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Appendix A. Basic notations

Table S.1 Mathematical notations used in the learning and deteriorating functions

Notation Description
p The fixed processing time of all jobs
pj The normal processing time of job j
pr The normal processing time of job sequenced in position r
pb The normal processing time of batch b
pij The normal processing time of job j on machine i
pir The normal processing time of job on machine i sequenced in position r on

machine i
pbj The normal processing time of job j in batch b
pgj The normal processing time of job j in group g
pgjr The normal processing time of job j sequenced in position r in group g
p[j] The actual processing time of job j
p[r] The actual processing time of job sequenced in position r
p[b] The actual processing time of batch b
p[ij] The actual processing time of job j on machine i
p[jr] The actual processing time of job j sequenced in position r
p[ir] The actual processing time of job on machine i sequenced in position r
p[br] The actual processing time of batch b sequenced in the rth batch
p[gj] The actual processing time of job j in group g
p[ijr] The actual processing time of job j on machine i sequenced in position r
p[bjr] The actual processing time of job j sequenced in position r in batch b
p[gjr] The actual processing time of job j sequenced in position r in group g
p[gjr1r2] The actual processing time of job j in group g sequenced in the r1th position

in the r2th group
a The common learning indicator
ai The learning indicator of jobs on machine i
aj The learning indicator of job j
aij The learning indicator of job j on machine i
ab The learning indicator of jobs in batch b
ag The learning indicator of jobs in group g
Bb The learning indicator of batch b
Gg The learning indicator of group g
α The common deteriorating indicator
αj The deteriorating indicator of job j
αg The deteriorating indicator of jobs in group g
αij The deteriorating indicator of job j on machine i
αgj The deteriorating indicator of job j in group g
t The starting time of the job
t0 The initial time that a set of jobs is available for processing
tj The starting time of job j
tr The starting time of job sequenced in position r
tij The starting time of job j on machine i
M The incompressibility factor
Mij The incompressibility factor of job j on machine i
uj The amount of resource allocated to job j
uij The amount of resource allocated to job j on machine i
ugj The amount of resource allocated to job j in group g
κj The positive compression rate of job j
κij The positive compression rate of job j on machine i
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Notation Description
κgj The positive compression rate of job j in group g
σ The positive constant
ρ The truncation parameter

Table S.2 Mathematical notations used in the objective functions

Notation Description
wj, wr The job weight
Γj The per time unit cost associated with the resource allocation
Cj, Cr, Cgj The job completion time
Tj, Tr, Tij The job tardiness
dj, Dr The job due date
Rj, Rr The job release date
Wj The job waiting time
Lj The job lateness
Ej The job earliness
Cmax The makespan
Ci

max The load of machine i which can be expressed as ‘TML’
Tmax The maximum tardinesss
Emax The maximum earliness
Lmax The maximum lateness∑

Cj,
∑

Cgj The total completion time which can be expressed as ‘TC’∑
C2

j The sum of quadratic job completion time∑
Cδ

j The sum of the δ power of job completion time∑
Ci

max The total machine load∑
wjCj The total weighted completion time∑
wj(1− e−γCj ) The discounted total weighted completion time, where γ ∈ {0,1} is a

discount factor∑
Tj The total tardiness∑
Ej The total earliness∑
Fj The total flow time∑
Uj The number of tardy jobs∑
Wj The total waiting times which can be expressed as ‘TW’∑
Γjuj The total time cost associated with the resource allocation
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Appendix B. Abbreviations

Table S.3 The abbreviations

Abbreviations Explanations

B&B Branch-and-bound

DP Dynamic programming

GAs Genetic algorithms

SA Simulated annealing

SPT The shortest processing time first

ARB Any busy schedule

WSPT The weighted shortest processing time first

WDSPT The weighted discounted shortest processing time first

EDD The earliest due date

ERD The earliest ready date

RS Random search

TS Tabu search

MODES Multi-objective differential evolution algorithms

MO-SADE Multi-objective simulated annealing differential evolution

PSO Particle swarm optimization

CSA Cloud theory based simulated annealing

BBNP Bounds-based nested partition

GSA Gravitational search algorithm

VNS Variable neighborhood search

CS Cuckoo search

GSA-TS Hybrid gravitational search algorithm and tabu search

VNS-GSA Hybrid variable neighborhood search and gravitational search algorithm

QDE Quantum differential evolutionary

CS-SADE Cuckoo search and self-adaptive differential evolution

TADC The total deviation of completion times

SDR The smallest deterioration rate first

FPTAS Fully polynomial-time approximation schemes

MVO Multi-verse optimizer

H-DP Hybrid algorithm combining heuristic with dynamic programming

ABC-TS Artificial bee colony and tabu search

ABC Artificial bee colony

BA Bat algorithm

DE Differential evolutionary
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Abbreviations Explanations

WSDR The weighted smallest deterioration rate first

SC-VNS Society and civilization algorithm with variable neighborhood search

SC Society and civilization

BRKGA-DE Biased random-key genetic algorithm and differential evolutionary

BRKGA Biased random-key genetic algorithm

VNS–ASHLO Variable neighborhood search and adaptive simplified human learning
optimization

ASHLO Adaptive simplified human learning optimization

p-s-d Past-sequence-dependent
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Appendix C. Complexity of problems

Table S.4 complexity

Problem complexity paper
1|p[j] = pj − ajmin{nj, n0j}|Lmax NP-hard Cheng and Wang

(2000)
1|p[jr] = pj − ajr|Cmax O(n logn)

Bachman and
Janiak (2004)

1|p[jr] = pj − ar|Cmax O(n logn)
1|Rj, p[jr] = pj − ajr|Cmax NP-hard
1|p[jr] = pjr

a|Cmax O(n logn)
1|Rj, p[jr] = pjr

a|Cmax NP-hard

F |p[ijr] = pij(µ− νr)|
∑

wjCj NP-complete Sun et al. (2013)

1|p[jr] = pjr
a|
∑

Cj O(n logn)
Biskup (1999)

1|p[jr] = pjr
a|
∑

(δ1Ej + δ2Tj + δ3Cj) O(n3)

1|p[jr] = pjr
a|δ1

∑
Cj + δ2Tj NP-hard Eren and Güner

(2007)

P2|p[jr] = pjr
a|
∑

Cj O(n4) Mosheiov (2001)

Pm|p[ijr] = pijr
a|Lmax NP-hard Xu, Yin, and Li

(2010)

F2|p[ijr] = pijr
a|δ1

∑
Cj + δ2Cmax NP-hard

Eren and Güner
(2008);

Fm|Rj, p[ijr] = pijf(r)|Cmax,
∑

Cj,
∑

C2
j NP-hard Bai et al. (2018)

Fm,hik|Rj, p[ijr] =

pijr
ai |

∑n

j=1 πjTj +
∑m

i=1

∑K

k=1 θik(FMik −EMik)

NP-hard Vahedi Nouri,
Fattahi, and
Ramezanian (2013)

Fm|p[ijr] = pijr
a|Cmax, TEC - Xin et al. (2021)

F2|p[ijr] =

(
pijr

a

uij
)σ|

∑
(δ1Ej +δ2Tj +δ3d)+δ4

∑2

i=1

∑n

j=1 Γijuij

O(n3) Gao et al. (2018)

F2|p[ijr] = pijmax{ra, ρ}|
∑

Cj NP-complete Li et al. (2011a)

Pm|p[jr] = pj(M + (1−M)ra)|Cmax NP-hard
Okolowski and
Gawiejnowicz (2010)

1|p[jr] = pj(1 +
∑r−1

l=1 p[l])
a|
∑

Cj O(nlogn) Kuo and Yang
(2006)

1|p[jr] =

pj(1 +
∑r−1

l=1 p[l])
a|Cmax,

∑
Cj,

∑
C2

j ,
∑

wjCj,Lmax

- Wang (2008)

Fm|ph[ijr] = phij(1 +
∑r−1

l=1 p
h
i[l])

a|
∑

Tj NP-hard Lin et al. (2017)
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Problem complexity paper

Fm|p[ijr] = pij(1 +
∑r−1

l=1 pi[l])
a|
∑

Cj NP-hard Wu et al. (2018)

F2|p[jr] = pj(1−
∑r−1

l=1
p[l]∑n

l=1 pl
)a|Cmax,

∑
Cj

O(nlogn) Koulamas and
Kyparisis (2007)

1|pX[jr] = pXj (1−
∑r−1

l=1
p[l]∑n

l=1 pl
)a|

∑
wX

j CX
j :CA

max ≤ V NP-hard Wu (2014)

1|p[jr] = pj(1−
∑r−1

l=1
p[l]∑n

l=1 pl
)a|

∑
Cj

NP-hard Wu, Hsu, and Lai
(2011)

1|p[jr] =

pj(µa
∑r−1

l=1
p[l] + ν)|Cmax,

∑
Cθ

j ,
∑

wjCj,Lmax

- Wang, Sun, and Sun
(2010)

1|pjr = pj(µa
−

∑r−1
l=1

p[l]∑n
l=1

pl +
ν)|

∑
Lj,

∑
Tj,

∑
wjCj,

∑
wj(1− e−γCj ),Lmax

- Ma, Shao, and
Wang (2014)

Fm|p[ijr] = pij(µa
∑r−1

l=1
pi[l] + ν)|

∑
[µ(Mi)τc(Mi) +

kµ(Mi)τd(Mi)]

NP-complete Liu, Shi, and Shi
(2018)

1|p[jr] = pj(1 +
∑r−1

l=1
p[l]∑n

l=1 pl
)a1ra2 |Cmax,

∑
Cj,

∑
wjCj P Wu and Lee (2008)

1|p[jr] =

pj(1−
∑r−1

l=1
p[l]∑n

l=1 pl
)a1ra2 |Cmax,

∑
Cj,

∑
wjCj,Lmax

P

Cheng, Wu, and Lee
(2008)

Fm|p[ijr] = pj(1−
∑r−1

l=1
pi[l]∑n

l=1 pil
)a1ra2 |Cmax,

∑
Cj

P

1|pjr = pj(1−
∑r−1

l=1
p[l]∑n

l=1 pl
)a1ar−1

2 |
∑

Cj,
∑

wjCj
P

Low and Lin (2011)

1|p[jr] = pj(µa
∑r−1

l=1
wlp[l]

1 +
ν)ar−1

2 |Cmax,
∑

Cj,
∑

wjCj,
∑

Cθ
j ,Lmax

P Bai, Wang, and
Wang (2012)

Fm|p[ijr] = pij(µa
∑r−1

l=1
pi[l]

1 + ν)ar−1
2 |Lmax

NP-complete He (2016)

1|b,Tno, p[bjr] = pbjr
ab |Cmax O(nlogn)

Yang and Kuo
(2009)1|b,Tpart, p[br] = p

Bb
b |Cmax O(nlogn+N 3)

1|b,Ttotal, p[bjr] = pbj(r+
∑b−1

l=1 nl)
ab |Cmax O(nlogn+N 3)

1|s− batch, p[jr] = (pj − τj)r
a|Cmax - Pei et al. (2018)

1|s− batch, p[jr] = pjr
a|Emax,

∑
Uj O(nlogn)

Pei et al. (2019a)
P |s− batch, p[jr] = pjr

a|Emax,
∑

Uj -

Fm|g, prmu,p[gjr1r2] = pgjr
a1
1 ra22 |Cmax P

Qin, Zhang, and Bai
(2016)

Fm|g, prmu,p[gjr1r2] =
pgjr

a1
1 ra22 |

∑
Cgj,

∑
wgCgj,Lmax

NP-hard
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Problem complexity paper
1|g, p[gjr1r2] =

(
pgjr

a1
1 r

a2
2

ugj
)σ|δ1Cmax + δ2

∑Q

g=1

∑ng

j=1 Γgjugj

O(n3)

Zhu et al. (2011)
1|g, p[gjr1r2] =

pgjr
a1
1 ra22 −κgjugj|δ1Cmax + δ2

∑Q

g=1

∑ng

j=1 Γgjugj

O(nlogn)

1|g, p[gjr1r2] = (
pgjr

a1
1 r

a2
2

ugj
)σ|δ1

∑Q

g=1

∑ng

j=1Cgj +

δ2
∑Q

g=1

∑ng

j=1 Γgjugj

O(n3)

1|g, p[gjr1r2] = pgjr
a1
1 ra22 −

κgjugj|δ1
∑Q

g=1

∑ng

j=1Cgj + δ2
∑Q

g=1

∑ng

j=1 Γgjugj

O(n3)

1|g, prmu,p[gjr1r2] =

(
pgjr

a1
1 r

a2
2

ugj
)σ,

∑Q

g=1

∑ng

j=1 Γgjugj ≤U |Cmax

NP-hard
Lu et al. (2017)

1|g, p[gjr1r2] =

pgjr
a1log2(1−τ)a
1 r

a2log2(1−τ)a
2 |δ1Cmax + δ2k(τ)

O(n3)
Huo, Ning, and Sun
(2018)

1|g, p[gjr1r2] = pgjr
a1log2(1−τ)a
1 r

a2log2(1−τ)a
2 , ng =

n̄|δ1Cgj + δ2k(τ)

O(n3)

1|p− batch, p[b] = max
Jj∈batchb

{pj −min{atb, ρ}}|Cmax P

Liu et al. (2020)
Pm|p− batch, p[b] =

max
Jj∈batchb

{pj −min{atb, ρ}}|Cmax
NP-hard

1|g, s− indep, p[gjr] = pgj(1 +
∑r−1

l=1 pg[l])
ag |Cmax O(nlogn)

Kuo (2012)1|g, s− dep, p[gjr] = pgj(1 +
∑r−1

l=1 pg[l])
ag |Cmax O(Q3+nlogn)

1|g, s− indep, p[gjr] = pgj(1 +
∑r−1

l=1 pg[l])
ag |

∑
Cj P

1|g, s− dep, p[gjr] = pgj(1 +
∑r−1

l=1 pg[l])
ag |

∑
Cj P

1|g, p[gjr] =

pgj(1−
∑r2−1

g=1 s[g]+
∑r2−1

g=1

∑ng
j=1 p[g][j]∑Q

g=1 sg+
∑Q

g=1

∑ng
j=1 pgj

)a|Cmax

P
Liu, Lee, and Wu
(2008)

1|g, p[gjr1] =

pgjf1g(
∑r1−1

l=1 pg[l])f2g(r1)|Cmax,
∑

Cgj,
∑

wgjCgj,∑
wgj(1− e−γCgj )

O(nlogn) Yin et al. (2013)

1|g, p[gjr1r2] =

pgj(1−
∑r1−1

l=1
pg[l]∑ng

l=1
pgl

)a1a2
r2−1|Cmax,

∑
Cgj

O(nlogn) Low and Lin (2012)

1|p[j] =
αjt|Cmax,

∑
Fj,

∑
wjCj,

∑
Lj,Lmax, Tmax,

∑
Uj

P Mosheiov (1994)

1|Rj = t0, qj, p[j] = αjt|Vmax,max wjVj,
∑

wjVj(Vj

is delivery completion time of job j)
O(nlogn)

Zou (2014)
1|Rj, qj, p[j] = αjt|Vmax NP-hard

1|p[j] = αjt|
∑

wjW
θ
j P

Wang and Wang
(2015)

1|p[j] = αjt|
∑

wjW
2
j O(nlogn)

1|weakchains, p[j] = αjt|
∑

wjW
θ
j O(nlogn)

1|strongchains, p[j] = αjt|
∑

wjW
θ
j P

1|sp− digraph, p[j] = αjt|
∑

wjW
θ
j O(n2)
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Problem complexity paper
Pm|p[j] = αjtj|Cmax,

∑
Lj,

∑
Cj NP-hard Ji and Cheng (2009)

Pm|p[j] = αjt|Cmax(S) +
∑

S̄ ej NP-hard
Li and Yuan (2010)

Pm|p[j] = αjt, rj = t0|
∑

wjCj +
∑

S̄ ej NP-hard

Fm|p[ij] = αijt|Cmax NP-complete
Mosheiov (2002)

Om|p[ij] = αijt|Cmax NP-complete
Jm|p[ij] = αijt|Cmax NP-hard

F2|p[ij] = αit, type− 1chains|Cmax P Zhao and Tang
(2012)F2|p[ij] = αit, type− 2chains|Cmax NP-hard

F2|p[ij] = αijt|
∑

Cj :Cmax P Cheng et al. (2014)

1|p[j] = pj +αjt|Lmax NP-complete Bachman and
Janiak (2000)

1|p[j] = pj +αjtj|
∑

wjCj NP-hard Bachman, Janiak,
and Kovalyov (2002)

1|p[j] = pj +αtj, p[j] =
λpj +α(tj −Cr −A)|Cmax,

∑
Cj

O(n2logn) Sun and Geng
(2019)

Rm|p[ijr] = pij +αitir, nr,ma|
∑

Cj,
∑

Ci
max O(n2m+2) Hsu et al. (2013)

Pm|p[j] = pj +αjηj|Cmax NP-hard Woo and Kim
(2018)

F |prmu,p[ij] = pij +αijt|
∑

max{Cj − dj,0} NP-hard Wang, Huang, and
Wang (2019)

Fm|prmu,p[ij] = pij(µ+ νt)|
∑

Tj NP-hard Bank et al. (2012a)

Fm|prmu,p[ij] = pij(µ+ νt)|
∑

Tj NP-hard Bank et al. (2012b)

F2|p[ij] = pij(µ+ νt)|
∑

Cj NP-hard Ng et al. (2010)

1|p[j] = pj +αjt−κuj|δ1Cmax + δ2TC+
δ3TADC + δ4

∑
Γjuj

O(n3) Wei, Wang, and Ji
(2012)

1|p[j] = pj +αjt−κuj|δ1Cmax + δ2TW +
δ3TADW + δ4

∑
Γjuj

-

1|p[j] = (
κj

uj
)σ +αjtj|Cmax + θ

∑
Γjuj O(nlogn)

Li and Wang (2018)1|p[j] = (
κj

uj
)σ +αjtj,Cmax ≤ Ĉj|

∑
Γjuj O(nlogn)

1|p[j] = (
κj

uj
)σ +αjtj,

∑
Cj ≤ ˆTC|

∑
Γjuj O(nlogn)

1|p[jr] =

pj(1 +
∑r−1

l=1 logp[l])
a|Cmax,

∑
Cj,

∑
C2

j ,
∑

Tj,Lmax

P Cheng, Lee, and Wu
(2011)

Rm|p[ijr] = pijfij(r),ma|TC O(nm+k+2)(k is
the upper bound
of the total
maintenance
frequencies)

Yang (2013)
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Pm|p[ijr] = pijfij(r),ma|TC O(nm+klogn)

1|p[gjr] = pgj(1 +α)r−1,DRMs|Cmax O(n4)
Zhang et al. (2018)

1|p[gjr] = pgj(1 +α)r−1,DRM |Cmax O(n2logn)
Pm|p[gijr] = pgij(1 +α)r−1,DRMs|Cmax NP-hard

1|p[jr] =

pjf(r)−κjuj|
∑V

v=1

∑
j∈Vv

(δ1Ej +δ2Tj +δ3Dv +Γjuj)

O(n3)
Yang, Lee, and Guo
(2013)

1|p[jr] =

(
pjf(r)

uj
)σ|

∑V

v=1

∑
j∈Vv

(δ1Ej + δ2Tj + δ3Dv + Γjuj)

O(nlogn)

1|p− batch, p[j] = αjt,Rj, α =∞|Cmax O(nlogn)
Li et al. (2011b)1|p− batch, p[j] = αjt,Rj, α < n|Cmax NP-hard

1|p− batch, p[j] = αjt|Cmax +W NP-hard Kong et al. (2020b)

M →C|s− batch, p[j] = αjt, buffer|Cmax -
Pei et al. (2015)

M →C|s− batch, p[j] = αjt|Cmax -

1|s− batch, p[j] = αjt, ssd|Cmax O(nlogn)
Pei et al. (2017)1|s− batch, p[j] = αjt, ssd|Emax O(n2logn)

1|s− batch, p[j] = αjt, ssd|
∑

Uj O(n2logn)

P |s− batch, p[j] = pj +αt−κuj|Cmax NP-hard Pei et al. (2019b)

1|g, p[j] = αjt|
∑

wjUj NP-hard Lee and Lu (2012)

1|g, p[gj] = αgjt|
∑

wgjCgj, fmax P Wang and Liu
(2014)

1|g, p[gj] = pgj +αgjt|Cmax P
Lee and Wu (2010)

1|g, p[gj] = pgj −αgjt|Cmax P

1|g, p[gj] = pgj(µ+ νt)|Cmax,
∑

wgjCgj P Wang, Lin, and
Shan (2008)

1|p[jr] =
αjtr

a|Cmax,
∑

Fj,
∑

wjFj,
∑

Lj,Lmax,
∑

Uj

-
Lee (2004)

1|p[jr] =
(p+αjt)r

a|Cmax,
∑

Fj,
∑

wjFj,
∑

Lj,Lmax,
∑

Uj

-

1|p[jr] = αj(µ+
νt)ra|Cmax,

∑
Cj,

∑
CS.4

j ,
∑

wjCj,Lmax,
∑

Uj

- Wang, Jiang, and
Wang (2009)

Rm|p[ijr] = (pij +αt)ra|δ1TC + δ2TADC + δ3TML O(nm+2)
Wang and Wang
(2014)

Rm|p[ijr] =
(pij +αt)ra|δ1TW + δ2TADW + δ3TML

O(nm+2)

F |p[ijr] = (pij +αijtij)r
aij |Cmax,

∑
Tj NP-hard Fu et al. (2018)
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Problem complexity paper
1|p[jr] =
pj(f(t) +βra)|Cmax,

∑
Cj,

∑
C2

j ,
∑

wjCj,Lmax

P Wang (2007)

1|p[jr] = pjmax{raj , ρ}+
αt|Cmax,

∑
Cj,

∑
Wj, TADC,TADW,

∑
(δ1Ej +

δ2Tj + δ3dj)

O(nlogn) Niu, Wang, and Yin
(2015)

Pm|p[jr] = pjr
aj +αt|δ1TC + δ2TADC O(nm+2) Huang, Wang, and

Ji (2014)Pm|p[jr] = pjr
aj +αt|δ1TW + δ2TADW P

Pm|p[jr] = pj(M + (1−M)ra) +αt|Cmax,
∑

Cj P,NP-hard Ji et al. (2016)

1|p[jr] = pj(1 +∑r−1

l=1 p[l])
αra|Cmax,

∑
Cj,

∑
C2

j ,
∑

wjCj,Lmax

P Sun (2009)

1|p[jr] =

pj(1 +
∑r−1

l=1 logp[l])
αra|Cmax,

∑
Cj,

∑
C2

j ,
∑

wjCj,∑
Tj,Lmax

P
Cheng, Lee, and Wu
(2010)

1|p[jr] = pj(
p+

∑r−1
l=1

p[l]
p+

∑n
l=1 pl

)αra|Cmax,
∑

Cj,
∑

Cθ
j ,∑

wjCj,
∑

Uj,Lmax

P Yin et al. (2010)

Pm|PM,p− batch, p[ijr1r2] = pjr
a
1 +αit|Cmax - Kong et al. (2020a)

1|s− batch, p[ijr] =

pj(1 +
∑r−1

l=1

∑n

φ=1 pφxi[φ][l])
αra|Cmax NP-hard Pei et al. (2021)

1|g, p[gjr] = pgj(µ1G
r−1
g + ν1)(µ2t+ ν2),

∑
ug ≤

U |Cmax

O(nlogn)
Huang, Wang, and
Wang (2011)

1|g, p[gjr] = pgj(µ1G
r−1
g + ν1)(µ2t+ ν2),Cmax ≤

V |
∑

ug

max{O(nlogn,
O(ng(n)))}

1|g, pgjr = (pgj +αgt)r
a|Cmax,

∑
Cj O(nlogn) He and Sun (2015)

1|s− batch, g, p[gjr] = pgjmax{rag , ρ}+αt,Rg =
t0|Cmax

O(nlogn)
Fan et al. (2018)

1|s− batch, g, p[gjr] = pgjmax{rag , ρ}+αt,Rg|Cmax -
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Appendix D. Scheduling models

Model 1.1 (Biskup 1999)

min
∑

(δ1Ej + δ2Tj + δ3Cj)

s.t.
∑n

j=1 xjr = 1, r = 1, · · · , n, (1.1 a)∑n

r=1 xjr = 1, j = 1, · · · , n, (1.1 b)

xjr ∈ {0,1}, j, r = 1, · · · , n, (1.1 c)

In Biskup (1999), the related notations and constraints of the above model are defined as

follows.

The actual processing time function is p[jr] = pjr
a; the equation xjr = 1 indicates that job j

is scheduled in position r, and xjr = 0 otherwise; δ1, δ2, and δ3 are the per time unit penalties

for the earliness, the tardiness and the completion time.

Constraint (1.1 a) represents that only one job can be scheduled in position r. Constraint

(1.1 b) represents that each job can be scheduled only once.

Model 1.2 (Eren and Güner 2007)

min δ1
∑

Cr + δ2
∑

Tr

s.t. (1.1 a)-(1.1 c)

p′[jr] =
∑n

j=1 xjrp[jr], r = 1, · · · , n, (1.2 a)

Dr =
∑n

j=1 xjrdj, r = 1, · · · , n, (1.2 b)

Cr ≥Cr−1 + p′[jr], r = 1, · · · , n, (1.2 c)

Tr ≥Cr −Dr, r = 1, · · · , n, (1.2 d)

In Eren and Güner (2007), the related notations and constraints of the above model are

defined as follows.

The actual processing time function is p[jr] = pjr
a; δ1 and δ2 are the weights.

Constraints (1.2 b)-(1.2 d) represent the constraints of the due date, the completion time,

and the tardiness of job sequenced in position r.

Model 1.3 (Mosheiov 2001)

min
∑

Cj

s.t.
∑n

j=1 xijr = 1, i= 1, · · · ,m, r = 1, · · · , ni, (1.3 a)∑m

i=1

∑ni
r=1 xijr = 1, j = 1, · · · , n, (1.3 b)

xijr ∈ {0,1}, i= 1, · · · ,m, j = 1, · · · , n, r = 1, · · · , ni, (1.3 c)

In Mosheiov (2001), the related notations and constraints of the above model are defined as

follows.
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The actual processing time function is p[ijr] = pijr
a; the equation xijr = 1 represents that

job j is scheduled on machine i in position r, and xjr = 0 otherwise; ni is the number of jobs

scheduled on machine i.

Constraint (1.3 a) represents that only one job can be scheduled on machine i in position r.

Constraint (1.3 b) represents that each job can be scheduled only once.

Model 1.4 (Xu, Yin, and Li 2010)

min Lmax

s.t. (1.3 a)-(1.3 c)

p′[ijr] =
∑n

j=1 xijrp[ijr], i= 1, · · · ,m, r = 1, · · · , ni, (1.4 a)

Dir =
∑n

j=1 xijrdij, i= 1, · · · ,m, r = 1, · · · , ni, (1.4 b)

Cir ≥Ci,r−1 + p′[ijr], i= 1, · · · ,m, r = 1, · · · , ni, (1.4 c)

Lmax ≥Cir −Dir, i= 1, · · · ,m, r = 1, · · · , ni, (1.4 d)

In Xu, Yin, and Li (2010), the related notations and constraints of the above model are

defined as follows.

The actual processing time function is p[ijr] = pijr
a.

Constraint (1.4 b) represents the due date of job j on machine i in position r. Constraints

(1.4 c)-(1.4 d) represent the constraints of the completion time and the maximum lateness,

respectively.

Model 1.5 (Eren and Güner 2008)

min δ1
∑

Cr + δ2Cmax

s.t. (1.1 a)-(1.1 c)

Ar =
∑n

j=1 xjrp[1jr], r = 1, · · · , n, (1.5 a)

Br =
∑n

j=1 xjrp[2jr], r = 1, · · · , n, (1.5 b)

Cmax =
∑n

r=1Xr +
∑n

r=1Br, (1.5 c)

Xr = tr +Ar +Yr −Cr−1, r = 1, · · · , n, (1.5 d)

tr ≥ tr−1 +Ar−1, r = 1, · · · , n, (1.5 e)

In Eren and Güner (2008), the related notations and constraints of the above model are

defined as follows.

The actual processing time function is p[ijr] = pijr
a; p1j and p2j are the normal processing

time of job j on the first machine and the second machine, respectively; δ1 and δ2 are the

weights; Xr is the idle time on the second machine for job in position r; Yr is the duration

between the completion time of job in position r at the first machine and its starting time at

the second machine.
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Constraints (1.5 a)-(1.5 b) represent the actual processing time of job j in position r on the

first machine and the second machine, respectively. Constraint (1.5 c) denotes the makespan.

Constraint (1.5 d) denotes the idel time on the second machine for the job in position r.

Constraint (1.5 e) represents the constraint of the job starting time on the first machine.

Model 1.6 (Bai et al. 2018)

min Cmax,
∑

Cj,
∑

C2
j

s.t. (1.1 a)-(1.1 c)

Rj +
∑n

r=1 xjrp[1jr] ≤C1j, j = 1, · · · , n, (1.6 a)

Cir −Ci−1,r ≥
∑n

j=1 xjrp[ijr], i= 1, · · · ,m+ 1, r = 1, · · · , n, (1.6 b)

Cir −Ci,r−1 ≥
∑n

j=1 xjrp[ijr], i= 1, · · · ,m, r = 1, · · · , n+ 1, (1.6 c)

Rj ≥ 0, pij ≥ 0,Cij ≥ 0, i= 1, · · · ,m, j, r = 1, · · · , n, (1.6 d)

In Bai et al. (2018), the related notations and constraints of the above model are defined as

follows.

The actual processing time function is p[ijr] = pijf(r), f : [1,+∞)→ (0,1] is a non-increasing

function with 0< f(1)≤ 1 and f(r)≥ f(r+ 1).

Constraints (1.6 a)-(1.6 c) denotes the constraints of the job completion time.

Model 1.7 (Vahedi Nouri, Fattahi, and Ramezanian 2013)

min
∑n

j=1 πjTj +
∑m

i=1

∑K

k=1 θik(FMik −EMik)

s.t. (1.3 a), (1.3 c)∑n

r=1 xijr = 1, ∀i, ∀j (1.7 a)∑n

j=1Cij,r+1 ≥
∑n

j=1Cijr +
∑n

j=1 xij,r+1p[ij,r+1], r = 1, · · · , n− 1, ∀i (1.7 b)∑n

r=1Cijr −
∑n

r=1 xijrp[ijr] −FMik + zijkϕ≥ 0, ∀i,∀j,∀k (1.7 c)

FMik − tik −
∑n

r=1Cijr + (1− zijk)ϕ≥ 0 ∀i,∀j,∀k (1.7 d)

EMik ≤ FMik ≤ ϕMik, ∀i,∀k (1.7 e)∑n

r=1Ci+1,jr ≥
∑n

r=1Cijr +
∑n

j=1 xi+1,jrp[i+1,jr], i= 1, · · · ,m− 1, ∀j (1.7 f)∑n

r=1C1jr ≥Rj +
∑n

j=1 x1jrp[1jr], ∀j (1.7 g)

Cijr ≤ ϕxijr ∀i,∀j,∀r (1.7 h)

Tj ≥
∑n

r=1Cmjr − dj, ∀j (1.7 i)

In Vahedi Nouri, Fattahi, and Ramezanian (2013), the related notations and constraints of

the above model are defined as follows.

The actual processing time function is p[ijr] = pijr
ai ; ϕ is a large positive number; K is the

number of maintenance activities; tik is the execution time of the kth maintenance activity



Pei et al.: A Concise Guide to Scheduling with Learning and Deteriorating Effects
s14

PMik; yikr is the binary parameter, yikr = 1 if PMik is performed on machine i after the

processing of rth job in the sequence, and yikr = 0 otherwise.

Constraints (1.7 b)-(1.7h) denote the constraints of the job completion time in consideration

of learning effects, maintenance activities, and the release dates. Constraint (1.7 e) denotes the

tardiness of job j.

Model 1.8 (Zhu et al. 2011)

min δ1Cmax + δ2
∑Q

g=1

∑ng

j=1 Γgjugj

δ1
∑Q

g=1

∑ng

j=1Cgj + δ2
∑Q

g=1

∑ng

j=1 Γgjugj

s.t.
∑Q

r2=1 xgr2 = 1, g = 1, · · · ,Q, (1.8 a)∑Q

g=1 xgr2 = 1, r2 = 1, · · · ,Q, (1.8 b)

xgr2 ∈ {0,1}, g, r2 = 1, · · · ,Q, (1.8 c)

In Zhu et al. (2011), the related notations and constraints of the above model are defined as

follows.

The actual processing time functions are p[gjr1r2] = (
pgjr

a1
1 r

a2
2

ugj
)σ and p[gjr1r2] = pgjr

a1
1 ra22 −

κgjugj; r1 is the position of job j scheduled in group g; r2 is the position of group g; Q is the

number of groups; the equation xgr2 = 1 indicates that group g is scheduled in position r2, and

xgr2 = 0 otherwise.

Constraint (1.8 a) represents that each group can be scheduled only once. Constraint (1.8 b)

represents that only one group can be scheduled in position r2.

Model 1.9 (Lu et al. 2017)

min Cmax|
∑Q

g=1

∑ng

j=1 ugj ≤U

s.t. (1.8 a)-(1.8 c)

In Lu et al. (2017), the related notations and constraints of the above model are defined as

follows.

The actual processing time function is p[gjr1r2] = (
pgjr

a1
1 r

a2
2

ugj
)σ; U > 0 is given and denotes the

total available resource.

Model 1.10 (Huo, Ning, and Sun 2018)

min δ1Cmax + δ2k(τ)

δ1
∑Q

g=1

∑ng

j=1Cgj + δ2k(τ)

s.t. (1.8 a)-(1.8 c)

In Huo, Ning, and Sun (2018), the related notations and constraints of the above model are

defined as follows.

p[gjr1r2] = pgjr
a1log2(1−τ)a
1 r

a2log2(1−τ)a
2 ; 0 ≤ τ < 1 is the percentage reduction of standard learn-

ing indicator a; k(τ) shows the investment cost.
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Model 2.1 (Cheng et al. 2014)

min
∑n

r=1C2r

s.t. (1.1 a)-(1.1 c)

C1r =C1,r−1(1 +
∑n

j=1 xjrα1j) 1 ≤ r≤ n (2.1 a)

C2r ≥C1r(1 +
∑n

j=1 xjrα2j) 1 ≤ r≤ n (2.1 b)

C2r ≥C2,r−1(1 +
∑n

j=1 xjrα2j) 1≤ r≤ n (2.1 c)

CM
max ≥C2,n (2.1 d)

Ci,r ≥ 1,C1,0 =C2,0 = 1 i= 1,2,1≤ j ≤ n (2.1 e)

In Cheng et al. (2014), the related notations and constraints of the above model are defined

as follows.

The actual processing time function is p[ij] = αijt; Cir denotes the completion time of job in

the position r on machine i; CM
max denotes the optimal value of the makespan of Mosheiov’s

algorithm (Mosheiov 2002); α1j and α2j represent the deteriorating indicators of job j on

machine 1 and machine 2, respectively.

Constraints (2.1 a)-(2.1c) represent the constraints of the completion time of job j in position

r on machine 1 and machine 2. Constraint (2.1d) denotes the constraint of makespan.

Model 2.2 (Hsu et al. 2013)

min
∑

Cj,
∑

Ci
max

s.t. (1.3 a)-(1.3 c)

In Hsu et al. (2013), the actual processing time functions are p[ijr] = pijr
αij , p[ijr] = pij +αitjr,

and p[ijr] = pij +αijr.

Model 2.3 (Woo and Kim 2018)

min Cmax

s.t.
∑
j′∈J

∑
k∈K

xj′jk = 1 ∀j ∈ J (2.3 a)

∑
j′∈J
j ̸=j′

xj′jk ≤
∑
j′∈J

xjj′k ∀j ∈ J,∀k ∈K (2.3 b)

∑
j∈J

xj′jk ≤ 1 ∀k ∈K (2.3 c)
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∑
i∈I

yik ≤ 1 ∀k ∈K (2.3 d)

(1 +αj)ηj + pj − ηj′ ≤ π(1−
∑
k∈K

xj′jk) ∀j, j′ ∈ J, j = j′ (2.3 e)

Cik ≤ πyik ∀i∈ I,∀k ∈K (2.3 f)

(1 +αj)ηj + pj −
∑
i∈I

Cik ≤ π(1−
∑
j′∈J

xj′jk) ∀j ∈ J,∀k ∈K (2.3 g)

∑
k∈K

Cik + γ(
∑
k∈K

yik − 1)≤Ci ∀i∈ I (2.3 h)

Ci ≤Cmax ∀i∈ I (2.3 i)

Cmax ≥ 0,Ci ≥ 0,Cik ≥ 0, ηj ≥ 0 ∀j, j′ ∈ J,∀i∈ I,∀k ∈K (2.3 j)

xjj′k ∈ {0,1}, yik ∈ {0,1} ∀j, j′ ∈ J,∀k ∈K (2.3 k)

In Woo and Kim (2018), the related notations and constraints of the above model are defined

as follows.

The actual processing time function is p[j] = pj + αjηj; ηj is the gap between the starting

time of job j and a recent rate-modifying activity; J denotes a set of jobs; I denotes a set of

machines; K denotes a set of buckets; xj′jk = 1 if job j′ precedes job j in bucket k, and xj′jk = 0

otherwise; yik = 1 represents that bucket k is processed in machine i, and yik = 0 otherwise.

Constraints (2.3 a)-(2.3 c) represent the rules of the job assignment. Constraint (2.3d) shows

the assignment of the bucket. Constraint (2.3e) denotes the precedence relationship of jobs.

Constraints (2.3f)-(2.3 g) show the completion time of a potential bucket. Constraints (2.3

h)-(2.3 i) denote the constraints of each machine.

Model 2.4 (Wang, Huang, and Wang 2019)

min
∑

Tj

s.t. tij + p[ij] ≤ ti+1,j i= 1, · · · ,m− 1, j = 1, · · · , n (2.4 a)

tij′ + p[ij′] ≤ tij +ϕ× (1−xj′j) i= 1, · · · ,m, j, j′ = 1, · · · , n, j ̸= j′ (2.4 b)

xj′j +xjj′ ≤ 1 i= 1, · · · ,m, j, j′ = 1, · · · , n, j ̸= j′ (2.4 c)

Cij ≥ 0, tij ≥ 0 i= 1, · · · ,m, j = 1, · · · , n (2.4 d)

xj′j ∈ {0,1} j′, j = 1, · · · , n (2.4 e)

In Wang, Huang, and Wang (2019), the related notations and constraints of the above model

are defined as follows.

The actual processing time function is p[ij] = pij +αijtij; ϕ is an infinite number; xj′j = 1 if

job j is followed by job j′ immediately, and xj′j = 0 otherwise.

Constraints (2.4 a)-(2.4 b) represent the constraints of job starting time. Constraint (2.4 c)

denotes the jobs’ order relation.
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Model 2.5 (Yang 2013)

min
∑

Cj

s.t. (1.3 a)-(1.3 c)

In Yang (2013), the actual processing time function is p[ijr] = pijfij(r), where fij(r) is the

deteriorating function of job in position r.

Model 2.6 (Zhang et al. 2018)

min Cmax,
∑

Cj,
∑

(δ1Ej + δ2Tj + δ3D)

s.t. (1.1 a)-(1.1 c)

In Zhang et al. (2018), the actual processing time function is p[gjr] = pgj(1 +α)r−1.

Model 2.7 (Yang, Lee, and Guo 2013)

min
∑V

v=1

∑
j∈Vv

(δ1Ej + δ2Tj + δ3Dv + Γjuj)

s.t. (1.1 a)-(1.1 c)

In Yang, Lee, and Guo (2013), the related notations and constraints of the above model are

defined as follows.

The actual processing time functions are p[jr] = pjf(r)−κjuj and p[jr] = (
pjf(r)

uj
)σ; δ1, δ2, δ3 > 0

are the unit time penalties of job earliness, tardiness, and due date, respectively; V is the

number of due dates, v is the index of the due date, and Vv is the set of jobs with due date Dv.

Model 2.8 (Pei et al. 2015)

min Cmax

s.t.
∑N

b=1 xjb = 1 j = 1, · · · , n (2.8 a)∑n

j=1 xjb ≤ c b= 1, · · · ,N (2.8 b)

C1b = t1b +

∑b
l=1 nl

Π
j=1+

∑b−1
l=1

nl

(1 +αj) b= 1, · · · ,N (2.8 c)

t1,b+1 =C1b b= 1, · · · ,N − 1 (2.8 d)

t2,b+1 ≥C1b +T b= 1, · · · ,N − 1 (2.8 e)

C2b = t2b + T
2

b= 1, · · · ,N (2.8 f)

C1b −C1b′ + Φybb′ − p[bj] ≥ 0 b, b′ = 1, · · · ,N (2.8 g)

C2b −C2b′ + Φzbb′ −T ≥ 0 b, b′ = 1, · · · ,N (2.8 h)

Cmax ≥C2b b, b′ = 1, · · · ,N (2.11 i)

xjb, ybb′ , zbb′ ∈ {0,1} j = 1, · · · , n, b, b′ = 1, · · · ,N (2.8 j)
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In Pei et al. (2015), the related notations and constraints of the above model are defined as

follows.

The actual processing time functions are p[j] = αjt and p[bj] = t Π
j∈batch−b

(1 + αj) − t; xjb = 1

if job j is assigned to batch b, and xjb = 0 otherwise; ybb′ = 1 and zbb′ = 1 if batch b precedes

batch b′ during the production stage and the transportation stage, respectively, and ybb′ = 0 and

zbb′ = 0 otherwise; C1b and C2b represent the completion time of batch b during the production

stage and the transportation stage, respectively; t1b and t2b represent the starting time of batch

b during the production stage and the transportation stage, respectively; Φ is a large number; T

is the round-trip time between the manufacture and customer; c means the capacity of machine

and vehicle.

Constraints (2.8 g)-(2.8 h) represent that there is no overlap between two batches at any two

stages.

Model 2.9 (Pei et al. 2015)

min Cmax

s.t. (2.8 a)-(2.8 c), (2.8 e)-(2.8 j)

t1,b+1 =max{C1b, t1b +T} b= 1, · · · ,N − 1 (2.9 a)

The related notations and constraints of the above model are the same as those of Model

2.8, and the constraint of the starting time t1,b+1 has changed.

Model 3.1 (Wang and Wang 2014)

min δ1TC + δ2TADC + δ3TML

δ1TW + δ2TADW + δ3TML

s.t. (1.3 a)-(1.3 c)

In Wang and Wang (2014), the actual processing time function is p[ijr] = (pij + αt)ra. The

variables δ1, δ2, δ3 ≥ 0 are the given weights.

Model 3.2 (Wang and Wang 2014)

min δ1TC + δ2TADC + δ3TML

δ1TW + δ2TADW + δ3TML

s.t. (1.3 b)-(1.3 c)∑n

j=1 xijr ≤ 1 i= 1, · · · ,m, r = 1, · · · , n (3.2 a)

The related notations and constraints of the above model are the same as those of Model

3.1, where the actual processing time function is p[ijr] = (pij +αt)ra.

Constraint (3.2 a) shows the phenomenon that no job is assigned in the position r on machine

i.



Pei et al.: A Concise Guide to Scheduling with Learning and Deteriorating Effects
s19

Model 3.3 (Fu et al. 2018)

min Cmax,
∑

Tj

s.t. (1.1 a)-(1.1 c)

tir + p[ir] ≤ ti+1,r i= 1, · · · ,m− 1, r = 1, · · · , n (3.3 a)

tir + p[ir] ≤ ti,r+1 i= 1, · · · ,m, r = 1, · · · , n− 1 (3.3 b)

Cmax ≥Cj j = 1, · · · , n (3.3 c)

Cj ≥Cij i= 1, · · · ,m, j = 1, · · · , n (3.3 d)

tij ≥ 0,Cij ≥ 0 i= 1, · · · ,m, j = 1, · · · , n (3.3 e)

In Fu et al. (2018), the related notations and constraints of the above model are defined as

follows.

The actual processing time function is p[ijr] = (pij +αijtij)r
aij . The parameter Cj represents

the completion time of job j on the last machine.

Constraints (3.3 a)-(3.3 b) represent the constraints of the job starting time. Constraints (3.3

c)-(3.3 d) show the constraints of the job completion time.

Model 3.4 (Niu, Wang, and Yin 2015)

min Cmax,
∑

Cj,
∑

Wj, TADC,TADW∑n

j=1(δ1Ej + δ2Tj + δ3Dj)

s.t. (1.1 a)-(1.1 c)

In Niu, Wang, and Yin (2015), the actual processing time function is p[jr] = pjmax{raj , ρ}+

αt; the variables δ1, δ2, δ3 ≥ 0 are the given weights.

Model 3.5 (Huang, Wang, and Ji 2014)

min δ1TC + δ2TADC

δ1TW + δ2TADW

s.t. (1.1 a)-(1.1 c)

In Huang, Wang, and Ji (2014), the actual processing time function is p[jr] = pjr
aj +αt; the

variables δ1, δ2 ≥ 0 are the given weights.

Model 3.6 (Yusriski et al. 2016)
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min
∑N

b=1(
∑b

l=1(s+T[l]Q[l])− s)Q[b]

s.t.
∑N

b=1Q[b] = n, (3.6 a)∑N

b=1 T[b]Q[b] + (N − 1)s≤ d, (3.6 b)

t[1] +T[1]Q[1] = d, (3.6 c)

Q[b] ≥ 1 and integer, (3.6 d)

1≤N ≤ n and integer, (3.6 e)

In Yusriski et al. (2016), the related notations and constraints of the above model are defined

as follows.

The actual processing time function is T[b] = max{p(1 +
∑N

l=bQ[l+1])
−log(a)/log(2), ρ} +

µ(
∑N

l=b T[l+1]Q[l+1]/α)β; T[b] is the bth batch processing time, b = 1, · · · ,N ; N is the number of

batches; n is the number of jobs; s is the setup time of batch; Q[b] is the number of jobs in

batch b; d denotes the due date; t[b] is the starting time of bth batch.

The objective function is to minimize the total flow time. Constraints (3.6 b)-(3.6c) denote

the constraints of due date.

Model 3.7 (Yusriski et al. 2018)

min
∑N

b=1({
∑b

l=1(s+T[l]Q[l])− s−T[b]Q[b]}δ1Q[b] + δ2T[b]Q
2
[b])

s.t. (3.6 a)-(3.6 e)

The related notations and constraints of the above model are the same as those of Model

3.6, where the processing time function T[b] is too complex to show in this appendix; δ1 and

δ2 denote the unit inventory holding cost for a part in the completed batches and in-process

batches, respectively. The objective function is to minimize the total inventory holding cost.
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Appendix E. Other studies on learning and deteriorating effects
Appendix E.1. Extensions of pure non-linear learning function p[jr] = pjr

a

In manufacturing scenarios, it is highly unrealistic that the job processing time drops to zero

precipitously with the increase of already processed jobs. Hence, a truncation parameter of ρ∈

(0,1) was introduced into p[ijr] = pijr
a, namely, p[ijr] = pijmax{ra, ρ} with a≤ 0. This learning

function was usually applied in two-machine flowshop scheduling problems (Li et al. 2011a,

Cheng et al. 2013, Wang et al. 2013). Li et al. (2011a) proposed a B&B algorithm and three SA

algorithms to minimize
∑

Cj. Cheng et al. (2013) designed a B&B algorithm and three genetic

algorithms (GAs) to minimize Cmax. For six general performance criteria, Wang et al. (2013)

proposed SPT, WSPT, and WDSPT algorithms, etc.

Since the part of job processing time is limited by some conditions and it cannot be shorten,

DeJong’s learning function p[jr] = pj(M + (1−M)ra) and some improved functions were pro-

posed in parallel-machine and flowshop environments, as shown in Figure S.1. The parameter

M ∈ [0,1] denotes the incompressibility factor, that is, the incompressibility of the job process-

ing time. DeJong’s learning function p[jr] = pj(M + (1−M)ra) was applied in parallel-machine

makespan minimization problem (Oko lowski and Gawiejnowicz 2010, Hidri and Jemmali 2020).

Then, combining with truncated effect, Amirian and Sahraeian (2014) presented a modified

DeJong’s learning function p[ijr] = pij(M + (1−M)max{ra, ρ}). Amirian and Sahraeian (2016)

further improved the function in consideration of operator’s prior experience and machine-based

learning indicator, see p[ijr] = pij(Mij + (1 −Mij)(ρ + (Bj + r)ai), where B is abstracted from

Stanford-B learning curve (Fogliatto and Anzanello 2011), Mij ∈ [0,1], ai ≤ 0, and ρ + (Bj +

r)ai ≤ 1. As Figure S.1 shows, the constraints (AE1-1c)-(AE1-1d) of the proposed Model AE1-1

define the lateness and release date of each job. Regarding algorithms, Oko lowski and Gaw-

iejnowicz (2010) proposed two B&B algorithms and two greedy heuristics, while Amirian and

Sahraeian (2016) and Amirian and Sahraeian (2014) designed multi-objective differential evo-

lution (MODES) and multi-objective simulated annealing differential evolution (MO-SADE)

algorithms. In Hidri and Jemmali (2020), two types of heuristic algorithms were proposed based

on dispatching rules with new enhancement methods and exact solutions, respectively.

In the chemical industry, the job processing time can be compressed if extra costs are paid

to increase catalysts (Wang and Cheng 2005). Then, scheduling problems with position- and

resource-based learning effects were studied. As shown in Figure S.2, it is found that the

single-machine and no-wait two-machine flowshop cases are all formulated as common due

date assignment models, see Models AE1-2, AE1-3, AE1-4, and AE1-5. Moreover, all of them

proposed polynomial time algorithms to solve these problems. In the initial research, a linear

resource consumption function p[jr] = pjr
a − κjuj with 0 ≤ uj <

pjn
a

κj
and a convex resource

consumption function p[jr] = (
pjr

a

uj
)σ with uj > 0 were proposed (Wang, Wang, and Wang

2010). In these two functions, uj is the amount of resource allocated to the job j, κj is the

positive compression rate, and σ is a positive constant. It is found that p[ijr] = (
pijr

a

uij
)σ with
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Figure S.1 Models of problems on DeJong’s learning effects

a ≤ 0 and uij > 0 was popular in no-wait two-machine flowshop scheduling problems (Gao

et al. 2018, Geng, Wang, and Bai 2018, Tian et al. 2018, Liu and Feng 2014, Sun et al. 2018).

Particularly, both Geng, Wang, and Bai (2018) and Tian et al. (2018) took into account total

resource constraints
∑2

i=1

∑n

j=1 Γijuij ≤ U , where Γij denotes the cost related to the resource

allocation per unit time and U is the upper bound of the resource cost.

Figure S.2 Models of problems with non-linear functions considering resource allocation

Appendix E.2. Extensions of linear starting time-dependent functions with fixed
processing time p[j] = pj +αt

Actually, the deteriorating function p[ij] = pij(µ+νt) with constant number µ,ν ≥ 0 and deteri-

orating indicator αij ≤ 0 can be regarded as another representation of p[ij] = pij +αijt, which is

common in the flowshop cases. In the context of m-machine flowshop cases, Bank et al. (2012a)

proposed PSO and SA algorithms for minimizing
∑

Tj. Besides meta-heuristic algorithms, Bank

et al. (2012b) and Ng et al. (2010) both utilized B&B algorithms to solve two-machine flowshop

scheduling problems, with the objectives to minimize Lmax and
∑

wjCj, respectively. In addi-

tion to flowshop scheduling, the total deviation of completion time minimization problems were

solved by heuristic algorithms in the single-machine environment, where deteriorating function

is p[j] = pj(µ+ νtj) (Li et al. 2009).
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Considering the compression of job processing time in realistic situations, two resource-

dependent deteriorating functions p[j] = pj + αjt− κuj and p[j] = (
κj

uj
)σ + αjt were presented

in single-machine scheduling problems, where αj > 0, σ > 0. The term uj is the amount of

resource allocated to the job j, and κj is a positive parameter, denoting the workload of job

j. Given the linear function p[j] = pj +αt−κuj, Wei, Wang, and Ji (2012) utilized assignment

models to solve two multi-objective problems. The expressions for objectives are δ1Cmax +

δ2TC + δ3TADC + δ4
∑

Γjuj and δ1Cmax + δ2TW + δ3TADW + δ4
∑

Γjuj. Additionally, in

order to solve scheduling problems with convex function p[j] = (
κj

uj
)σ +αjt, Li and Wang (2018)

and Liu et al. (2019) both designed O(nlogn)-time algorithms. The former studied three prob-

lems 1|p[j] = (
κj

uj
)σ +αjtj|Cmax + θ

∑
Γjuj, 1|p[j] = (

κj

uj
)σ +αjtj,Cmax < Ĉ|

∑
Γjuj, and 1|p[j] =

(
κj

uj
)σ +αjtj,

∑
Cj < ˆTC|

∑
Γjuj, where θ is a given number. The latter addressed two problems

1|p[j] = (
κj

uj
)σ + αt,

∑
Γjuj < U |λ and 1|p[j] = (

κj

uj
)σ + αt,λ < ϕ|

∑
Γjuj, where U and ϕ is the

upper bound of total resource cost and schedule cost, respectively. The parameter λ is a set of

objective functions including Cmax,
∑

Cj,
∑

Wj, etc. Given convex function p[j] = (
pj
uj

)σ +αt,

Liu, Yao, and Jiang (2020) investigated a bi-criteria scheduling problems where the first objec-

tive is to minimize scheduling cost and the second objective is to minimize resource consumption

cost. They proposed common due-date assignment and slack due-date assignment methods.

Appendix E.2. Extensions of learning-deterioration function p[jr] = (pj +αjt)r
a

Apart from single-machine cases studied by Ceylan (2014), most papers focused on parallel-

machine scheduling problems in this field. Ceylan (2014) proposed the learning-deterioration

function p[r] = pr +(α×Cr−1)r
a. Additionally, there were three papers on earliness and tardiness

minimization scheduling problems with p[r] = (pr +α×Cr−1)r
a (Toksarı and Güner 2008, 2009,

2010). They all proposed mixed non-linear integer programming models considering various

constraints, see Models AE3-1, AE3-2, and AE3-3 in Figure S.3. Specifically, in Models AE3-1

and AE3-3, the constraint Cir = Ci,r−1 +
∑n

j′=1

∑n

j=1(sj′jxij′rxij,r+1) + p[ir] shows the actual

job completion time considering sequence-dependent setup times sj′j. This is different from

the constraint Cir = Ci,r−1 + p[ir] of Model AE3-2. Furthermore, due to the up and down in

machine speed and breakdowns, Arık and Toksarı (2018) investigated multi-objective fuzzy

problems with four learning-deterioration functions, i.e., p[r] = (pr + α1 ×Cr−1)r
a, p[r] = (pr +

α1 ×Cα2
r−1)r

a, p[r] = (pr +α1 ×Cr−1)(1 +
∑r−1

l=1 p[l])
a, and p[r] = (pr +α1 ×Cα2

r−1)(1 +
∑r−1

l=1 p[l])
a.

Thereinto, α1 > 0 and α2 > 0 are linear and non-linear deteriorating indicator, respectively.

Under the fuzzy environment, they built Model AE3-4 based on the fuzzy setting, and depicted

the relationship among completion time, earliness, tardiness, and due date, see Figure S.3. A

local search algorithm with different solution techniques was designed for these problems.
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Figure S.3 Models of problems with functions based on p[r] = pr+(α×Cr−1)r
a and p[r] = (pr+(α×Cr−1))r

a
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Toksarı, M. D., and E. Güner. 2010. “Parallel machine scheduling problem to minimize the earliness/tardiness costs with
learning effect and deteriorating jobs.” Journal of Intelligent Manufacturing 21 (6): 843–851.

Vahedi Nouri, B., P. Fattahi, and R. Ramezanian. 2013. “Hybrid firefly-simulated annealing algorithm for the flow shop
problem with learning effects and flexible maintenance activities.” International Journal of Production Research 51
(12): 3501–3515.

Wang, D., M. Z. Wang, and J. B. Wang. 2010. “Single-machine scheduling with learning effect and resource-dependent
processing times.” Computers & Industrial Engineering 59 (3): 458–462.

Wang, H., M. Huang, and J. Wang. 2019. “An effective metaheuristic algorithm for flowshop scheduling with deteriorating
jobs.” Journal of Intelligent Manufacturing 30 (7): 1–10.

Wang, J. B. 2007. “Single-machine scheduling problems with the effects of learning and deterioration.” Omega 35 (4):
397–402.

Wang, J. B. 2008. “Single-machine scheduling with past-sequence-dependent setup times and time-dependent learning
effect.” Computers & Industrial Engineering 55 (3): 584–591.

Wang, J. B., L. Lin, and F. Shan. 2008. “Single-machine group scheduling problems with deteriorating jobs.” The Inter-
national Journal of Advanced Manufacturing Technology 39 (7-8): 808–812.

Wang, J. B., L. H. Sun, and L. Y. Sun. 2010. “Scheduling jobs with an exponential sum-of-actual-processing-time-based
learning effect.” Computers & Mathematics with Applications 60 (9): 2673–2678.

Wang, J. B., and J. J. Wang. 2015. “Single-machine scheduling problems with precedence constraints and simple linear
deterioration.” Applied Mathematical Modelling 39 (3): 1172–1182.

Wang, J. J., and Y. J. Liu. 2014. “Single-machine bicriterion group scheduling with deteriorating setup times and job
processing times.” Applied Mathematics and Computation 242: 309–314.

Wang, X., and T. E. Cheng. 2005. “Single machine scheduling with resource dependent release times and processing times.”
European Journal of Operational Research 162 (3): 727–739.

Wang, X. Y., and J. J. Wang. 2014. “Scheduling deteriorating jobs with a learning effect on unrelated parallel machines.”
Applied Mathematical Modelling 38 (21-22): 5231–5238.

Wang, X. Y., Z. Zhou, X. Zhang, P. Ji, and J. B. Wang. 2013. “Several flow shop scheduling problems with truncated
position-based learning effect.” Computers & Operations Research 40 (12): 2906–2929.



Pei et al.: A Concise Guide to Scheduling with Learning and Deteriorating Effects
s27

Wei, C. M., J. B. Wang, and P. Ji. 2012. “Single-machine scheduling with time-and-resource-dependent processing times.”
Applied Mathematical Modelling 36 (2): 792–798.

Woo, Y. B., and B. S. Kim. 2018. “Matheuristic approaches for parallel machine scheduling problem with time-dependent
deterioration and multiple rate-modifying activities.” Computers & Operations Research 95: 97–112.

Wu, C. C., J. Y. Chen, W. C. Lin, K. Lai, S. C. Liu, and P. W. Yu. 2018. “A two-stage three-machine assembly flow shop
scheduling with learning consideration to minimize the flowtime by six hybrids of particle swarm optimization.”
Swarm and evolutionary computation 41: 97–110.

Wu, C. C., P. H. Hsu, and K. Lai. 2011. “Simulated-annealing heuristics for the single-machine scheduling problem with
learning and unequal job release times.” Journal of Manufacturing Systems 30 (1): 54–62.

Wu, C. C., and W. C. Lee. 2008. “Single-machine scheduling problems with a learning effect.” Applied Mathematical
Modelling 32 (7): 1191–1197.

Wu, W. H. 2014. “Solving a two-agent single-machine learning scheduling problem.” International Journal of Computer
Integrated Manufacturing 27 (1): 20–35.

Xin, X., Q. Jiang, C. Li, S. Li, and K. Chen. 2021. “Permutation flow shop energy-efficient scheduling with
a position-based learning effect.” International Journal of Production Research Forthcoming Available at:
https://doi.org/10.1080/00207543.2021.2008041.

Xu, D., Y. Yin, and H. Li. 2010. “Comments on “A note on minimizing maximum lateness in an m-machine scheduling
problem with a learning effect”.” Applied mathematics and computation 217 (2): 939–943.

Yang, D. L., and W. H. Kuo. 2009. “A single-machine scheduling problem with learning effects in intermittent batch
production.” Computers & Industrial Engineering 57 (3): 762–765.

Yang, S. J. 2013. “Unrelated parallel-machine scheduling with deterioration effects and deteriorating multi-maintenance
activities for minimizing the total completion time.” Applied Mathematical Modelling 37 (5): 2995–3005.

Yang, S. J., H. T. Lee, and J. Y. Guo. 2013. “Multiple common due dates assignment and scheduling problems with
resource allocation and general position-dependent deterioration effect.” The International Journal of Advanced
Manufacturing Technology 67 (1-4): 181–188.

Yin, N., J. B. Wang, D. Wang, L. Y. Wang, and X. Y. Wang. 2010. “Deteriorating jobs and learning effects on a single-
machine scheduling with past-sequence-dependent setup times.” The International Journal of Advanced Manufac-
turing Technology 46 (5-8): 707–714.

Yin, Y., C. C. Wu, W. H. Wu, and J. C. Chen. 2013. “Single-machine group scheduling with a general learning effect.”
European Journal of Industrial Engineering 7 (3): 350–369.

Yusriski, R, TMAA Samadhi, AH Halim, et al. 2016. “An integer batch scheduling model for a single machine with simul-
taneous learning and deterioration effects to minimize total actual flow time.” In IOP conference series: materials
science and engineering, Vol. 114, 012073. IOP Publishing.

Yusriski, R, TMAA Samadhi, AH Halim, et al. 2018. “An integer batch scheduling model considering learning, forgetting,
and deterioration effects for a single machine to minimize total inventory holding cost.” In IOP Conference Series:
Materials Science and Engineering, Vol. 319, 012038. IOP Publishing.

Zhang, X., W. H. Wu, W. C. Lin, and C. C. Wu. 2018. “Machine scheduling problems under deteriorating effects and
deteriorating rate-modifying activities.” Journal of the operational research society 69 (3): 439–438.

Zhao, C., and H. Tang. 2012. “Two-machine flow shop scheduling with deteriorating jobs and chain precedence constraints.”
International Journal of Production Economics 136 (1): 131–136.

Zhu, Z., L. Sun, F. Chu, and M. Liu. 2011. “Single-machine group scheduling with resource allocation and learning effect.”
Computers & Industrial Engineering 60 (1): 148–157.

Zou, J. 2014. “Single machine scheduling problems with delivery times under simple linear deterioration.” Applied and
Computational Mathematics 3 (3): 85.


