 2 21 2 2 1 1 1

2 2

d
z I

n n
c L r c z c L r c z z z

n n
 



    
    + − −  + −             

 . (8) 

 The formula derivation of 3P  in Equation (8) is shown in Appendix A.4. A control chart’s 

efficiency is generally measured by the speed in which an out-of-control situation is detected. 

A common performance criterion that measures this speed is the ARL. As any Shewhart-type 

control chart, the ARL of the revised TS𝐾 𝑋̅ chart is computed as  

1
ARL

1 aP
=

−
.                                                                    (9) 

In the revised TS control charting technique, the number of observations taken in each 

sampling stage varies, i.e. either 1n , 1 2n n+  or 1 2 3n n n+ + . However, for the DS chart, the 

number of observations taken in each sampling stage is either 1n  or 1 2n n+ . Therefore, in 

comparing the performances between the DS and TS schemes, many researchers suggested the 

use of the ANOS criterion, instead of relying solely on the ARL criterion (which only measures 

the average number of sampling stages to signal) because the number of observations taken in 

each sampling stage for these two schemes is different. The ANOS value of the revised TS𝐾 𝑋̅ chart is computed as 

ANOS = ARL × ASS 



            = 
1 2 2 3 3 .

1
a

n n P n P

P

+ +
−

                                                (10) 

  

3.2. Properties of the revised 𝑻𝑺𝑬 𝑿̅ chart  

When the in-control process parameters 0  and 0  are unknown, they need to be estimated 

from an in-control Phase-I dataset that contains m samples, each with n observations, 

i.e. {𝑇𝑖,1, 𝑇𝑖,2, … , 𝑇𝑖,𝑛}, for 𝑖 = 1, 2, … , 𝑚. Assume that independence between and within these 

m samples exists and ,i j
T   ( )2

0 0,N   , for 𝑖 = 1, 2, … , 𝑚  and 𝑗 = 1, 2, … , 𝑛.     

The estimators 0̂  and 0̂  of the parameters 0  and 0 , respectively, are computed  as  

   0

1

1ˆ
m

i

i

T
m


=

=   (11) 

and 

                                              ( )2

0 ,

1 1

1ˆ
( 1)

m n

i j i

i j

T T
m n


= =

= −
−  , (12) 

where 
i

T  is the sample mean of the observations {𝑇𝑖,1, 𝑇𝑖,2, … , 𝑇𝑖,𝑛}. 

The procedure of implementation of the revised TS𝐸 𝑋̅ chart is similar to that of the revised TS𝐾 𝑋̅ chart explained in Section 2, except that 1iW , 2iW  and 3iW  in the step-by-step procedure 

of the aforementioned section are replaced by 1
ˆ

i
W , 2

ˆ
iW  and 3

ˆ
iW , respectively. 1

ˆ
i

W , 2
ˆ

iW  and 

3
ˆ

iW  are computed from the 1iW , 2iW  and 3iW  formulae, respectively, by substituting  0  with 

0̂  and 0  with 0̂ . In the revised TS𝐸 𝑋̅ chart, the probability of declaring the process as in-

control at inspection level l, for l = 1, 2 and 3, is denoted as âl
P . Consequently, the probability 

that a process is declared as in-control is  

1 2 3
ˆ ˆ ˆ ˆ
a a a aP P P P= + + . (13) 



1â
P  is computed as (Khoo et al. 2013) 

( )1 1 11 0 0
ˆ ˆ ˆ ˆPr ,
a i

P W I  =  1 1

11 1 11 1

n n
U VL n U VL n

mn mn
 

   
=  + + −  − +   

      
, (14) 

where the random variables U and V are defined as  

                       ( )0 0

0

ˆ mn
U  


= −    (15) 

and 

        
0

0

ˆ
V




= , (16)                                  

respectively. U follows the standard normal distribution and 
2

V  follows the gamma distribution 

with parameters 
( )1

2

m n − 
 
 

 and 
( )

2

1m n

 
  − 

, i.e. 
2

V   
( )

( )
1 2

,
2 1

m n

m n


 −
 − 

. Then the pdf 

of U and V are defined as 

 ( ) ( )Uf u u=                                                                     (17) 

and 

                                     ( ) ( )
( )

2 1 2
2 ,

2 1
V

m n
f v v f v

m n


 −
=   − 

,                                         (18)  

respectively, where ( )  f   is the pdf of the gamma distribution with parameters 
( 1)

2

m n −
 and 

2

( 1)m n −
.  

Additionally, 2âP  is computed as (Khoo et al. 2013) 

( )2 2 21 1 12 0 0
ˆ ˆ ˆ ˆ ˆPr  and ,a i iP W I W I  =           



       = 
1 12

2 1

2 21 1 2

2
w I

n n
U V c L w n

mn n




   
 + − + −       

                                                                                                                        

                       ( )
1

2 1
ˆ2 21 1 2 1 0 0 1

2

ˆ ˆ , d ,
iW

n n
U V c L w n f w w

mn n
  

  
 − + +      

                 (19) 

 where  

( )
1

1
ˆ 1 0 0 1 1

ˆ ˆ, .
iW

n
f w V U Vw n

mn
  

 
=  + +  

 
                 (20)    

Note that Equations (14), (19) and (20) are based on the out-of-control mean considered in 

this manuscript, i.e. 0 0 − .          

At sampling stage i, the probability that the process is declared as in-control at inspection 

level 3 (i.e. 
3â

P ) is equal to the probability that 𝑊̂3𝑖 falls in interval 3I , given that 𝑊̂2𝑖 and  𝑊̂1𝑖 
fall in interval 22I  at inspection level 2 and in interval 12I  at inspection level 1, respectively.                                                  

Then, condition on 
1 1

ˆ
iW w= , asserting that 2 22

ˆ
iW I  is equivalent to saying that 

( )2 2 0

2 22

0

i

i

n X
Z I




−
= 

ˆˆ
ˆ

,  where  

1 1 1 1
22 2 22 1 2 21 1 2 21 1 2 22 1

2 2 2 2

,  ,
n n n n

I c L w c L w c L w c L w
n n n n

    
= − − − −  − −   

   
. 

The mathematical derivation to show that 2 22
ˆ

iW I  is equivalent to 
2 22iZ I

ˆ  is given in 

Appendix B.1.  

Similarly, condition on 
1 1iW w=ˆ  and 

2 2
ˆ

iZ z= , asserting that 3 3
ˆ

i
W I  is equivalent to saying 

that 
( )3 3 0

3 3

0

i

i

n X
Z I




−
= 

ˆˆ
ˆ

 (see Appendix B.2), where  

** 1 2 1 2
3 3 3 1 2 3 3 1 2

3 3 3 3

,
n n n n

I c L w z c L w z
n n n n

 
= − − − − − 

 
. 



Based on the above discussions, 
3â

P  can be defined as  

3â
P ( ) ( ) ( )

1 21 12 2 22
3 3 1 2 2 1Pr d d

i i
i W Zw I z I

Z I f w f z z w
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 
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3 31 2
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V c L w z n f w f z z w

n n



    

 

    
=  + − − + −  −           

 
− + + +      

 
  

where the random variables 1
ˆ

i
W  and 2

ˆ
i

Z  are independent of one another. In Equation (21), 

                             ( )
2

ˆ 2 0 0
ˆ ˆ,

iZ
f z     

2

2 2

n
V U Vz n

mn


 
=  + +  

 
                                      (22)                                                                                

and ( )
1̂

1 0 0
ˆ ˆ,

iW
f w    is given in Equation (20). Appendix B.3 explains the derivation of 

( )
2

ˆ 2 0 0
ˆ ˆ,

iZ
f z   .  

The probability of taking the second sample is (Khoo et al. 2013) 

( )2 1 12 0 0
ˆ ˆ ˆ ˆPr ,

i
P W I  =   

     = 
1 1

12 1 11 1

n n
U VL n U VL n

mn mn
 

   
 + + −  + +      

   
 + 
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11 1 12 1

n n
U VL n U VL n

mn mn
 

   
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   
.                                            (23) 

Similarly, the probability of taking the third sample can be obtained as follows (see Appendix 

B.4):  
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1̂
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ˆ ˆ, d .  (24)

iW
f w w 


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The ASS of the revised TS𝐸 𝑋̅ chart at each sampling stage is  

ASS = ( ) ( ) ( )1 2 2 3 3
0

ˆ ˆ d d
U V

n n P n P f u f v v u
 

−
+ +  .                           (25) 

Note that ( )Uf u  and ( )V
f v  in Equation (25) are given in Equations (17) and (18), respectively.  

If process parameters are known, the ARL value of the revised TSK
 𝑋̅ chart is a constant 

and hence, the standard deviation of the ARL is zero. However, when the target values of the  

process mean, 0  and standard deviation, 0 , are estimated, different Phase-I samples are 

used by different practitioners in the estimation. This results in different design parameters of 

the TSE
 𝑋̅ chart, resulting in different values of ARL and standard deviation of the ARL 

(SDARL). Thus, the ARL of the estimated process parameters based TSE
 𝑋̅ chart is a random 

variable and the average value of this performance measure can be calculated as the average of 

the ARLs (AARL), which is based on the ARL performances of the TSE
 𝑋̅ chart averaged 

across different practitioners. In line with this phenomenon, in this paper, the AARL, as well 

as the SDARL criteria are used as the performance measures of the revised TS𝐸 𝑋̅ chart. On 

similar lines, the average of the ANOS (AANOS) and standard deviation of the ANOS 

(SDANOS) will also be adopted as the performance measures of the TS𝐸 𝑋̅ chart when process 

parameters are estimated.  

The AARL and SDARL values are computed as 

                          AARL =  ∫ ∫ ( 11−𝑃̂𝑎) 𝑓𝑈(𝑢)𝑓𝑉(𝑣)∞0 d𝑣d𝑢∞−∞  ,             (26) 



and   

                     SDARL =  [∫ ∫ ( 11−𝑃̂𝑎)2 𝑓𝑈(𝑢)𝑓𝑉(𝑣)∞0 d𝑣d𝑢 − AARL2∞−∞ ]1/2
 ,             (27) 

respectively, while the AANOS and SDANOS values are obtained as  

               AANOS =  ∫ ∫ (𝑛1 + 𝑛2𝑃̂2 + 𝑛3𝑃̂3) ( 11−𝑃̂𝑎) 𝑓𝑈(𝑢)𝑓𝑉(𝑣)∞0 d𝑣d𝑢∞−∞                       (28) 

and 

SDANOS = √E(ANOS2) − (AANOS)2,                                           (29) 

respectively, where 

              E(ANOS2) = ∫ ∫ [(𝑛1 + 𝑛2𝑃̂2 + 𝑛3𝑃̂3) ( 11−𝑃̂𝑎)]2 𝑓𝑈(𝑢)𝑓𝑉(𝑣)∞0 d𝑣d𝑢∞−∞ .                (30) 

In this study, all integrals are solved numerically using the Legendre-Gauss quadrature method.  

 

4. Optimal designs of the revised TS 𝑿̅ charts  

In this section, the optimal designs of the revised TS𝐾 𝑋̅ and revised TS𝐸 𝑋̅ charts in minimizing 

the values of (i) ANOS(δ) and (ii) ARL(δ), as well as (iii) AANOS(δ) and (iv) AARL(δ), 

respectively, are elaborated, where  (> 0) is the size of a standardized mean shift where a quick 

detection is needed. The optimal designs of the revised TS𝐾 𝑋̅ and revised TS𝐸 𝑋̅ charts 

mentioned below need to satisfy a specified in-control average sample size (ASS0) criterion. 

Optimization programs are written in the MATLAB software to compute the optimal 

parameters of the revised TS𝐾 𝑋̅ and revised TS𝐸 𝑋̅ charts. These programs are provided in the 

supplementary materials.  

  

4.1 Optimal designs of the revised 𝑻𝑺𝑲 𝑿̅ chart   

In this section, the optimal designs of the revised TS𝐾 𝑋̅ chart in minimizing (i) ANOS(δ) and 

(ii) ARL(δ) values are elaborated. Since the ANOS criterion is preferred over the ARL criterion 

for adaptive sample size type charts, the step-by-step procedure in computing the optimal 



parameters (𝑛1, 𝑛2, 𝑛3, 𝐿11, 𝐿12 𝐿21, 𝐿22, 𝐿3) of the revised TS𝐾 𝑋̅ chart in minimizing the 

ANOS(δ) value is discussed first in Section 4.1.1.  

 

4.1.1 Computation of optimal parameters in minimizing ANOS() 

The optimization model of the revised TS𝐾 𝑋̅ chart in minimizing ANOS(𝛿) is presented as 

follows: 

                                            
1 2 3 11 12 21 22 3, , , , , , ,

Minimize
n n n L L L L L

 ( )ANOS                                                     (31a) 

subject to the constraints 

( ) 1ANOS 0 =                                                                  (31b) 

and 

 0 0ASS n= .                                                                      (31c) 

Note that ANOS(0) (for  = 0) and ANOS(𝛿) (for  > 0) are computed using Equation (10), 

while 1  in Equation (31b) is the desired ANOS(0) value and 0n  is a specified value of ASS0 

which is usually set to be the same as the fixed sample size of the Shewhart 𝑋̅ chart.  

The step-by-step procedure in computing the optimal parameters (𝑛1, 𝑛2, 𝑛3, 𝐿11, 𝐿12 𝐿21, 𝐿22, 𝐿3) of the revised TS𝐾 𝑋̅ chart by minimizing the ANOS(𝛿) value for the shift size  is 

given in Steps 1 to 11. Note that the intervals of the limits 𝐿12, 𝐿11 and 𝐿22 (see Steps 4, 5 and 

6, respectively) are chosen as it is found that these intervals are large enough to give the smallest 

ANOS(𝛿) value, based on the values of  and 𝑛0 considered.  

Step 1. Specify the values of 1 , 𝑛0 and 𝛿. In addition, initialize ANOSmin = ∞. 

Step 2. Select a combination of sample sizes (𝑛1, 𝑛2, 𝑛3), where 1 ≤  𝑛1 ≤ 𝑛0 − 1, 1 ≤ 𝑛2 ≤𝑛0 and 1 ≤ 𝑛3 ≤ 2𝑛0 that satisfy the constraint 𝑛1 + 𝑛2 + 𝑛3 > 𝑛0 and go to Step 3. 

If no new (𝑛1, 𝑛2, 𝑛3) combination is possible, go to Step 11.  



Step 3. Initialize 𝐿12 = 2.40, 𝐿11 = 0.50 and 𝐿22 = 2.50. Then proceed to Step 7. 

Step 4. If 2.40 ≤ 𝐿12 ≤ 5.50, increase 𝐿12 by 0.01 and proceed to Step 7. Otherwise, return to 

Step 2.  

Step 5. If 0.50 ≤ 𝐿11 ≤1.70, increase 𝐿11 by 0.01 and proceed to Step 7. Otherwise, reset 𝐿11 = 

0.65 and return to Step 4. 

Step 6. If 2.50 ≤ 𝐿22 ≤ 5.20, increase 𝐿22 by 0.01 and proceed to Step 7. Otherwise, reset 𝐿22 

= 2.50 and return to Step 5. 

Step 7. Compute 𝐿21 that satisfies Equation (31c).  

Step 8. Compute 𝐿3 that satisfies Equation (31b). 

Step 9. For the shift 𝛿 specified in Step 1, compute ANOS(𝛿) using Equation (10), based on 

the parameters (𝑛1, 𝑛2, 𝑛3, 𝐿11, 𝐿12 𝐿21, 𝐿22, 𝐿3) determined prior to Step 9.  

Step 10. If ANOS(𝛿) < ANOSmin, then let ANOSmin = ANOS(𝛿). Here, ANOSmin records the 

smallest ANOS(𝛿) value that corresponds to the parameters (𝑛1, 𝑛2, 𝑛3, 𝐿11, 𝐿12 𝐿21, 𝐿22, 𝐿3). Return to Step 6. 

Step 11. ANOSmin gives the smallest ANOS(𝛿) value. The parameters (𝑛1, 𝑛2, 𝑛3, 𝐿11, 𝐿12 𝐿21, 𝐿22, 𝐿3) that produce this ANOSmin value are the optimal parameters of the 

revised TS𝐾 𝑋̅ chart that minimize the ANOS(𝛿) value for the shift size . 

Figure 2 provides a flowchart that summarizes the above 11 steps optimization procedure of 

the revised TS𝐾 𝑋̅ chart in minimizing the ANOS(𝛿) value. 

Insert Figure 2 here 

For illustration, 𝜏1 = 370, 𝑛0  {5, 7} and   {0.1, 0.2, 0.3, 0.5, 0.7, 1, 1.5, 2} are 

considered. Table 3 presents the values of the optimal parameters (𝑛1, 𝑛2, 𝑛3, 𝐿11, 𝐿12 𝐿21, 𝐿22, 𝐿3) and the corresponding ANOS(δ) values of the revised TS𝐾 𝑋̅ chart for the 𝑛0 and 𝛿 values 

considered. For example, when 𝑛0 = 7 and 𝛿 = 1, the optimal parameters (𝑛1, 𝑛2, 𝑛3, 𝐿11, 𝐿12 𝐿21, 𝐿22, 𝐿3) = (6, 3, 3, 1.34, 2.61, 0.2064, 2.61, 2.5337) produce the smallest ANOS(1) (= 



9.99) value among all parameter combinations that give ANOS(0) = 𝜏1 (= 370). Table 3 also 

gives the ANOS(δ) values for the optimal known process parameters based double sampling 𝑋̅ 

(denoted as DS𝐾 𝑋̅) chart which will be used in the discussion in Section 5.  

Insert Table 3 here 

 

4.1.2 Computation of optimal parameters in minimizing ARL() 

The optimization model of the revised TS𝐾 𝑋̅ chart in minimizing ARL(𝛿) is presented as 

follows: 

                                            
1 2 3 11 12 21 22 3, , , , , , ,

Minimize
n n n L L L L L

 ( )ARL                                                     (32a) 

subject to the constraints 

( ) 2ARL 0 =                                                                   (32b) 

and 

 0 0ASS n= .                                                                    (32c) 

Note that 2  in Equation (32b) is the desired value of ARL(0). To compute the optimal 

parameters of the TS𝐾 𝑋̅ chart in minimizing the ARL(δ) value, a similar approach to that of 

Steps 1 – 11 in Section 4.1.1 is employed. The only differences are (i) ANOSmin and ANOS(𝛿) 

in the aforementioned procedure in Section 4.1.1 are replaced by ARLmin and ARL(𝛿), 

respectively, and (ii) Equations (31c), (31b) and (10) in Steps 7, 8 and 9 of the aforementioned 

procedure are replaced by Equations (32c), (32b) and (9), respectively. 

Table 4 presents the values of the optimal parameters (𝑛1, 𝑛2, 𝑛3, 𝐿11, 𝐿12 𝐿21, 𝐿22, 𝐿3) in 

minimizing the ARL(𝛿) value of the revised TS𝐾 𝑋̅ chart for 2  = 370 and the same 𝑛0 and 𝛿 

values considered in Section 4.1.1. For example, when 𝑛0 = 7 and 𝛿 = 1, the optimal parameters (𝑛1, 𝑛2, 𝑛3, 𝐿11, 𝐿12 𝐿21, 𝐿22, 𝐿3) = (5, 5, 12, 1.11, 5.14, 1.7626, 4.77, 2.8000) produce the 



smallest ARL(1) (= 1.21) value, among all parameter combinations that give the value ARL(0) 

= 
2  (= 370).  

Insert Table 4 here 

 

4.2 Optimal designs of the revised 𝐓𝐒𝑬 𝐗̅ chart  

The optimal designs of the revised TS𝐸 𝑋̅ chart in minimizing the (i) AANOS(δ) and (ii) 

AARL(δ) ( > 0) values are discussed in this section when the process parameters 
0  and 

0  

of the revised TS X  chart are estimated from the in-control Phase-I samples. 

 

4.2.1 Computation of optimal parameters in minimizing AANOS() 

The optimization model of the revised TS𝐸 𝑋̅ chart in minimizing AANOS(𝛿) is given as 

follows: 

1 2 3 11 12 21 22 3, , , , , , ,

Minimize
n n n L L L L L

AANOS() (33a)  

subject to the constraints AANOS(0) = 3    (33b) 

and 

    ASS0 = 𝑛0. (33c) 

Note that 3  in Equation (33b) is the desired value of AANOS(0), where the latter is computed 

using Equation (28) by letting  = 0. 

The step-by-step procedure in Section 4.1.1 can also be used to compute the optimal 

parameters (𝑛1, 𝑛2, 𝑛3, 𝐿11, 𝐿12 𝐿21, 𝐿22, 𝐿3) of the revised TS𝐸 𝑋̅ chart, except that an 

additional input parameter m (number of in-control Phase-I samples) needs to be specified in 

Step 1 of the procedure together with the other input parameters 𝜏3, 𝑛0 and . In addition, 

ANOSmin and ANOS(𝛿) in the procedure are replaced by AANOSmin and AANOS(𝛿), 



respectively. Note that Equations (31c), (31b) and (10) are replaced by Equations (33c), (33b) 

and (28), respectively, in Steps 7, 8 and 9 of the aforementioned procedure. Table 5 provides 

the optimal parameters (𝑛1, 𝑛2, 𝑛3, 𝐿11, 𝐿12 𝐿21, 𝐿22, 𝐿3) of the revised TS𝐸 𝑋̅ chart that 

minimizes the AANOS() value for the shift size , when m  {20, 40, 80}, 𝛿  {0.1, 0.2, 0.3, 

0.5, 0.7, 1, 1.5, 2}, 𝑛0  {5, 7} and 𝜏3 = 370. The AANOS(𝛿) and SDANOS(𝛿) values computed 

using the optimal parameters in Table 5 are given in Table 6. For illustration, consider 𝛿 = 1, 𝑛0 = 5 and m = 20. For this case, the optimal parameters (𝑛1, 𝑛2, 𝑛3, 𝐿11, 𝐿12 𝐿21, 𝐿22, 𝐿3) = 

(4, 3, 3, 1.09, 2.88, 1.8424, 2.72, 2.5852) of the revised TS𝐸 𝑋̅ chart are obtained (see Table 5) 

and using these optimal parameters result in the smallest AANOS(1) (= 10.63) value and the 

corresponding SDANOS(1) value is 2.60 (see Table 6). Table 6 also provides the AANOS(𝛿) 

and SDANOS(𝛿) values for the optimal DS𝐸 𝑋̅ chart.  

Insert Table 5 here 

Insert Table 6 here 

 

4.2.2 Computation of optimal parameters in minimizing AARL() 

The optimization model for the revised TS𝐸 𝑋̅ chart in minimizing the AARL(𝛿) value is given 

as follows: 

1 2 3 11 12 21 22 3, , , , , , ,

Minimize
n n n L L L L L

 AARL() (34a)  

subject to the constraints AARL(0) = 4    (34b) 

and 

    ASS0 = 𝑛0. (34c) 

The 4  in Equation (34b) is the desired value of AARL(0), where the latter is computed using 

Equation (26) by letting  = 0. 



The optimization model in (34a) – (34c) is employed to obtain the optimal parameters (𝑛1, 𝑛2, 𝑛3, 𝐿11, 𝐿12 𝐿21, 𝐿22, 𝐿3) of the revised TS𝐸 𝑋̅ chart in minimizing the AARL(𝛿) value. The 

11 steps optimal design procedure mentioned in Section 4.1.1 can be used in minimizing the AARL(𝛿) value but by substituting ANOSmin and ANOS(𝛿) with AARLmin and AARL(𝛿), 

respectively. Note that Equations (31c), (31b) and (10) are replaced by Equations (34c), (34b) 

and (26), respectively, in Steps 7, 8 and 9 of the aforementioned procedure.  

Table 7 provides the optimal parameters (𝑛1, 𝑛2, 𝑛3, 𝐿11, 𝐿12 𝐿21, 𝐿22, 𝐿3) of the revised TS𝐸 𝑋̅ chart that minimizes the AARL() value for fixed values of , m and 𝑛0 when 4  = 370. 

The AARL(𝛿) and SDARL(𝛿) values computed using the optimal parameters in Table 7 are 

given in Table 8. For illustration, for the case  𝛿 = 0.5, 𝑛0 = 5 and m = 20, the optimal parameters (𝑛1, 𝑛2, 𝑛3, 𝐿11, 𝐿12 𝐿21, 𝐿22, 𝐿3) = (3, 5, 10, 1.16, 4.83, 1.5825, 4.87, 2.8190) are obtained for 

the revised TS𝐸 𝑋̅ chart (see Table 7) and using these optimal parameters result in the smallest 

AARL(1) value of 10.76 and the corresponding SDARL(1) value of 11.90 (see Table 8). Table 

8 also provides the AARL(𝛿) and SDARL(𝛿) values for the optimal DS𝐸 𝑋̅ chart.  

Insert Table 7 here 

Insert Table 8 here 

 

5. Performance analyses 

In this section, the performances of the optimal revised TS𝐾 𝑋̅ and optimal revised TS𝐸 𝑋̅ 

charts when process parameters are known and estimated, respectively, are investigated. When 

process parameters are known, the optimal revised TS𝐾 𝑋̅ chart is compared with the optimal DS𝐾 𝑋̅ chart of Daudin (1992), in terms of the ANOS(δ) and ARL(δ) criteria in Tables 3 and 4, 

respectively. In addition, the optimal revised TS𝐾 𝑋̅ chart is compared with the AS2 𝑋̅ and AS3 𝑋̅ charts of Prabhu et al. (1993), and Zimmer, Montgomery and Runger (1998), respectively, in 

terms of the ARL(δ) criterion in Table 4. In the case when process parameters are estimated, 



the optimal revised TS𝐸 𝑋̅ chart is compared with the optimal DS𝐸 𝑋̅ chart of Khoo et al. (2013), 

in terms of the AANOS(δ) and SDANOS(δ) criteria in Table 6, while a comparison between 

these two charts using the AARL(δ) and SDARL(δ) criteria is given in Table 8. The speed in 

which the revised TS 𝑋̅ chart is quicker (or slower) in detecting a process mean shift compared 

with an existing chart at hand is measured in terms of percentage. The results presented in this 

paper have been verified with simulations. 

The results in Table 3 show that the revised TS𝐾 𝑋̅ chart outperforms the DS𝐾 𝑋̅ chart for 

small and moderate shifts (δ  1), in terms of ANOS. For instance, when 𝑛0 = 5, ANOS(0.7) = 

18.50 for the revised TS𝐾 𝑋̅ chart is significantly lower than that of the DS𝐾 𝑋̅ chart (ANOS(0.7) 

= 25.48), which indicates that the revised TS𝐾 𝑋̅ chart is 27.39% quicker than the DS𝐾 𝑋̅ chart 

in detecting a shift of size δ = 0.7. However, for large shifts ( = 1.5 and 2), the DS𝐾 𝑋̅ chart 

performs slightly better than the revised TS𝐾 𝑋̅ chart but the difference is negligible. For 

example, when 𝑛0 = 5, ANOS (1.5) = 5.34 and 5.33 for the revised TS𝐾 𝑋̅ and DS𝐾 𝑋̅ charts, 

respectively, where the difference is negligible, i.e. the DS𝐾 𝑋̅ chart is 0.19% faster than the 

revised TS𝐾 𝑋̅ chart in detecting the shift of size δ = 1.5. In terms of the ARL criterion, the 

revised TS𝐾 𝑋̅ chart is found to be superior to the DS𝐾 𝑋̅ chart in detecting shifts but the two 

charts have equal performances in the detection of a large shift, say  = 2 (see Table 4). For 

example, when 𝑛0 = 5, ARL(0.7) = 2.84 and 3.60 for the revised TS𝐾 𝑋̅ and DS𝐾 𝑋̅ charts, 

respectively (see Table 4), which indicates that the revised TS𝐾 𝑋̅ chart is 21.11% quicker than 

the DS𝐾 𝑋̅ chart in detecting a shift of size δ = 0.7. However, for δ = 2, both charts have the 

same value of ARL(2) = 1.  

In comparison with the AS3 𝑋̅ chart, the revised TS𝐾 𝑋̅ chart prevails in detecting all shift 

sizes in terms of the ARL(δ) criterion. For example, when 𝑛0 = 5, ARL(0.7) = 2.84 for the 

revised TS𝐾 𝑋̅ chart is significantly lower than that for the AS3 𝑋̅ chart whose ARL(0.7) = 6.17 



(see Table 4). In terms of the percentage of improvement, the revised TS𝐾 𝑋̅ chart is 53.97% 

quicker than the AS3 𝑋̅ chart in detecting the shift δ = 0.7.  

A comparison between the revised TS𝐾 𝑋̅ and AS2 𝑋̅ charts shows that the former has lower 

ARL() value than the latter for all shift sizes. For example, when 𝑛0 = 5, ARL(0.5) = 7.04 for 

the revised TS𝐾 𝑋̅ chart is significantly lower than that of the AS2 𝑋̅ chart (ARL(0.5) = 18.30), 

which indicates that the revised TS𝐾 𝑋̅ chart is 61.53% quicker than the AS2 𝑋̅ chart in detecting 

a shift of size δ = 0.5 (see Table 4).  

Table 6 shows a comparison of the AANOS(δ) and SDANOS(δ) values between the revised TS𝐸 𝑋̅ and DS𝐸 𝑋̅ charts, for m  {20, 40, 80, ∞}. It is obvious in Table 6 that the revised TS𝐸 𝑋̅ chart outperforms the DS𝐸 𝑋̅ chart, in terms of the SDANOS(δ) criterion, for almost all shift 

sizes , when the process parameters are estimated. This is because the revised TS𝐸 𝑋̅ chart has 

a lower SDANOS(δ) value than the DS𝐸 𝑋̅ chart, for the same value of . For example, when 

m = 20, 𝑛0 = 5 and   {0.1, 0.2, 0.3, 0.5, 0.7, 1, 1.5, 2}, SDANOS(δ)  {189.42, 145.93, 

83.05, 19.56, 7.49, 2.60, 0.68, 0.30} and {202.44, 154.76, 91.80, 22.91, 6.99, 3.04, 0.90, 0.46} 

for the revised TS𝐸 𝑋̅ and DS𝐸 𝑋̅  charts, respectively, where almost all the SDANOS(δ) values 

of the former are lower than that of the latter. When comparison is made in terms of the 

AANOS(δ) criterion, it is found that the revised TS𝐸 𝑋̅  chart prevails over the DS𝐸 𝑋̅  chart for 

0.1    1. For instance, consider m = 20 and 𝑛0 = 5. For this case, AANOS(δ)  {308.79, 

191.78, 105.17, 38.84, 20.74, 10.63} and {314.22, 204.11, 116.54, 42.46, 22.29, 11.36} for the 

revised TS𝐸 𝑋̅  and DS𝐸 𝑋̅ charts, respectively, when   {0.1, 0.2, 0.3, 0.5, 0.7, 1}, where the 

former has lower AANOS(δ) values than the latter. In this example, the revised TS𝐸 𝑋̅ chart is 

6.95% quicker than the DS𝐸 𝑋̅ chart in detecting a shift of size δ = 0.7. The decrease in the 

AANOS() values vary from 1.73% to 9.76% when the TS𝐸 𝑋̅ chart is used in place of the DS𝐸 𝑋̅ chart, based on m = 20, 𝑛0 = 5 and 0.1    1 (see Table 6). For δ > 1, the TS𝐸 𝑋̅ chart is 



slightly slower than the DS𝐸 𝑋̅ chart in detecting process shifts. For example, when δ = 1.5, 𝑛0 

= 5 and m = 20, AANOS(1.5) = 5.45 and 5.42 for the revised TS𝐸 𝑋̅ and DS𝐸 𝑋̅ charts, 

respectively, where the former is 0.55% slower than the latter in detecting the shift δ = 1.5. 

Another important trend noticeable in Table 6 is that as m increases, the AANOS(δ) values 

of both the revised TS𝐸 𝑋̅ and DS𝐸 𝑋̅ charts converge to the ANOS(δ) values of their known 

process parameters counterparts in Table 3. As an example, when 𝑛0 = 5,  = 0.1 and m  {20, 

40, 80}, AANOS(0.1)  {308.79, 291.05, 276.49} and {314.22, 300.32, 289.06} for the revised TS𝐸 𝑋̅ and DS𝐸 𝑋̅ charts, respectively, where these values converge to the respective 

ANOS(0.1) values of the corresponding revised TS𝐾 𝑋̅ (= 253.41) and DS𝐾 𝑋̅ (= 270.17) charts 

in Table 3, as m increases. It is also observed in Table 6 that the AANOS(𝛿) and SDANOS(𝛿) 

performances of the revised TS𝐸 𝑋̅ and DS𝐸 𝑋̅ charts improve as 𝑛0 increases. For example, for 

the revised TS𝐸 𝑋̅ chart, when m = 40, (AANOS(0.2), SDANOS(0.2)) = (164.16, 88.12) for 𝑛0 

= 5 and these values decrease to (AANOS(0.2), SDANOS(0.2)) = (143.83, 65.76) as 𝑛0 

increases to 7. Similarly, for the DS𝐸  𝑋̅ chart, for the same m and  combination, the (AANOS(0.2), SDANOS(0.2)) values decrease from (180.09, 94.79) to (157.24, 70.38) as 𝑛0 

increases from 5 to 7.  

The AANOS(𝛿) and SDANOS(𝛿) values in Table 6 for the revised TS𝐸 𝑋̅ and DS𝐸 𝑋̅ charts 

change as the number of the Phase-I samples, m changes, even though 𝑛0 remains constant. For 

instance, when 𝑛0 = 5, (AANOS(0.3), SDANOS(0.3))  {(105.17, 83.05), (88.33, 49.91), 

(80.36, 24.97)}, for the revised TS𝐸 𝑋̅ chart, when m  {20, 40, 80}, where it is seen that the AANOS(0.3) and SDANOS(0.3) values vary with m for a fixed value of 𝑛0. Therefore, the AANOS(𝛿) and SDANOS(𝛿) values are random variables and their values depend on m. 

According to Jones and Steiner (2012); Gandy and Kvaløy (2013) and Zhang, Megahed, and 

Woodall (2014), the SDANOS(0) value of the estimated process parameters based chart should 



be at most 10% of the ANOS(0) value of the chart’s known process parameters counterpart so 

that the former performs satisfactorily even though there is still some considerable difference 

between the AANOS(0) value of the former and the ANOS(0) value of the latter.  

Table 9 gives the AANOS(0) and SDANOS(0) values of the revised TS𝐸 𝑋̅ chart for m  

{50, 100, 150, …, 800, ∞}, computed using the optimal parameters of the revised TS𝐾 𝑋̅ chart 

in minimizing ANOS(1.5), when 𝑛0  {5, 7} and ANOS(0)  {200, 370}. The aforementioned 

optimal parameters computed when ANOS(0) = 200 are (𝑛1, 𝑛2, 𝑛3, 𝐿11, 𝐿12 𝐿21, 𝐿22, 𝐿3)  

{(4, 2, 2, 0.95, 2.43, 1.0734, 2.50, 2.6518), (5, 3, 4, 0.94, 2.35, 0.5237, 2.6785)} for 𝑛0  {5, 

7}, while those adopted from Table 3 when ANOS(0) = 370 are (𝑛1, 𝑛2, 𝑛3, 𝐿11, 𝐿12 𝐿21, 𝐿22, 𝐿3) = {(4, 2, 2, 0.71, 2.65, 2.0490, 2.76, 2.7871) and (5, 3, 8, 1.21, 2.47, 0.6710, 2.60, 3.4207)} 

for 𝑛0  {5, 7}. For example, by adopting these optimal parameters on the revised TS𝐸 𝑋̅ chart 

give AANOS(0) = 199.73 and SDANOS(0) = 19.27 for 𝑛0 = 5 and m = 550 when the process is 

in-control.  

Insert Table 9 here 

An analysis of Table 8 shows that when a comparison is made between the revised TS𝐸 𝑋̅ 

and DS𝐸 𝑋̅ charts, in terms of the AARL() criterion, the former surpasses the latter for all shift 

sizes , as the former has a lower AARL() value than the latter for the same value of . For 

example, when m = 20 and n0 = 5, AARL()  {290.18, 149.22, 60.44, 10.76, 3.51, 1.56, 1.06, 

1.00} and {296.24, 163.14, 72.37, 14.74, 4.72, 1.83, 1.09, 1.00} for   {0.1, 0.2, 0.3, 0.5, 0.7, 

1, 1.5, 2}, for the TS𝐸 𝑋̅ and DS𝐸 𝑋̅ charts, respectively. However, in terms of the SDARL() 

criterion, the TS𝐸 𝑋̅ chart outperforms the DS𝐸 𝑋̅ chart for all values of  and m when n0 = 5 

but when n0 = 7, the TS𝐸 𝑋̅ chart is superior to the DS𝐸 𝑋̅ chart only for smaller values of  and 

m.  



Table 10 gives the AARL(0) and SDARL(0) values of the revised TS𝐸 𝑋̅ chart, for m  {50, 

150, 250, …, 750, 800, …, 1150, ∞}, computed using the optimal parameters of the revised TS𝐾 𝑋̅ chart in minimizing AARL(1.5), based on 𝑛0  {5, 7} and ARL(0)  {200, 370}. The 

optimal parameters computed for the revised TS𝐾 𝑋̅ chart when ARL(0) = 200 are (𝑛1, 𝑛2, 𝑛3, 𝐿11, 𝐿12 𝐿21, 𝐿22, 𝐿3)  {(4, 2, 5, 1.06, 4.79, 1.6369, 4.45, 2.7015), (6, 3, 5, 1.19, 4.44, 1.7979, 

4.45 2.7183)} for 𝑛0  {5, 7}, while those adopted from Table 4 when ARL(0) = 370 are (𝑛1, 𝑛2, 𝑛3, 𝐿11, 𝐿12 𝐿21, 𝐿22, 𝐿3) = {(3, 3, 7, 0.74, 4.94, 1.6076, 4.58, 2.8820) and (5, 4, 10, 0.91, 

3.38, 1.8386, 3.4, 3.0284)} for 𝑛0  {5, 7}. For example, by adopting these optimal parameters 

on the revised TS𝐸 𝑋̅ chart give AARL(0) = 198.70 and SDARL(0) = 19.96 for 𝑛0 = 5 and m = 

800 when the process is in-control (see Table 10). 

By investigating Tables 9 and 10, it is seen that the SDANOS(0) and SDARL(0) values of 

the revised TS𝐸 𝑋̅ chart decrease as m increases. For m  550 (see Table 9) and m  800 (see 

Table 10) when 𝑛0 = 5, the SDANOS(0) and SDARL(0) values, respectively, become smaller 

than 10% of the corresponding ANOS(0) and ARL(0) (= 200) values of the TS𝐾 𝑋̅ chart. The 

value of m for any (ANOS(0), 𝑛0) or (ARL(0), 𝑛0) combination corresponding to the boldfaced SDANOS(0) (in Table 9) or SDARL(0) (in Table 10) value, respectively, represent the minimum 

number of in-control Phase-I samples needed so that the SDANOS(0) or SDARL(0) value is 

smaller than 10% of the corresponding ANOS(0) or ARL(0) value, respectively. This value of 

m will ensure that the AANOS(0) and AARL(0) values of the revised TS𝐸 𝑋̅ chart are 

considerably close to the respective ANOS(0) and ARL(0) values of the revised TS𝐾 𝑋̅ chart. 

Insert Table 10 here 

 

6. An implementation of the revised 𝐓𝐒𝑬 𝑿̅ chart  

This section illustrates the implementation of the revised TS𝐸 𝑋̅ chart in a real application using 

a dataset of the flow width measurements (in microns) for the hard bake process adopted from 



Montgomery (2009). The Phase-I data which comprise m = 20 samples, each having n = 5 

observations are used to estimate the in-control process mean 0̂  and standard deviation 0̂   

using Equations (11) and (12), respectively. The estimates are 0̂  = 1.493 microns and 0̂  = 

0.152 microns. Suppose that the revised TS𝐸 𝑋̅ chart is optimally designed in minimizing 

AANOS(1), i.e. to enable a quick detection of the shift size  = 1, based on AANOS(0) = 370, 

m = 20 and 𝑛0 = 5. Consequently, the optimal parameters are obtained from Table 5 as (𝑛1, 𝑛2, 𝑛3, 𝐿11, 𝐿12, 𝐿21, 𝐿22, 𝐿3) = (4, 3, 3, 1.09, 2.88, 1.8424, 2.72, 2.5852). These optimal 

parameters are used in the Phase-II process monitoring. Figure 3 provides a flowchart to explain 

the operation of the revised TS𝐸 𝑋̅ chart in the Phase-II process by using the values of the 

aforementioned optimal parameters.  

Insert Figure 3 here 
 

The dataset for the Phase-II analysis which contains 14 sampling stages, where 1n  = 4, 2n  = 

3 and 3n  = 3, and the computed control charting statistics of the revised TS𝐸 𝑋̅ chart are given 

in Table 11. The control charting statistics, 1
ˆ

i
W , 2

ˆ
iW  and 3

ˆ
iW , for these 14 sampling stages in 

Phase-II are plotted in Figure 4. The working of the chart is elaborated as follows: At sampling 

stage 1 (i = 1), a sample of size 𝑛1 = 4 is taken at inspection level 1, where 1i
X  = 1.4696 and 

11Ŵ = −0.3079 are computed. As 11Ŵ   11I  = [−1.09, 1.09], sampling stage 1 is in-control. Then 

at sampling stage 2 (i = 2), a sample of size 𝑛1 = 4 is taken at inspection level 1, which gives 

12Ŵ  = 1.5303  12I  = [−2.88, −1.09)   (1.09, 2.88], hence, a second sample of size 𝑛2 = 3 is 

taken at inspection level 2 of the same sampling stage. Consequently, 22X  = 1.4240, 22Y  = 

1.5299 and 22Ŵ  = 0.6423 are computed. As  22Ŵ  21I = [−1.8424, 1.8424], sampling stage 2 is 

in-control. At sampling stage 3 (i = 3), a sample of size 𝑛1 = 4 is taken at inspection level 1, 



that gives 13Ŵ  = 0.5816  11I  = [−1.09, 1.09], hence, sampling stage 3 is in-control. 

Subsequently, at sampling stage 4 (i = 4), a sample of size 𝑛1 = 4 is taken at inspection level 

1, which gives 14Ŵ  = −1.3895  12I  = [−2.88, −1.09)   (1.09, 2.88]. Then, a second sample of 

size 𝑛2 = 3 is taken at inspection level 2 of sampling stage 4, which gives 24Ŵ  = −1.0618  21I

= [−1.8424, 1.8424], i.e. sampling stage 4 is in-control.  

Insert Table 11 here 

Insert Figure 4 here 

The same procedure of taking samples and computing the charting statistics is continued 

until sampling stage 14 (i = 14). At sampling stage 14, a sample of size 𝑛1 = 4 is taken at 

inspection level 1 and 
1(14)Ŵ  = 1.7079 is computed. As 

1(14)Ŵ   12I  = [−2.88, −1.09)   (1.09, 

2.88], a second sample of size 𝑛2 = 3 is taken at inspection level 2 of the same sampling stage. 

Then, 
2(14)Ŵ  = 2.5204  22I  = [−2.72, −1.8424)  (1.8424, 2.72] is obtained, hence, a third 

sample of size  𝑛3 = 3 is taken at inspection level 3 of the same sampling stage. It follows that 

3(14)X  = 1.6399, 3(14)Y  = 1.6384 and 
3(14)Ŵ  = 3.0250 are computed. As 

3(14)Ŵ  (= 3.0250) 3I  

= [−2.5852, 2.5852], an out-of-control is signaled at sampling stage 14 (see Figure 2). 

Following this out-of-control signal, corrective actions should be taken to remove the 

assignable cause(s) so that the out-of-control condition becomes in-control again. 

 

7. Conclusions 

In this research, we provide corrections to address the oversight in the formulae derivation for 

computing the run length performance of the known process parameters based TS 𝑋̅ chart in 

He, Grigoryan, and Sigh (2002). To assess the efficiency of the revised TS𝐾 𝑋̅ chart,  

performance comparisons with the existing DS𝐾 𝑋̅, AS2 𝑋̅ and AS3 𝑋̅ charts, in terms of  the 



ANOS and ARL criteria are made. In addition, the revised TS 𝑋̅ chart based on estimated 

process parameters (called revised TS𝐸 𝑋̅ chart) is also proposed. The efficiency of the revised TS𝐸 𝑋̅ chart is measured using the AANOS (AARL) and SDANOS(SDARL) criteria and is 

compared with the DS𝐸 𝑋̅ chart. The numerical analyses performed in Section 5 show that the 

revised TS𝐾 𝑋̅ and revised TS𝐸 𝑋̅ charts outperform the DS𝐾 𝑋̅ and DS𝐸 𝑋̅ charts, respectively, 

in the detection of most sizes of shifts in the process mean. Tables of optimal parameters of the 

revised TS𝐾 𝑋̅, as well as revised TS𝐸 𝑋̅ charts in minimizing the out-of-control ANOS and 

ARL, as well as AANOS and AARL values, respectively, for selected combinations of input 

parameters are given. 

The quality of a production process or a product being manufactured is affected by, for 

example, deviations from the nominal value of the (i) weight of raw materials, (ii) process 

temperature, (iii) viscosity of a certain chemical, (iv) process humidity and (v) machine setting. 

The revised TS𝐾 𝑋̅ and revised TS𝐸 𝑋̅ charts are designed to detect these deviations quickly. 

These revised TS 𝑋̅ charts can be applied in various production systems, such as in monitoring  

the stability of a plastic film process, monitoring the diameter of gears in an automobile industry 

and monitoring the pH level of a process that produces medicine in a pharmaceutical industry, 

to name some. Information obtained from the revised TS 𝑋̅ charts in process monitoring of 

production systems will help decision makers in taking suitable corrective actions, in order to 

reduce process deviations for quality enhancement. 

The effects of the estimation of process parameters from the in-control Phase-I dataset on 

the in-control and out-of-control performances of the revised TS𝐸 𝑋̅ chart are investigated. It is 

found that the revised TS𝐸 𝑋̅ chart adopting the optimal parameters of its known process 

parameters counterpart requires a very large number of the in-control Phase-I samples in order 

to have a closer performance to the latter. It is shown that the out-of-control AANOS (AARL) 

performance of the revised TS𝐸 𝑋̅ chart is poorer than the out-of-control ANOS (ARL) 



performance of the revised TS𝐾 𝑋̅ chart. A table listing the minimum required number of in-

control Phase-I samples so that the in-control SDANOS(SDARL) value of the revised TS𝐸 𝑋̅ 

chart is at most 10% of the corresponding in-control ANOS(ARL) value of the revised TS𝐾 𝑋̅ 

chart is presented.  

This research focuses on the univariate TS 𝑋̅ chart with known and estimated process 

parameters. The development of a multivariate triple sampling T2 chart with known and 

estimated process parameters can be explored in the future as many real-life situations involve 

multivariate data. Future researches can be conducted to enhance the shift detection speed of 

the revised TS 𝑋̅ chart by incorporating the auxiliary information concept, as well as 

considering the variable sampling interval feature. Furthermore, the TS technique can be 

integrated into Shewhart charts for the process variability, such as the R, S and 2
S  charts.  
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Appendix A 

This appendix explains the mathematical derivations to show that 1 12iW I , 2 22iW I  and 

3 3iW I  are equivalent to *

1 12i
Z I  , 

2 22

*

i
Z I   and 

3 3i
Z I  * , respectively. These derivations are 

given in Appendices A1, A2, and A3, respectively. Furthermore, the formula derivation of 3P  

in Equation (8) is explained in Appendix A4. The notations defined in Section 3.1 are 
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Z n X    = − + , ( )2 2 2 0 0 0i i

Z n X    = − +  and 

( )3 3 3 0 0 0i i
Z n X    = − + . 1iZ  , 2iZ   and 3iZ   are standard normal random variables from their 

definitions. 
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Similarly, it can be shown that 
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From Equation (A1), it is clear that 1 12iW I  is equivalent to 1 12i
Z I

  , where 
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3 3

*

iZ I    

( ) ( )3 3 3 3 3Pr Pri iW I L W L = −    

                    
( )3 0 1 2 3

3 3

0

Pr i
Y n n n

L L



 − + +

= −    
 

 



                    
3 0 1 1 2 2 3 3 3 0

0

3 1 2 3 3

Pr i i i
L n X n X n X L

r n n n r

 


 + +
= −  −  + + 

 

                      

( ) ( ) ( )
( )

1 1 0 0 2 2 0 0 3 3 0 03 0

0 3 1 2 3 0

0 3 0

0 0 3

Pr
i i in X n X n XL

r n n n

L

r

     
 

 
 

 − + + − + + − +−
= 
 + +


−  



 

                   
( ) ( ) ( )

3 31 1 2 23 3

3 1 2 3 1 2 3 1 2 3 3

Pr
ii i

n Zn Z n ZL L

r n n n n n n n n n r


  
= −  + + −   + + + + + + 

 

                    ( )( 3 3 1 2 3 1 1 2 2Pr
i i

r L n n n n Z n Z  = − + + + − −  3 3i
n Z   

                                                       ( ) )3 3 1 2 3 1 1 2 2i i
r L n n n n Z n Z   + + + − −  

                    
1 2 1 2

3 3 3 3 1 2 3 3 3 3 3 1 2

3 3 3 3

Pr
i i i i i

n n n n
c L r c Z Z Z c L r c Z Z

n n n n
 

 
    = − + − −   + − −  

 
. 

                                                                                                                                         (A5) 

From Equation (A5), it is clear that 3 3iW I  is equivalent to 
3 3i
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A4. Formulae derivation of 3P   in Equation (8) 

 In Section 3.1, it is known that 
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3P  in Equation (A7) involves 2 22iW I  and 1 12iW I . The probabilities, ( )1 12Pr iW I  and

( )2 22Pr iW I  are given in Equations (A1) and (A3), respectively. By incorporating the results 

in Equations (A1) and (A3) into Equation (A7) gives  
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where *

12I  is given in Equation (A2).  

 

Appendix B 

This appendix explains the mathematical derivations to show that 2 22
ˆ

iW I  and 3 3
ˆ

i
W I  are 

equivalent to 
2 22i

Z I
ˆ  and 

3 3i
Z I

ˆ , respectively. These derivations are given in Appendices 

B1 and B2, respectively. In addition, the formulae derivations of ( )
2

ˆ 2 0 0
ˆ ˆ,

iZ
f z    and 

3̂P  in 

Equations (22) and (24), respectively, are explained in Appendices B3 and B4. The notations 

defined in Section 3.2 are 
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definitions. 

 

B1. Mathematical derivation to show that ˆ
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From Equation (B1), it is clear that 2 22
ˆ

iW I  is equivalent to 
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Note that 2c  is defined in Appendix A. 
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From Equation (B3), it is clear that 3 3
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W I  is equivalent to 

3 3

**ˆ
i

Z I , where 

** 1 2 1 2
3 3 3 1 2 3 3 1 2

3 3 3 3

,
n n n n

I c L w z c L w z
n n n n

 
= − − − − − 

 
.  (B4) 

From Equation (B4), we have  
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Note that 3r  and 3c  have been defined in Appendix A.   
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B4.    Formulae derivation of 𝑷̂𝟑 in Equation (24) 
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By incorporating the results in Equations (B11) and (B12) into Equation (B10) gives  
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Note that 2c  is defined in Appendix A. This completes the formulae derivation of 3̂P  in 

Equation (24).  

 

 



Table 1 A summary of the statistics used in the 11 steps procedure in Section 2 and their 

distributions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. ARL(0) values of the (i) TS𝐾  𝑋̅ chart adopted from He, Grigoryan, and Sigh (2002), (ii) 

revised TS𝐾  𝑋̅ chart computed using MATLAB based on the model in Section 3.1, (iii) revised TS𝐾  𝑋̅ 

chart simulated using SAS; and the 95% confidence interval for ARL(0) of the revised TS𝐾  𝑋̅ chart 

simulated using SAS; all obtained using the parameters in He, Grigoryan, and Sigh (2002) 
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ARL(0) 

(adopted from He, 

Grigoryan, and 

Sigh, 2002) 

𝑛1 𝑛2 𝑛3 𝐿11 𝐿12 𝐿21 𝐿22 𝐿3 

ARL(0) 

(proposed 

model) 

ARL(0) 

(simulated) 

95% confidence 

interval for 

ARL(0) 

370.40 1 1 1 1.62 3.07 1.80 3.35 2.86 221.11 222.72 (218.08, 223.79) 

500.00 1 1 1 1.79 3.00 1.80 3.01 2.93 192.90 193.97 (190.28, 195.06) 

370.40 2 1 1 1.76 3.00 1.80 3.69 2.66 142.87 143.92  (140.80, 144.64)   

500.00 2 2 1 1.80 3.00 1.80 3.39 2.85 203.36 204.24 (200.13, 205.94) 

370.40 2 2 1 1.47 3.00 1.80 3.30 2.87 181.96 182.41 (179.15, 184.51) 

500.00 2 2 2 1.49 3.00 1.47 4.51 2.81 182.62 181.31 (180.09, 184.86) 

370.40 2 2 3 1.23 3.32 1.55 3.90 2.81 248.04 251.01 (244.30, 251.10) 

500.00 2 2 3 1.34 3.67 1.56 3.14 2.88 268.96 269.97 (265.13, 272.38) 

370.40 3 3 2 1.57 3.00 1.80 3.61 2.81 181.94 183.27 (179.19, 184.51) 

500.00 3 3 2 1.66 3.00 1.80 3.86 2.87 204.89 207.40 (201.55, 207.42) 

370.40 3 3 4 1.41 3.00 1.61 4.07 2.86 198.33 199.22 (195.38, 200.88) 

500.00 3 3 5 1.48 3.17 1.80 3.44 2.89 274.00 270.93 (270.64, 277.15) 

370.40 4 4 3 1.63 3.00 1.66 3.14 2.84 178.51 177.64 (175.92, 181.13) 

500.00 3 3 4 1.32 3.72 1.68 3.56 2.82 299.61 300.01 (295.43, 304.17) 

370.40 4 4 6 1.49 3.13 1.78 3.09 2.91 216.02 217.64 (212.60, 218.96) 

500.00 4 5 4 1.59 3.00 1.80 3.39 2.97 226.34 228.44 (221.89, 229.40) 

370.40 5 8 3 1.55 3.00 1.80 3.57 2.89 209.76  208.24 (206.72, 212.69) 

500.00 5 5 6 1.43 3.36 1.80 3.81 2.98 387.66 391.44 (380.73, 393.23) 

370.40 8 10 5 1.49 3.00 1.67 3.18 2.72 150.77 150.67 (149.23, 152.68) 

500.00 8 5 7 1.54 3.09 1.71 3.74 2.76 184.47 186.86 (182.06, 187.03) 



Table 3. Optimal parameters (𝑛1, 𝑛2, 𝑛3, 𝐿11, 𝐿12 𝐿21, 𝐿22, 𝐿3) and the corresponding 

ANOS() values for the revised TS𝐾  𝑋̅ chart, and ANOS() values 

for the optimal DS𝐾  𝑋̅ chart with the percentage of a decrease in the ANOS()  

value by using the revised TS𝐾  𝑋̅ chart in place of the DS𝐾  𝑋̅ chart 

𝑛0 δ 
TS𝐾  𝑋̅  DS𝐾  𝑋̅ Decrease 

(%) 𝑛1 𝑛2 𝑛3 𝐿11 𝐿12 𝐿21 𝐿22 𝐿3 ANOS()  ANOS() 

5 

0.1 3 5 10 1.20 4.27 1.3099 4.00 2.0614 253.41  270.17 6.20 

0.2 3 5 10 1.20 4.69 1.3071 3.53 2.0654 130.17  147.41 11.70 

0.3 3 5 10 1.20 4.30 1.3063 3.49 2.0667 72.79  82.41 11.67 

0.5 3 5 9 1.15 4.04 1.3256 2.77 2.2096 32.09  34.65 7.39 

0.7 3 5 5 0.97 3.35 1.5464 2.69 2.3864 18.50  25.48 27.39 

1 4 3 3 1.06 2.88 1.8102 2.71 2.5699 10.13  10.48 3.34 

1.5 4 2 2 0.71 2.65 2.0490 2.76 2.7871 5.34  5.33 -0.19 

2 3 3 8 1.29 2.61 0.1008 2.81 2.8916 3.69  3.60 -2.50 

              

7 

0.1 4 7 14 1.21 4.36 1.1343 3.49 1.8969 239.09  254.75 6.15 

0.2 5 7 14 1.39 4.20 1.3982 2.75 1.8393 121.28  131.47 7.75 

0.3 4 7 14 1.20 4.20 1.1299 2.80 1.9574 66.97  73.25 8.57 

0.5 5 5 7 1.10 3.32 1.3887 2.70 2.2024 31.28  32.76 4.52 

0.7 6 4 3 1.23 2.83 1.7553 2.62 2.3436 17.98  18.96 5.17 

1 6 3 3 1.34 2.61 0.2064 2.61 2.5337 9.99  10.39 3.85 

1.5 5 3 8 1.21 2.47 0.6710 2.60 3.4207 5.88  5.44 -8.09 

2 4 3 14 1.26 2.41 0.3336 2.76 3.6524 4.22  3.70 -14.05 

 

 

Table 4. Optimal parameters (𝑛1, 𝑛2, 𝑛3, 𝐿11, 𝐿12 𝐿21, 𝐿22, 𝐿3) and the corresponding ARL() 

values for the revised TS𝐾  𝑋̅ chart based on ARL(0) = 370, and ARL() values for the  

 optimal DS𝐾  𝑋̅, AS3 𝑋̅ and AS2 𝑋̅ charts with the percentage of a decrease in the ARL()              

value by using the revised TS𝐾  𝑋̅ chart in place of the competing charts 

 

 

𝑛0 δ 
TS𝐾  𝑋̅  DS𝐾  𝑋̅ AS3 𝑋̅ AS2 𝑋̅ 𝑛1 𝑛2 𝑛3 𝐿11 𝐿12 𝐿21 𝐿22 𝐿3 ARL()  ARL() 

Decrease 

(%) 
ARL() 

Decreas

e (%) 
ARL() 

Decrease 

(%) 

5 

0.1 4 5 10 1.54 4.84 1.7015 4.60 2.6813 199.65  218.00 8.42 293.07 31.88 293.39 31.95 

0.2 4 5 10 1.54 4.94 1.7015 4.63 2.6812 72.46  86.40 16.13 162.65 55.45 163.97 55.81 

0.3 4 5 10 1.53 5.17 1.7317 4.42 2.6802 29.09  36.30 19.86 77.58 62.50 78.63 63.00 

0.5 3 5 10 1.11 4.94 1.5506 3.94 2.7784 7.04  9.20 23.48 18.21 61.34 18.30 61.53 

0.7 3 5 10 1.09 5.05 1.6058 4.75 2.7695 2.84  3.60 21.11 6.17 53.97 6.17 53.97 

1 3 4 10 0.94 5.13 1.7209 4.79 2.7773 1.46  1.70 14.12 2.57 43.19 2.58 43.41 

1.5 3 3 7 0.74 4.94 1.6076 4.58 2.8820 1.05  1.10 4.55 1.43 26.57 1.46 28.08 

2 4 1 5 0.92 4.73 1.4838 4.42 2.9483 1.00  1.00 0 1.08 7.41 1.10 9.09 

                  

7 

0.1 5 7 14 1.34 4.93 1.5999 4.86 2.7369 165.38  191.48 13.63 268.26 38.35 268.86 38.49 

0.2 5 7 14 1.33 4.91 1.6284 4.65 2.7360 50.38  66.48 24.22 124.29 59.47 125.89 59.98 

0.3 5 7 14 1.33 4.91 1.6284 4.85 2.7359 18.35  25.86 29.04 50.58 63.72 51.35 64.26 

0.5 5 7 14 1.31 5.13 1.6857 4.72 2.7328 4.39  6.11 28.15 10.43 57.91 10.44 57.95 

0.7 4 7 14 1.05 4.93 1.5658 4.65 2.7768 1.98  2.48 20.16 3.89 49.10 3.89 49.10 

1 5 5 12 1.11 5.14 1.7626 4.77 2.8000 1.21  1.32 8.33 1.95 37.95 1.96 38.27 

1.5 5 4 10 0.91 3.38 1.8386 3.40 3.0284 1.01  1.02 0.98 1.18 14.41 1.20 15.83 

2 6 4 10 1.24 3.25 2.3497 3.11 3.9101 1.00  1.00 0 1.01 0.99 1.02 1.96 



 

Table 5. Optimal parameters (𝑛1, 𝑛2, 𝑛3, 𝐿11, 𝐿12 𝐿21, 𝐿22, 𝐿3) of the revised TS𝐸 𝑋̅ chart 

when AANOS(0) = 370, 𝑛0  {5, 7} and m  {20, 40, 80} 

m δ 𝑛0= 5  𝑛0 = 7 𝑛1 𝑛2 𝑛3 𝐿11 𝐿12 𝐿21 𝐿22 𝐿3  𝑛1 𝑛2 𝑛3 𝐿11 𝐿12 𝐿21 𝐿22 𝐿3 

20 

0.1 3 5 10 1.24 4.25 1.3554 3.51 2.1646  4 7 14 1.21 4.25 1.2647 3.31 2.0137 

0.2 3 5 10 1.23 4.25 1.3796 3.41 2.1668  4 7 14 1.20 4.28 1.2838 3.15 2.0227 

0.3 3 5 10 1.23 4.25 1.3747 3.30 2.1728  4 7 14 1.20 4.34 1.2630 2.91 2.0552 

0.5 3 5 10 1.21 3.91 1.3851 2.84 2.2561  3 7 11 1.20 3.75 0.1295 2.59 2.1806 

0.7 4 4 5 1.38 3.10 1.5982 2.75 2.3978  5 5 4 0.95 2.90 1.7046 2.67 2.4089 

1 4 3 3 1.09 2.88 1.8424 2.72 2.5852  6 2 2 0.85 2.70 1.5919 2.70 2.4939 

1.5 4 2 2 1.10 2.69 0.6334 2.70 2.7922  5 3 4 0.94 2.60 0.7495 2.54 2.9145 

2 3 2 6 1.12 2.60 0.1356 2.70 3.4041  3 3 11 1.01 2.50 0.1370 2.59 3.7736 

40  

0.1 3 5 10 1.22 4.55 1.3341 3.63 2.1289  4 7 14 1.20 4.22 1.2292 3.42 1.9680 

0.2 3 5 10 1.22 4.62 1.3338 3.61 2.1292  4 7 14 1.19 4.62 1.2496 3.20 1.9761 

0.3 3 5 10 1.22 4.24 1.3256 3.30 2.1412  4 7 14 1.18 4.31 1.2508 2.85 2.0221 

0.5 3 5 10 1.20 3.95 1.3399 2.80 2.2384  3 7 9 0.82 3.90 1.2441 2.67 2.2364 

0.7 4 4 4 1.30 3.15 1.6871 2.76 2.3939  6 3 4 1.18 2.91 1.6620 2.66 2.3780 

1 4 3 3 1.10 2.90 1.7262 2.73 2.5807  6 2 2 0.75 2.68 1.8874 2.65 2.4739 

1.5 4 2 4 1.35 2.70 0.3648 2.70 2.8059  5 3 4 1.03 2.48 0.1157 2.65 3.0472 

2 3 3 8 1.25 2.60 0.4394 2.80 3.0222  3 3 11 1.01 2.47 0.1154 2.64 3.7909 

80 

 

  

0.1 3 5 10 1.20 4.74 1.3473 3.55 2.1028  4 7 14 1.20 4.66 1.1954 3.41 1.9386 

0.2 3 5 10 1.21 4.45 1.3209 3.61 2.1033  4 7 14 1.20 4.64 1.1865 3.14 1.9513 

0.3 3 5 10 1.20 4.45 1.3393 3.24 2.1171  4 7 14 1.20 4.31 1.1783 3.00 1.9654 

0.5 4 5 10 1.54 3.34 1.6167 2.58 2.1562  3 7 9 1.04 3.94 0.4830 2.60 2.1911 

0.7 4 4 4 1.30 3.15 1.6273 2.73 2.3977  6 3 4 1.20 2.91 1.5759 2.65 2.3726 

1 3 4 6 1.25 2.90 0.1142 2.59 2.6476  6 2 2 0.75 2.67 1.8577 2.65 2.4736 

1.5 4 4 10 1.29 2.69 1.9924 2.60 3.6364  5 3 4 1.03 2.68 0.1457 2.48 2.8299 

2 3 3 8 1.20 2.70 0.6610 2.70 2.8553  3 3 11 1.01 2.47 0.1056 2.64 3.6599 

 

 

 

 

 

 



Table 6. AANOS() and SDANOS() values for the optimal revised TS𝐸 𝑋̅ and DS𝐸 𝑋̅ charts with 

the percentage of reduction in AANOS() when AANOS(0) = 370, 𝑛0  {5, 7} and m  {20, 40, 80} 

𝑛0 δ 

m = 20  m = 40  m = 80  TS𝐸 𝑋̅ DS𝐸 𝑋̅  TS𝐸 𝑋̅ DS𝐸 𝑋̅  TS𝐸 𝑋̅ DS𝐸 𝑋̅  

AANOS() SDANOS() AANOS() SDANOS() 
Decrease 

    (%) 
AANOS() SDANOS() AANOS() SDANOS() 

Decrease 

(%) 
AANOS() SDANOS()  AANOS() SDANOS() 

Decrease 

(%) 

5 

0.1 308.79 189.42 314.22 202.44 1.73 291.05 127.62 300.32 133.88 3.09 276.49 89.79 289.06 92.28 4.35 

0.2 191.78 145.93 204.11 154.76 6.04 164.16 88.12 180.09 94.79 8.85 147.81 54.83 165.52 60.27 10.70 

0.3 105.17 83.05 116.54 91.80 9.76 88.33 49.91 100.16 49.64 11.81 80.36 24.97 91.94 29.99 12.60 

0.5 38.84 19.56 42.46 22.91 8.53 35.40 10.43 38.60 12.36 8.29 35.03 7.13 36.74 7.67 4.65 

0.7 20.74 7.49 22.29 6.99 6.95 19.80 4.61 21.21 4.46 6.65 19.26 3.02 20.64 2.89 6.69 

1 10.63 2.60 11.36 3.04 6.43 10.41 1.68 11.10 1.97 6.22 10.51 1.10 10.95 1.33 4.02 

1.5 5.45 0.68 5.42 0.90 −0.55 5.48 0.45 5.38 0.62 −1.86 5.89 0.36 5.36 0.43 −9.89 

2 3.61 0.30 3.60 0.46 −0.28 3.70 0.22 3.60 0.33 −2.78 3.76 0.16 3.60 0.23 −4.44 

         

7 

0.1 294.34 151.16 300.77 156.03 2.14 275.08 106.46 285.01 107.70 3.48 260.29 75.95 273.14 75.96 4.70 

0.2 167.04 109.57 178.52 114.17 6.43 143.83 65.76 157.24 70.38 8.53 131.27 40.73 145.36 44.72 9.69 

0.3 88.60 54.47 96.85 59.70 8.52 77.30 28.85 85.29 32.84 9.37 72.25 17.04 79.68 20.41 9.32 

0.5 35.25 12.99 37.84 13.67 6.84 33.10 7.70 35.41 7.89 6.52 31.93 5.03 34.22 5.03 6.69 

0.7 19.50 5.35 20.56 5.70 5.16 18.81 3.50 19.79 3.64 4.95 18.42 2.34 19.39 2.42 5.00 

1 10.49 1.90 10.82 1.94 3.05 10.25 1.23 10.62 1.27 3.48 10.15 0.84 10.51 0.87 3.43 

1.5 5.93 0.40 5.53 0.57 −7.23 5.84 0.27 5.49 0.39 −6.38 5.94 0.19 5.47 0.27 −8.59 

2 3.61 0.24 3.73 0.27 3.22 3.59 0.16 3.73 0.18 3.75 3.58 0.11 3.72 0.13 3.76 

 

 

 

 

 

 

 

 

 



Table 7. Optimal parameters (𝑛1, 𝑛2, 𝑛3, 𝐿11, 𝐿12 𝐿21, 𝐿22, 𝐿3) of the revised TS𝐸 𝑋̅ chart 

when AARL(0) = 370, 𝑛0  {5, 7} and m  {20, 40, 80} 

m δ 
𝑛0= 5  𝑛0 = 7 𝑛1 𝑛2 𝑛3 𝐿11 𝐿12 𝐿21 𝐿22 𝐿3  𝑛1 𝑛2 𝑛3 𝐿11 𝐿12 𝐿21 𝐿22 𝐿3 

20 

0.1 4 5 10 1.61 4.87 1.7627 4.28 2.7185  5 7 14 1.39 4.91 1.6540 4.62 2.8126 
0.2 4 5 10 1.61 4.91 1.7630 4.33 2.7182  5 7 14 1.38 4.93 1.6826 4.63 2.8118 
0.3 4 5 10 1.60 5.40 1.7939 4.43 2.7167  5 7 14 1.38 4.88 1.6827 4.85 2.8117 
0.5 3 5 10 1.16 4.83 1.5825 4.87 2.8190  5 7 14 1.36 5.06 1.7399 4.73 2.8090 
0.7 3 5 10 1.14 5.03 1.6365 4.48 2.8167  4 7 14 1.07 5.05 1.6558 4.85 2.8505 
1 3 4 10 1.03 4.73 1.6626 4.46 2.8321  5 5 13 1.17 4.85 1.8259 4.15 2.8483 

1.5 3 3 7 0.78 4.73 1.6324 4.20 2.9056  5 4 10 0.96 3.45 1.8532 3.45 3.0188 
2 4 1 5 0.97 4.32 1.5210 4.11 2.9497  6 4 10 1.29 3.1 2.3699 3.25 3.8186 

40  

0.1 4 5 10 1.57 4.72 1.7474 4.37 2.7221  5 7 14 1.36 4.97 1.6416 4.85 2.7963 

0.2 4 5 10 1.57 5.08 1.7476 4.43 2.7217  5 7 14 1.36 4.97 1.6416 4.85 2.7963 

0.3 4 5 10 1.57 5.07 1.7478 4.57 2.7214  5 7 14 1.35 5.45 1.6701 4.85 2.7952 

0.5 3 5 10 1.13 4.54 1.5804 5.15 2.8170  5 7 14 1.34 5.12 1.6987 4.75 2.7939 

0.7 3 5 10 1.12 5.04 1.6078 4.83 2.8151  5 7 14 1.24 4.63 2.0064 4.31 2.7520 

1 3 4 11 1.02 5.19 1.6774 4.60 2.8064  5 5 12 1.13 4.95 1.7915 4.33 2.8513 

1.5 3 3 7 0.95 5.19 1.2740 4.61 2.9190  5 4 10 0.9 3.5 1.9241 3.5 2.9759 

2 4 1 5 0.94 5.15 1.5061 4.85 2.9583  6 7 10 1.1 3.3 3.5000 3.1 10.0000 

80 

 

  

0.1 4 5 10 1.55 5.16 1.7399 4.75 2.7116  5 7 14 1.35 5.2 1.6208 4.7 2.7764 

0.2 4 4 10 1.55 5.22 1.7399 4.73 2.7116  5 7 14 1.34 5.22 1.6493 4.74 2.7754 

0.3 4 5 10 1.55 5.22 1.7399 4.73 2.7116  5 7 14 1.34 5.22 1.6493 4.74 2.7754 

0.5 3 5 10 1.12 5.04 1.5659 4.72 2.8040  5 7 14 1.34 5.12 1.6987 4.75 2.7939 

0.7 3 5 11 1.08 5.13 1.7340 4.85 2.7681  4 7 14 1.04 5.33 1.6295 4.87 2.8117 

1 3 4 11 1.01 5.08 1.6638 4.75 2.7938  5 5 12 1.12 5.05 1.7772 4.58 2.8335 

1.5 3 2 7 0.75 4.96 1.3206 4.85 2.9296  5 3 10 0.9 3.5 1.6377 3.5 3.0069 

2 4 2 5 1.00 4.20 1.7613 3.85 2.9383  6 3 9 1.18 3.15 2.1034 3.22 3.5846 

 



Table 8. AARL() and SDARL() values for the optimal revised TS𝐸 𝑋̅ and DS𝐸 𝑋̅ charts, and the percentage of a decrease in the AARL() 

value by using the TS𝐸 𝑋̅ chart in place of the DS𝐸 𝑋̅ chart when AARL(0) = 370, 𝑛0  {5, 7} and m  {20, 40, 80} 

 

𝑛0 δ 

m = 20  m = 40  m = 80  TS𝐸 𝑋̅ DS𝐸 𝑋̅  TS𝐸 𝑋̅ DS𝐸 𝑋̅  TS𝐸 𝑋̅ DS𝐸 𝑋̅  

AARL() SDARL() AARL() SDARL() 
Decrease 

    (%) 
AARL() SDARL() AARL() SDARL() 

Decrease 

(%) 
AARL() SDARL() AARL() SDARL() 

Decrease 

(%) 

5 

0.1 290.18 327.47 296.24 348.75 2.05 263.13 198.18 275.40 207.22 4.46 239.03 130.18 256.99 134.17 6.99 

0.2 149.22 212.88 163.14 227.39 8.53 113.63 107.34 131.91 118.10 13.86 92.54 58.42 113.37 67.02 18.37 

0.3 60.44 98.69 72.37 111.53 16.48 43.78 39.17 55.24 48.19 20.75 35.55 19.59 47.46 25.54 25.09 

0.5 10.76 12.46 14.74 16.84 27.00 8.72 5.09 12.31 7.44 29.16 7.86 2.84 11.22 4.27 29.95 

0.7 3.51 2.02 4.72 3.08 25.64 3.17 1.04 4.30 1.64 26.28 2.94 0.60 4.09 1.01 28.12 

1 1.56 0.31 1.83 0.48 14.75 1.50 0.18 1.77 0.29 15.25 1.48 0.10 1.74 0.19 14.94 

1.5 1.06 0.04 1.09 0.06 2.75 1.06 0.02 1.09 0.04 2.75 1.05 0.02 1.08 0.02 2.78 

2 1.00 0.00 1.00 0.01 0.00 1.00 0.00 1.00 0.00 0.00 1.00         0.00 1.00 0.00 0.00 

         

7 

0.1 263.92 264.69 273.57 271.31 3.53 230.97 167.95 247.20 168.10 6.57 204.39 256.84 225.99 110.98 9.56 

0.2 108.36 148.45 124.27 156.27 12.80 78.36 72.30 96.76 79.83 19.02 63.75 82.56 82.36 44.49 22.60 

0.3 35.79 53.11 46.18 61.15 22.50 25.83 38.39 35.50 26.38 27.24 21.89 26.00 30.90 14.30 29.16 

0.5 6.06 8.73 8.47 7.03 28.45 5.17 3.18 7.33 3.45 29.47 5.17 3.18 6.80 2.06 23.97 

0.7 2.26 2.02 2.88 1.24 21.53 2.17 1.72 2.70 0.71 19.63 2.05 1.52 2.61 0.45 21.46 

1 1.26 0.60 1.37 0.19 8.03 1.23 0.55 1.35 0.12 8.89 1.22 0.52 1.34 0.08 8.96 

1.5 1.01 0.12 1.02 0.02 0.98 1.01 1.01 1.02 0.01 0.98 1.01 1.01 1.02 0.01 0.98 

2 1.00 0.02 1.00 0.00 0.00 1.00 0.01 1.00 0.00 0.00 1.00 0.00 1.00 0.00 0.00 



Table 9. AANOS(0) and SDANOS(0) values for the revised TS𝐸 𝑋̅ chart for different number of in-control Phase-I  

samples (m), computed using the optimal parameters of the revised TS𝐾 𝑋̅ chart in minimizing ANOS(1.5),  

based on 𝑛0  {5, 7} and ANOS(0)  {200, 370} 

m 

ANOS(0) = 200  ANOS(0) = 370 𝑛0 = 5  𝑛0 = 7  𝑛0 = 5  𝑛0 = 7 

AANOS(0) SDANOS(0)  AANOS(0) SDANOS(0)  AANOS(0) SDANOS(0)  AANOS(0) SDANOS(0) 

50 198.38 67.60  194.26 58.66  370.56 152.66  368.47 120.67 

100 198.86 46.32  196.68 40.65  369.42 103.07  368.76 82.89 

150 199.15 37.44  197.67 32.95  369.39 82.93  369.05 67.04 

200 199.33 32.26  198.21 28.43  369.45 71.30  369.24 57.79 

250 199.45 28.77  198.54 25.37  369.52 63.50  369.37 51.54 

300 199.53 26.21  198.77 23.12  369.57 57.80  369.46 46.96 

350 199.59 24.23  198.94 21.38  369.62 53.40  369.53 43.42 

400 199.64 22.64  199.07 19.98  369.65 49.88  369.58 40.58 

450 199.68 21.33  199.17 18.83  369.68 46.97  369.62 38.23 

500 199.71 20.22  199.25 17.85  369.71 44.52  369.65 36.24 

550 199.73 19.27  199.31 17.01  369.73 42.41  369.68 34.54 

600 199.75 18.44  199.37 16.28  369.75 40.58  369.71 33.05 

650 199.77 17.71  199.42 15.64  369.76 38.97  369.73 31.74 

700 199.79 17.06  199.46 15.06  369.78 37.53  369.74 30.58 

750 199.80 16.47  199.49 14.55  369.79 36.24  369.76 29.53 

800 199.81 15.95  199.52 14.08  369.80 35.08  369.77 28.59 ∞ 200.00 0  200.00 0  370.00 0  370.00 0 

 

 

 

 

 



Table 10. AARL(0) and SDARL(0) values for the revised TS𝐸 𝑋̅ chart for different number of in-control Phase-I  

samples (m), computed using the optimal parameters of the revised TS𝐾 𝑋̅ chart in minimizing AARL(1.5),  

based on 𝑛0  {5, 7} and ARL(0)  {200, 370} 

m 

ARL(0) = 200  ARL(0) = 370 𝑛0 = 5  𝑛0 = 7  𝑛0 = 5  𝑛0 = 7 

AARL(0) SDARL(0)  AARL(0) SDARL(0)  AARL(0) SDARL(0)  AARL(0) SDARL(0) 

50 187.66 85.49  184.88 69.32  342.31 180.93  348.24 174.12 

150 194.23 47.22  193.47 39.00  356.19 99.07  359.47 95.74 

250 196.25 36.20  195.82 29.93  360.85 75.82  363.12 73.36 

350 197.21 30.43  196.92 25.17  363.15 63.69  364.89 61.68 

450 197.78 26.76  197.56 22.12  364.52 55.96  365.94 54.23 

550 198.15 24.15  197.98 19.97  365.43 50.48  366.63 48.95 

650 198.42 22.18  198.28 18.34  366.07 46.35  367.12 44.96 

750 198.61 20.63  198.50 17.05  366.56 43.09  367.49 41.80 

800 198.70 19.96  198.59 16.50  366.76 41.69  367.64 40.46 

850 198.77 19.36  198.67 16.00  366.93 40.43  367.77 39.23 

950 198.89 18.30  198.80 15.12  367.23 38.20  368.00 37.08 

1000 198.94 17.83  198.86 14.73  367.36 37.22  368.10 36.13 

1050 198.99 17.39  198.91 14.37  367.48 36.31  368.18 35.25 

1100 199.03 16.99  198.96 14.04  367.59 35.47  368.27 34.43 

1150 199.07 16.61  199.00 13.73  367.68 34.67  368.34 33.67 ∞ 200.00 0  200.00 0  370.00 0  370.00 0 

 

 

 

 

 



 Table 11. An implementation of the revised TS𝐸 𝑋̅ chart on flow width measurements (in microns) for the Phase-II hard bake process  

 

Sampling 

stage, 

i 

Inspection level 1 

 (𝑛1 = 4) 
 

Inspection level 2 

 (𝑛2 = 3) 
 

Inspection level 3 

 (𝑛3 = 3) 

Inspection level 

1  
 

Inspection level  

2 
 

Inspection level  

3 𝑋1𝑖,1 𝑋1𝑖,2 𝑋1𝑖,3 𝑋1𝑖,4  𝑋2𝑖,1 𝑋2𝑖,2 𝑋2𝑖,3  𝑋3𝑖,1 𝑋3𝑖,2 𝑋3𝑖,3 𝑋̅1𝑖 𝑊̂1𝑖  𝑋̅2𝑖 𝑌2𝑖 𝑊̂2𝑖  𝑋̅3𝑖 𝑌3𝑖 𝑊̂3𝑖 
1 1.4483 1.5458 1.4538 1.4303         1.4696 −0.3079         

2 1.6206 1.5435 1.6899 1.5830  1.3358 1.4187 1.5175     1.6093 1.5303  1.4240 1.5299 0.6423     

3 1.3446 1.4723 1.6657 1.6661         1.5372 0.5816         

4 1.5454 1.0931 1.4072 1.5039  1.5264 1.4418 1.5059     1.3874 −1.3895  1.4914 1.4320 −1.0618     

5 1.5124 1.4620 1.6263 1.4301         1.5077 0.1934         

6 1.2725 1.5945 1.5397 1.5252         1.4830 −0.1316         

7 1.4981 1.4506 1.6174 1.5837         1.5375 0.5855         

8 1.4962 1.3009 1.5060 1.6231         1.4816 −0.1500         

9 1.5831 1.6454 1.4132 1.4603         1.5255 0.4276         

10 1.5808 1.7111 1.7313 1.3817  1.3135 1.4953 1.4894     1.6012 1.4237  1.4327 1.5290 0.6266     

11 1.4596 1.5765 1.7014 1.4026         1.5350 0.5526         

12 1.2773 1.4541 1.4936 1.4373         1.4156 −1.0184         

13 1.5139 1.4808 1.5293 1.5729         1.5242 0.4105         

14 1.6738 1.5048 1.5651 1.7473  1.6128 1.8089 1.5513  1.8250 1.4389 1.6558 1.6228 1.7079  1.6577 1.6378 2.5204  1.6399 1.6384 3.0250 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A graphical display of the TS X  chart 
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Figure 2. A flow chart for the optimization procedure of the revised TS𝐾 X  chart in 

minimizing the value of ANOS(𝛿) 
 

 



 
Figure 3. A flow chart in explaining the operation of the revised TS𝐸 𝑋̅ chart for the Phase-II 

process for the monitoring of flow width measurements (in microns) from the hard bake 

process 

 

 

 

 

 

 

 



 
Figure 4. Revised TS𝐸 𝑋̅ chart for the Phase-II process for monitoring of flow width  

measurements (in microns) from the hard bake process 

 

 

 


