Supplemental Material

Appendix A. Basic notations

Table S.1 Mathematical notations used in the learning and deteriorating functions

Notation Description

P The fixed processing time of all jobs

Dj The normal processing time of job j

D The normal processing time of job sequenced in position r

D The normal processing time of batch b

Dij The normal processing time of job j on machine i

Dir The normal processing time of job on machine ¢ sequenced in position r on
machine ¢

Db, The normal processing time of job j in batch b

Dy; The normal processing time of job j in group g

Dgiir The normal processing time of job j sequenced in position r in group g

Pl The actual processing time of job j

Dir] The actual processing time of job sequenced in position r

D) The actual processing time of batch b

Dlij) The actual processing time of job j on machine i

Dljr] The actual processing time of job j sequenced in position r

Dlir] The actual processing time of job on machine ¢ sequenced in position r

Dibr] The actual processing time of batch b sequenced in the rth batch

Digj] The actual processing time of job j in group g

Dlijr] The actual processing time of job j on machine i sequenced in position r

Divir] The actual processing time of job j sequenced in position r in batch b

Digjr] The actual processing time of job j sequenced in position r in group g

Digjriral The actual processing time of job j in group g sequenced in the rith position
in the roth group

a The common learning indicator

a; The learning indicator of jobs on machine i

a, The learning indicator of job j

@i The learning indicator of job j on machine ¢

ap The learning indicator of jobs in batch b

ag The learning indicator of jobs in group g

By The learning indicator of batch b

G, The learning indicator of group g

« The common deteriorating indicator

a; The deteriorating indicator of job j

oy The deteriorating indicator of jobs in group g

o The deteriorating indicator of job j on machine 7

;i The deteriorating indicator of job j in group g¢

t The starting time of the job

to The initial time that a set of jobs is available for processing

t; The starting time of job j

t, The starting time of job sequenced in position r

tij The starting time of job j on machine i

M The incompressibility factor

M, The incompressibility factor of job j on machine ¢

u; The amount of resource allocated to job j

Ujj The amount of resource allocated to job j on machine ¢

Ugj The amount of resource allocated to job j in group g

Kj The positive compression rate of job j

Kij The positive compression rate of job j on machine ¢
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Notation Description
Kgj The positive compression rate of job j in group ¢
o The positive constant
p The truncation parameter
Table S.2 Mathematical notations used in the objective functions
Notation Description
wj, Wy The job weight
Iy The per time unit cost associated with the resource allocation

The job completion time
The job tardiness

The job due date

The job release date

& S
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W; The job waiting time
L; The job lateness
E; The job earliness
Criax The makespan
ce . The load of machine ¢ which can be expressed as ‘TML’
T ax The maximum tardinesss
Eoo The maximum earliness
Loaa The maximum lateness
>.C;> Cy; The total completion time which can be expressed as ‘TC’
> C’f The sum of quadratic job completion time
X:C’]‘-s The sum of the § power of job completion time
>t The total machine load
> w;C; The total weighted completion time

S wj(1—e%)  The discounted total weighted completion time, where v € {0,1} is a
discount factor

YT The total tardiness

> E; The total earliness

Y F; The total flow time

> U; The number of tardy jobs

> W The total waiting times which can be expressed as “TW’

> Tu, The total time cost associated with the resource allocation
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Appendix B. Abbreviations

Table S.3 The abbreviations
Abbreviations Explanations
B&B Branch-and-bound
DP Dynamic programming
GAs Genetic algorithms
SA Simulated annealing
SPT The shortest processing time first
ARB Any busy schedule
WSPT The weighted shortest processing time first
WDSPT The weighted discounted shortest processing time first
EDD The earliest due date
ERD The earliest ready date
RS Random search
TS Tabu search
MODES Multi-objective differential evolution algorithms
MO-SADE Multi-objective simulated annealing differential evolution
PSO Particle swarm optimization
CSA Cloud theory based simulated annealing
BBNP Bounds-based nested partition
GSA Gravitational search algorithm
VNS Variable neighborhood search
CS Cuckoo search
GSA-TS Hybrid gravitational search algorithm and tabu search
VNS-GSA Hybrid variable neighborhood search and gravitational search algorithm
QDE Quantum differential evolutionary
CS-SADE Cuckoo search and self-adaptive differential evolution
TADC The total deviation of completion times
SDR The smallest deterioration rate first
FPTAS Fully polynomial-time approximation schemes
MVO Multi-verse optimizer
H-DP Hybrid algorithm combining heuristic with dynamic programming
ABC-TS Artificial bee colony and tabu search
ABC Artificial bee colony
BA Bat algorithm
DE Differential evolutionary
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Abbreviations Explanations

WSDR The weighted smallest deterioration rate first

SC-VNS Society and civilization algorithm with variable neighborhood search

SC Society and civilization

BRKGA-DE Biased random-key genetic algorithm and differential evolutionary

BRKGA Biased random-key genetic algorithm

VNS-ASHLO Variable neighborhood search and adaptive simplified human learning
optimization

ASHLO Adaptive simplified human learning optimization

p-s-d Past-sequence-dependent
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Appendix C. Complexity of problems

Table S.4  complexity
Problem complexity paper
Llpy = pj — aymin{n;, no; }| Lmnas NP-hard Cheng and Wang
(2000)
Hp[j?“] =P; — ajr’Cmax O(n logn)
Lpr) =p; — ar|Conas O(n logn) Bachman and
1 R;,pyr =pj — a;7|Crias NP-hard Janiak (2004)
Lpgjr = pjr?|Crnas O(n logn)
LR, pir) = T |Crae NP-hard

Flppijr) = pij(pp —vr)| 3w, C;

Lpgny =p;r| 32 C;
Hp[jr] :pjra’ 2(51E3 + 52T] + 630j)

Lpyr = p;r®)01 > C; + 6.1}
P2|pn =p;r°1 > C;

Pm’p[lﬂ“] = pijra |Lmax

F2|pijr) = pijr*|01 Y C; + 02Cran

Fm’ijp[ijr] :pijf(r)|0’rnaa:u chvch

Fm, hig| Ry, prije) =

a; n m K
pigr | 2 T+ D0 D O (F My, — EMiy)

Fm|p[zgr] = pijra|cmaz7 TEC

F2|pjijn =

(B )7 | 200 By + 05T+ 0sd) +04 Sy S0y T

E2|pjijr = piymax{r®, p}| > C;

Pmlpy =p;(M + (1= M)r*)|Cpraz

r—1 a
Uppr =p;(1+ > pp)?| 22 C

pyjn =

pi(L+ 322 p)®Conass 32 Cy 32 C2, S w;Cy, Linas

r—1 a
Fm’pﬁjr] :pzhj(l +> p?[l]) 12°T;

NP-complete

O(n logn)
O(n?)

NP-hard

NP-hard

NP-hard

NP-hard

NP-complete

NP-hard

O(nlogn)

NP-hard

Sun et al. (2013)
Biskup (1999)

Eren and Giiner
(2007)

Mosheiov (2001)

Xu, Yin, and Li
(2010)

Eren and Giner
(2008);

Bai et al. (2018)
Vahedi Nouri,
Fattahi, and
Ramezanian (2013)

Xin et al. (2021)
Gao et al. (2018)

Li et al. (2011a)
Okolowski and
Gawiejnowicz (2010)
Kuo and Yang
(2006)

Wang (2008)

Lin et al. (2017)
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Problem complexity paper

Fm|pgi =pi;(1+ -, pi)*1 2 C; NP-hard Wu et al. (2018)
Sicip O(nlogn) Koulamas and

F2 ir] — Pj 1_ lnl [ ya Cmaz C g

[Py =i 1=1P1 )l 2 G Kyparisis (2007)

pDHy NP-hard Wu (2014

i) = (1= )| Sk O A, <V ar u (2014)

NP-hard Wu, Hsu, and Lai

>
Uppn =p;(1 - = 1p”) 1>-C;

Lpgn =

Dj (Mazlzl P + V) |Cmax7 Z CJQ’ Z chjv Lmaz
_Zioieg

Upj, =pj(ua >=7 +

V)|ZLj,Z]},ijCj,ij(l _e_wcj)’Lmam

= piy (a™i= 70 4 )| S [(M,
a(M;)]

Fm]p[m )TC(M ) +

kp(M;)T

PO
1|pJT] —p](l + l 1 p[l] )alra2|cmamz ijcj
Upgn=_
> @ a
pj(l_ﬁ) Ly 2|CmavaCjazijijmax

Er:lpi a1 ..a
Fmlpgjn =p;(1— 5007 |Crae, 3 C;

i Pl Nay r—
Lpjr =p;(1 - zlnl S a3 05 Y wiCy

> 2, wip
Lpyjn = pj(pay"™ Ly

I/)ag_1|cma17 ZCja ijcja Z C]G’ Lmaw

PO H —
F'm|ppijn = pij(par™'= i +v)ay ! Lax
1’b7Tn07p[bjT'] :pbjrab’Cmaw

1|b parts Plor] pfb‘cma:v

1|b’E0tal’p[bjT] :pbj(r + Z;):_ll nl)ab|cmaz

1|s — batch, py;) = (pj — ;)7 Craa
1’8 — batch,p[j,-] = pjra’Emaxa Z Uj
Pl|s —batch, pjr) = pjr*| Emaz, y_ Uj

aj az

Fm’g?prmuap[gjrlrz] =DPgjiT1 T2 |Cmaz

Fm’g prmu Plgjrirs] =
pgﬂ"1 T2 |Z g]vzwg 97> maa:

NP-complete

NP-complete

O(nlogn)
O(nlogn+N?)

O(mlogn+N?)

O(nlogn)

P

NP-hard

(2011)

Wang, Sun, and Sun
(2010)

Ma, Shao, and
Wang (2014)

Liu, Shi, and Shi
(2018)

Wu and Lee (2008)

Cheng, Wu, and Lee
(2008)

Low and Lin (2011)

Bai, Wang, and
Wang (2012)

e (2016)

Yang and Kuo
(2009)

Pei et al. (2018)

Pei et al. (2019a)

Qin, Zhang, and Bai
(2016)
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Problem complexity paper
1’9 p[lg]mrg] = O(ns)
(%) |51 maz 1 62 2221 ngugj
1|g>€1[9j;“;r2] = o y O(nlogn) Zhu et al. (2011)
PgiT1 T2% — Kgjtlg;|61Craz + 02 g=1 Zj:l Lgjug;
'I" ’l" n 3
L. Pyrar = (7 Syela o, S, O
02 Z Z gjugj
119, Plgjryrs) (;pgﬂ“l Ty’ — o O(n?)
Kgjlgi|01 29:1 Zjil Cyj+ 02 g=1 Zjil Lgjug;
oo prss Pl = NP-hard Lu et al. (2017)
(%)Gv g=1 Zjil Lyjug; U|Cnas
_ 3
g, pl[gjglzf] Ta_aglog(1— On?) Huo, Ning, and Sun
ailogs T)a azogg( T)a5C (5k( )
PojT "2 ayloga(1— 7"); a;nlg:gg—(ﬁ %)a 3 (2018)
119, Pigjryrs) = PgjT1 T Mg = O(n%)
ﬁ‘&lcgj + 52]€(T)
Lp —batch,ppy= max {p; —min{aty, p}}|Cpac P
Pm|p— batch Do) J*’-Eb‘mhb
max { mzn{at e NP-hard Liu et al. (2020)
Jj€Ebatchb Pi— b P max
1|g7 s — indep7p[qu = Dgj (1 + Z =1 pq[l]) |Cmaaz O(nlg(’)gn)
llg,s— fiepyp[yjr] Poi(1+32,5, plq[ 1)*|Crmas O(Q”+nlogn) Kuo (2012)
1|978_an€p7p[gjr ng(l"f'zﬂ_l pg[l]) Q|ZC P
1lg, s —dep, pigjr) = Pgi (1 + 32,21 pou)™1>- C; P
Llg,pigjr = p Liu, Lee, and Wu
P ,(1 _ 222:_11 S[evlJrZ;2=_11 Z;ﬁl Plg][5] )a|C (2008)
v 23:1 39"‘2?:1 Z;Lil Pgj e
119, pigjry) = :
AR O(nlogn) Yin et al. (2013)
DPgj flg(zli1 ' pg[l])f2g (Tl) ’Cma:m Z nga Z ngcgj7
2w (1 —e7%%y)
1|g’p[gjrg2],:1p O(nlogn) Low and Lin (2012)
Pgj (1 - ﬁ)al a2r271 ‘Cmazy Z ng
Upiy = p Mosheiov (1994)
ajt|cmaw)ZFjvzijj7ZLijmaa:aTmaxa ZU]
1R; =to,4;, 1) = jt|Vinae,max w; Vi, > Sw; Vi (V- O(nlogn)
is delivery completion time of job j) Zou (2014)
1R;,q;,p) = ot|Vinaw NP-hard
Lpy) = at| 3o w; W7 P
%
Lpy = ocjt| > w;W; , O(nlogn) Wang and Wang
1|weak:chazns Py = oyt > w]W O(nlogn) (2015)
1|strongchains, py) = o;t| P
1|sp — digraph, py; —ajt|ZwJW97 O(n?)




Pei et al.: A Concise Guide to Scheduling with Learning and Deteriorating Effects

s8
Problem complexity paper
Pmlpy =t |Crnaz, Y2 Ly, 3 C; NP-hard Ji and Cheng (2009)
Pm’p[]] = ajt|c7naw(s) + ZS' ej NP-hard .
Pmlpy = oty =to] S w;C + g e; NP-hard Li and Yuan (2010)

Fm|pij) = t|Crigs
Om|p[lj] = aijﬂcmax

NP-complete
NP-complete

Mosheiov (2002)

Jm|pj) = ijt|Cruaw NP-hard

F2|pi; = ast, type — 1chains|Ciyaq P Zhao and Tang
F2|pij1 = a;t, type — 2chains|Cap NP-hard (2012)

F2|pij) = st 32 C; : Crnas p Cheng et al. (2014)

1|p[j] =p;+ ajt|Lmaac

NP-complete

Bachman and
Janiak (2000)

Lpy =p; +ayt;| Yo w;C; NP-hard Bachman, Janiak,
and Kovalyov (2002)

Llpy) =p; + oy, py) = O(n*logn) Sun and Geng

)‘pj + a(tj - Cr - A) |Cmaza Z Cj (2019)

Rm|pjr) = pij + ity nr,mal Y C, 3 CL O(n?m+2) Hsu et al. (2013)

Pmlpy) = p; + ;n;|Crnax NP-hard Woo and Kim
(2018)

Flprmu, pij) = pij + aut| Y max{C; — d;,0} NP-hard Wang, Huang, and
Wang (2019)

Fmlprmu,ppj = pi;(n+vt)| YT NP-hard Bank et al. (2012a)

Fmlprmu,pyj = pi;(p+vt)| YT NP-hard Bank et al. (2012b)

F2lpuj =pij(p+vt)[ 22C; NP-hard Ng et al. (2010)

1|p[j] :pj+a]t_ﬁuj’510mam+52Tc+ 3 . .

§TADC + 8, 5 Tju; O(n%) ggll,gvang, and Ji

1py) = p; + a;t — 51;[01 Crae + 62TW + -

(SgTADW + 54 Z Fj’LLj

Llpy = (%)U + it j|Crnaz +0 3Ty O(nlogn)

1py = (%)a +ajty, Craw < Cy| ST O(nlogn) Li and Wang (2018)

lpy = (Tj)a+ajtj720j <TC|> T'ju; O(nlogn)

Lpyn = P Cheng, Lee, and Wu

Dj (1 + 22211 lng[l])a‘CmM“ Z Cj7 Z 0327 Z T‘ja Lmaz (2011)

O(n™+ +2)(k is
the upper bound
of the total
maintenance
frequencies)

Rm|ppijn = pij fi;(r), ma|TC

Yang (2013)
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Pmlpjijr = pij fi;(r), malTC O(n™**logn)
Hp[gjr] :pgj(1+a)r_17DRMs|C7naw O(TL4)
pigjr) = pgj (1 + )", DRM|Cyyar O(n2logn) Zhang et al. (2018)
Pm|pigijr) = pgij(1+a) ", DRMS|Cyas NP-hard
pyjn = y O(n?)
pif(r)—rju;| > . Do (01 E;+ 62T+ 05D, +1'ju;) Yang, Lee, and Guo

i€V (2013)
Lpyn = O(nlogn)
(PE2)7 10 Y (81B; 46,1, + 85D, + T u,)

JEWY
Lp — batch, py) = a;t, Rj, o = 00| Cpan O(nlogn)
Llp — batch, py; = a;t, Rj, a0 < n|Cras NP-hard Li et al. (2011Db)
Llp — batch, py) = jt|Crrae + W NP-hard Kong et al. (2020b)
M — C‘S - ba’tCh:p[j] = ajta buffer‘cma:c - .
M — C|s — batch, py; = t|Chua ) Pei et al. (2015)
1|s — batch, py) = jt, 54| Crnas O(nlogn)
1|s = batch, pyj) = at, S54| Emas O(n?logn) Pei et al. (2017)
1|s — batch, py) = a;t, ssa] Y. U; O(n?logn)
Pl|s —batch,pj) = p; + ot — ku;|Croan NP-hard Pei et al. (2019D)
g, py = ot| 3w, U; NP-hard Lee and Lu (2012)
119, pigj) = agiit] 2wy Cyjs fran P Wang and Liu
(2014)
1’9 p[gj] = Dygj +agjt‘cmaw P
’ Lee and Wu (2010
1|g>p[gj] =DPgj — agjt|0maz P ( )
Hg’p[gj] :pgj(:u_‘_yt)lcmama ngjcgj P Wang, Lin, and
Shan (2008)
Hpyn = - Lee (2004)
a|jtra|cma$7 ZFja ijFj7 zLj7Lmax7 Z Uj
Lipyjn = -
(p + ajt)ra|cmaw7 Z Fja Z ijj7 Z Lj7 Lmaza Z Uj
Lpjr = o (p+ - Wang, Jiang, and
Vt)Ta’Cmawﬂ Z Cj7 Z C‘;S.47 Z ijj) Lma:pu Z Uj Wang (2009)
L= .. a m+2

Bmipysn = (py + af)ri|0iTC + 0, TADC + 6 TML O(an) Wang and Wang
Rm|pyijr = O(n™*?) (2014)
(pi; + at)r®|6, TW + 6, TADW + 5 TM L
Flpijn = (pij + ijtij)r®|Crngas . T NP-hard Fu et al. (2018)
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Problem complexity paper

Lpyn = P Wang (2007)
pj(f(t) +5Ta)|cmaz7zcja Zcfa ijcjaLmaz

Upyjr) =pymax{r®, p} + O(nlogn) Niu, Wang, and Yin
t|Crans S C;, SSW,, TADC, TADW, S (6, E; + (2015)

02T + 03d;)

Pmlpjj, =p;r% +at|s, TC + 6,TADC O(n™*2) Huang, Wang, and
Pmlpy, =p;r® + at|6, TW + 6, TADW P Ji (2014)

Pmlpyr =p;(M+ (1= M)r*)+ at|Cpas, 32C;  P,NP-hard Ji et al. (2016)
Uppir = p; (14 P Sun (2009)

r—1 a,.a

Zl:l p[l]) r ‘Cmaxy E Cj, Z CJQ’ ijCj, Lma;c

pyn = Cheng, Lee, and Wu
pi(1+ X212 ogpy) 1| Crnaay 3 Cy, X2 C2, S w, Gy, (2010)

ZTj7 Lmaw

Lpyny =y (S EE oy, 550, T CF P Yin et al. (2010

Plir) = Dy FES S maxs j9 IR in et al. ( )

Z ijj7 Z Uj7 L’maw

Pm|PM,p—batch, pyjrry) = 0T + it|Crnaw - Kong et al. (2020a)
1|s — batch, pyjn =

(L4 0 S poi) 1| Conas NP-hard Pei et al. (2021)
119, pigsn = Pgi (11 GE 7 + 1) (ot + 12), > uy < O(nlogn) Huang, Wang, and
UlCmas 1 Wang (2011)

19, Prgjr] = Poj (11 Gy~ +11) (pat + 12), Crnar < maz{O(nlogn,

VIS u, O(ng(n)))}

119, pgir = (Dgj + agt) 7% Crnazs ¥ C; O(nlogn) He and Sun (2015)
1|s —batch, g, pigjr) = pgymaz{rs, p} +at, R, = O(nlogn)

tO | Cmaz

1|s — batch, g, pjg;r) = Pgymaz{r®, p} + at, Ry|Crrax

Fan et al. (2018)
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Appendix D. Scheduling models
Model 1.1 (Biskup 1999)
min Y (6, E; + 615 + 65C;)
st Y xy=1, r=1,---,n, (L1la)
S xy=1, j=1,---.n, (1.1D)
z;. €{0,1}, j,r=1,---,n, (L.1c)
In Biskup (1999), the related notations and constraints of the above model are defined as
follows.
The actual processing time function is py;,) = p;r“; the equation x;, = 1 indicates that job j
is scheduled in position 7, and z;, =0 otherwise; d;, d5, and d3 are the per time unit penalties
for the earliness, the tardiness and the completion time.

Constraint (1.1 a) represents that only one job can be scheduled in position r. Constraint

(1.1 b) represents that each job can be scheduled only once.

Model 1.2 (Eren and Giiner 2007)
min §; Y C, + 62> T,

st. (1.1 a)-(1.1c¢)
Plin) = g1 TiePlirl, T=1,---,n, (1.2 a)
D, =" xpd;, r=1,---,n, (1.2D)
CTZCrfl +pbr], 7‘:1,"' , N, (12 C)

T.>C,—D,, r=1,---,n, (1.2d)
In Eren and Giiner (2007), the related notations and constraints of the above model are
defined as follows.
The actual processing time function is py;,j = p;7%; 61 and d, are the weights.
Constraints (1.2 b)-(1.2 d) represent the constraints of the due date, the completion time,

and the tardiness of job sequenced in position 7.

Model 1.3 (Mosheiov 2001)

min ) Cj

st Do Tijr =1, i=1,---,mur=1,---n,, (1.3 a)
Zzl Zf;lxijrzl, j=1,---,n, (1.3 b)
zi;r €{0,1}, i=1,--- m,j=1,--- nyr=1,---,n;, (1.3¢)

In Mosheiov (2001), the related notations and constraints of the above model are defined as

follows.
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The actual processing time function is py; ) = p;;7%; the equation z;;. = 1 represents that
job j is scheduled on machine 4 in position r, and x;. =0 otherwise; n; is the number of jobs
scheduled on machine 1.

Constraint (1.3 a) represents that only one job can be scheduled on machine i in position 7.

Constraint (1.3 b) represents that each job can be scheduled only once.

Model 1.4 (Xu, Yin, and Li 2010)

min L4,

s.t. (1.3 a)-(1.3 ¢)
p{ijr] = Z;'Lzl LijrPlijr]s 1= ]-) e, M, T = 17 sy Ty, (14 a’)

R

Dir:Z?:1$ijrd izl,---,m,rzl,---,ni, (14b)

Cirzci,r71+p/[ i:l,---,m,r:l,---,ni, (140)

ijr]s
Loz > Ci — Dy, i=1,---,myr=1,--- ,n; (1.4d)
In Xu, Yin, and Li (2010), the related notations and constraints of the above model are
defined as follows.
The actual processing time function is py;;,) = pi;r®.
Constraint (1.4 b) represents the due date of job j on machine 7 in position r. Constraints
(1.4 ¢)-(1.4 d) represent the constraints of the completion time and the maximum lateness,

respectively.

Model 1.5 (Eren and Giiner 2008)
min d; Y C, + 02C 0z

s.t. (1.1 a)-(1.1¢)

Ar:Z}Llwﬁpujr], r=1,---,n, (1.5a)
BTZZ?lejrp[zjr], r=1,---,n, (1.5b)
Coaz = Xp+ > By, (1.5 ¢)

X, =t,+A.+Y,.—C,_4, r=1,---,n, (1.5d)

tTZtT,1 +Ar717 rzl,"',n, (15 e)
In Eren and Giiner (2008), the related notations and constraints of the above model are

defined as follows.

The actual processing time function is py;y = p;;r®; p1; and p,; are the normal processing
time of job j on the first machine and the second machine, respectively; §; and J, are the
weights; X, is the idle time on the second machine for job in position 7; Y, is the duration
between the completion time of job in position r at the first machine and its starting time at

the second machine.
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Constraints (1.5 a)-(1.5 b) represent the actual processing time of job j in position r on the
first machine and the second machine, respectively. Constraint (1.5 ¢) denotes the makespan.
Constraint (1.5 d) denotes the idel time on the second machine for the job in position 7.

Constraint (1.5 e) represents the constraint of the job starting time on the first machine.

Model 1.6 (Bai et al. 2018)
min Crazy ¥, Cy, ECJQ

s.t. (1.1 a)-(1.1¢)
Ri+3 0 xipun < Chy, j=1,---,n, (1.6 a)
Ci—Ciq > Z;.Lzl TjPrjr, 1=1,---,m+1r=1,---,n, (1.6b)
Cir—Cipr1 > Z;.L:l TjrPljr), 1=1,---,mr=1,---,n+1, (1.6 c)

R; >0,p;; >0,C;; >0, i=1,---,m,j,r=1,---,n, (1.6 d)
In Bai et al. (2018), the related notations and constraints of the above model are defined as
follows.
The actual processing time function is py;j,) = pi; f(r), f: [1,+00) — (0,1] is a non-increasing
function with 0 < f(1) <1 and f(r) > f(r+1).

Constraints (1.6 a)-(1.6 ¢) denotes the constraints of the job completion time.

Model 1.7 (Vahedi Nouri, Fattahi, and Ramezanian 2013)
min Y35y T+ 35 S Ok (F Mg = EMy)

s.t. (1.3 a), (1.3 ¢)
Zle mijr = 1, VZ, VJ (17 a)

Z;‘lzl Cij,r+1 > Z?:l Cijr + Z?:l Lijr4+1Plijr+1], T = 1; e, N — 1; Vi (17 b)

E?:l Cijr — Z?:l xijrp[ijr] — FMZk + Zijkqb 2 0, VZ,V],V]C (17 C)
FMy, —ty—> 0 Cijr+ (1= 2453)$ >0 Vi, Vi, Yk (1.7 d)
EM,;), < F My < oMy, Vi, Vk (1.7 ¢)

D orer Civrgr 2 3001 Cijr + 300 T Pl g, 1=1,--,m—1,Vj (L7f)

> 1 Cujr > Ry + Z;‘L:l L1jrP(Ljr] \Z (L.7g)
Cijr S (bmijr VZ,VJ, VT' (]‘7 h)

In Vahedi Nouri, Fattahi, and Ramezanian (2013), the related notations and constraints of
the above model are defined as follows.
The actual processing time function is py;j,) = p;;7%; ¢ is a large positive number; K is the

number of maintenance activities; t;, is the execution time of the kth maintenance activity
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PM;y; yir, is the binary parameter, y;., = 1 if PM;; is performed on machine i after the
processing of rth job in the sequence, and y;;,. = 0 otherwise.

Constraints (1.7 b)-(1.7h) denote the constraints of the job completion time in consideration
of learning effects, maintenance activities, and the release dates. Constraint (1.7 e) denotes the

tardiness of job j.

Model 1.8 (Zhu et al. 2011)
min 510max -+ 52 ZS:I Zjil ngugj

Q n Q n
o1 29:1 Zjil Cyj + 02 Zg:l Zjil Dgjtig,
s.t. Zizlxgm:la gzla aQ? (18 a)
Zgzlxgrzzla T2:17"' 7Q7 (18 b)

Tgr, €{0,1},  g,r2=1,---,Q, (1.8 ¢)

In Zhu et al. (2011), the related notations and constraints of the above model are defined as
follows.

The actual processing time functions are ppgjr, . = (%)U and Digjryry] = DgiT1 75> —
KgjUgj; T1 is the position of job j scheduled in group g; r» is the position of group g; @ is the
number of groups; the equation x4, =1 indicates that group g is scheduled in position 75, and
Zgr, = 0 otherwise.

Constraint (1.8 a) represents that each group can be scheduled only once. Constraint (1.8 b)

represents that only one group can be scheduled in position r,.

Model 1.9 (Lu et al. 2017)
min Cgq| 25:1 2?11 ug; U

s.t. (1.8 a)-(1.8 ¢)
In Lu et al. (2017), the related notations and constraints of the above model are defined as
follows.
The actual processing time function is pig;y,r, = (#)”; U > 0 is given and denotes the
total available resource.

Model 1.10 (Huo, Ning, and Sun 2018)
min 6;Car + 92k(T)

51 ;2:1 Z;Iil ng + 52]€(T)

s.t. (1.8 a)-(1.8 ¢)
In Huo, Ning, and Sun (2018), the related notations and constraints of the above model are

defined as follows.

arloga(1—7)a_asloga(l1—7)a
Ty ;

Digjrirs) = PgiT1 0 <7 <1 is the percentage reduction of standard learn-

ing indicator a; k(7) shows the investment cost.
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Model 2.1 (Cheng et al. 2014)

min Y, Cs,

s.t. (1.1a)-(1.1c¢)

C’”:Cl’r_l(l—i-zyzl xjraq) 1<r<n (2.1 a)
Cor > Cr (1430 2jp005)  1<r<nm (2.1 b)
Cy>Cyq(1+ Z?:l Tjraz) 1<r<n (2.1 ¢)
cM >Cy, (2.1d)
Cir>1,C0=Cho=1 i=1,21<j<n (21e)

In Cheng et al. (2014), the related notations and constraints of the above model are defined
as follows.

The actual processing time function is pj;) = a;t; Cy, denotes the completion time of job in
the position r on machine i; CM ~ denotes the optimal value of the makespan of Mosheiov’s
algorithm (Mosheiov 2002); a4; and «s; represent the deteriorating indicators of job j on
machine 1 and machine 2, respectively.

Constraints (2.1 a)-(2.1c) represent the constraints of the completion time of job j in position

r on machine 1 and machine 2. Constraint (2.1d) denotes the constraint of makespan.

Model 2.2 (Hsu et al. 2013)

min Z Cj’ Z C:;naz

s.t. (1.3 a)-(1.3 ¢)

In Hsu et al. (2013), the actual processing time functions are py;j,) = p;; 79, prijr) = pij + Qitjr,

and p[ijr} :pij + Oéij’l“.
Model 2.3 (Woo and Kim 2018)

min C),qz

€T kEK

Z Tl ik < Z Tk VJ eJVke K (23 b)
jleJ jleJ

i#3’

jeJ



Pei et al.: A Concise Guide to Scheduling with Learning and Deteriorating Effects

s16

Sya<l Vke K (2.3 d)
S

(L4 a)n; +p; —ny Sﬂ-(l_keszj’jk) Vi €dj=]" (23¢)
Cik < TYix VieI,Vke K (2.3 1)
(14+a;)n; +p; — ;C’ik <7m(l- ‘/ze:ijljk) VjieJVke K (2.3 g)

i J

S Ciu+v(> ya—1)<C; Viel (2.3 h)
keK keK

Ci < Cruaw Viel (2.3 1)
Cinaz 20,0 > 0,0y, > 0,m; >0 Vj,i' e JVie LVke K (2.3 ])
2 € {0,1},yar € {0,1} Vj,j' € JVkeK (2.3 k)

In Woo and Kim (2018), the related notations and constraints of the above model are defined
as follows.

The actual processing time function is pj;; = p; + a;n;; 1; is the gap between the starting
time of job j and a recent rate-modifying activity; J denotes a set of jobs; I denotes a set of
machines; K denotes a set of buckets; x;;, =1 if job j’ precedes job j in bucket k, and x;/;;, =0
otherwise; y;;, = 1 represents that bucket k is processed in machine ¢, and y;;, = 0 otherwise.

Constraints (2.3 a)-(2.3 c¢) represent the rules of the job assignment. Constraint (2.3d) shows
the assignment of the bucket. Constraint (2.3e) denotes the precedence relationship of jobs.
Constraints (2.3f)-(2.3 g) show the completion time of a potential bucket. Constraints (2.3

h)-(2.3 i) denote the constraints of each machine.
Model 2.4 (Wang, Huang, and Wang 2019)
min Y T;
S.t. t¢j+p[¢j]§ti+17j izl,"',m—l,jzl,"',n (24 a)

tij +pujn <tiy+ox(1—wxy;) i=1,--- ,m,j,j'=1,--- ,n,j#5 (24Db)

$J/J+ZE]]/§1 ’[,:]_”m’j’]/:]_,’nvj;éj/ (24C)
Cijzoatijzo i=1-,myj=1,--,n (24d)
.fj/] 6{0,1} j/,j:]_’... ’n (24 e)

In Wang, Huang, and Wang (2019), the related notations and constraints of the above model
are defined as follows.

The actual processing time function is py;;) = pi; + aj;ti;; ¢ is an infinite number; z;; =1 if
job j is followed by job j’ immediately, and x;; =0 otherwise.

Constraints (2.4 a)-(2.4 b) represent the constraints of job starting time. Constraint (2.4 c)

denotes the jobs’ order relation.
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Model 2.5 (Yang 2013)
min Y Cj
s.t. (1.3 a)-(1.3 ¢)

In Yang (2013), the actual processing time function is py;;,) = pi; fi; (1), where f;;(r) is the

deteriorating function of job in position 7.

Model 2.6 (Zhang et al. 2018)
min Cmaz; Z Cj, E((le] + 521—} + 63D)

s.t. (1.1a)-(1.1¢)

In Zhang et al. (2018), the actual processing time function is pjy;,] = pg; (1 +a) .

Model 2.7 (Yang, Lee, and Guo 2013)

min Zz‘;/:l ZV (51Ej + 521} + 63D7, + Fj’U,j)
VISAZ)

s.t. (1.1a)-(1.1c¢)
In Yang, Lee, and Guo (2013), the related notations and constraints of the above model are
defined as follows.
The actual processing time functions are py;,) = p; f(r) — k;ju; and pyj,) = (%;T))”; 01,029,035 >0

are the unit time penalties of job earliness, tardiness, and due date, respectively; V is the

number of due dates, v is the index of the due date, and V,, is the set of jobs with due date D,,.

Model 2.8 (Pei et al. 2015)

min C,ax
N .

st Y, xp=1 j=1,---,n (2.8 a)

Do <e b=1,---,N (2.8 b)
E?:lnl
Clb:t1b+ 11 (1+()[J) b:].,,N (28C)
J=1 0

t17b+1:Clb bzl,,N—l (28 d)
t27b+1201b+T b:].,,N—]. (286)
Cgb:tgb‘i‘% b:].,,N (28f)
Cip — Cry + @ypy — pppj) =0 bb'=1,---,N (2.8 g)
C2b_C2b’+(I)be’_TZO b’blzl,---’N (28}1)
Craz = Cap bv=1,--- N (2.114)

lenybb’vzbb’e{o)l} jzlv"'anabablzlf"?N (28.])
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In Pei et al. (2015), the related notations and constraints of the above model are defined as
follows.

The actual processing time functions are py;; = a;t and ppj = tjeballhib(l +oj)—txp=1
if job j is assigned to batch b, and x;, = 0 otherwise; y,y =1 and 2,y =1 if batch b precedes
batch b during the production stage and the transportation stage, respectively, and y;,y = 0 and
zpy = 0 otherwise; Cy, and Cy, represent the completion time of batch b during the production
stage and the transportation stage, respectively; ¢1, and ¢y, represent the starting time of batch
b during the production stage and the transportation stage, respectively; ® is a large number; T
is the round-trip time between the manufacture and customer; ¢ means the capacity of machine
and vehicle.

Constraints (2.8 g)-(2.8 h) represent that there is no overlap between two batches at any two

stages.

Model 2.9 (Pei et al. 2015)

min C,,qx
s.t. (2.8 a)-(2.8 ¢), (2.8 )-(2.8j)

t1p41 =max{Cuy, t1, + T} b=1,---,N—1 (29 a)
The related notations and constraints of the above model are the same as those of Model

2.8, and the constraint of the starting time ¢, ;4 has changed.

Model 3.1 (Wang and Wang 2014)

OTW +6TADW 4+ 63T ML

s.t. (1.3 a)-(1.3 ¢)
In Wang and Wang (2014), the actual processing time function is py;, = (pi; + at)r®. The

variables d1,d,, 5 > 0 are the given weights.

Model 3.2 (Wang and Wang 2014)

5\ TW + 8, TADW + 6,TML
st (1.3 b)-(1.3 c)

S <1 i=1, myr=1,---,n (3.2 a)

j=1
The related notations and constraints of the above model are the same as those of Model
3.1, where the actual processing time function is py;;,) = (pi; + ot)r.

Constraint (3.2 a) shows the phenomenon that no job is assigned in the position r on machine
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Model 3.3 (Fu et al. 2018)

min Craz, ., T;
s.t. (1.1 a)-(1.1¢)
tir +Dlir) <tiy1, =1, m—1r=1,---,n (3.3a)
tir +Dlir) <tivpr i=1,---,myr=1---,n—1 (3.3b)
Crraz > C; j=1,---,n (3.3 ¢)
C; > C;j i=1,---,mj=1,---|n (3.3d)
t,;>0,Ci; >0 i=1,--- m,j=1,---,n (3.3 ¢e)
In Fu et al. (2018), the related notations and constraints of the above model are defined as
follows.
The actual processing time function is py;;, = (pij + aujti;)r*ia. The parameter C; represents
the completion time of job j on the last machine.

Constraints (3.3 a)-(3.3 b) represent the constraints of the job starting time. Constraints (3.3

¢)-(3.3 d) show the constraints of the job completion time.

Model 3.4 (Niu, Wang, and Yin 2015)

min Cuz, >, C3, 5 W;, TADC, TADW
> i1 (01 By 4 05Ty + 03 Dy)

s.t. (1.1 a)-(1.1¢)

In Niu, Wang, and Yin (2015), the actual processing time function is py;,j = pymaz{r®, p} +

at; the variables 01, 09,05 > 0 are the given weights.

Model 3.5 (Huang, Wang, and Ji 2014)

"WTW +0,TADW

s.t. (1.1 a)-(1.1¢)

In Huang, Wang, and Ji (2014), the actual processing time function is py;,; = p;r% + at; the

variables d;,d, > 0 are the given weights.

Model 3.6 (Yusriski et al. 2016)
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min S (S0 (s + TiyQuy) — 5)Qupy
st S, Qu =n, (3.6 a)

S T Qu + (N —1)s <d, (3.6 b)

tn) + 1T Qp =d, (3.6 ¢)
Q) > 1 and integer, (3.6 d)
1 < N <n and integer, (3.6 )

In Yusriski et al. (2016), the related notations and constraints of the above model are defined
as follows.

The actual processing time function is Tjy = maz{p(l + Zl]\;bQ[g+1])_l"9(“)/l”g(2),p} +
M(Zl]ib T Qusny/a)?; Ty is the bth batch processing time, b=1,---,N; N is the number of
batches; n is the number of jobs; s is the setup time of batch; Q) is the number of jobs in
batch b; d denotes the due date; ¢ is the starting time of bth batch.

The objective function is to minimize the total flow time. Constraints (3.6 b)-(3.6¢) denote

the constraints of due date.

Model 3.7 (Yusriski et al. 2018)
min 37, ({3, (s + T Qu) — s — TiyQp }0:1Qp) + 6211 Q)

s.t. (3.6 a)-(3.6 e)

The related notations and constraints of the above model are the same as those of Model
3.6, where the processing time function 7, is too complex to show in this appendix; §; and
05 denote the unit inventory holding cost for a part in the completed batches and in-process

batches, respectively. The objective function is to minimize the total inventory holding cost.
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Appendix E. Other studies on learning and deteriorating effects
Appendix E.1. Extensions of pure non-linear learning function p;,; = p,;r®

In manufacturing scenarios, it is highly unrealistic that the job processing time drops to zero
precipitously with the increase of already processed jobs. Hence, a truncation parameter of p €
(0,1) was introduced into py;;,] = pi;r®, namely, pj = pi;maz{r®, p} with a <0. This learning
function was usually applied in two-machine flowshop scheduling problems (Li et al. 2011a,
Cheng et al. 2013, Wang et al. 2013). Li et al. (2011a) proposed a B&B algorithm and three SA
algorithms to minimize > C;. Cheng et al. (2013) designed a B&B algorithm and three genetic
algorithms (GAs) to minimize C,,,,. For six general performance criteria, Wang et al. (2013)
proposed SPT, WSPT, and WDSPT algorithms, etc.

Since the part of job processing time is limited by some conditions and it cannot be shorten,
DeJong’s learning function py;,) = p;(M + (1 — M)r®) and some improved functions were pro-
posed in parallel-machine and flowshop environments, as shown in Figure S.1. The parameter
M € ]0,1] denotes the incompressibility factor, that is, the incompressibility of the job process-
ing time. DeJong’s learning function py;,; = p;(M + (1 — M)r*) was applied in parallel-machine
makespan minimization problem (Okotowski and Gawiejnowicz 2010, Hidri and Jemmali 2020).
Then, combining with truncated effect, Amirian and Sahraeian (2014) presented a modified
DeJong’s learning function py;j,) = p;; (M + (1 — M)maz{r®, p}). Amirian and Sahraeian (2016)
further improved the function in consideration of operator’s prior experience and machine-based
learning indicator, see py;j») = pi;(Mi; + (1 — M;;)(p+ (B, +r)%), where B is abstracted from
Stanford-B learning curve (Fogliatto and Anzanello 2011), M;; € [0,1], a; <0, and p+ (B, +
r)* < 1. As Figure S.1 shows, the constraints (AE1-1c)-(AE1-1d) of the proposed Model AE1-1
define the lateness and release date of each job. Regarding algorithms, Okolowski and Gaw-
iejnowicz (2010) proposed two B&B algorithms and two greedy heuristics, while Amirian and
Sahraeian (2016) and Amirian and Sahraeian (2014) designed multi-objective differential evo-
lution (MODES) and multi-objective simulated annealing differential evolution (MO-SADE)
algorithms. In Hidri and Jemmali (2020), two types of heuristic algorithms were proposed based
on dispatching rules with new enhancement methods and exact solutions, respectively.

In the chemical industry, the job processing time can be compressed if extra costs are paid
to increase catalysts (Wang and Cheng 2005). Then, scheduling problems with position- and
resource-based learning effects were studied. As shown in Figure S.2, it is found that the
single-machine and no-wait two-machine flowshop cases are all formulated as common due
date assignment models, see Models AE1-2, AE1-3, AE1-4, and AE1-5. Moreover, all of them
proposed polynomial time algorithms to solve these problems. In the initial research, a linear
pjn®

resource consumption function pj;,; = p;7* — k;u; with 0 <u; < and a convex resource

consumption function p;,y = (% jT'a)" with u; > 0 were proposed (Wang, Wang, and Wang

Uj
2010). In these two functions, u; is the amount of resource allocated to the job j, ; is the

positive compression rate, and o is a positive constant. It is found that py;,) = (p’uj—ra)" with
ij
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Parallel-machine Flowshop
DeJong’ s learning effect Modified DeJong’ s learning effect
- Sahraeian & Amirian Model AE1-1
Okolowski & (2014) Amirian & Sahraeian (2016)
Mf]acxiijnowwz (2010) MinC,,,, ch Min C,,,.,> F;,T,,,.
e, . . truncated P = s.t.(1.3a)-(1.3¢)
o =p(M+(1-M)r . n n K
Py pl( ( )r") lea;m:lg pi(M+(1- M) maxfr’,p}) Z, Ciper 2 Z Cii X1 Pirary * Siper )T Z Yiulic (AE1-1a)
AL: B&B, greedy heuristics etee ¢ lateness ~ = k=
> »| 2. Cirrjr > Cije * Xis1,je Vvt joy + Sivrr ) (AE1-1b)
release |/ =l
Hidri & Jemmali (2020) date | 30(Cpjr -d;% ) = L (AEI-1c)
MinC,,, 3 Cp 2 Ryt 35Oy 51 (AE1-1d)
= a r= =
Py = P;(M+(1-M)r") Piiy = Py (M +(1- My )(p-+ (B, +1)" )
AL: Heuristics AL: MODES AL: MO-SADE

Figure S.1 Models of problems on Delong’s learning effects

a <0 and w;; >0 was popular in no-wait two-machine flowshop scheduling problems (Gao
et al. 2018, Geng, Wang, and Bai 2018, Tian et al. 2018, Liu and Feng 2014, Sun et al. 2018).
Particularly, both Geng, Wang, and Bai (2018) and Tian et al. (2018) took into account total
resource constraints Zle Z?:I I'jju;; <U, where I';; denotes the cost related to the resource

allocation per unit time and U is the upper bound of the resource cost.

Single-machine

“ I No-wait two-machine flowsh i =@ /1)
Py = P K by =" /1) wait two-machine flowshop — p =(pyr" / ;)

Model AE1-2 - Model AE1-3 Model AE1-4 Model AE1-5
Wang et al. (2010a) machine Gao et al. (2018) Geng et al.(2018) Tian et al.(2018)
- - > 7 " :
Min 3,Cy +0,TC+OTADC+0, ) T, ™ Min 30,8, +1 40,040, Y Ty | Min Y @,E;+0,1,+,0) Min 0,Cogs + ,1C +O,TADC,
jovi s 4 i - i j Y3

0,C, T O,TW +0,TADW +0,) T 1, ol il 1,;1 o 0,C, +0,TW +3,TADW
s.4,(112)-(L1¢) s.t.(l.la)-(l.lc) s.t.(1.1a)-(LIc) s.t.(L1a)-(L.1c)
AL: Polynomial time algorithms AL: Polynomial time algorithms AL: l:l)g;:?t;]r?sl fime AL: Polynomial time algorithms|

Figure S.2 Models of problems with non-linear functions considering resource allocation

Appendix E.2. Extensions of linear starting time-dependent functions with fixed
processing time p;;) =p; +at

Actually, the deteriorating function py;;; = p;; (14 vt) with constant number p, v > 0 and deteri-
orating indicator a;; <0 can be regarded as another representation of py;;; = p;; + a;t, which is
common in the flowshop cases. In the context of m-machine flowshop cases, Bank et al. (2012a)
proposed PSO and SA algorithms for minimizing > 7. Besides meta-heuristic algorithms, Bank
et al. (2012b) and Ng et al. (2010) both utilized B&B algorithms to solve two-machine flowshop
scheduling problems, with the objectives to minimize L,,,, and Y w;C}, respectively. In addi-
tion to flowshop scheduling, the total deviation of completion time minimization problems were
solved by heuristic algorithms in the single-machine environment, where deteriorating function

is pj =p;(u+vt;) (Li et al. 2009).




Pei et al.: A Concise Guide to Scheduling with Learning and Deteriorating Effects

s23

Considering the compression of job processing time in realistic situations, two resource-
dependent deteriorating functions py;; = p; + ot — ku; and py) = (%)" + a;t were presented
in single-machine scheduling problems, where o; > 0, 0 > 0. The term u; is the amount of
resource allocated to the job j, and k; is a positive parameter, denoting the workload of job
j. Given the linear function py; = p; + at — ku;, Wei, Wang, and Ji (2012) utilized assignment
models to solve two multi-objective problems. The expressions for objectives are 6,C,,q. +
TC + 0sTADC + 64 ) Tju; and §1Criap + 0TW + 65TADW + 6,y I'ju;. Additionally, in
order to solve scheduling problems with convex function pj;; = (Z—;)" +a;t, Li and Wang (2018)
and Liu et al. (2019) both designed O(nlogn)-time algorithms. The former studied three prob-
lems 1|py) = (51)7 + a;t;|Cnas + 0 Ty, Lpy = (57 + s, Cnaw < C| Ty, and 1py; =
(%)” +a,t;, 3. C; < TC| Y. T u,, where 8 is a given number. The latter addressed two problems
llpy = (:—j)” +at,> T'ju; <U|X and 1|py; = (Z—j)" + at, A < ¢|> T;u;, where U and ¢ is the
upper bound of total resource cost and schedule cost, respectively. The parameter A is a set of
objective functions including Ci.q., > C;, > W;, etc. Given convex function pp;) = (%)" + at,
Liu, Yao, and Jiang (2020) investigated a bi-criteria scheduling problems where the first objec-

tive is to minimize scheduling cost and the second objective is to minimize resource consumption

cost. They proposed common due-date assignment and slack due-date assignment methods.

Appendix E.2. Extensions of learning-deterioration function pj;,} = (p; + a;t)r®

Apart from single-machine cases studied by Ceylan (2014), most papers focused on parallel-
machine scheduling problems in this field. Ceylan (2014) proposed the learning-deterioration
function pp, = p, + (a x C,_1)r®. Additionally, there were three papers on earliness and tardiness
minimization scheduling problems with pp, = (p, +a x C,_1)r® (Toksar1 and Giiner 2008, 2009,
2010). They all proposed mixed non-linear integer programming models considering various
constraints, see Models AE3-1, AE3-2, and AE3-3 in Figure S.3. Specifically, in Models AE3-1
and AE3-3, the constraint C;, = C;,_; + Z?,:l Z?Zl(sj/jxijfrxij,Hl) + pir) shows the actual
job completion time considering sequence-dependent setup times s;/;. This is different from
the constraint Cj. = C;,_1 + pp,) of Model AE3-2. Furthermore, due to the up and down in
machine speed and breakdowns, Arik and Toksari (2018) investigated multi-objective fuzzy
problems with four learning-deterioration functions, i.e., pi) = (p, + a1 x Cp_1)r%, ppy = (pr +
ar X G2 ), py = (pr+ o x Comy ) (L4 3012 ppp)®, and ppy = (p,+ oy x C2,) (14 3077 ppy)“
Thereinto, a; > 0 and @y > 0 are linear and non-linear deteriorating indicator, respectively.
Under the fuzzy environment, they built Model AE3-4 based on the fuzzy setting, and depicted
the relationship among completion time, earliness, tardiness, and due date, see Figure S.3. A

local search algorithm with different solution techniques was designed for these problems.
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