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The problem of reducing the fragility of digital controllers and filters implemented using

finite-precision, floating-point arithmetic is considered. Floating-point arithmetic parameter

uncertainty is multiplicative, unlike parameter uncertainty resulting from fixed-point

arithmetic. Based on first-order eigenvalue sensitivity analysis, an upper bound on the

eigenvalue perturbations is derived. Consequently, open-loop and closed-loop eigenvalue

sensitivity measures are proposed. These measures are dependent upon the filter/controller

realization. Problems of obtaining the optimal realization with respect to both the open-loop

and the closed-loop eigenvalue sensitivity measures are posed. The problem for the open-loop

case is completely solved. Solutions for the closed-loop case are obtained using non-linear

programming. The problems are illustrated with a numerical example.
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1. Introduction

The finite word-length used for number representation

in digital computers means that controllers and filters

implemented with digital hardware are subjected to

errors. The errors in the arithmetic result from two

sources (Mullis and Roberts 1976). The first is quantiza-

tion errors resulting from the quantization of the signals

and roundoff of the results of multiplication and addi-

tion. The second is coefficient errors resulting from

the rounding of the coefficients of the filter/controller.

This paper is concerned with the second of these.

There are other finite word-length effects that need to

be considered in implementing digital filters/controllers,

notably the effects of overflow and (for floating point

arithmetic) underflow and limit cycles resulting from

the quantization. These are not considered in this paper.

In the past, digital controllers were often implemented

using fixed point arithmetic; however, the reducing

cost and increasing speed of computer hardware

means that there is an increasing tendency for imple-

mentations to use floating-point arithmetic. It is well

known (Wilkinson 1963) that quantization and round-

ing effects with floating point arithmetic is of a different

nature to that of fixed point. Fixed-point quantization

error results in additive noise independent of the

signal, but with floating-point arithmetic, the quantiza-

tion error is correlated with the signal that is being

quantized. Similarly, coefficient rounding in fixed-point

arithmetic results in additive perturbations on the

coefficients, whereas with floating-point arithmetic the

perturbations are multiplicative. Thus, the analysis and

optimization of finite-precision filter and controller

implementations needs to take the arithmetic into

account.
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has been fairly extensively studied over the last four

decades (for example, Sandberg 1967, Liu and Kaneko

1969, Kan and Aggarwal 1971, Kaneko and Liu 1971,

Liu 1971, Zeng and Neuvo 1991, Smith et al. 1992,

Rao 1996, Bomar et al. 1997, Tsai 1997, Ko and

Bitmead 2004), see Kontro et al. (1992) for a review.

The effect of coefficient rounding in floating-point arith-

metic seems first to have been considered by Kaneko

and Liu (1971) (see also Liu 1971), who analysed the

sensitivity of the filter poles and the sensitivity of the fre-

quency response to multiplicative perturbations on the

coefficients for several filter structures. Liu (1971) also

performs an analysis of the sensitivity of the filter

frequency response, as do both Ku and Ng (1975) and

Kalliojärvi and Astola (1994).
The finite-precision effects on closed-loop control

systems have been extensively studied for fixed-point

implementations; see Istepanian and Whidborne (2001)

for a review. There has been far less work looking

explicitly at the finite-precision effects for floating-

point digital controller implementations. The quantiza-

tion errors have been analysed by Rink and Chong

(1979a, b), and by Vanwingerden and De Koning

(1984) for optimal controllers. Miller et al. (1988) have

also analysed the quantization errors, but notably also

include the inter-sample behaviour. A method to

design optimal controllers that minimize the quantiza-

tion errors has been developed by de Oliveira and

Skelton (2001). The effect on the robust stability

caused by coefficient rounding has been analysed by

Molchanov and Bauer (1995), but an additive perturba-

tion is assumed for the floating point implementation.

Closed-loop stability subject to perturbations on the

floating-point coefficients has been analysed by

Faris et al. (1998) using modern robust techniques.

The sensitivity of the time responses has been analysed

by Farrell and Michel (1989) for both fixed and

floating-point arithmetic.
It is known that some controller/filter realizations are

very sensitive to small errors in the parameters and these

small errors can even lead to instability. These param-

eter errors may result from the finite-precision of the

computing device. Such controller realizations can be

described as fragile (Keel and Bhattacharryya 1997).

However, a dynamical system has an infinite number

of equivalent realizations. If a digital linear system is

implemented in the state space form, CðzI � AÞ�1Bþ

D, then CTðzI � T �1ATÞ
�1T �1BþD is an equivalent

realization for any non-singular matrix T. It so happens

that the effect of the finite precision is partially depen-

dent upon the realization. Thus, in order to ensure a

non-fragile implementation, it is of interest to know

the realization or matrix T which minimizes the effect

on the system of the finite precision.

One approach to obtaining non-fragile realizations is

to minimize the sensitivity of the system eigenvalues.

This approach has been extensively investigated for

fixed-point realizations. It was first considered for the

open-loop (filter) case by Mantey (1968) and subse-

quently by Gevers and Li (1993), who solved the

problem for state-space realizations based on a norm

for the open-loop eigenvalue sensitivities. The case of

the closed-loop system eigenvalue sensitivity for state-

space controller realizations was first considered by Li

(1998) and has subsequently been thoroughly investi-

gated (Istepanian et al. 1998, 2000, Chen et al. 1999,

Wu et al. 1999, 2000, Whidborne et al. 2001).
In this paper, a simple eigenvalue sensitivity measure

is considered for both filter and controller realizations.

The filter problem is completely solved whilst solutions

to the controller problem may be obtained using

non-linear programming. The main results of this

paper were originally presented by Whidborne and

Gu (2002). Other eigenvalue sensitivity minimization

indices for floating-point implementations have recently

been proposed by Wu et al. (2003, 2004). An alternative

eigenvalue sensitivity index has been proposed for

floating point arithmetic by Ko and Yu (2004) and

conditions for the existence of a minimizing realization

established. However, additive perturbations on the

coefficients are assumed, and this index is actually an

upper bound on an index proposed by Whidborne

et al. (2001).
In the next section, floating-point arithmetic is dis-

cussed and the rounding operation is shown to result

in multiplicative perturbations on the filter/controller

coefficients. Based on this perturbation model, an

upper bound on the eigenvalue perturbations is obtained

in section 3. In section 4, a measure of the relative

stability based on this upper bound is proposed for

digital filter implementations, and the problem of

minimising this measure for state-space realizations is

solved. In section 5, a similar measure for closed-loop

controller implementations is proposed. Non-linear

programming is proposed to obtain solutions to the

closed-loop problem. The problems are illustrated by a

numerical example in the penultimate section and

non-linear programming is shown to be effective for

the closed-loop problem.

1.1. Notations

½x� floor function, that is the largest

integer less than or equal to x
A � B ¼ ½aijbij � Hadamard product of A and B

AT transpose of a matrix A
AH complex conjugate transpose of a

matrix A
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vec(A) column stacking operator of a

matrix A

kAkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i, j a
2
ij

p
Frobenius norm of a matrix A

A1=2 for a matrix A � 0, the unique sym-
metric matrix satisfying A1=2 � 0

and A1=2A1=2 ¼ A
C set of all complex numbers
R set of all real numbers
Z set of all integers

OðxÞ ‘is of order x’

2. Floating-point representation

Numbers in a digital computer are represented by a
finite number of bits—the word-length, ‘ 2 Zþ. In a

floating-point arithmetic, the word consists of three
parts:

(1) one bit, s 2 f0, 1g, for the sign of the number,
(2) ‘m 2 Zþ bits for the mantissa, m 2 R, and
(3) ‘e 2 Zþ bits for the exponent, e 2 Z.

Therefore, ‘ ¼ ‘m þ ‘e þ 1. The number is typically

stored as shown in figure 1 and, with this representation,
the value x is interpreted as

x ¼ ð�1Þs �m� 2e ð1Þ

where the mantissa is usually normalized so that m 2

½0:5, 1Þ. Now, since ‘e and ‘m are finite (‘ is typically

16, 32 or 64 bits), the set of numbers that is represented
by a particular floating-point scheme is not dense on

the real line. Thus, the set of possible floating-point
numbers, F , is given by

F :¼

(
ð�1Þs 0:5þ

X‘m
i¼1

bi2
�ðiþ1Þ

 !
� 2e: s 2 f0, 1g,

bi 2 f0, 1g, e 2 Z, e � e � e

)
[ f0g ð2Þ

where e 2 Z and e 2 Z represent the lower and upper
limits of the exponent, respectively, and e� e ¼ 2‘e�1.
Note that, unlike fixed-point representation, underflow

can occur in floating-point arithmetic.

In the remainder of this paper, it is assumed that no
underflow or overflow occurs, that is ‘e is unlimited,
so e 2 Z. Define the floating-point rounding operator,
q : R ! F , as

qðxÞ :¼
sgnðxÞ2ðe�‘m�1Þb2ð‘m�eþ1Þjxj þ 0:5c, for x 6¼ 0
0, for x ¼ 0

�
ð3Þ

where e ¼ blog2 jxjc þ 1.
The rounding error, ", is defined as

" :¼ jx� qðxÞj: ð4Þ

It can be shown easily that the rounding error is
bounded by

" < jxj2�ð‘mþ1Þ: ð5Þ

Thus, when a number is implemented in finite-precision
floating-point arithmetic, it may be perturbed to

qðxÞ ¼ xð1þ �Þ, j�j < �max: ð6Þ

where �max ¼ 2�ð‘mþ1Þ. Thus, as is well-known
(Wilkinson 1963), the perturbation is multiplicative,
unlike the perturbation resulting using finite-precision
fixed-point arithmetic, which is additive.

3. Eigenvalue sensitivity

In general, the perturbations on the controller param-
eters resulting from finite-precision implementation
will be very small. Thus, perturbations on the closed-
loop system eigenvalues can be approximated by
considering the first-order term of a Taylor expansion,
i.e. the eigenvalue sensitivities to changes in the con-
troller parameters. A number of different eigenvalue
sensitivity indices have been proposed for fixed-point
digital controller and filter implementations (Mantey
1968, Gevers and Li 1993, Istepanian et al. 1998,
Li 1998, Whidborne 2001, Wu et al. 2001).

Assume that a controller/filter realization, x ¼ vecðXÞ,
is implemented with floating-point arithmetic with finite
precision, that is the actual realization will be q(x).
Then, from (6), each element of x will be perturbed
to xið1þ �iÞ, j�ij < �max ¼ 2�ð‘mþ1Þ and the realization
vector will be perturbed to xþ x � �, where � ¼ ½�i�.

Proposition 1: Let f ðxÞ 2 C be a differentiable function
of x 2 R

nx . Assume that x is perturbed to ~xx where
~xxi ¼ xið1þ �iÞ. Then, to a first-order Taylor series
approximation

s   b1   blmalea1

sign exponent e mantissa m

. . . . . .

Figure 1. Floating-point number representation.
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j f ð ~xxÞ � f ðxÞj � �maxkgk2kxk2 þ jOð�2maxÞj ð7Þ

where j�ij < �max for all i and g(x) is the gradient
vector, i.e.

gðxÞ :¼
@f ðxÞ

@x
¼

@f

@xi

� �
x

ð8Þ

evaluated at x.

Proof: Takingafirst-orderTaylorseriesapproximation:

f ð ~xxÞ ¼ f ðxÞ þ
Xnx
i¼1

@f

@xi

� �
x

~xxi � xið Þ þ Oð�2maxÞ ð9Þ

Now, from (6), ~xxi ¼ xið1þ �iÞ, so

f ð ~xxÞ � f ðxÞ ¼
Xnx
i¼1

giðxÞxi�i þOð�2maxÞ: ð10Þ

Hence

j f ð ~xxÞ � f ðxÞj �
Xnx
i¼1

jgiðxÞjjxijj�ij þ Oð�2maxÞ
�� �� ð11Þ

< �max

Xnx
i¼1

jgiðxÞjjxij þ Oð�2maxÞ
�� �� ð12Þ

which, by the Cauchy-Schwartz inequality, gives

j f ð ~xxÞ � f ðxÞj < �maxkgðxÞk2kxk2 þ jOð�2maxÞj: ð13Þ

œ

If f( � ) is the system pole/eigenvalue, x is the infinite-
precision parameter vector and ~xx is the finite-precision
parameter vector, then Proposition 1 can be used to
measure the relative system stability when subject to
finite-precision implementation using floating-point
arithmetic. Based on Proposition 1, tractable eigen-
value sensitivity indices can be formulated which are
appropriate for finite-precision floating-point digital
controller and filter implementations.

4. Optimal digital filter realizations

Consider the problem of implementing a digital filter,
FðzÞ ¼ Cf ðzI � Af Þ

�1Bf þDf , where Af 2 R
n�n and

has no repeated eigenvalues, Bf 2 R
n�q, Cf 2 R

l�n and
Df 2 R

l�q. In this paper, ðAf ,Bf ,Cf ,Df Þ is also called
a realization of F(z). The realizations of F(z) are not
unique, if ðA0

f ,B
0
f ,C

0
f ,D

0
f Þ is a realization of F(z), then so

is ðT�1A0
f T ,T�1B0

f ,C
0
f T ,D0

f Þ for any non-singular

similarity transformation T 2 R
n�n. The system poles

are simply the eigenvalues of Af. The problem under
consideration is to find the similarity transformation
such that the realization has a minimal eigenvalue
sensitivity when implemented using finite word-length
floating-point arithmetic.

Based on Proposition 1, the following tractable
eigenvalue sensitivity index, �, is proposed

� ¼ kAf k
2
F

Xn
k¼1

wk�k ð14Þ

where wk is a non-negative real scalar weighting and

�k ¼
@�k
@Af

����
����2
F

ð15Þ

where f�i: i ¼ 1, . . . , ng represents the set of unique
eigenvalues of Af. The weights, wk, k ¼ 1, . . . , n, are
generally chosen so that the eigenvalues closer to the
unit circle have the larger values. The measure � is
dependent upon the filter realization, that is, given
Af ¼ T�1A0

f T ,

�ðT Þ :¼ T�1A0
f T

��� ���2
F

Xn
k¼1

wk�kðTÞ ð16Þ

where (Gevers and Li 1993, Li 1998),

�kðT Þ ¼ tr RH
k T

�T T �1Rk

	 

tr LH

k TT
T Lk

	 

ð17Þ

and where Rk and Lk are the right and left eigenvectors,
respectively, for the kth eigenvalue of A0

f .

Problem 1: Given an initial realization ðA0
f ,B

0
f ,C

0
f ,D

0
f Þ,

calculate

�min ¼ min
T2Rn�n

detðTÞ6¼0

�ðT Þ ð18Þ

and calculate a subsequent similarity transformation Tmin

such that �min ¼ �ðTminÞ.

Theorem 1: The solution to Problem 1 is given by

�min ¼
Xn
k¼1

j�kj
2
Xn
k¼1

wk ð19Þ

and

Tmin ¼ RWRH
	 
1=2

V ð20Þ
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where R¼ [Ri] is the matrix of right eigenvectors of A0
f ,

W ¼ diagðw1, . . . ,wnÞ is a diagonal matrix of the weights

and V is an arbitrary orthogonal matrix.

Proof: From Lemma 6.2 and Theorem 6.1 of Gevers

and Li (1993, pp. 137–138), it follows that �k � 1 with

equality for all k if Af is normal. From Horn and

Johnson (1985, p. 101),

kAf k
2
F �

Xn
k¼1

j�kj
2 ð21Þ

with equality if Af is normal. Clearly, if Af is normal,

� is minimal and (19) holds. Theorem 6.2 of Gevers

and Li (1993, p. 141) gives (20). œ

Remark 1: The requirement for minimal eigenvalue

sensitivity for FWL fixed-point arithmetic is also that

the transition matrix Af is in the normal form (Gevers

and Li 1993, p. 139).

5. Optimal digital controller realizations

Consider the linear discrete-time feedback control

system shown in figure 2. Let the plant be P(z) and let

the controller be C(z,X ), where X is the parametrization

of the controller.
Let ðAp,Bp,Cp, 0Þ be a state space description of

the strictly proper plant PðzÞ ¼ CpðzI � ApÞ
�1Bp,

Ap 2 R
m�m, Bp 2 R

m�l and Cp 2 R
q�m. Let

ðAc,Bc,Cc,DcÞ be a state space description of

CðzÞ ¼ CcðzI � AcÞ
�1Bc þDc, where Ac 2 R

n�n,

Bc 2 R
n�q, Cc 2 R

l�n and Dc 2 R
l�q.

The transition matrix of the closed loop system is

�AA ¼
Ap þ BpDcCp BpCc

BcCp Ac

� �

¼
Ap 0

0 0

� �
þ

Bp 0

0 In

� �
Dc Cc

Bc Ac

� �
Cp 0

0 In

� �
,

¼: M0 þM1XM2 ¼ �AAðX Þ,

ð22Þ

where

X : ¼
Dc Cc

Bc Ac

� �
, ð23Þ

In the sequel, it is assumed that �AA has no repeated
eigenvalues.

Let the realization ðA0
c ,B

0
c ,C

0
c ,D

0
cÞ of C(z) be

represented by

X0 ¼
D0

c C 0
c

B0
c A0

c

" #
, ð24Þ

then any realization is given by

X ¼
I 0

0 T

� ��1
D0

c C 0
c

B0
c A0

c

" #
I 0

0 T

� �
, ð25Þ

¼: T�1
I X0TI , ð26Þ

for some non-singular T 2 R
n�n.

Let Rk ¼ ðRT
k ð1Þ R

T
k ð2ÞÞ

T and Lk ¼ ðLT
k ð1Þ L

T
k ð2ÞÞ

T be

the right and left eigenvectors respectively, for the kth
eigenvalue of �AA partitioned such that Rkð1Þ,Lkð1Þ 2 C

m

and Rkð2Þ,Lkð2Þ 2 C
n, i.e. the partitions correspond to

the partitions of X defined by (23). Then, it can be
shown (Li 1998, Whidborne et al. 2001) that

@�k
@Ac

� �T

¼ Rkð2ÞL
H
k ð2Þ, ð27Þ

@�k
@Bc

� �T

¼ CpRkð1ÞL
H
k ð2Þ, ð28Þ

@�k
@Cc

� �T

¼ Rkð2ÞL
H
k ð1ÞBp, ð29Þ

@�k
@Dc

� �T

¼ CpRkð1ÞL
H
k ð1ÞBp, ð30Þ

where f�k: k ¼ 1, . . . , nþmg represents the set of unique

eigenvalues of �AA.
Based on Proposition 1, the following tractable

eigenvalue sensitivity index, �, is proposed

�ðX Þ :¼ kXk2F

Xnþm

k¼1

wk�k ð31Þ

where wk is a non-negative real scalar weighting and

�k ¼
@�k
@Ac

����
����2
F

þ
@�k
@Bc

����
����2
F

þ
@�k
@Cc

����
����2
F

þ
@�k
@Dc

����
����2
F

: ð32Þ

P(z)

C(z, X )

�
�

�

�

�

� �

+

+

+ +

r y

w

plant

controller

Figure 2. Feedback control system.
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The weights, wk, k ¼ 1, . . . , nþm, are generally chosen
so that the eigenvalues closer to the unit circle have
the larger values. The measure � is dependent upon
the controller realization. Given an initial realization
ðA0

f , B
0
f , C

0
f , D

0
f Þ, then it can be easily shown that

kXk2F ¼ trðP�1A0
cPA

0T
c Þ þ trðP�1B0

cB
0T
c Þ þ trðPC 0T

c C 0
c Þ

þ trðD0
cD

0T
c Þ,

ð33Þ

where P ¼ TTT and, from (27)–(30), that

�k ¼ trðR0H
k ð2ÞP�1R0

kð2ÞÞ trðL
0H
k ð2ÞPL0

kð2ÞÞ

þ �k trðL
0H
k ð2ÞPL0

kð2ÞÞ

þ �k trðR
0H
k ð2ÞP�1R0

kð2ÞÞ þ �k�k,

ð34Þ

where �k ¼ trðR0H
k ð1ÞCH

p CpR
0
kð1ÞÞ and �k ¼ trðL0H

k ð1Þ
BpB

H
p L

0
kð1ÞÞ. Rearranging gives

�ðPÞ ¼
�
trðP�1A0

cPA
0T
c Þ þ trðP�1B0

cB
0T
c Þ þ trðPC0T

c C 0
c Þ

þ trðD0
cD

0T
c Þ

��Xnþm

k¼1

trðP�1MRk
ÞtrðPMLk

Þ

þ trðPWLÞ þ trðP�1WRÞ þ c
�

ð35Þ

where

MRk
¼ w1=2

k R0
kð2ÞR

0H
k ð2Þ ð36Þ

MLk
¼ w1=2

k L0
kð2ÞL

0H
k ð2Þ ð37Þ

WL ¼ L0ð2Þ diag ðw1�1, . . . ,wnþm�nþmÞL
0Hð2Þ, ð38Þ

WR ¼ R0ð2Þ diag ðw1�1, . . . ,wnþm�nþmÞR
0Hð2Þ, ð39Þ

are all Hermitian and

c ¼
Xnþm

k¼1

�k�k: ð40Þ

Problem 2: Given an initial realization ðA0
c ,B

0
c ,C

0
c ,D

0
cÞ,

calculate

�min ¼ min
P2Rn�n

P¼PT >0

�ðPÞ

ð41Þ

where P ¼ TT T and calculate a subsequent similarity
transformation Tmin such that �min ¼ �ðTminT

T
minÞ.

Remark 2: The function �(P) is everywhere differen-
tiable over the set f�ðPÞ: P ¼ PT > 0g. Hence, it is

proposed that non-linear programming is used to find
local solutions to Problem 2. The problem of finding a
global solution remains open.

To solve the problem using non-linear programming,
a search is required over n� n real, positive definite
symmetric matrices. This can be accomplished by
utilising a Cholesky factorization given by the following
theorem (Golub and Van Loan 1989, p. 141).

Theorem 2 (Cholesky factorization): For P 2 R
n�n,

P ¼ PT , P>0, there exists a unique lower triangular
G 2 R

n�n with positive diagonal entries such that
P ¼ GGT .

Thus a search can be made over the set

ga
gb

� �
: ga 2 R

ðn�1Þn=2, gb 2 R
n
þ

� 

:

Remark 3: Since VVT ¼ I where V is any orthogonal
matrix, then Pmin ¼ GminVV

T GT
min and so

Tmin ¼ GminV : ð42Þ

This provides an extra degree of freedom which could
be utilized to find, for example, sparse realizations
(Li et al. 1992).

6. Example

The following numerical example is taken from Gevers
and Li (1993, pp. 236–237). The discrete time system
to be controlled is given by

Ap ¼

3:7156 �5:4143 3:6525 �0:9642

1:000 0 0 0

0 1:000 0 0

0 0 1:000 0

2
6666664

3
7777775
, ð43Þ

Bp ¼ 1 0 0 0
� �T

, ð44Þ

Cp ¼ 0:1116 0:0043 0:1088 0:0014
� �

� 10�5: ð45Þ

A pole-placement controller is designed to place the
closed-loop poles at

0:9844� 0:0357j, 0:9643� 0:0145j, ð46Þ

and a state observer is designed with poles located at

0:7152� 0:6348j, 0:3522� 0:2857j: ð47Þ

410 J. F. Whidborne et al.



The initial realization of the feedback controller C(z) is
given by (to 4 decimal places)

A0
c ¼ Ap þ BpC

0
c � B0

cCp ð48Þ

¼

2:6743 �5:7443 2:5096 �0:9176

0:2877 �0:0273 �0:6947 �0:0088

�0:3377 0:9871 �0:3294 �0:0042

�0:0830 �0:0032 0:9190 �0:0010

2
666664

3
777775, ð49Þ

B0
c ¼ 1:0963 0:6385 0:3027 0:0744

� �T
�106, ð50Þ

C 0
c ¼ 0:1818 �0:2831 0:0500 0:0617

� �
, ð51Þ

D0
c ¼ 0: ð52Þ

The weights are set to wi ¼ ð1� �maxÞ=ð1� j�ijÞ where
�max ¼ maxifj�ijg and f�ig are the eigenvalues of A0

c

and �AA (from (22)) for the open-loop and closed-loop
sensitivity indices, respectively. Thus, the eigenvalues
closer to the unit circle have the larger weighting values.
The initial realization has an open-loop pole sensitiv-

ity, � ¼ 1:5737� 106. From Theorem 1, the optimal
open-loop pole sensitivity �min ¼ 6:1746, which can be
achieved with the realization (to 4 decimal places):

Ac ¼

0:6194 �0:1992 �0:0835 �0:1265

0:1346 0:6052 �0:2297 0:0171

0:0508 0:1650 0:5315 �0:2813

0:2047 0:0653 0:2218 0:5605

2
666664

3
777775, ð53Þ

Bc ¼ 0:6508 0:0048 2:0020 0:2961
� �T

�106, ð54Þ

Cc ¼ 0:1100 0:0222 �0:0142 �0:0168
� �

: ð55Þ

The closed-loop pole sensitivity for the initial realization
is � ¼ 3:9903� 1022 and for the open-loop optimal real-
ization, it is � ¼ 9:8156� 1021. It is a fairly common
practice to implement controllers using a balanced reali-
zation. Using the MATLAB� routine balreal:m a
balanced realization was obtained (to 4 decimal places):

Ac ¼

0:1119 0:5408 �0:1954 �0:0531

�0:5408 0:7216 0:1647 0:0350

�0:1954 �0:1647 0:7643 �0:1298

0:0531 0:0350 0:1298 0:7189

2
66664

3
77775, ð56Þ

Bc ¼ 203:1819 �63:5703 32:0424 �4:1143
� �T

, ð57Þ

Cc ¼ 203:1819 63:5703 32:0424 4:1143
� �

: ð58Þ

The closed-loop pole sensitivity for the balanced
realization is � ¼ 1:2546� 1011.

The MATLAB� routine fminsearch:m was used with
the Cholesky factorization of Theorem 2 to solve
Problem 2. The routine fminsearch:m implements the
Nelder-Mead simplex method. Using a 350MHz
Pentium PC, from a random starting point, the routine
took 	 30minutes to converge. An optimal closed-loop
pole sensitivity value of �min ¼ 4:3366� 108 was
obtained with a realization (to 4 decimal places):

Ac ¼

�1:0614 �0:9631 �0:0054 �0:0018

2:2892 1:7570 �0:0235 0:0057

�1:4089 0:4759 0:6716 �0:0868

1:7421 �2:3837 0:4706 0:9494

2
666664

3
777775, ð59Þ

Bc ¼ 129:2367 �137:2672 56:4560 �23:7868
� �T

,

ð60Þ

Cc ¼ 155:1427 �119:5560 32:1475 1:0368
� �

: ð61Þ

7. Discussion and conclusions

In previous works, the eigenvalue sensitivity approach
to obtain optimal digital filter and controller realizations
so as to account for the finite precision inherent in
digital computing devices has been thoroughly investi-
gated. However, there has been an assumption that the
parameter uncertainty is additive. This assumption is
perfectly valid for filter and controller implementa-
tions that use fixed-point arithmetic, however, for
floating-point arithmetic, the parameter uncertainty is
multiplicative. It is becoming increasingly common to
use floating-point arithmetic for digital filters and
controllers. Thus, in this paper, the work of Gevers
and Li (1993) is extended to obtain optimal floating-
point digital filter realizations; and the work of
Whidborne et al. (2001) is extended to obtain optimal
floating-point digital controller realizations.

The methods are demonstrated on a numerical
example of a control system. Both the initial realization
of the controller and the optimal open-loop realization
result in very high closed-loop pole sensitivities.
This is significantly reduced by using a balanced realiza-
tion. However, the closed-loop pole sensitivity of
the balanced controller realization can be reduced by
three orders of magnitude by the optimal closed-loop
realization.
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